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Abstract

Aging compromises dopamine transporter (DAT) and receptor mechanisms in the frontostriatal circuitry. In a sample of 1288 younger
and older adults, we investigated (i) whether individual differences in genotypes of the DAT gene (i.e., SLC6A3, the DAT variable number
of tandem repeat 9/9, 9/10, and 10/10) and in the D2 receptor (DRD2) gene (i.e., the C957T [rs6277] CC and any T) interactively contribute
o phenotype variations in episodic memory performance; and (ii) whether these genetic effects are magnified in older adults, because of
onsiderable declines in the dopamine functions. Our results showed that carrying genotypes associated with higher levels of striatal synaptic
opamine (DAT 9/9) and higher density of extrastriatal D2 receptors (C957T CC) were associated with better backward serial recall, an
pisodic memory task with high encoding and retrieval demands. Critically, the gene-gene interaction effect was reliably stronger in older
han in younger adults. In line with the resource modulation hypothesis, our findings suggest that aging-related decline in brain phenotypes
e.g., dopamine functions) could alter the relations between genotypes and behavioral phenotypes (e.g., episodic memory).

2013 Elsevier Inc. All rights reserved.

Keywords: Aging; Dopamine; Genetics; DAT; SLC6A3; DRD2; Episodic memory; Serial recall

www.elsevier.com/locate/neuaging
1. Introduction

Advances in molecular genetics have spurred interest in
incorporating genetic methods into cognitive and neurosci-
ence research (Green et al., 2008). Such hybrid approaches
hold promise for elucidating molecular and biological
mechanisms of cognitive phenotypes. Of particular rele-
vance for the current study, intermediate phenotypes, such
as brain mechanisms at neurochemical, structural, and func-
tional levels (Meyer-Lindenberg and Weinberger, 2006),
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change substantially during maturation and senescence.
Thus, it has been hypothesized that age-related differ-
ences in brain resources might modulate genotype-phe-
notype relations during different life periods (Linden-
berger et al., 2008; Posner et al., 2006; Wahlstrom et al.,
2010). Genes related to the neurotransmitter dopamine
(DA) represent a case in point. Evidence from clinical
(Mattay et al., 2003; Weinberger et al., 2001) and animal
(Vijayraghavan et al., 2007) studies as well as neurocom-
putational simulations (Li et al., 2001; Li and Sikström,
2002) suggests that the relation between DA signaling
and cognitive performance follows an inverted-U func-
tion (see Cools and D’Esposito, 2011, for review). The

nonlinear function relating DA modulation to cognitive per-
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formance predicts that genetic effects on cognition would be
more apparent when DA signaling recedes from an optimal
level, such as in old age (Lindenberger et al., 2008).

Initial findings from three age-comparative studies lend
support to this resource-modulation hypothesis. For in-
stance, older adults’ spatial working memory and executive
functions were associated with individual differences in
genetic predispositions of the gene that codes for the cate-
chol-O-methyltransferase, an enzyme that degrades DA in
prefrontal cortex, whereas no such relation was observed in
younger adults (Nagel et al., 2008; Störmer et al., 2012). A
similar age magnification effect has been extended to cog-
nitive functions that implicate other intermediate pheno-
types. In younger adults, variations in the gene coding for
the brain-derived neurotrophic factor (BDNF) are associ-
ated with individual differences in hippocampal and frontal
volumes (Pezawas et al., 2004). Age-related decline in hip-
pocampal volume (Raz et al., 2009) may render a larger
effect of the BDNF genotype on performance that relies on
hippocampal function, such as episodic memory. In agree-
ment with this assertion, an association between BDNF
genotype and episodic memory performance was observed
under high associative demands in older, but not in younger
adults (Li et al., 2010).

Thus far, most studies on adult age differences in geno-
type-phenotype relations have been restricted to the effect
of single genes (e.g., Li et al., 2010; Störmer et al., 2012; for
an exception, see Nagel et al., 2008). Given that complex
phenotypes, such as memory, draw on multiple neurobio-
logical substrates and are thus influenced by multiple genes
(e.g., Bertolino et al., 2006; 2009; Markett et al., 2011;
Nagel et al., 2008; Preuschhof et al., 2010), it is imperative
to further investigate the resource-modulation hypothesis in
relation to gene–gene interactions. Based on this consider-
ation, and in light of the age-related decline in various pre-
and postsynaptic components of the DA system (for re-
views, see Bäckman et al., 2006, 2010), we investigated (i)
whether genes relevant to pre- and postsynaptic components
of the DA system contribute interactively to individual
differences in episodic memory performance; and (ii)
whether such interactive effects are magnified in old age.

Going beyond the well-studied relation of DA to working
memory and executive functions (see Seamans and Yang,
2004, for review), recent studies also demonstrate a role of DA
in modulating episodic memory (see Lisman and Grace, 2005;
Shohamy and Adcock, 2010, for reviews). Serial recall is of
special interest here, because it involves long-term associative
memory that draws on medial-temporal lobe structures (Fortin
et al., 2002) as well as working memory for order information
that is subserved by the prefrontal and parietal cortices (Bot-
vinick and Watanabe, 2007; Marshuetz and Smith, 2006;
Talmi et al., 2005). Therefore, the phenotype we focused on
was serial-order memory (Ebbinghaus, 1885; Lewandowsky
and Murdock, 1989). In particular, we targeted backward serial

recall, as it requires more complex retrieval operations and has f
greater associative demands than free or forward recall (Li and
ewandowsky, 1993, 1995; Thomas et al., 2003). As a result,

backward serial recall may be especially sensitive to genetic
effects.

Specifically, given the evidence for (1) clear aging-related
decline in the striatal DA transporter (Erixon-Lindroth et al.,
2005; Rinne et al., 1998; Troiano et al., 2010) as well as in D2
receptor binding (Bäckman et al., 2000; Kaasinen et al., 2000);
nd (2) their involvements in episodic memory (Cervenka et
l., 2008; Erixon-Lindroth et al., 2005; Morcom et al., 2010;
akahashi et al., 2007), we focused on the effects of the DA

ransporter (DAT) gene and the D2 receptor gene on backward
erial memory.

The human DAT gene (SLC6A3) displays a polymorphic
0-base pair (bp) variable number of tandem repeat
VNTR). The 40-bp VNTR element is repeated between 3
nd 13 times and occurs with highest frequency in the 9-
nd 10-repeat forms (Mitchell et al., 2000; Vandenbergh et
l., 1992). The DAT VNTR polymorphism has been related
o striatal DAT availability both in vitro (Miller and Madras,
002; VanNess et al., 2005) and in vivo (Cheon et al., 2005;
einz et al., 2000; Jacobsen et al., 2000; van de Giessen et

l., 2009). In vivo data from human imaging studies show
hat DAT VNTR 10-repeat homozygotes express higher
triatal DAT density than 9/10-repeat carriers (Cheon et al.,
005; Heinz et al., 2000). The higher availability of DAT in
0-repeat homozygotes might result in increased clearance
f synaptic DA, and thus lower striatal synaptic DA levels.
onsistent with the DA-cognition link, an advantage of
-repeat carriers in executive functions (Loo et al., 2003),
orking memory (Brehmer et al., 2009), episodic memory

Schott et al., 2006), and sequential learning (Simon et al.,
011) has been reported, although some studies have failed
o demonstrate such an association (Boonstra et al., 2008;
ommelse et al., 2008). The C957T (rs6277) single nucle-
tide polymorphism (SNP) of D2 receptor gene (DRD2)
ffects messenger RNA (mRNA) stability. Specifically, the

allele of the C957T SNP has been linked to reduced
RNA stability, affecting the density of D2 receptors (Duan

t al., 2003). This allele has also been associated with
educed extrastriatal D2 receptor availability (Hirvonen et
l., 2009a) and lower striatal DA levels (Hirvonen et al.,
009b).

In sum, we expected that striatal synaptic DA levels as well
s extrastriatal D2 receptor availability would be higher in
ndividuals carrying the DAT VNTR 9-repeat and D2 receptor
957T C alleles. Given the role of DA in modulating frontal-
ippocampal memory processes (Cervenka et al., 2008;
rixon-Lindroth et al., 2005; Morcom et al., 2010; Takahashi
t al., 2007), we expected these individuals to perform better in
ackward serial recall. Further, on the basis of the resource-
odulation hypothesis (Lindenberger et al., 2008), these ef-
ects should be magnified in old age.



5
w
c
h
(
a
o
2
e
c
e
i

C

D

D

358.e3S.-C. Li et al. / Neurobiology of Aging 34 (2013) 358.e1–358.e10
2. Methods

2.1. Participants

Healthy volunteers (n � 1288) from 2 age groups were
examined: 479 younger adults (mean age � 26.1, SD �
2.96, range � 19 –32; 256 females and 223 males) and
809 older adults (mean age � 65.2, SD � 2.8, range �

9 –71; 487 females and 322 males). All participants
ere Caucasian, right-hand dominant, and had normal to

orrected vision. No participants reported a history of
ead injury, medical (e.g., heart attack), neurological
e.g., epilepsy), psychiatric (e.g., depression) diseases,
nd none were taking medications that affect DA system
r memory functions. All older participants scored over
7 on the Mini Mental State Examination. Given that
arlier studies suggested that vascular health might affect
ognitive function in old age and interact with genetic
ffects (e.g., Raz et al., 2009), we also assessed relevant

Table 1
Demographic variables, DAT and D2 receptor (C957T) genotypes, and va

Genotype

957T CC

AT 9/9 9/10

emographics
n 6 39
Age range 21–28 21–31
Age, mean (SD) 25.4 (2.8) 26.1 (2.9)
Female/male 4/2 23/16
Education, y, mean (SD) 12.7 (1.4) 12.6 (1.5)
State of health, mean (SD) 4.3 (0.8) 4.2 (0.6)
BDNF ValVal/any Met 3/3 17/22

Vascular health indicator
Cardiovascular disease, % 16.70 2.60
Hypertension medication, % 0 0
Hypertension grade, mean (SD) 0.83 (0.98) 0.72 (0.83)
Hypertensive, % 50 53.8

Genotype

C957T CC

DAT 9/9 9/10

Demographics
n 12 69
Age range 60–70 60–71
Age, mean (SD) 65.3 (3.3) 65.1 (2.7)
Female/male 3/9 43/26
Education, mean y (SD) 10.9 (1.6) 11.1 (1.6)
State of health, mean (SD) 4.0 (0.6) 3.9 (0.7)
BDNF ValVal/any Met 11/1 49/20

Vascular health indicator
Cardiovascular disease, % 41.70 36.20
Hypertension medication, % 25 29.00
Hypertension grade, mean (SD) 1.58 (0.90) 1.45 (0.99)
Hypertensive, % 100 85.5

State of health is based on 4 self-ratings on a 5-point scale (1, poor; 5, ex
Key: BDNF, brain-derived neurotrophic factor; DAT, dopamine transport

a One-way analysis of variance � not significant.
b Chi-square test � not significant.
c One-way analysis of variance � significant (p � 0.05).
ndicators of vascular health (diagnoses of cardiovascular
disease and arterial hypertension). Importantly, the DAT
and C957T genotype groups did not differ with respect to
the percentage of participants with hypertension or a
derived measure of hypertension grade computed accord-
ing to the guidelines published by the World Health
Organization together with the International Society of
Hypertension (WHO, ISH Writing Group, 2003; see Ta-
ble 1 for details). All participants were recruited in Berlin
via newspaper announcements, posters in public trans-
portation, and postcards in restaurants and pubs. Partic-
ipants gave informed consent and were paid €7 per hour
for their participation. The ethics committee of the
Charité Universitätsmedizin Berlin approved the study.

2.2. Genotyping

DNA was extracted from peripheral blood using standard
methods. All genotyping was performed at the Max Planck
Institute for Molecular Genetics. For the DAT gene

health indicators in younger and older adults

unger adults (n � 479) Note

Any T

/10 9/9 9/10 10/10

46 23 146 219
21–31 19–32 20–31 20–32
.7 (2.8) 26.3 (3.2) 26.2 (3.0) 25.9 (3.0) a

17/29 12/11 78/68 122/97 b

.3 (1.2) 12.7 (0.9) 12.5 (1.2) 12.4 (1.2) c

.2 (0.6) 4.3 (0.6) 4.2 (0.6) 4.2 (0.7) a

33/13 15/8 95/50 145/74 b

0 17.40 6.20 3.20 c

0 0 0 1.40 c

65 (0.74) 0.57 (0.66) 0.61 (0.71) 0.65 (0.72) a

50 52.2 50 53 b

lder adults (n � 809)

Any T

/10 9/9 9/10 10/10

113 37 238 340
60–71 61–70 60–71 59–71
.4 (3.0) 65.2 (3.2) 65.2 (2.7) 65.2 (2.8) a

62/51 22/15 142/96 215/125 b

.9 (1.7) 10.5 (1.7) 10.9 (1.9) 10.7 (1.7) a

.0 (0.6) 3.8 (0.6) 3.9 (0.6) 3.9 (0.6) a

84/29 23/14 148/90 215/124 b

36.30 51.40 39.50 35.30 a

32.70 48.60 32.80 30.90 b

71 (0.99) 1.59 (1.1) 1.52 (0.97) 1.59 (1.0) a

88.5 86.5 86.6 87.6 b
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untranslated region following previously published proce-
dures (Lim et al., 2006; Vandenbergh et al., 1992). For the
amplification of the region flanking the DAT1 40-bp VNTR
the following oligonucleotide primers were used: 5=-TGTG-
GTGTAGGGAACGGCCTGAGA-3= (forward) and 5=-
TGTTGGTCTGCAGGCTGCCTGCAT-3= (reverse) yield-
ing amplicon sizes of approximately 470 bp (representing
the 10-repeat allele). Product amplification was achieved by
polymerase chain reaction on 96-well microtiter plates in
10-�L reaction volumes. For each reaction we combined

.5 �M of each primer, 10 ng of DNA template, 0.25 mM
NTPs (deoxyribonucleoside triphosphate), 0.25 U Taq
olymerase and Q solution (Qiagen, Ltd., Hilden, Ger-
any). Thermal cycling was done on an MJ Research

Waltham, MA, USA), Thermo Cycler PTC-240 using
he following cycling conditions: initial denaturation at
4 °C (3 minutes), followed by 35 cycles of denaturation
t 94 °C (45 seconds), annealing at 70 °C (90 seconds),
nd extension at 72 °C (35 seconds), followed by a final
xtension step at 72 °C (6 minutes). Genotypes were
alled after visualization of amplification products on a
himadzu MCE-202 MultiNA instrument (Shimadzu
orporation, Kyoto, Japan) using the DNA 500 kit fol-

owing the manufacturer’s protocol. In this assay, the
-repeat allele ran at approximately 430 bp, while the
0-repeat allele ran at approximately 470 bp. Genotyping
fficiency in the full sample was 99.2%. Individuals
arrying at least 1 non-9 or non-10-repeat allele (n � 50
2.8%]) were excluded from subsequent analyses.

The polymorphism (C957T [rs6277]) of the dopamine
2 receptor gene (DRD2) was genotyped using a commer-

ially available allelic discrimination assay (C_11339240_
0 for rs6277; TaqMan SNP genotyping Assay; Applied
iosystems, Foster City, CA, USA). Genotyping of SNPs
as performed on 250 ng of DNA template in 384-well

ormat using TaqMan chemistry according to manufactur-
r’s instructions on an “OpenArray” multiplex genotyping
nstrument (Applied Biosystems). Genotypes were called
fter visualization and clustering using Applied Biosystems
Autocaller” software version 1.1. All automatically called
enotype clusters were inspected independently and blind to
henotypic status by 2 laboratory members and manually
ecalled where necessary. On average, efficiency of the
ultiplex genotyping run was � 98%, with an error rate

elow 0.2% (based on over � 1500 genotypes generated
cross HapMap samples run in multiples on each genotyp-
ng plate). Only samples for which genotypes at both poly-
orphisms (and phenotypic data, see below) were available
ere used in subsequent analyses. Table 1 shows the allelic

requencies in our sample along with demographic informa-
ion. Regarding the DAT gene (SLC6A3), the genotype
istribution of the entire sample was in Hardy–Weinberg
quilibrium, �2

VNTR DAT (1) � 0.27, p � 0.60. Similarly,

enotypes for the C957T SNP of the D2 receptor gene m
DRD2) were in Hardy–Weinberg equilibrium in the full
ample, �2

C957T (1) � 2.57, p � 0.11.

.3. Phenotype: backward serial recall

Participants underwent group testing that involved 5 to 6
ndividuals of the same age group. They were presented
ith 3 different lists containing 12 words each. Following
resentation of the last word in each list, participants were
sked to recall the list of words in sequence, starting from
he word presented last going backward in sequence to the
ord that was presented first. If the participants could not

ecall a particular word, they could skip that position and
ove on to the next. However, once the participants decided

o skip a position, they could not go back to that position
nd provide a response for it. Responses were scored using
strict serial-recall criterion: an accurate response required

hat both the identity of a word and its serial position were
orrect. Errors were categorized as transpositions (words
orrectly recalled but in the wrong positions), omissions
words not recalled), commissions (recall of nonstudied
ords), extralist intrusions (recall of words from other lists),

nd repetitions (recall of a word more than once). Here, we
ocused on mean transposition and omission errors, because
he other error types were very rare.

.4. Statistical analysis

Demographic data were analyzed with analysis of vari-
nce or �2 tests, using SPSS for Windows 15.0 (SPSS,
hicago, IL, USA). Using SAS 9.1 for Windows (SAS

nstitute, Inc., Cary, NC, USA). Behavioral data were ana-
yzed with mixed-effect models with maximum likelihood
stimation (Proc Mixed procedure), if inequality of vari-
nces between groups was observed. In contrast to standard
nalysis of variance, mixed-effect models allow for differ-
nces in variances and covariance between age groups and
enotypes, which are more suitable for measures that show
ultivariate heterogeneity of variances. Specifically, the
evene’s test of equality of error variance for recall accu-

acy across the majority of serial positions and for omission
rrors were significant (p � 0.001), indicating multivariate
eterogeneity of variance in these 2 measures. Thus, the
roc Mixed procedure with fixed and random effects was
sed to analyze these 2 measures. Instead of estimating
ffect sizes using the common index of partial �2, given that
e used the mixed-effect models with fixed and random

ffects, we estimated effect sizes by the intraclass coeffi-
ient (ICC), which has been recommended to be more
uitable for models that include random effects and/or re-
eated measures designs (Fern and Monroe, 1996; Maxwell
t al., 1981). Given the well-established female superiority
n episodic memory (see Herlitz and Rehnman, 2008, for
eview) and earlier findings indicating that the BDNF poly-
orphism contributes to individual differences in episodic

emory (Egan et al., 2003; Hariri et al., 2003; Li et al.,
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2010), both sex and the BDNF polymorphism were used as
covariates in all subsequent analyses.

3. Results

3.1. Recall accuracy

Analyzing the effects of age (younger vs. older), DAT
VNTR (9/9, 9/10, and 10/10), and C957T (CC vs. any T)
genotypes across the 12 serial positions, we found signifi-
cant effects for the 4 factors: age, F(1,660) � 1299.84,
ICC � 0.814, p � 0.05; DAT VNTR, F(2,905) � 28.43,
ICC � 0.24, p � 0.05; C957T, F(1,656) � 32.22, ICC �
0.30, p � 0.05; and serial position, F(11,654) � 1.81,
ICC � 0.17, p � 0.05. The age � serial position inter-
action was reliable, F(11,654) � 12.10, ICC � 0.41, p �
0.05, with larger serial position effects in older than in
younger adults. The significant age � C957T interaction,
F(1,666) � 11.79, ICC � 0.13, p � 0.05, indicated that
the D2 receptor genotype effect was stronger in older
than in younger adults. The DAT VNTR � C957T inter-
action, F(2,905) � 16.74, ICC � 0.19, p � 0.05, re-
flected that the DAT and D2 receptor genes modulated
each other’s effects on backward serial recall. Specifi-
cally, the beneficial effect of carrying the DAT 9/9 ge-
notype, associated with higher striatal synaptic DA lev-
els, was larger in the individuals who also carried the
C957T CC genotype, associated with higher striatal DA
levels and higher extrastriatal D2 receptor density. Most
critically, the 3-way interaction among age, DAT VNTR,
and C957T, was reliable, F(2,912) � 6.84, ICC � 0.12,
p � 0.05, reflecting that the gene-gene interaction effect
was larger in older adults (Fig. 1). These findings suggest
that, as aging constrains the efficacy of the pre- and
postsynaptic components of the DA system, variations in
DA-related genes yield stronger effects on episodic mem-
ory.

3.2. Error scores

We also performed separate analyses on 2 main error
types: omission and transposition errors. In general, older
adults made more errors than younger adults with respect to
both error types (ps � 0.001). Moreover, we found a sig-
nificant age � error type interaction, F(1,908) � 31.45, p �
0.05, reflecting that older adults made more omission than
transposition errors (cf. Maylor, Vousden, & Brown, 1999;
Unsworth & Engle, 2006), whereas error frequency did not
differ reliably as a function of error type in younger adults
(Fig. 2). The phenotype variations in omission errors were
significantly associated with individual differences in both
genotypes (Fig. 2A). Specifically, omissions were affected
by DAT VNTR, F(2,1364) � 74.24, ICC � 0.31, p � 0.05;
and C957T, F(1,1066) � 133.1, ICC � 0.33, p � 0.05. The
age � DAT VNTR, F(2,1374) � 28.83, ICC � 0.20, p �
0.05; and DAT � C957T VNTR, F(2,1364) � 38.2, ICC �

0.23, p � 0.05 interactions, were significant. Critically, the
age � DAT VNTR � C957T interaction was also signifi-
cant, F(2,1374) � 29.09, ICC � 0.20, p � 0.05, indicating
that the effect of genetic epistasis for omission errors was
larger in older than younger adults (Fig. 2A). Older adults
whose genotypes are associated with higher striatal DA
levels and extrastriatal D2 receptor densities made less
omissions. In contrast, the main effects of DAT VNTR and
C957T on transposition errors were nonsignificant (Fs � 1;
Fig. 2B).

4. Discussion

We observed effects of the DAT and D2 receptor genes
as well as their interactive influence on backward serial
memory. Homozygotic DAT 9-repeat and C957T C carriers
showed higher overall recall accuracy and made fewer
omission errors. The observed gene-gene interactions are in
line with animal and human studies showing that the DAT
and D2 receptors are involved in regulating the prefronto-
striatal-medial temporal circuitry critical to episodic mem-
ory (Cervenka et al., 2008; Erixon-Lindroth et al., 2005;
Kellendonk et al., 2006; Kimberg et al., 2001; Mozley et al.,
2001), as well as with studies focusing directly on interac-
tions between the DAT and DA receptors at molecular and
brain levels (e.g., Bertolino et al., 2009; Kimmel et al.,
2001; Lee et al., 2007). Of key importance, in agreement
with the resource-modulation hypothesis (Lindenberger et
al., 2008), the observed genetic effects were larger in older
than in younger adults, which underscores the importance of
taking age-related changes in brain phenotypes (e.g., DA
functions) into account when investigating genotype-phe-
notype relations.

An earlier study has shown that, although the DAT
genotype did not affect recognition memory in younger
adults, midbrain activation during encoding was greater
in 9-repeat than in 10-repeat carriers (Schott et al., 2006).
Similarly, another study of younger adults showed that
the DAT genotype did not affect working memory, even
though 10-repeat homozygotes showed reduced activ-
ation in prefrontal regions during task performance (Ber-
tolino et al., 2009), likely reflecting lower striatal DA
activity projecting through the frontostriatal pathway
(Landau et al., 2009). Considering these results in light of
the current findings, it appears that as behavioral pheno-
types (e.g., cognitive performance) are more distal from
genetic effects than intermediate brain phenotypes (e.g.,
functional activation, DA modulation), age-related dif-
ferences in DA signaling would affect the genotype-
phenotype relations. In particular, effects of DA genes on
cognitive phenotypes may be stronger in individuals
whose brain resources (e.g., as DAT or DA receptors)
function suboptimally, such as in older adults. Further,
individual differences in DAT and D2 receptor genotypes
were associated with omissions but not transposition er-

rors. Carriers of the DAT 9/9 genotype and the C957T
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CC genotype made fewer omissions than carriers of the
other genotype combinations, and this effect was stronger
in older adults. Research on serial memory has linked
different error types to problems in different aspects of
memory processing (see Farrell and Lewandowsky, 2002,
or review). Omissions are usually associated with
eaker encoding strength of single memory items (e.g.,
ulme et al., 1997; Maylor et al., 1999), whereas trans-
osition errors are typically attributed to problems in
orming associations between items. Thus, our data sug-
est that older individuals who carry disadvantageous
enotypes of the DAT and D2 receptor genes have par-
icular difficulties in forming strong item memory traces.

Fig. 1. Backward serial recall performance across age, genotype groups, a
owever, as for any genetic association study, these
results should be confirmed in future studies with inde-
pendent datasets before this association can be consid-
ered as established. Indeed, findings regarding pheno-
typic effects of these two polymorphisms have been
inconsistent. For instance, some authors have reported
greater, rather than reduced, DAT binding potential in 9/9
and 9/10 repeat carriers compared with 10/10 carriers
(Jacobsen et al., 2000; van de Giessen et al., 2009), and
others have found that DRD2 957T carriers performed
better in a working memory task than DRD2 957C ho-
mozygotes (Jacobsen et al., 2006). These inconsistencies
may reflect between-study differences in radioligands,
sample characteristics, sample sizes, and the specific cog-

al position (error bars are standard errors around the means).
nitive functions assessed. At the same time, such incon-
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sistencies may also instantiate the inverse U-shaped func-
tion that relates dopamine signaling to performance
(Cools and D’Esposito, 2011; Li and Sikström, 2002;
Mattay et al., 2003; Vijayraghavan et al., 2007), with
both deficient or excessive modulation being suboptimal
for cognitive functions.

In conclusion, individual differences in genes that
regulate synaptic DA levels (the DAT gene, SLC6A3) and
the availability of D2 receptors (the DRD2 gene) contrib-
ute to phenotype variations in backward serial recall, an

Fig. 2. Omission (A) and transposition (B) errors across age an
episodic memory task with high encoding and retrieval
demands. The genetic effect of higher synaptic DA levels
was observed particularly in individuals who also carried
the genotype associated with greater D2 receptor avail-
ability. Consistent with the resource-modulation hypoth-
esis (Lindenberger et al., 2008) and the inverted-U func-
tion relating DA signaling and performance (Cools &
D’Esposito, 2011; Li & Siktröm, 2002; Vijayraghavan et
al., 2007), the interactive effect between the two genes on
episodic memory was magnified in older adults whose
pre- and postsynaptic DA functions in the frontostriatal

type groups (error bars are standard errors around the means).
circuitry are compromised.
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