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Abstract

The engineering of human decisions should be based on models that (i) require realistic amounts

of resources such as time, information, and computation; (i} have high predictive accuracy;

{iii) describe the decisions people make and the processes that lead to the decisions; and (iv) are

easy to understand, apply, and explain. Fast and frugal heuristics are a family of simple algorithmic
models of decision making that satisfy (i}—{iv). Theoretical analyses, data from laboratory experiments,
and applications of the heuristics "in the wild” are presented. A future research direction is to develop

a methodology for building technological interfaces based on fast and frugal heuristics.
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Introduction

Imagine that you are a pilot who spots another
plane approaching. How can you determine
whether you are heading for a collision or not? You
could try to recall and apply the physies and aero-
dynamics you learned in college and flight school in
order to calculate the trajectory of the other plane,
predict its position in the next few moments, and
decide whether you should dive ar not. Is this what
pilots really do? These calculations might not be
completed before the impact occurs. Some fight
instructors teach their students a simple heuristic,
or rule of thumb, thar is fast and accurate: Look for
a scratch in your windshield and observe if the other
plane moves relative to thar scrarch; if it does not,
dive away quickly.

The study of heuristics in the cognitive sciences
can be used to engincer human decision making in
many areas besides cockpir decisions. For instance,
how do environmentally minded citizens choose
their elecrricity earrier? How do medical doctors
categorize a patient as being ar a high or low risk
of having a serious heart condition? How do lay
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investors allocare their wealth across the assets in
a portfolio? There are some answers to such ques-
tions. For example, the naturalistic-decision-making
research program (Klein, Orasanu, Calderwood, &
Zsambok, 1993; also see Militello & Klein, this
handbook) has studied professionals on the job
and provided insights into how they make quick
and accurarc decisions in sitwations of real and high
stakes, as in fircfighting and military operations. To
the extent, however, that this work has not devel-
oped computational models of decision making, it
cannot support a precise and systematic approach 1o
the engineering of decisions.

Models of decision making are mast helpful for
engineering decisions if they satisfy the following
requirements. First, because people typically oper-
ate under conditions of {fmited time, informarion,
and computational resources, the models should
be able to lead to decisions when fed with limited
amounts of resources. Tradirional models of decision
making often fail this requirement. For example,
expected-utility-type models require, for each deci-
sion option, the knowledge of all values, utilities.



i Pmbﬂbilitiﬁ, as well as their algebraic combina-
ion. Second, because the point of engineering is to
hring abour good outcomes, the decisions suggested
by the models should be “accurate.” It is not always
" ssible to evaluate the accuracy of a decision, We
consider situations in which it is possible to verify
whether a decision was correct or not. For exam-
e, the decision that a patient was not at a high
rsk of having ischemic heart disease and thus was
not allocated to the intensive care unir is incorrect
if subsequently the patient suffered a heart artack.
Engineering models of decision making should thus
be accurate. Furthermore, it is critical thar the mod-
ds be accurate for decisions that have ner yer been
made. This type of accuracy is referred 1o as predic-
ive accuracy ot robustness.

Whereas the two requirements abave had o do
with the inpur and output of models, the next two
refer to their use. The third requirement for an engi-
neering model of decision making is that people
scmally do use it People are much less willing o
work with an interface thar is based on a class of
models they do nor accept. For example, firefighters
reject utility models, and it is difficulr to get them 1o
participate in utility-based decision analyses (Klein,
Calderwood, & Clinton-Cirocco, 1986). Similarly,
physicians typically reject logistic regression models
to make a diagnosis (Corey & Merenstein, 1987;
Pearson et al., 1994), while they accepr fast and fru-
gal trees, whose sequential structure corresponds to
their own intuitive thinking (these trees are defined
below). A decision maker is said to use 2 model
when the model describes the decisions he or she
makes as well as the process thar led to the deci-
sions. The investigation of the process is important
because process dara provide plenty of opportunities
to reject 2 model. The fourth requirement is that the
model should be easy to understand and apply, and
tw explain to other stakeholders such as colleagues
and supervisors. This is so because it is a truism of
cognitive engineering thar people will not rely on
an interface that is not usable and justifiable, and an
interface inherits at least some of the usability and
justifiabilicy of the model on which it is based.

Fast and frugal heuristics are a family of models
of decision making that satisfies the four require-
ments described above for the cognitive engineer-
ing of decisions. The rest of this chapter outlines
the theory of some heuristics, illustrating some evi-
dence for their accuracy and descriptive power, and
presents the challenge of building interfaces based
on heuristics. For other summaries of research on
fast and frugal heuristics, see Todd and Gigerenzer

(2001} and the commentaries therein, Gigerenzer
(2004, 2008), and Gigerenzer and Brightan (2009).
For a collection of papers on fast and frugal heuris-
tics, see Gigerenzer, Hertwig, and Pachur (2011).

Fast and Frugal Heuristics

An approach to modeling decisions made under
conditions of limited time, information, and com-
putational resources is the research program on fase
and frugal heuristics (Gigerenzer, Todd, & ABC
Research Group, 1999; Todd, Gigerenzer, & ABC
Research Group, 2012), These heuristics are rules of
thumb that can be formulated as simple algorithms.
Their objective is not to satisfy logical requirements
of consistency (such as transitivity) or to find a
mathematical solution to an optimization problem,
bur to achieve success in the ecology, as measured
by criteria such as speed, frugality, accuracy, and
robustness (Gigerenzer & Brighton, 2009).

A good way of understanding fast and frugal heu-
ristics is to take a Darwinian perspective. Because
evolution does not follow a grand plan, there is a
patchwaork of heuristics, railored to particular jobs,
Just as evolution produces adaprations that are
bound to a particular ecological niche, the heuris-
tics are neither good nor bad, rational nor irrario-
nal, per se, but anly relative to their niches. Finally,
fast and frugal heuristics exploir both core psycho-
logieal capacities (e.g., recognition, recall, or imi-
tation} and the structure of the environment (e.g.,
non-compensatory cue validities or the trade-off
berween an algorithm's bias and variance).

Before introducing the basics of fast and frugal
heuristics, we point out thar there are multiple inter-
pretations of the meaning of the term “heuristics”
and multiple approaches to the study of heuristics.
In psychology and behavioral economics, heuristics
are often linked with biases (Tversky & Kahneman,
1974, p. 1124): “in general,... heuristics are quite
useful, but sometimes they lead 1o severe and sys-
tematic errors.” A critique of this approach is that
it has not been specihied precisely what "sometimes”
means; instead, answers are typically case as a lit-
any of experimental manipulations thar increase or
decrease the accuracy of a heuristic. Furthermore,
heuristics such as “availability” are mere verbal labels
instead of testable formal models. In applied math-
ematics and operations research, heuristics have a
positive meaning and are understood as computa-
tional shortcuts that allow “quickly finding good
feasible solutions” (Hillier & Licherman, 2001,
p. 624). For the purpose of designing interfaces
to be used by people, a limitation of the heuristics
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developed in operations rescarch is that they lack
a psychological basis. In engincering, some authors
{Magee & Frey, 2006) have also discussed practi-
tioners’ use of shorteuts and called them heuristics.
These heuristics are somewhat different from whart
we mean by fast and frugal heuristics in thar chey
apply to problems of experimentation and design
rather than to problems of reasoning, choice, and
inference,

Ignorance-Based Decision Making

[magine that you are a contestant in a TV game
show and face the $1 million question: Which ciry
has more inhabitants: Detroit or Milwaukee?

What is your answer? If you are American, then
your chances of finding the right answer, Detroit, are
not bad—60% of undergraduares ar the University
of Chicago did. If, however, you are German, your
prospects look dismal because most Germans know
little about Detroit, and many have not even heard
of Milwaukee. How many correct inferences did the
less knowledgeable German group achieve? Ninety
percent of the Germans answered the question cor-
rectly (Goldstein & Gigerenzer, 2002). How can
people who know less abour a subject nevertheless
make more correct inferences? The answer seems to
be thar the Germans used a heuristic: If you recog-
nize the name of one city but not the other, then
infer that the recognized city has the larger popu-
lation. The Americans could not use the heuristic
because they had heard of bath cities. They knew
too much,

The recognition heuristic is useful when there
is a strong correlation—in  either direcrion—
between recognition and criterion. For simplic-
ity, we assume that the correlation is positive. For
paired-comparison tasks, where the goal is to infer
which one of two objects (e.g,, cities) has the higher
value on a numerical criterion (e.g., population),
the heuristic is stated as follows:

Recagnition beuristic: If one of two objeas is
recognized and the other is nor, then infer that
the recognized object has the higher value on the
criterion,

The recognition heuristic builds on the core
capacity of recognition—such as face, voice, and
name recognition. No computer program yet exists
that can perform face recognition as well as a human
child does,

Intuitively, the recognition heuristic is successhul
when ignorance is systematic rather than random, thar
is, when recognition is strongly correlated with the
criterion. Substantial correlations exist in compertitive
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situations such as berween name recognition and th,
excellence of colleges, the value of the Producrs of
companies, and the quality of sports teams, A Numbe,
of experimental studies have found that if the ac.
racy of the recognition heuristic is substantiz| fi.e., it
exceeds 0.7), people use the recognition heuriggic i,
about 90% of all cases (Pachur & Herrwig, 2006),

A strong prediction of the recognition heurisic
that no other pieces of information can change the
decision 1o which recognition points. For example,
suppose that a person (i) recognizes Detroit ang not
Milwaukee and (i) recalls that the automobile indus-
try in Detroit has been hit for long time by a recee.
sion. The prediction of the recognition heurisiic i
that he or she will infer thar Detroit is maore populoys
despite Detroit’s recession. In other words, recogni-
tion is predicted to be used in a non-compensatory
fashion. For instance, Pachur, Broeder, and Marewsk;
(2008) reported that an amazing 50% of the partici-
pants in their study chase the recognized object con-
sistently, that is, in every single trial, even when they
had knowledge of three cues indicating thar the rec.
ognized object should have 2 low criterion value,

The Less-Is-More Effect

Beyond the non-compensatory use of recogni-
tion, the recognition heuristic leads ro a counterin.
tuitive prediction, one that has to do with accuracy,
This is the fess-is-more effect, where less information
leads to more accuracy (Goldstein & Gigerenzer,
2002)., The effect can be viewed as a violation of the
effort-accuracy trade-off where effort is measured
by the amount of information used to make a deci-
sion. Below, we present a theoretical analysis of the
less-is-more effect.

Assume that there exist NV objects (e.g., ciries)
and that a person performs all MV — 1)/2 paired
comparisons according to a numerical criterion
involving two of these objects (e.g., compare two
city populations). The amount of information a per-
son uses is measured by the number of objects the
person recognizes, s, The question is if and under
what condirions a smaller # can lead to higher accu-
racy than a larger n. The probability of being able to
use the heuristic for a paired comparison equals the
probability of exactly one object in the pair being
recognized, or

o) = 2n(N = n) | [N(N = 1)] ()
Similarly, the probability thar both objects are

recognized, and thus other knowledge beyond rec-

ognition must be used, equals



Kn) = n(n=1) 1 [MN=1)] (2)

Finally, the probability that neither object is rec-
ognin:d, which means thar the person has to guess,
;quals

gn) = (N=m)(N=n=1) [NNV-1)]  (3)

Let €t be the accuracy of the recognition heuristic
and [ the accuracy when both objects are recognized
and other knowledge is used (where @, } > 13). We
also assume thar accuracy equals ¥2 when none of
the objects is recognized. The overall accuracy of a
person who recognizes n objects equals

fln) = rinjoc+ kn)P + glu)(42) (4)

It is a mathematical fact that fln) is a
non-increasing function of # when @ > B, assum-
ing that both are constant across & (Goldstein &
Gigerenzer, 2002). In other words, if o > 3, a less-is-
more effect is predicred. For example, assume thar
there are three sisters who study for a geography
quiz with N = 100 cities. The three sisters have the
same ¢ = 0.8 and [} = 0.6, bur differ in the number
of cities n they recognize. The licde sister, who rec-
ognizes zero cities, has an accuracy of f0) = 0.50.
The eldest sister, who recognizes all 100 cities, has
an accuracy of f{100) = 0.60. The middle sister, who
recognizes 50 cities, is the most accurate of the three
sisters, as f(50) = 0.68.

At a first glance, the less-is-more effect might
appear paradoxical. But it is not because less rec-
ognition information may simply enable more
accurate cognitive processing via the use of the rec-
ognition heuristic. This idea is formalized by the
condition ot > ).

In Figure 33.1, accuracy for all # from 0 to 100,
when o = 0.8 and B = 0.6, is graphed by a solid
curve. The dashed curve presents the accuracy of
groups with three sisters in each group (where all
sisters in the group have the same a1, and all sisters in
all groups have o = 0.8 and B = 0.6). All groups use
the simple majority rule to decide: If two or three
group members infer that city A is more populous
than city B, then the group infers that A is more
populous. The middle tripler, where each of the
three sisters recognizes 50 cities, is more accurate
than the eldest rripler, where each sister recognizes
all ciries. Ir is a marhematical face that if o= P, a
less-is-more effect is predicted for groups who use a
variety of majority rules (Reimer & Kasikopoulos,
2004).
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Figure 33.1 Predicted aceuracy as a function of the number of
mfﬂgni.ml uhjl,.-:l.l far @ = 0.8 and B- = 0.6, for individuals (salid
curve) and theee-member groups that use the simple majority
rule (dashed curve).

Reimer and Kasikopoulos (2004) investigated
how groups of people decided together. In this
study, three people sat in front of a computer screen
on which questions such as "Which city has more
inhabitants: San Diego or San Antonio” were dis-
played. The task of the group was to find the correct
answer through discussion. Consider the follow-
ing conflict: Two group members have heard of
both cities, and each concluded independently
that city A is more populous. Bur the third group
member has not heard of A, only of B, and con-
cludes that B is more populous (relying on the
recognition heuristic). Given that two members
have at least some knowledge about both cities,
one might expect that the consensus is always A,
which is also whar the majority rule predicts. In
fact, in mare than half of all cases (59%), the group
voted for B (Reimer & Kawsikopoulos, 2004).
This percentage rose to 76% if two members used
recognition.

Group members letting their knowledge be dom-
inated by others' lack of recognition may seem odd.
But this apparently irrational decision increased the
overall accuracy of the group, Consistent with the
mathemarical theory, Reimer and Kawsikopoulos
(2004) observed that when two groups had approxi-
martely equal average o and [ (that were such that
ot > ), the group that recognized fewer cities
(smaller n} typically had maore correct answers. For
instance, the members of one group recognized
on average only 60% of the cities while those in a
second group recognized 80%, bur, in a series of
over 100 questions, the first group got 83% of the
answers correct, whereas the second got only 75%,

We next turn to situations where the recognition
heuristic cannort be used.
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Social Heuristics

When recognition is not valid, or when people
recognize all objects, fast and frugal heuristics can
invalve the scarch for reasons. A few years after
his voyage on the Beagle, the 29-year-old Charles
Darwin divided a scrap of paper (tidded “This ls
the Question”) into rwo columns with the head-
ings “Marry” and “Not Marry” and listed support-
ing reasons for each of the two possible courses of
action, such as “nice soft wife on a sofa with good
fire” opposed tw “conversation of clever men at
clubs.” Darwin concluded that he should marry,
writing “Marry — Marry = Marry Q. E. D.” deci-
sively beneath the first column. The following year,
Darwin married his cousin, Emma Wedgwood,
with whom he evenrually had 10 children. How did
Darwin decide to marry, based on the possible con-
sequences he envisioned—children, loss of time, a
constant companion? He did not tell us. One pos-
sibility is that he arrived at his decision by relying on
heuristics that process reasons, such as take-the-best
and tallying (see below for definitions of these heu-
ristics), which exploir core capacities such as recall
memaory. Another possibility is social heuristics that
exploit the social capacitics of people, such as imira-
tion, which is unmatched among animal species. For
instance, consider the following (Laland, 2001):

Do-what-the-majority-do hewristic: 1f the major-
ity of your peers display a behavior, engage in it
as well.

For the marriage problem, this heuristic makes
a man start thinking of marriage at a time when
maost other men in his social group do. say, around
age 30. It is a most frugal heuristic, for one does
not even have to think of pros and cons. The
do-what-the-majority-do heuristic tends to perform
well when (i) the observer and the demonstrators
of the behavior are exposed to similar environ-
ments that (ii) are stable rather than changing and
{iii) noisy. that is, where it is hard to see whar the
immediate consequence of one’s action is {Boyd &
Richerson, 2005),

Social heuristics appear o guide many of our
decisions, and do-what-the-majority-do is only one
such heuristic in the adaptive toslbox of humans.
Consider deciding about green versus gray energy.
Assume you have moved into a new apartment, and
you need to choose providers for the basic utilivies. In
the United States, the United Kingdom, and many
countries in Europe, 50% to 90% of the people
asked say that they would favor a “green” electricity
carrier and are even willing to pay a small premium
for ir. But, unfortunately, these statements do not
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reflect behavior: The percentage of people who con-
sume green electricity is marginal; for example, 20,
in Germany and 0.5% in the United Kingdom, Tiy;q
discrepancy berween whart people say and whar th,
do can be explained by the use of a social heurigj
(Pichert & Katsikopoulos, 2008): When one movyes
into a new apartment, there is typically an elecrric.
ity carrier thar provides a default (the carrier thy,
was used by the previous tenant or the carrier thy,
the landlord has chesen). The new tenants typically
take no action, and the default is used. )

Default heuristic: 1fa decision is set as the defay|;,
do not change it.

The default heuristic can explain a fAurry of
phenomena such as peoples’ retirement plans ang
whether people are organ donors or not (Johnson
& Goldstein, 2003). Darwin seems to have reached
his decision not by consulring defaults or peers, by
by his own thinking based on pieces of information
or, in psychological jargon, cwes (Brunswik, 1955;
Kirlik, 2006). We next describe a class of cue-based
heuristics that uses a minimum number of cues in
order to make a decision.

Lexicographic Heuristics

Consider a paired comparison in which both
objects are recognized. The decision is made on the
basis of binary cues: For example, if the task is 1o
infer which of two professors at a Midwestern col-
lege gers the higher salary, gender is a highly predic-
tive cue. Cues such as gender are naturally binary;
if a cue is continuous (e.g., years since doctor-
ate degree), it can be dichotomized. “The standard
way of comparing rwo objects is the class of linear
rules (as in the usual application of Brunswik’s lens
model; see Hammond & Stewart, 2001), in which
the weighted sum of cue values for cach object is
computed, and rthe object with the higher sum is
inferred to have the higher criterion value (if the
sums are equal, one object is picked randomly). The
weight w for cue ¢ can be computed in a number
of ways as, for example, by minimizing the sum of
squared differences between the real criterion values
in the ecology and the criterion values estimated by
the linear rule,

For making inferences, as in predicring salaries
or the outcomes of football matches, the linear rule
is the analog of the expected utility rule for making
choices: The relevant pieces of informarion (cues)
are weighted and added. The class of lexicagraphic
heuristics dispenses with adding, and instead orders
cues (a simple form of weighing). In the take-the-best
heuristic (Gigerenzer 8¢ Goldstein, 1996), cues are



ordered by decreasing validity. The validity v of cue
¢ is a measure of cue goodness, It is the condirional
F:mhabill'ty that the cue points to the object with
the higher criterion value (¢, = 1 on the object with
the higher criterion value, and ¢ = 0 on the other
object) given that the cue has different values on
the two objects. After cues are ordered, the decision
maker inspects the first cue. If this cue points to one
of the objects, then this object is inferred to have
the higher criterion value. If the cue does not dis-
criminate berween the objects, then the second cue
is inspected and so on until a discriminaring cue is
found; if no such cue exists, an object is picked ar
random.

Note thar, like the recognition heuristic,
take-the-best is non-compensatory. Furthermore,
unlike linear rules, lexicographic heuristics specify
the processes by which people make inferences. In
take-the-best, it is specified how people search for
information (by ordering cues by validity), how
they decide to stop the scarch {as soon as one cue
discriminates berween the objects and allows mak-
ing a decision), and how they decide based on the
available informarion (by using the discriminating
cue). There have been a number of laboratory tests
af these processes (as well as of the decision our-
comes prediceed by rake-the-best), and this research
is summarized in Broeder and Newell (2008; see
also the other articles in this journal special issue).
Overall, whether people use heuristics such as
take-the-best depends on the characteristics of the
decision environment, as, for example, whether
there is time pressure or not, and how skewed the
distribution of cue validities is.

In engineering, Rothrock and Kirlik (2003)
claimed thar, if time and information are limired,
human judgments are not described best by linear
models, bur by fast and frugal heuristics. To cap-
ture the outcomes of the heuristics, Rothrock and
Kirlik proposed a lens model that is nonlincar and
non-compensatory (see also Gigerenzer & Kurz,
2001}, Katsikopoulos (2009) showed how this
non-compensatory lens model can also capture the
processes postulated by fast and frugal heuristics.

Before we turn to a second class of cue-based
heuristics for paired comparisons, we note thar
lexicographic heuristics can also be applied to other
tasks such as risky choices. For example, the prior-
ity heuristic (Brandstactter, Gigerenzer, & Hertwig,
2006) specifies how people choose between two
lotteries such as, for example, receiving 40 dol-
lars for sure and receiving either 100 or 0 dollars,
where each outcome obtains with a probability of

50%. Like take-the-best, the priority heuristic goes
through cues one at a time (where cues are now the
values and probabilities of the possible outcomes in
each lottery) and decides based on the first cue that
discriminates between the options. Brandstaercer
er al. {2006) found that the priority heuristic
could predice peoples’ choices overall better than
other popular choice models such as cumularive
prospect theory (Tversky & Kahneman, 1992).
Katsikopoulos and Gigerenzer (2008) analytically
showed thar the heuristic implies, rather than juse
being consistent with, a number of major empirical
phenomena in risky choice, such as common conse-
quence effects and the fourfold pattern of risk atri-
tude reversals. In other words, phenomena such as
the Allais paradox are implied by a simple heuristic
that does not transform values and probabilities in
complex nonlinear fashion, as prospect theory and
other modifications of expected utility theory need
to do. Ford et al. (1989) reviewed 45 studies of peo-
ples’ choices and reported thar non-compensatory
models, similar 1o the priority heuristic, were the
models used maost often.

Tallying Heuristics

Recall that lexicographic heuristics are a simplifi-
cation of lincar models where cues are weighed bur
not added. Tallying heuristics are another simplifi-
cation of linear models where cues are added bur
not weighed. That is, object A is inferred ro have a
higher criterion value than object B il the sum of
cue values on A is higher than the sum of cue values
on B orif ¥ c(A) > X, (B (if the sums are equal,
one objcct is picked randomly).

In the psychology of judgment and decision
making, carly work on tallying was dane by Dawes
and Corrigan (1974) and Einhorn and Hogarth
(1975). There are also other applications of tal-
lying, for example, in finance, where it refers to
investors allocating an equal amount of wealth 10
cach asser in their portfolio. This heuristic is also
known as 1/N, where N is the number of assets or
alternatives. Behavioral finance researchers such as
Benartzi and Thaler (2001) have considered rally-
ing to be suboptimal. calling it naive diversifica-
tion. Interestingly, it was found more than 20 years
ago that naive diversification yields as good risk-
adjusted returns as optimization models; and, in a
more recent study, DeMiguel, Garlappi, and Uppal
(2007) did a comprehensive simulation study and
corroborated that tallying (1/N) is as effective as
complex Anance optimization models. The next sec-
tion shows that lexicographic and rallying heuristics
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enjoy high predictive accuracy in the paired com-
parison task.

The Ecological Rationality of Take-the-
Best and Tallying

Dawes and Corrigan (1974) showed char rally-
ing can have higher predictive accuracy than linear
regression. Einhorn and Hogarth (1975) provided
statistical reasons for this such as the absence of sam-
pling error in the estimation of weights. Czerlinski,
Gigerenzer, and Goldstein (1999} replicated this
finding in 20 real-world paired comparison tasks,
such as predicting which Chicage public high school
has the higher dropour rate based on the socie-
economic and ethnic compasitions of the student
bodies, the sizes of the classes, and the scores of the
students on various standardized tests, (Other prob-
lems were predicring people’s arractiveness judg-
ments, homelessness rates, adolescents’ obesity at
age 18, etc.) They tested linear regression, tllying,
take-the-best, and a simple Bayesian network called
naive Bayes (sec Martignon & Hoffrage, 2002).

Caerlinski et al. (1999) split each data ser in half,
and the parameters of each model {e.g.. cue weights
and cue validities) were estimated. The part of the
data set used to estimate the parameters of the mod-
els is the training set. The parameter estimates were
used ro predict, for each model, the paired compari-
sons on the other half of the dara ser, called the rest
set. This process was repeated 1,000 times o average
our random variation. In the test ser, the predictive
accuracy of the models was as follows: regression
68%, tallying 69%, take-the-best with dichoto-
mized cues 71%, naive Bayes 73%, regression with
un-dichotomized cues 76%, and take-the-best with
un-dichotomized cues 76%.

One interpretation of these results is that using
less complex computations and sophisticated infor-
mation can lead to mere predicrive accuracy. That
is, simplicity can, under some conditions, lead 1o
robustness (yet, as the performance of tallying shows,
there are limits 1o the benefits of simplicity).

The study of the conditions under which a
model, such as take-the-best, achieves high predic-
tive accuracy is the study of the ecological rational-
ity of the model. Recent work has distinguished
the mathematical conditions under which tallying
and take-the-best are accurate (Baucells, Carrasco,
& Hogarth, 2008; Hogarth & Karelaia, 2007;
Kasikopoulos & Fasolo, 2006; Kasikopoulos &
Martignon, 2006; Martignon & Hoffrage, 2002;
for a review see Katsikopoulos, 2011). For exam-
ple, when cue validities are equal, tallying achieves
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maximum accuracy among all possible inferen,
models; when some cues have much higher valig;.
ties than others, rake-the-best achieves maximyy,
accuracy (Kasikopoulos & Martignon, 2006),
Using an insight from machine learning, Gigerenzer
and Brighton (2009) conjectured that the heuristicg
are more robust than neural nerworks, classificarion
and regression trees, and other complex algorithms
because the heuristics have smaller variance in their
predictions,

We end our tour of fast and frugal heuristics
by considering a family of heuristics developed fiyr
assigning objects to categories.

Fast and Frugal Trees

A middle-aged man is taken to the hospiral with
complaints of intense chest pain. The doctors have
to decide quickly whether he is ar a low risk of hay-
ing ischemic heart disease and needs just a regular
nursing bed, or he is at a high risk and should be
rushed to the emergency room. This is a decision
where resources—such as time, informartion, and
computation—are limited, there is pressure o be
accurate, and the stakes are high. The fast and fru-
gal heuristics research program has provided some
answers as to how professionals and laypeople make,
or should make, accurate categorizations with lim-
ited resources, by using simple trees.

We first introduce some elements from the
general theory of trees for categorization. In a car-
egorization task, the decision maker has to assign
objects to one of several murually exclusive catego-
ries based on the values of the objects on cues. In the
example above, the objects are the patients, there
are two categorics—a low or high risk of ischemic
heart disease—and the cues are the available pieces
of medical information such as readings from an
electrocardiogram.

A categorization tree can be graphically rep-
resented by the root node, on the tree’s first level,
and subsequent levels with one cue processed ar
cach level (see Figure 33.2). There are two rypes of
nodes. First, 2 node may specify a question about
the value of the object on a cue; the answer then
leads ro another node ar the next level, and the pro-
cess continues in this way. The root node is of that
type. For nodes of the other type there is an exit;
the object is categorized and the process stops. In
sum, starting from the root node and answering 2
sequence of questions, an exit is reached and the
object is categorized. For trees to be casy for people
to understand and apply, they should not have 100
many levels or cues. For example, Figure 33.2 shows



5T scpment elevated ?

Chest pam main symprom ? ]

Hi'/ o

Orther symptoms

Liva: 1k

!|I'."\ na

Figrure 33,2 A fast and rrug'.tl. teee for ca!eguri';inﬁ patients as
having a high or low risk af ischemic heart disease (for more
details, see Green & Mehr, 1997),

such a tree for the ischemie heart discase problem
(Green & Mchr, 1997).

A categorization tree is fast and frugal if and only
if it has at least one exit ar each level (Marrignon,
Karsikopoulos, & Woike, 2008). According 1o this
definirion, the tree in Figure 33.2 is fast and frugal.
If a second question were asked for all patients with
an elevated ST segment, the tree would nor have
been fast and Frugal.

Fast and frugal trees are "minimal” in the sensc of
using the fewest number of question nodes and still
involving all available cues, one at a time, Fast and
frugal trees specify a number of cognitive processes.
They specify how informartion is searched for, how
the search is stopped, and how a decision is taken
based on the obtained information. For example, a

physician using the tree in Figure 33.2 first looks
up the 5T segment, then the chest pain, and finally
other symproms. There are a number of simple ways
of ordering cues, bur we will nor describe them here;
sce Martignon et al. (2008).

Fast and frugal trees have been applied to a num-
ber of fields such as educational training (Wortawa
& Hossiep, 1987, engincering (Karsikopoulos &
Fasolo, 2006), law (Dhami, 2003), and medicine
{Green & Mehr, 1997; Fischer et al., 2002), in
order to describe what people do or to prescribe
what people should be doing.

Fast and frugal trees differ from many other
categorization models in three respeces: First, the
trees are deterministic, that is, they predict that an
abject belongs to a category with probability 1 or 0.
The motivation for this is that under conditions
of limited time, information, and computarion,
people might not attempt or be able to compute
probabiliries. For example, Green and Mehr (1997)
found thar medical docrors refused o use a logistic
regression model that compured the probability of
a patient having ischemic heart discase. Second, fast
and frugal trees can make only qualitarive predic-
tions abour response times. For example, according
to the tree in Figure 33.2, a patient with an elevared
5T segment would be categorized faster than a
patient without an elevared 5T segment. Finally,
cues are not combined and are considered one ar
a time. This feature of fast and frugal trees makes it
casier for them to generalize well to new patients.

The Robustness of Fast and Frugal Trees
Figure 33,3 compares the accuracy of two types of
fastand frugal trees (called Zig and Max; for details,

NI+

-|||'| 4

Gl +

Predicton 900%
Training

Firnng

Prediction 500G
Traming

Prediction 15%
Training

Figure 33.3 Average performance of four categorization models (classificarion and regression trees, or CART; logistic regression, or LR;
and two types of fast and frugal wees called Zig and Max; sec Martignon ecal., 2008, for details), across 11 medical problems, in firting
and three cases of prediction (training set was 90%, 50%, or 15% of the whole daraser),
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see Martignon et al., 2008) to two benchmarks
from statistics and artificial intelligence, logistic
regression (LR} and the classification and regres-
sion trees of Breiman et al. (CART: 1984). We used
11 medical categorization problems from the UC
Irvine Machine Learning Repository. The accuracy
of the four models was assessed in four cases each.
I the Arst case, the parameters of the models were
estimated based on all dara, that is, the models were
fitted to the whole dataset. In the other three cases,
the parameters of the models were estimated based
on a subset of the data (90%, 50%, or 15% of the
whole dataser), and the same parameters were used
1o assess how well the models predicted the remain-
ing data. Because typically decision makers do not
have access to all data, the three prediction cases are
more relevant tests of the models,

As is often the case, the more complex mod-
els (LR and CART) did much better in fring,
But a good categorization model needs to predice
unknown cases, not (just) explain the past by hind-
sight. In prediction, the simple Zig rrees marched
or came close to the accuracy of CART and logis-
tic regression, while Max lagged a few percentage
points behind. Zig even outperformed CART and
LR when there was lide available information
(15% of the whole dataser).

This completes our survey of fast and frugal heu-
ristics. In sum, we argued that fast and frugal heuris-
tics (i) require realistic amounts of resources such as
time, information, and compuration; (i) have high
predictive accuracy; (i) describe the decisions peo-
ple make and the processes that lead to the decisions;
and (iv) are casy to understand, apply, and explain.
It seems then that these heuristics are good candi-
dates on which to base cognitive interfaces for deci-
sion making, How exactly to do this is siill an open
research question, and below we speculate on it

Future Directions

We are not aware of comprehensive rescarch
programs that have focused on building interfaces
that support heuristic decision making by laypeo-
ple and professionals. This is in contrast with the
volume of written publications and sofrware pack-
ages implementing utility-based decision analysis.
By utility-based decision analysis we mean practi-
cal procedures that aim at gerting people to make
decisions in line with subjective-expected-utility or
multi-atcribure-urility theory (Edwards, Miles, &
von Winterfeldr, 2007), Ir is beyond our scope 1o
cvaluate the success of this approach, even though
we have carlier alluded to the work of Klein and his
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colleagues that challenges the acceprance and regyy,
of urility-based decision analysis; for more on th
point with respect ro the design of engineering
systems, see Clausing and Karsitkopoulos (2008).
Instead we consider some differences between the
principles of utility-based decision analysis and of
the alternative, which could be called heuristic-baseg
decision analysis.

Practitioners of utility-based decision analy-
sis initially suggested thar decision makers shoylg
accept the quantitative caleulations thar underlis
utility theories, bur lacely have concentrared more
on the acceprance of the qualitative aspects of degi.
sion problems as these are modeled in utility the.
ories (Keeney, 2004). In the case of risky choices,
these aspects are that decision problems consis
of choosing among a number ol options, each of
which has a number of possible outcomes, values,
and probabilities. Furthermore, there are two basic
broad principles that specify how an option should
be chosen: the more-is-bester maxim and the mak-
ing of trade-offs. The more-is-better maxim asserts
that the decision maker should use all available
information. Second, low values on an arrribure of
an option (e.g., low probability of winning a prize)
can and should be compensated by high values of
another attribute of that option (e.g., high value of
the prize). It is interesting thar these principles are
almost taken as axioms, with no evidence offered
for their cffectiveness and with whatever justifica-
tion being offered having to do with the theoretical
possibilities of losses for violators of more-is-better
or trade-off making. Also, such losses have been dis-
cussed in thought experiments but have not been
observed in practice (for details on this point, see
Clausing & Katsikopoulos, 2008),

Most of the heuristics presented here, such as
the recognition heuristic and take-the-best, do not
follow the maore-is-beter maxim or implement
trade-offs. Still, the heuristics achieve accuracy in a
very relevant sense, that is, in predicting the cor-
rect answer in decisions not yet made. It would be a
big step for cognirtive engineers to dare 1o build and
test interfaces thar do nor assume or promote clas-
sic principles such as the more-is-better maxim or
making trade-offs. This step, however, may likely be
just the beginning of a whole new set of challenges
like the following: (1) How can cognirive engineers
convince users accustomed ro utility-based aids that
more is not always better or that it is not always
necessary to make trade-offs? (2) How can they
facilitate a user's transition from urility-based aids
to heuristic-based aids? (3) How can they build



hybrid system that adaptively switches berween uril-
ity-based and heuristic-based aids?
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