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Abstract

■ Emerging evidence from animal studies suggests that sub-
optimal dopamine (DA) modulation may be associated with in-
creased forgetting of episodic information. Extending these
observations, we investigated the influence of DA-relevant
genes on forgetting in samples of younger (n = 433, 20–
31 years) and older (n = 690, 59–71 years) adults. The effects
of single nucleotide polymorphisms of the DA D2 (DRD2) and
D3 (DRD3) receptor genes as well as the DA transporter gene
(DAT1; SLC6A3) were examined. Over the course of one week,
older adults carrying two or three genotypes associated with

higher DA signaling (i.e., higher availability of DA and DA re-
ceptors) forgot less pictorial information than older individuals
carrying only one or no beneficial genotype. No such genetic
effects were found in younger adults. The results are consistent
with the view that genetic effects on cognition are magnified in
old age. To the best of our knowledge, this is the first report to
relate genotypes associated with suboptimal DA modulation to
more long-term forgetting in humans. Independent replication
studies in other populations are needed to confirm the ob-
served association. ■

INTRODUCTION

There are between-person differences in forgetting of
episodic information over time that call for more exploration
(MacDonald, Stigsdotter-Neely, Derwinger, & Bäckman,
2006). Here, we specifically investigate on interindividual
differences in the amount of forgetting after a retention in-
terval of 1 week. Given the strong heritability of episodic
memory (e.g., McClearn et al., 1997), we focused on genetic
predispositions linked to dopaminergic systems as contrib-
uting factors to between-person heterogeneity in forget-
ting. Of special interest is whether potential genetic effects
are greater in older than in younger adults.

Dopaminergic Modulation of Episodic Memory

Increasing evidence suggests that dopamine (DA) affects
long-term memory formation and consolidation sub-
served by medial–temporal and fronto-striatal circuitries.
Molecular imaging studies reveal strong links between
DA receptor availability and measures of episodic memory.

Specifically, higher DA D2 receptor binding in hippo-
campus has been related to better verbal (Takahashi
et al., 2007) and pictorial (Takahashi et al., 2008) recall.
Chen et al. (2005) reported a positive association between
striatal D2 receptor availability and delayed memory after
30 min. Also, D2 receptor availability in ventral striatum was
positively associated with performance in tasks assessing
word recognition, pattern recognition, and paired-associate
learning (Cervenka, Bäckman, Cselényi, Halldin, & Farde,
2008). Similarly, density of the striatal DA transporter (DAT)
is related to episodicword recall and face recognition (Erixon-
Lindroth et al., 2005).

Whereas these studies have established a strong link
between DA and human episodic memory at short-term
intervals, empirical evidence on the relation between DA
and long-term forgetting in humans is scarce. In animals,
however, research shows that an infusion of a DA antago-
nist affecting receptor mechanisms in the hippocampus im-
pairs retention after longer, but not shorter, intervals (Bethus,
Tse, & Morris, 2010; OʼCarroll, Martin, Sandin, Frenguelli, &
Morris, 2006). Further, findings from animal studies suggest
that the persistence of fear memories depends on dopami-
nergic modulation long after the initial encounter with the
fear-eliciting stimulus has occurred (Rossato, Bevilaqua,
Izquierdo, Medina, & Cammarota, 2009). Specifically,
blocking receptors through a DA antagonist in the rat
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hippocampus 12 hr after the initial fearful experience
resulted in more memory decay 7 and 14 days later.

Magnification of Genetic Effects in Old Age

On the basis of the observation that the function relating
DA signaling to cognitive performance is nonmonotonic
(e.g., Vijayraghavan, Wang, Birnbaum, Williams, & Arnsten,
2007; Mattay et al., 2003; Li & Sikström, 2002), the resource
modulation hypothesis (Lindenberger et al., 2008) states
that genetic effects on cognition are likely to be larger in
individuals with more constrained neuroanatomical or
neurochemical resources. The hypothesis rests on the
assumption that the function relating brain resources to
cognitive performance is nonlinear; genetic variability is
therefore more likely to result in performance differences
when resources move away from close-to-optimal levels, as
it does in normal aging (see Figure 1).

Initial evidence supports the resource modulation hy-
pothesis of genetic effects on cognition. Using tasks assess-
ing spatial working memory and executive functioning,
Nagel et al. (2008) found that the effects of variation in
the catechol-O-methyltransferase and brain-derived neuro-
trophic factor (BDNF) genes among older adults are mag-
nified relative to younger adults: Carrying disadvantageous
alleles of both genes resulted in poorer cognitive perfor-
mance for older adults but not for the younger adults. Li,
Chicherio, et al. (2010) investigated the effects of the BDNF
gene and obtained an identical pattern of data in backward
serial recall. Relatedly, an interactive effect of DAT (DAT1)
and D2 receptor (DRD2) genotypes on backward serial re-
call was found to be larger in older than in younger adults
(Li et al., 2013).

Aims and Key Hypotheses

We explored whether individual differences in DA genes
affect forgetting in samples of younger and older adults.
Rather than focusing on a single gene, three genes that
cover DA receptor and transporter functions were se-
lected to capture individual differences in the efficacy of
DA modulation. Specifically, we examined the effects
of SNPs in the DA D2 (DRD2, C597T) and D3 (DRD3,
Ser9Gly) receptor genes as well as the polymorphism of
the DAT gene (DAT1, SLC6A3) on long-term forgetting.
In humans, both DAT and D2-like receptors (i.e., the
D2 and D3 receptor subtypes) are mainly expressed in
subcortical regions, such as striatum and hippocampus
(Schott et al., 2006; for a review, see Shohamy & Adcock,
2010).
We hypothesized that individuals carrying more benefi-

cial genotypes (see Methods for further details), presum-
ably associated with higher synaptic DA and receptor
availability, would forget less information from episodic
memory over 1 week. Finally, given that human aging
may magnify genetic effects (Li, Chicherio, et al., 2010;
Lindenberger et al., 2008; Nagel et al., 2008), we expected
that the DA genes would influence forgetting more in
older than in younger adults.

METHODS

Participants and Sample Inclusion Criteria

A total of 445 younger (20–31 years, 53.7% women) and 783
older adults (59–71 years, 60.2% women) were recruited
via newspaper ads and posters posted in public transporta-
tion. All participants reported normal or corrected vision,
were right-handed, as indexed by the EdinburghHandedness
Index (Oldfield, 1971), and had completed at least 8 years
of education. Older participants scored over 27 on the Mini
Mental Status Examination, which is a useful cutoff score to
exclude individuals with mild cognitive impairment in
highly educated elderly samples (OʼBryant et al., 2008).
No participant was on medications that may affect mem-
ory, and none reported a history of head injuries or medical
(e.g., heart attack), neurological (e.g., epilepsy), or psychi-
atric (e.g., depression) diseases. Written informed consent
was obtained from all participants, who were paid for their
participation. The ethics committees of the Charité Uni-
versity Medicine Berlin approved the study.

Genotyping

DNA was extracted from peripheral blood using standard
methods. For the DAT gene (DAT1; SLC6A3), we geno-
typed the 40 base-pair variable number of tandem repeats
(VNTR) in the 30 untranslated region following common
procedures (Vandenbergh et al., 1992). This polymor-
phism is characterized by a different number of tandem re-
peats, varying from 3 to 11. In white participants, the most
common genotypes (about 90%) are 9-repeat homozygotes

Figure 1. The resource modulation hypothesis predicts magnified
genetic effects on cognitive performance in old age. As healthy aging is
associated with decline in chemical and structural brain resources, constant
amounts of genetic variation translate into increasingly larger performance
differences. With resources further depleted, genetic effects are expected
to diminish. The colored circles represent two individuals with different
genetic predispositions as theymove fromearly adulthood through old age
to dementia and terminal decline (modified after Lindenberger et al., 2008).
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(9/9), 9-repeat/10-repeat heterozygotes (9/10), or 10-repeat
homozygotes (10/10), with 10-repeat homozygotes being
most frequent (Mitchell et al., 2000). The polymorphism
of the DA D2 receptor gene (DRD2; C957T, rs6277) and
the D3 receptor gene (DRD3; Ser9Gly, rs6280) were geno-
typed using commercially available allelic discrimination
assays (C_11339240_10 for rs6277 and C_949770_10 for
rs6280; TaqMan SNP genotyping Assay; Applied Bio-
systems, Forster City, CA) following previously described
procedures (Livak, 1999). In white samples, DRD2 C/T
heterozygotes are most frequent, followed by T/T homo-
zygotes and C/C homozygotes (Hirvonen, Lumme, et al.,
2009). For the DRD3 gene, the most frequent genotype
is T/T, followed by C/T heterozygotes and C/C homo-
zygotes (Bombin et al., 2008).
The genotype frequencies in younger adults were

DRD2-86:226:133 (C/C:C/T:T/T), DRD3-237:168:40 (T/T:
C/T:C/C), and VNTR DAT1-25:174:246 (9/9:9/10:10/10). In
the younger sample, all three polymorphisms were in
Hardy–Weinberg equilibrium (HWE, all χ2 < 1, ps > .05).
The corresponding distributions for the older sample
were DRD2-189:359:235 (C/C:C/T:T/T), DRD3-389:334:60
(T/T:C/T:C/C), and VNTR DAT1-49:296:438 (9/9:9/
10:10/10). In the older sample, the genotypic distributions
for the DRD3 and DAT1 genotypes were within HWE
(DRD3: χ2(1) = 1.02, p = .31; DAT1: χ2(1) = 0.02, p =
.92). The DRD2 C957T polymorphism, however, mildly
deviated from HWE (χ2(1) = 4.99, p = .03), reflecting
a slightly higher frequency of T/T (n = 235 vs. 219, as
expected by HWE) and C/C homozygotes (n = 189 vs. 173,
as expected by HWE) and a lower frequency of C/T hetero-
zygotes (n = 359 vs. 390, as expected by HWE).

Defining Gene Score Groups

To characterize individual differences in the efficacy
of DA modulation in terms of transmitter availability
and receptor density, we computed a gene score that
corresponds to the number of beneficial genotypes of
the three genes. Genotypes were defined as beneficial
for memory consolidation if they have been associated
with higher DA transmitter content (e.g., Heinz et al.,
2000), higher receptor availability (e.g., Hirvonen,
Lumme, et al., 2009), or better behavioral performance
(e.g., Bombin et al., 2008; Roussos, Giakoumaki, &
Bitsios, 2008) in previous studies (see details below).
Similar approaches using multiple genes have proven
to be more predictive of the phenotypes of interest than
focusing on single genes only (e.g., Hamrefors et al.,
2010; de Quervain & Papassotiropoulos, 2006). To group
participants, we focused on beneficial homozygous
genotypes instead of alleles, as the three genes may have
differential effects on the DA systems and the behavioral
phenotypes. Specifically, participants were categorized
into two subgroups, namely, carriers of no or one bene-
ficial homozygous genotype and carriers of two or three
beneficial homozygous genotypes.

Individuals with three beneficial genotypes were ex-
tremely rare (n = 3 in younger adults and n = 5 in older
adults). Therefore, carriers of two and three beneficial
genotypes were grouped together and compared with
the remaining sample. In the following, we refer to these
groups as gene score groups. Next, the rationale behind
the gene score grouping is described.

DAT Gene (DAT1, SLC6A3) VNTR Polymorphism

The VNTR polymorphism of the DAT1 gene affects DAT
expression in vitro (Mill, Asherson, Browes, DʼSouza, &
Craig, 2002) and in vivo (Heinz et al., 2000). The 9-repeat
allele is associated with lower DAT expression. Conse-
quently, 9-repeat carriers have higher availability of extra-
synaptic DA. The highest amount of the DAT is expressed
in striatum (Ciliax et al., 1999), and DAT is also expressed
in hippocampus (Schott et al., 2006). Previous research
has shown an advantage for 9-repeat carriers in executive
functioning (Loo et al., 2003), working memory (Brehmer
et al., 2009), and sequential learning (Simon et al., 2011).
In an fMRI study, carriers of the DAT1 9-repeat allele
showed higher midbrain activity during memory encoding
than 10-repeat carriers (Schott et al., 2006). On the basis of
these results, the 9/9 genotype was considered beneficial
to memory performance and was assigned a score of 1,
whereas the 9/10 and 10/10 genotypes were assigned a
score of 0.

C957T Polymorphism of the D2 Receptor
Gene (DRD2)

The C957T polymorphism of the human DRD2 gene
(rs6277) affects the availability of DA D2 receptors in vivo.
The C/C genotype is associated with greater D2 receptor
availability in extrastriatal regions (e.g., hippocampus;
Hirvonen, Lumme, et al., 2009) as well as higher striatal
DA content (Hirvonen, Laakso, et al., 2009; Hirvonen
et al., 2004, 2005). On the basis of these results and pre-
vious findings showing that higher D2 receptor binding is
associated with better episodic memory performance (e.g.,
Takahashi et al., 2008), the C/C genotype was considered
as beneficial and was assigned a score of 1. The other two
genotypes were assigned a score of 0.

Ser9Gly Polymorphism of the D3 Receptor
Gene (DRD3)

The DA D3 receptor is in the same family as the D2 re-
ceptor. The D3 receptor polymorphism Ser9Gly (rs6280)
in exon 2 leads to a serine-to-glycine substitution at
codon 9 (Lannfelt et al., 1992). This SNP has been studied
most extensively in schizophrenia research (Nunokawa
et al., 2010; Allen et al., 2008). Because of a lack of selec-
tive DA D3 receptor radioligands, currently, there are no
in vivo studies relating variations in the DRD3 gene with
D3 receptor density. However, results from a few studies
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involving cognitive functions suggest that the T/T geno-
type of the DRD3 polymorphism is beneficial. These in-
clude research on executive functioning (Bombin et al.,
2008), prepulse inhibition (Roussos et al., 2008), and an
electroencephalographic study on attentional regulation
(Mulert et al., 2006). Thus, the T/T variant of Ser9Gly in
DRD3 was considered as beneficial and was assigned a
score of 1. The other genotypes were assigned a score
of 0.

Experimental Task

Participants underwent two cognitive testing sessions,
1 week apart. Each session lasted about 3 hr. Participants
were tested in groups of about six individuals of the same
age. The cognitive battery assessed episodic memory,
working memory, executive functioning, perceptual
speed, and psychometric measures of intelligence. Re-
sponses were made via button boxes and keyboards.
The memory task of interest in this study is described
below.

At the beginning of the first session, participants were
presented with 48 complex, colored images consecutively
of neutral emotional valence, at a rate of 3 sec/scene.
All pictures were derived from the International Affective
Picture System (Lang, Bradley, & Cuthbert, 1997). The
images were encoded incidentally; during the study
phase, participants were required to determine whether
the scene was “indoor” or “outdoor” (24 indoor and 24
outdoor scenes were presented). The first recognition test
was administered at the end of the first session after a delay
of approximately 2.5 hr. The second recognition test was
done 1 week later. During retrieval, participants viewed
each image for 3 sec and were asked to determine
whether the scene had been presented (“old”) or not
(“new”) during encoding. In each recognition test, 24
unique old scenes and 24 unique new scenes (lures) were
presented. The analysis was conducted on the proportion
of hits minus false alarms (Macmillan & Creelman, 2005).

Data-based Exclusion Criteria

Participants with negative hits minus false alarms and more
than 20% of nonresponses in the task were excluded from
analyses (7.8% of the total sample), because this typically
indicates that the task is not performed appropriately.
Furthermore, outliers exceeding more than ±4 SD in the
behavioral measures were excluded (<1% of the total sam-
ple). This data-based exclusion of participants did not differ
across gene score groups (younger adults: χ2(1) = 0.88,
p > .10; older adults: χ2(1) = 0.07, p > .10). The effec-
tive sample consisted of 433 younger (53.6% women)
and 690 older (59.6% women) adults. Table 1 presents de-
scriptive statistics of demographic and self-reported health
data across age and gene score group. Notably, the two
gene score groups did not differ with respect to demo-
graphic and self-reported health data in either age group.

Statistical Analyses and Covariates

Behavioral data were analyzed with mixed-effect models
(“Proc Mixed” procedure) using maximum-likelihood
estimation in SAS 9.1 (SAS Institute, Inc., Cary, NC). In
contrast to standard ANOVA, mixed-effect models do
not assume equal variances and covariances between
groups. This approach is more suitable here given multi-
variate heterogeneity of variances and covariances in the
data, as reflected in the Boxʼs M tests for recognition
performance ( p = .01). Sex was used as a covariate to
control for the well-established female advantage in epi-
sodic memory (e.g., Herlitz, Nilsson, & Bäckman, 1997).
In addition, analyses controlled for individual differences
in the BDNF Val66Met (rs6265) genotype, because earlier
studies have shown that this genotype affects episodic
memory (Li, Chicherio, et al., 2010; Egan et al., 2003)
and may interact with DA modulation (Nagel et al.,
2008; Li, Cullen, Anwyl, & Rowan, 2003).1 For all analyses,
the alpha level was set at p= .05. Effect sizes are reported
by the intraclass correlation coefficient (ICC), which is suit-
able for repeated measures designs (Fern & Monroe,

Table 1. Demographic Variables and Self-reported Health across Age and Gene Score Group

Demographics

Number of Beneficial Genotypes

Younger Adults (n = 433) Older Adults (n = 690)

0/1 (n = 374) 2/3 (n = 59) 0/1 (n = 583) 2/3 (n = 107)

Age (M ± SD) 26.1 (3.0) 26.5 (2.9)a 65.2 (2.8) 65.2 (2.9)a

Women/men 171/203 30/29b 231/352 48/59b

Years of education (M ± SD) 12.5 (1.2) 12.9 (1.5)a 10.8 (1.8) 10.9 (1.4)a

State of health (M ± SD) 3.9 (0.6) 3.9 (0.6)a 3.9 (0.6) 3.9 (0.7)a

State of health is based on the mean of four self-ratings on 5-point scales (1 = poor, 5 = excellent).
aOne-way analyses of variance, ns.
bχ2 = ns.
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1996). The ICC values were squared to ease interpretation
in terms of the percentage of total variance associated with
an effect.

RESULTS

To investigate whether carrying more beneficial geno-
types is related to less-pronounced forgetting, we con-
ducted an omnibus test with age group (young vs. old)
and gene score group (no or one beneficial genotype
vs. two or three beneficial genotypes) as between-subject
factors and session (2.5 hr vs. 1 week) as a within-subject
factor. As can be seen in Figure 2A and B, both age
groups showed marked forgetting after 1 week, indicating
a main effect of Session, F(1, 180) = 1494.14, p < .0001,
ICC = 0.945, explaining 89.2% of the total variance in the
data. Older adults performedworse than younger adults in
both sessions, as indicated by a significant effect of Age
Group, F(1, 159) = 83.97, p < .0001, ICC = 0.558 (34.9%).
Furthermore, the Age group× Session interactionwas sig-
nificant, F(1, 180)= 44.93, p< .0001, ICC=0.447 (20.0%),
reflecting more forgetting after 1 week in older than in
younger adults. Critically, the interaction among Age Group,
Gene Score Group, and Session was significant, F(1, 180) =
3.96, p = .048, ICC = 0.147 (2.2%), indicating that older
participants with at least two beneficial genotypes exhib-
ited less forgetting after 1 week. Follow-up comparisons
showed no differences between gene score groups after
2.5 hr (ts < 1). However, older adults carrying fewer ben-
eficial DA genotypes forgotmore after 1 week than carriers
of two or three beneficial genotypes (t=−1.99, p= .048);
whereas, there was no such gene score effect in younger
adults (t < 1).

DISCUSSION

We investigated the effects of three DA-related genes (i.e.,
DAT1, DRD2, and DRD3) on episodic forgetting in youn-
ger and older adults. Individuals carrying fewer beneficial

genotypes, indicating lower DA efficacy, were expected to
forget more information after 1 week. In addition, based on
the resource modulation model of the gene-cognition link
(Lindenberger et al., 2008), we predicted stronger genetic
effects in old age.

Our results show that greater availability of DA content
and receptors, captured by a score based on the three DA
genes, was related to less forgetting in older, but not in
younger, adults. Interestingly, we did not observe genetic
effects on recognition memory at a retention interval of
2.5 hr. This finding of individual differences in DA mod-
ulation predicting degree of forgetting in older adults is
in line with animal data that DA antagonist infusion in the
hippocampus impairs episodic memory to a larger degree
after longer, as compared with shorter, retention intervals
(de Lima et al., 2011; Bethus et al., 2010; Rossato et al.,
2009; OʼCarroll et al., 2006). Although DA modulation has
been related to episodic memory performance in humans
(e.g., Karlsson et al., 2011; Morcom et al., 2010; Cervenka
et al., 2008; Takahashi et al., 2007, 2008; Bäckman et al.,
2000), this is, to the best of our knowledge, the first time
that suboptimal DA modulation has been related to more
forgetting in a human sample.

In a recent study, we showed that older adults who
fluctuated more from trial to trial in their RTs forgot more
information after 1week (Papenberg et al., 2011). Neurocom-
putational simulations (Li, Naveh-Benjamin, & Lindenberger,
2005; Li & Sikström, 2002; Li, Lindenberger, & Sikström,
2001) suggest that suboptimal DA modulation results in
a lower signal-to-noise ratio and less distinctive neural rep-
resentations, which then lead to increased intraindividual
variability and lower memory performance at the behavioral
level. The picture drawn by these simulations is in line with
data documenting that lower D2 receptor binding in pre-
frontal regions and hippocampus is associated with in-
creased trial-to-trial RT variability (MacDonald, Cervenka,
Farde, Nyberg, & Bäckman, 2009). Further, two imaging
studies reported better memory performance for rewarded
than for nonrewarded stimuli after 24 hr (Adcock, Thangavel,

Figure 2. (A) Recognition
memory performance after
2.5 hr and 1 week for
younger adults carrying
no or one beneficial genotype
(n = 374) and two or three
beneficial genotypes (n = 59).
(B) Recognition memory
performance after 2.5 hr
and 1 week for older adults
carrying no or one beneficial
genotype (n = 583) and two
or three beneficial genotypes
(n = 107). Error bars represent
one standard error around
the means.
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Whitfield-Gabrieli, Knutson, & Gabrieli, 2006) and 3 weeks
(Wittmann et al., 2005). In both studies, remembering
reward-predicting items was associated with higher activ-
ity in midbrain DA regions during encoding, presumably
enhancing hippocampal memory consolidation, as sug-
gested in several animal studies (for reviews, see Lisman,
Grace, & Düzel, 2011; Lisman & Grace, 2005).

Importantly, the observed genetic effects on forgetting
were present in the older age group only. Thus, our results
corroborate the resource modulation hypothesis, which
predicts that genetic effects on cognition are more likely
to be observed in populations with depleted structural
and neuromodulatory brain resources, such as in older
adults (Li et al., 2013; Li, Lindenberger, & Bäckman,
2010; Lindenberger et al., 2008; Nagel et al., 2008). In view
of the inverted U-shaped function relating DA signal-
ing to cognitive performance (for reviews, see Cools &
DʼEsposito, 2011; Lindenberger et al., 2008; Li & Sikström,
2002), older adults with declining DA modulation (for re-
views, see Bäckman, Lindenberger, Li, & Nyberg, 2010;
Bäckman, Nyberg, Lindenberger, Li, & Farde, 2006) may
benefit more from genetic predispositions associated with
beneficial DA receptor and transporter functioning, rela-
tive to younger adults with more optimal DA levels (see
Figure 1).

We focused on genes affecting DAT expression and
D2 and D3 receptors, which were aggregated into a gene
score. Conceivably, this approach captures interindividual
differences in the efficacy of dopaminergic modulation
more efficiently than a single-gene approach. Admittedly,
the relative contributions of the different mechanisms asso-
ciated with each of the contributing polymorphisms to the
observed behavioral effects cannot be delineated with this
approach. That said, individuals with more beneficial geno-
types may be characterized by higher synaptic DA levels
as well as higher receptor densities, both resulting in in-
creased activation of D1 as well as D2 receptors, which
have been shown to affect memory performance (e.g.,
Manago, Castellano, Oliverio, Mele, & De Leonibus, 2009;
Rossato et al., 2009; Mele et al., 1996; Castellano, Cestari,
Cabib, & Puglisi-Allegra, 1991) by facilitating and prolonging
long-term potentiation (Manahan-Vaughan & Kulla, 2003;
Huang & Kandel, 1995; Frey, Huang, & Kandel, 1993).

As is common in behavioral genetic studies, the effect
size observed in this study was relatively small (Payton,
2009; Barnett, Jones, Robbins, &Müller, 2007). Future stud-
ies are needed to replicate these findings in independent
data sets to substantiate the association between sub-
optimal DA modulation and forgetting.

Given that human episodic memory is a polygenetic
trait (Rasch, Papassotiropoulos, & de Quervain, 2010; de
Quervain & Papassotiropoulos, 2006), future research
should also consider genes related to transmitter systems
that are known to interact with DA systems in influencing
molecular mechanisms underlying episodic memory. Exam-
ples include GABA (Swant, Stramiello, & Wagner, 2008),
glutamate (Cestari & Castellano, 1997; Mele et al., 1996),

acetylcholine (Fujishiro et al., 2005), and serotonin (Prado-
Alcalá et al., 2003) transmitter systems, all of which decline
in old age (for reviews, see Eppinger, Hämmerer, & Li,
2011; Magnusson, Brim, & Das, 2010; Rissman, De Blas,
& Armstrong, 2007).
Our results provide novel information regarding the

influence of DA-related genes on long-term forgetting
of episodic information. Older adults with genetic pre-
dispositions associated with better DA efficacy forgot less
pictorial information after 1 week. In younger age, no ge-
netic effects were observed. These data extend previous
observations of magnified genetic effects on cognition in
old age.

Acknowledgments

This research was supported by the Max Planck Society, includ-
ing grants from the innovation fund of the Max Planck Society
(M.FE.Abild0005). It was also supported by a grant from the
German Federal Ministry of Education and Research to the Berlin
NeuroImaging Center (01G00501). L. B. was supported by the
Swedish Research Council, Swedish Brain Power, an Alexander
von Humboldt Research Award, and a donation from the af
Jochnick Foundation. G. P. is a fellow of the International
Max Planck Research School, The Life Course: Evolutionary and
Ontogenetic Dynamics (LIFE). The authors thank Kirsten Becker,
Ludmila Müller, Carolin Stockmeyer, and the other research
assistants for their help.

Reprint requests should be sent to Goran Papenberg, Center for
Lifespan Psychology, Max Planck Institute for Human Development,
Lentzeallee 94, 14195 Berlin, Germany, or via e-mail: papenberg@
mpib-berlin.mpg.de.

Note

1. We also controlled for the effects of other memory-related
genes including KIBRA (Kauppi, Nilsson, Adolfsson, Eriksson, &
Nyberg, 2011; Papassotiropoulos et al., 2006) and the serotonin
receptor polymorphism 5-HTR2a gene (Schott et al., 2011; de
Quervain et al., 2003). Including KIBRA as a covariate did not
alter the pattern of results in the total sample. The 5-HTR2a
gene was only available in a subsample of participants (n =
692). Because there were so few younger persons with at least
two beneficial genotypes (n = 21), we had to restrict the con-
trol analyses to the older adult sample. As with KIBRA, control-
ling for the 5-HTR2a gene did not affect the main pattern,
namely that older adults with at least two beneficial genotypes
forgot less after 1 week.
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