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Abstract 

Two prominent approaches to describing how people make 
decisions between risky options are algebraic models and 
heuristics. The two approaches are based on fundamentally 
different algorithms and are thus usually treated as 
antithetical, suggesting that they may be incommensurable. 
Using cumulative prospect theory (CPT; Tversky & 
Kahneman, 1992) as an illustrative case of an algebraic 
model, we demonstrate how algebraic models and 
heuristics can mutually inform each other. Specifically, we 
highlight that CPT describes decisions in terms of 
psychophysical characteristics, such as diminishing 
sensitivity to probabilities, and we show that this holds 
even when the underlying process is heuristic in nature. 
Our results suggest that algebraic models and heuristics 
might offer complementary rather than rival modeling 
frameworks and highlight the potential role of heuristic 
principles in information processing for prominent 
descriptive constructs in risky choice. 
 
Keywords: cumulative prospect theory; probability 
sensitivity; computational modeling; heuristics; risky 
choice. 

Introduction 
How can risky decision making—in which people have 
to choose between options offering different outcomes 
with certain probabilities—best be modeled? Two 
prominent approaches in decision research are algebraic 
models and heuristics (e.g., Brandstätter, Gigerenzer, & 
Hertwig, 2006; Payne, 1973; Payne, Bettman, & Johnson, 
1993). Algebraic models follow the principle of 
expectation maximization and use an algorithm that 
integrates (some function of) probability and outcome 
information multiplicatively to describe people’s risky 
choices. Arguably the most prominent model in this 
tradition is cumulative prospect theory (CPT; Tversky & 
Kahneman, 1992). According to CPT, options are 
evaluated independently of each other. The model 
invokes psychophysical constructs such as probability 
sensitivity and loss aversion to account for characteristic 
phenomena in choice, and quantifies them using 
adjustable parameters. Heuristics, by contrast, are based 
on simple principles of information processing, such as 

sequential and limited search, dimensional comparison, 
and aspiration levels; in contrast to algebraic models, 
heuristics often go without integrating information, and 
ignore part of the information (e.g., Payne et al., 1993; 
Thorngate, 1980). Models of heuristics for risky choice 
include the semiorder rule (Luce, 1956), the similarity 
heuristic (Leland, 1994; Rubinstein, 1988), elimination-
by-aspects (Tversky, 1972), and the priority heuristic 
(Brandstätter et al., 2006). 

Algebraic models and heuristics are often treated as 
antithetical (e.g., Brandstätter et al., 2006; Payne, 1973; 
Svenson, 1979). As pointed out by Lopes (1995), 
however, this opposition may be unnecessary: “Some 
models focus on the algebraic pattern of people’s risk 
preferences, others on the content of their choice 
processes [models of heuristics]. Although one might 
suppose that these two kinds of accounts are alternate 
ways of describing the same thing—indeed, that one kind 
of model might eventually be reducible to the other—the 
approaches have tended to be disjoint” (p. 177). To date, 
however, the relationship between algebraic models and 
heuristics has yet to be elaborated. 

To close that gap, we use CPT (Tversky & Kahneman, 
1992) as an illustrative case highlighting that algebraic 
models offer a tool for describing characteristics of the 
decision process in psychophysical terms; here, we focus 
on the sensitivity to differences in probabilities. We 
argue that diminished sensitivity to probability 
information—as captured in CPT’s weighting 
functions—can result from lexicographic and 
noncompensatory processing of heuristics. As such, CPT 
may offer a useful framework to represent heuristic 
decision making in terms of established constructs such 
as sensitivity to probability information. Conversely, as 
heuristics are explicit with regard to the information-
processing steps underlying a decision, elaborating the 
relationship between heuristics and CPT might contribute 
to a better understanding of the cognitive mechanisms 
potentially underlying the characteristic shapes of CPT’s 
weighting and value functions (cf. Hogarth & Einhorn, 
1990). Overall, we thus suggest that the relationship 
between the algebraic and heuristic models of risky 
choice is complementary rather than adversarial. 
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In the following, we first briefly describe CPT’s 
parametric framework and how its weighting functions 
reflect sensitivity to probability information. Second, we 
elaborate for one specific heuristic, the priority heuristic 
(Brandstätter et al., 2006), how heuristic choices may be 
reflected in CPT’s parameters. Specifically, we take 
advantage of the fact that the degree to which the priority 
heuristic attends to probability information depends on 
the choice environment; using computer simulations, we 
examine how this translates into differences in CPT’s 
weighting function.  

Probability Sensitivity in CPT 
CPT assumes that decisions are made to maximize 
expected return. More specifically, choices between risky 
options are based on a person’s subjective valuation of 
these options and then maximization. In CPT, the overall 
valuation V of an option A is defined as 

.      (1) 

v(x) is the value function, describing how an objective 
outcome x is translated into a subjective value, and π+ 
(π−) is the weight given to a positive (negative) outcome 
x (Tversky & Kahneman, 1992) and depends on the 
probability of the outcome.  

CPT assumes a rank-dependent transformation of the 
outcomes’ probabilities into decision weights. 
Specifically, with outcomes x1 ≤ … ≤ xk ≤ 0 ≤ xk+1 ≤ … ≤ 
xn, the weight π+ (π−) given to a positive (negative) 
outcome x is the difference between the probability of 
receiving an outcome at least as good (bad) as x and the 
probability of receiving an outcome better (worse) than x: 

.   (2) 
w+ and w− are the probability weighting functions for 
gains and losses, respectively. They are assumed to have 
an inverse S-shaped curvature. Different types of 
weighting functions have been proposed (for an 
overview, see Stott, 2006). We use the following two-
parameter version that separates the curvature of the 
weighting function from its elevation (e.g., Goldstein & 
Einhorn, 1987; Gonzalez & Wu, 1999): 

.      (3) 

The parameters γ+ and γ− (both varying between 0 and 
1) govern the amount of curvature of the function in the 
gain and loss domains, respectively, and indicate how 
sensitive decisions are to differences in probabilities 
(with smaller values of γ < 1 resulting in more S-shaped 
weighting functions, reflecting lower sensitivity to 

differences in probabilities). The elevation of the 
weighting functions for gains and losses is controlled by 
the parameters δ+ and δ− (both > 0), respectively. 

CPT has repeatedly been shown to be highly 
successful in describing risky choices between monetary 
gamble problems (e.g., Glöckner & Pachur, 2012; but see 
Birnbaum, 2004; Brandstätter et al., 2006). As a 
description of the underlying cognitive process, however, 
CPT’s implied algebraic calculus and its commitment to 
a multiplicative framework have not been unchallenged 
(e.g., Brandstätter et al., 2006; Lopes, 1995). One such 
challenge has been put forth by proponents of heuristics. 
We turn to this modeling approach next. 

Probability Sensitivity Resulting From Heuristic 
Information Processing 
In contrast to the integrative approach of CPT, heuristics 
often ignore part of the information and do not integrate 
information. They are based on simple principles of 
information processing, such as sequential and limited 
search, dimensional comparison, and aspiration levels 
(e.g., Payne et al., 1993; Thorngate, 1980). Lexicographic 
strategies, for instance, proceed through several 
dimensions sequentially and stop at the first dimension 
that enables a decision to be made (Fishburn, 1974; 
Gigerenzer, Todd, & the ABC Research Group, 1999; 
Thorngate, 1980). The priority heuristic (Brandstätter et 
al., 2006), which is related to lexicographic semi-orders 
(Luce, 1956; Tversky, 1969), belongs to this class. Its 
architecture is based on established principles of bounded 
rationality (e.g., Simon, 1955), such as sequential search, 
stopping rules, and aspiration levels, and it assumes that 
probabilities and outcomes are compared between 
gambles, rather than integrated within gambles (as 
assumed by CPT). For choices between two-outcome 
gambles involving gains, the priority heuristic entails the 
following steps: 

1. Priority rule. Go through dimensions in the order 
of minimum gain, probability of minimum gain, and 
maximum gain. 

2. Stopping rule. Stop examination if the minimum 
gains differ by 1/10 (or more) of the maximum gain; 
otherwise, stop examination if probabilities differ by 1/10 
(or more) of the probability scale. 

3. Decision rule. Choose the gamble with the more 
attractive gain (probability). 

(For losses, “gains” are replaced by “losses”; for 
mixed gambles, “gains” are replaced by “outcomes.”) 

Due to its stopping rule, the priority heuristic 
considers probability information depending on the 
structure of a gamble problem. The heuristic first 
examines the (minimum) outcomes of the gambles. If this 
reason discriminates, then probabilities will not be 
examined. If, however, the outcomes fail to discriminate, 
probabilities will be examined. That is, the priority 
heuristic attends to probability information only when the 
minimum outcomes do not differ. The heuristic’s 
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sensitivity to probability information is thus dependent 
on the structure of the choice environment. 

Heuristics’ Probability Sensitivity as Captured in 
CPT’s Parametric Framework 
These two approaches to model risky choice—CPT and 
heuristics—are based on fundamentally different 
algorithms. Whereas CPT considers all outcome and all 
probability information, the priority heuristic considers 
the reasons sequentially, and stops information search as 
soon as a reason discriminates. Moreover, although CPT 
may be a relatively flexible model due to its several 
adjustable parameters (e.g., Gonzalez & Wu, 1999), it 
still has important constraints: both the value and the 
weighting function are restricted to be monotonic, the 
value function is concave for gains and convex for losses, 
and the weighting function is constrained to have an 
inverse S-shaped curvature. Can CPT, given these 
constraints and given its starkly different algorithmic 
structure, nevertheless accommodate choices generated 
by the priority heuristic and accurately reflect the degree 
to which the heuristic attends to probability information? 

In addressing this question, we strive to contribute to a 
better understanding of the relationship between 
algebraic models and heuristics. One crucial aspect of our 
argument is that diminished sensitivity to probability 
information may be due not only to psychophysical 
regularities in magnitude evaluation, but also to the 
limited attention that a heuristic devotes to probabilities. 
More specifically, the weighting function’s γ parameter 
(Equation 3), which reflects sensitivity to probabilities, 
should differ systematically as a function of whether the 
heuristic makes a choice based on the first reason 
(outcome) or the second reason (probability). The less 
frequently the priority heuristic considers probabilities in 
a set of gamble problems, the lower the resulting value of 
the γ parameter should be. Slovic and Lichtenstein (1968) 
made a similar proposal more than 40 years ago, 
suggesting that “increases [in] the saliency of the money 
dimensions and decreases [in] the relative importance of 
the probabilities” should lead to “relatively flat [i.e., 
more strongly S-shaped] subjective probability 
functions” (p. 16). Next, we test this suggestion using a 
computer simulation. 

Computer Simulation 
We created three sets of two-outcome gamble problems, 
each including 180 randomly generated problems with 
similar expected values: 60 gain, 60 loss, and 60 mixed 
problems (cf. Rieskamp, 2008). Across the three sets, we 
varied the percentage of problems in which the minimum 
gains (losses) discriminated between the gambles (i.e., 
that differed by at least 10% of the highest gain or loss). 
In the first set, the minimum gains (losses) discriminated 
in 75% of the cases, and the priority heuristic therefore 
only proceeded to the second reason—the probability of 
the minimum gains (losses)—in 25% of the cases; in the 

second set, the minimum gains (losses) discriminated in 
50% of the gamble problems, and the heuristic therefore 
proceeded to the probability information in the remaining 
50% of the cases; in the third set, the minimum gains 
(losses) differed in only 25% of the cases, and the 
heuristic therefore proceeded to the probabilities in 75% 
of the cases. The gambles were constructed such that if 
the heuristic proceeded to the probability information, 
this reason always discriminated. We predicted that 
CPT’s probability sensitivity parameter γ fitted to the 
priority heuristic’s choices would increase across the 
problem sets.  

We simulated the choices of the priority heuristic in all 
three problem sets and subsequently fitted CPT’s 
weighting functions and value functions, respectively, to 
these choices, separately for each set. Our 
implementation of CPT had six adjustable parameters: α 
(= β) and λ for the value function, γ, δ+ and δ− for the 
weighting function, and φ for the choice rule necessary to 
derive predicted choice probabilities (see below).1 To 
reflect CPT’s main assumptions (e.g., an inversely S-
shaped probability weighting function, a concave value 
function for gains, and a convex value function for 
losses; see Tversky & Kahneman, 1992), in the parameter 
estimation procedure the parameter values were restricted 
as follows (see Rieskamp, 2008): 0 < α ≤ 1; 0 < λ ≤ 5; 0 < 
γ ≤ 1; 0 < δ± ≤ 4; 0 < φ ≤ 5. The deviation between CPT’s 
predictions and the heuristic’s choices was quantified 
using the likelihood measure G2 (e.g., Sokal & Rohlf, 
1994), with a smaller G2 indicating a better fit: 

,         (4) 
where N refers to the total number of choices, and f(y|θ) 
refers to the probability with which CPT, given a 
particular set of parameter values θ, predicts an 
individual choice y. If gamble A was chosen, then f(y|θ) 
= pi(A,B), where pi(A,B) is the predicted probability that 
gamble A is chosen over gamble B; if gamble B was 
chosen, then f(y|θ) = 1 – pi(A,B). To determine pi(A,B), 
we applied an exponential version of Luce’s (1956) 
choice rule (also known as softmax): 

,      (5) 
where V(A) and V(B) represent the subjective valuation 
of the gambles A and B according to CPT, and φ > 0 
specifies how sensitively the predicted choice probability 
reacts to differences between the gambles’ subjective 
valuations V(A) and V(B), with higher values indicating 
higher sensitivity. In the fitting procedure, we first 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 We set α = β, as Nilsson, Rieskamp, and Wagenmakers (2011) 
have shown that estimating separate exponents of the value 
function for gains and losses (i.e., α and β) can lead to 
unreliable estimates of λ (see also Wakker, 2010). We set 
γ+ = γ−, as the priority heuristic treats probabilities equally 
across gains and losses. 
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implemented a grid search to identify the parameter 
values that minimize G2; the 20 best-fitting combinations 
of grid values were then used as starting points for 
subsequent optimization using the simplex method 
(Nelder & Mead, 1965), as implemented in MATLAB. 

Results 
Table 1 shows the best-fitting CPT parameters when 
fitted to the simulated choices of the priority heuristic in 
gamble problems where the decision was made on the 
minimum gain (loss) in 75%, 50%, or 25% of the cases, 
respectively, and on the probability of the minimum gain 
(loss) otherwise. As can be seen—and as predicted—the 
probability sensitivity parameter γ increased across the 
sets; it was lowest in the set where the priority heuristic 
decided on the first reason (minimum outcome) in the 
majority of cases and it was highest in the set where the 
heuristic decided on the second reason (probability of the 
minimum outcome) in the majority of cases. In other 

words, CPT accurately reflected the different degrees to 
which the priority heuristic attended to probability 
information across the three sets. 

Panels A and B of Figure 1 plot the weighting 
functions based on the best-fitting parameters, separately 
for the gain and loss domains. Irrespective of domain, for 
choices that only considered probabilities in 25% of the 
cases, the weighting function was most strongly S-
shaped, indicating low sensitivity to probability 
information; for choices that considered probabilities in 
half of the cases, it was comparatively less S-shaped; and 
for choices that considered probabilities in 75% of the 
cases, it was least S-shaped. (Note that the differences in 
shapes of the weighting function between the gain and 
loss domains were due to differences in the elevation 
parameters; i.e., δ+ and δ−).  

The best-fitting parameter values of the priority 
heuristic’s choices in the three problem sets are 
summarized in the parameter profiles in Panel C in 
Figure 1. 

Interestingly, CPT did not fit equally well to the 
choices across the three problem sets (see G2 in Table 1). 
Specifically, the fit was best when most choices (75%) 
were made on the first reason, worsened when 50% 
considered probabilities, and improved again when only 
25% of the choices were made on the first reason. CPT is 
thus apparently better able to fit choice sets where a 
substantial proportion of choices stop examination on the 
same reason than when choices are based on different 
reasons (as in the 50% choice set). 

Discussion 
CPT models decisions based on a compensatory 
algorithm where outcomes and probabilities are 
integrated multiplicatively and summed up separately 
within each option. The priority heuristic, in contrast, 
models decisions based on sequential information 

Table 1: Parameter estimates obtained when fitting CPT 
to the choices of the priority heuristic where the decision 
was made on the first reason (minimum gain/loss) in 
25%, 50%, or 75% of the cases, respectively, and on the 
second reason (probability of the minimum gain/loss) 
otherwise. 

%  
Decisions  
on first  
reason 

Parameter estimates 

γ δ+ δ− α λ φ G2 

75% 0.32 0.01 0.15 1.0 2.06 0.34 84.25 

50% 0.50 0.05 0.49 1.0 1.30 0.15 153.45 

25% 1.00 0.13 0.45 1.0 1.18 0.21 108.54 

Note. G2 assuming random choice is 249.53. 
 

Low High
q 

h 

_ 

b−

b+

a 

 

 

75% on first reason
50% on first reason
25% on first reason

C 

Low        High 
Parameter values 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Gains

D
ec

is
io

n 
W

ei
gh

t

Probability
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
Losses

D
ec

is
io

n 
W

ei
gh

t

Probability
 

 
75%
50%
25%

A B 
γ"

δ+"

δ-"

α"

λ"

ϕ"

Figure 1: Panels A (gains) and B (losses) plot the weighting functions obtained when fitting cumulative prospect theory 
to the choices of the priority heuristic in gambles where the decision was made on the minimum gain (loss) in 75%, 
50%, or 25%, respectively, and on the probability of the minimum gain (loss) otherwise. Panel C shows the parameter 
profiles of CPT’s value and weighting function parameters fitted to the choices of the priority heuristic in the three 
gamble sets (as the parameters differed in their scale, they were normalized for this graph; for the exact parameter 
values, see Table 1). 

1411



	
  

processing and compares outcomes and probabilities 
between the options. Despite these stark differences, our 
result is that CPT is able to represent choices generated 
by the priority heuristic in a psychologically meaningful 
manner: the weighting function’s curvature reflects 
differences in the heuristic’s sensitivity to probability 
information between the three choice environments that 
differed in how frequently choices were decided based on 
the probability dimension. 

Taken together, our results thus demonstrate that 
although CPT is based on a different algorithmic 
architecture than heuristics, its parametric framework 
might offer a useful tool for characterizing heuristic 
processes in terms of prominent descriptive constructs 
such as probability sensitivity (for a discussion of other 
constructs of CPT, such as risk aversion, loss aversion, 
and outcome sensitivity, see Suter, Pachur, & Hertwig, 
2013a). Conversely, the integration of the two 
approaches might enable hypotheses to be derived about 
the processes generating the characteristic shapes of 
CPT’s functions.  

Our finding that specific values of CPT’s γ parameter 
can reflect the processing steps of a lexicographic 
heuristic—that is, whether probability information was 
called upon or not—has important implications for the 
use of CPT in empirical investigations of risky choice: 
CPT’s parameters might help to identify the interaction 
of a heuristic with its environment; moreover, they might 
help to identify the use of different heuristics by different 
individuals within the same environment, or of different 
heuristics by the same individual across different 
environments.  

The demonstrated relationship between CPT, the 
information processing architecture of a heuristic, and the 
structure of the environment could explain apparent 
inconsistencies in empirical investigations (see also 
Hertwig & Gigerenzer, 2011)—for instance, why the 
same person’s sensitivity to probability information 
appears low at some times and high at others. Such 
observations of variability need not mean that CPT’s 
parameters cannot be measured reliably, or that different 
heuristics are used. They could arise from the interaction 
of a heuristic’s lexicographic architecture with various 
choice environments. If decision problems are 
constructed such that a user of the priority heuristic is 
always able to terminate search after examining the 
options’ minimum outcomes, the person’s probability 
sensitivity will appear low. If they are constructed such 
that the same person must always move beyond the 
minimum outcomes and examine their probabilities, the 
person will seem to be highly sensitive to probabilities. 

Relatedly, the elaborated relationship between CPT 
and heuristic processing not only allows the interactions 
of a heuristic to be tracked across different environments, 
but it may also allow differences in strategy selection 
between individuals within the same environment to be 
identified. It therefore suggests an alternative 
interpretation of the observed link between CPT’s 

parameters and variables that influence risky choice, such 
as gender. Fehr-Duda, De Gennaro, and Schubert (2006), 
for instance, concluded that women tend to be less 
sensitive to probability changes than men (see also Booij 
& van de Kuilen, 2009). To the extent that CPT reflects 
differences in terms of probability sensitivity also 
between strategies, this finding might indicate that men 
and women rely on different strategies that differ with 
regard to their probability sensitivity. 

Moreover, CPT’s parameters might not only reveal 
differences between individuals, but also within an 
individual. For instance, a decision maker might use 
different strategies for different contexts. In a study on 
the difference between affect-rich and affect-poor risky 
choice, Suter, Pachur, and Hertwig (2013b) found that 
people’s choices in affect-rich tasks were consistent with 
a more strongly inverse S-shaped weighting function 
relative to choices in affect-poor tasks. However, in a 
model comparison, they found that in affect-rich choices 
the majority of the participants were better described by 
the minimax heuristic, a choice strategy that neglects 
probabilities and only decides based on the minimum 
outcomes, than by CPT; in affect-poor tasks, in contrast, 
participants were better described by a strategy that is 
sensitive to probabilities. Thus, the differences apparent 
on the weighting function could indicate the selection of 
a different strategy. Similarly, Abdellaoui, Diecidue, and 
Öncüler (2011) reported that, relative to lotteries with 
immediate outcomes, people’s responses to lotteries with 
delayed outcomes are consistent with a less inverse S-
shaped curvature (indicating higher probability 
sensitivity). The authors hypothesized that this difference 
might be due to a decreased anticipated emotional 
reaction the more delayed lotteries are (cf. Rottenstreich 
& Hsee, 2001). Again, the impact observed on the 
weighting function might thus reflect the use of different 
strategies.  

Thus, rather than merely describing contextual or 
individual differences in prospect theory’s concepts, such 
as differences in probability sensitivity, one could go one 
step further and use differences on CPT’s parameters to 
hypothesize about individual differences in terms of 
information processing and strategy use. By better 
understanding how information processing as embodied 
in heuristics manifests in CPT’s parameters, we can gain 
a more cognitive perspective on CPT and its parametric 
framework (for an ecological account of the shape of 
CPT’s functions, see Stewart, Chater, & Brown, 2006). 
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