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Abstract

The successful classification of single-trial Electroencephalography (EEG) signals enables
paralyzed people to communicate and can be employed as analysis tool. This thesis in-
vestigates the possibility to increase the accuracy of [EEGI classification systems by com-
bining classifiers that are based on different feature extraction and classification methods
that are employed for the classification of [EEGI signals. This is achieved by comparing
multiple classifiers that are based on a combination of classifiers against the best single
classifier on data sets originating from four different [EEG] studies. The results show that
a combination of classifiers is able to increase the accuracy by more than 7%. This implies
that the general direction in [EEG] classification research should be changed from “finding
the best single classification method” to “finding the best combination of classification
methods”.
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1. Introduction

Recently, the automatic classification of Electroencephalography (EEG) signals via Pat-
tern Recognition Systems (PRSK) has gained attention. One main motivation behind this
is that the automatic classification of [EEG] signals enables communication for paralyzed
people. Given that there are differences between classes, a hypothesizes a model,
based on a labeled data set that captures these differences and can reliably classify a
novel sample based on that model. can be used as an [EEGI data analysis tool
by interpreting the separating model a infers from a data set. In contrast to the
conventional analysis techniques, which are mostly univariate approaches, the employ-
ment of a as analysis tool enables the detection of differences that are based on
interactions between multiple variables (van Gerven et alJ, QOQQ)

In the last 10 years, researchers proposed a variety of different feature extraction
and classification methods for the classification of [EEGI signals (see Sections 2:2.3] and
22.4). Most are based on one particular combination of feature extraction
and classification method dﬁ)j&g_ej_aﬂ, Imoj) It is promising to combine the different
feature extraction and classification methods to potentially create a[PRSl that is, for any
given Pattern Recognition (PR)) task, more accurate than the best that is based
on one particular combination of feature extraction and classification method. Because
the best out of all possible classifiers can not be obtained, I use the so called ORACLE
classifier as base-line comparison. If the ORACLE is asked, it returns the classifier, out
of a candidate set of classifiers, that achieves the highest mean accuracy over all data sets
for one particular [PRltask. Due to the employment of various different feature extraction
and classification methods, this might be able to perform well on a large variety of
[EEG] data sets. Hence, it produces a separating model, which can be interpreted, on a
large set of different data sets. Thus, the first hypothesis of this thesis is: A combination
of the different feature extraction and classification methods that are employed for the
classification of [EEG] signals improves the accuracy of the resulting classifier compared
to ORACLE and results in a[PRS| that performs well on a variety of [EEGI data sets.

The most popular approach to combine feature extraction and classification methods is
the employment of so called Multiple Classifier System (MCS). A consists of a set
of base-level classifiers and a combiner. All base-level classifier are trained for the same
[PRI] task, but each base-level classifier differs from the other base-level classifiers. The
combiner combines the decisions from all base-level classifiers to one overall ensemble
decision. The resulting classifier is called ensemble classifier.

One of the most famous combiners is the simple selection of the best classifier, as esti-
mated on a part of the training set. This combiner is called Select the Best (SelectBest])
in the remainder. The second hypothesis of this thesis is that a combination of the de-
cisions of the base-level classifiers leads to a more accurate ensemble classifier than the




1. Introduction

selection of the best classifier by

An even simpler approach is to only combine the different feature extraction methods,
and to employ a single classification method on the concatenation of the outputs of all
feature extraction methods. This approach is called Concatenation (CONCAT]) through-
out this thesis. The last hypothesis of this thesis is that the employment of a [MCSlleads
to a more accurate classifier than the approach.

When ORACLE is compared against a[MCS] the set of candidate classifiers is identical
to the set of base-level classifiers. have been applied successfully for many diverse
[EEGHPRI tasks. Furthermore, it was shown that the combination of multiple feature
extraction methods is able to boost the accuracy compared to ORACLE. In all previous
studies, outperformed the simple approach. The previous comparisons
were all made on one particular type of[EEGldata sets. However, a systematic comparison
on a large set of many different data sets is missing. In this thesis, I compare several
different against [CONCAT], ORACLE, SelectBestl and each other on a large set
of different [EEG] data sets. The different only differ in the combiner they employ.
They are all based on the same diverse and broad base-level classifiers (see section [3.4]).

A majority of the combiners that I compare have not yet been applied to the classi-
fication of [EEG] signals. Furthermore, I propose several new combiners, which are not
limited to the application to [EEGHPRSk. While all previous studies used the classifica-
tion of [EEGI signals to build a [PRS] that works well on one particular type of [EEGI data
sets, my goal is to build a [PRS] that works well on a variety of different [EEG] data sets.

I apply a subset of the that I propose to an [EEGI classification problem for that
successful classification has not yet been achieved. The motivation behind this is to
examine if one is powerful enough to infer a separating model for that problem.

1.1. Outline

The remainder of this thesis is laid out as follows.

In Chapter 2], the mathematical and psychophysiological foundations will be intro-
duced. It will start with a short introduction to [PRl After that, the applications of
the classification of [EEG] signals will be introduced in detail. Then, various feature
extraction and classification methods that have been employed in previous studies will
be introduced. The chapter ends with an introduction to [MCS| with an emphasis on
different combiners.

Chapter B] will start with a detailed review of previous work. After that, the learning
algorithm that is used to train the ensemble classifiers will be introduced. Also, the
newly proposed combiners and the settings for the existing combiners will be presented.
Chapter Bl also contains the description of the employed set of base-level classifiers. It
will conclude with the details of the implementation.

In Chapter [, the results of the comparison of the different methods will be presented.
The methods will be compared on four different [EEGI classification tasks and on simulated
data sets. After the methods and the implementation details will have been presented,
the results on the simulated data sets will be introduced. After that, the results on the
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[EEGI data sets will be shown. Chapter Fl concludes with a summary of the results.

In Chapter Bl a summary of this thesis will be presented and conclusions based on the
results will be drawn. It will also contain an Outlook that identifies further possible
improvements.



2. Foundations

This section introduces the foundations that are necessary for the understanding of this
thesis. It will start with a brief introduction to Pattern Recognition (PRJ), including a
treatment of the proper comparison of classifiers. Thereafter, the foundations of, the
application of, and the methods for the classification of Electroencephalography (EEGI)
signals will be introduced. The last section will introduce the combination of classifiers.

2.1. Pattern Recognition

This section contains a short introduction to the field of Pattern Recognition (PR). A
more extensive introduction can, e.g., be found in [Duda et all (Iﬂ)ﬂj) [PRl is a sub-field
of machine learning, which in turn is a sub-field of artificial intelligence.

Assume that someone asked you to build a system that separates hippos and giraffes
based on their height and weight. To fulfill this task you collect a data set that contains
the weight and height for each member of a set of hippos and giraffes. One approach to
fulfill this task would be to look at the data set and define a separating model based on
what you have learned about the differences between the two classes, hippos and giraffes.

Supervised learning aims at transferring this learning process, which is necessary to
hypothesize a model of the differences, to a computer. Given that there are differences
between classes, a supervised learning algorithm is an algorithm that hypothesizes a
model, based on a labeled data set, reflecting these differences and classifies a nowvel
sample based on that model. The labeled data set contains a number of samples for
which the class membership is given by an external source. In our example, the classes
are hippos and giraffes. The model could, for example, suggest that if an animal has a
height of less than 4 meters it is an hippo, otherwise it is a giraffe. An animal that was
not included in the data set can now be automatically classified using this model.

A Pattern Recognition System (PRS) is a system that employs a supervised or un-
supervised learning algorithm to infer a separating model, which is then employed to
classify novel samples. In the remainder of this section I will explain the functionality of
a[PRS by describing the components of that a[PRSltypically consists. These components
represent the solutions of the different problems one has to solve when designing a [PRS|
For this thesis, I am concerned only with those that employ a supervised learning
approach.

2.1.1. Components

The components of a [PRS| are usually sequentially processed. I will introduce the com-
ponents in their processing order.
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Figure 2.1.1.: Tllustration of the data flow between the typical components of a [PRSL

Sensing Component

Because a works on a computer, it is only able to process digital data. The task
of the first component, named sensing component, is to transform chosen aspects of the
reality into a format that is readable by a computer.

The sensing component should sense those aspects of the reality that reflect the dif-
ferences between the classes. Hence, the choice of an appropriate sensing component is
crucial for the success of a

For our hippo and giraffe example, the sensing device might be a camera. For other
domains, a microphone or Electroencephalography (EEG) electrodes might be used.

Segmentation Component

When using a microphone as sensor for a speech recognition [PRS] the computer gets
a constant data stream as input. However, most supervised learning algorithms are
only able to handle discrete samples as input. Therefore, the constant data stream has
to be segmented into samples. The decision how to segment the data results in the
segmentation component.

Depending on the domain of the classification problem the segmentation component
may be crucial to the success of the [PRS] or may be completely unnecessary. For a
speech the design of a good segmentation component is crucial, as opposed to an
e-mail spam filter, where the data is naturally segmented into e-mails. A set of multiple
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Figure 2.1.2.: Illustration of the outputs of each component. The sensing components
returns a picture from which the segmentation component extracts ani-
mals. In this case the giraffe. The feature extraction component extracts
the height from the picture of an animal and the classification component
classifies animals based on their height.
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Segmentation B | Il | ik | eth | is

Table 2.1.: Illustration of the importance of proper segmentation

samples is called raw data set.

Definition 1. Let X C K" be the set of unlabeled samples from multiple classes, called
measurement space, where K is a field. Let Y = {y1,...,yr} be the finite set of possible
labels representing the classes. Furthermore, let M C X X Y be the set of samples that
are labeled correctly. Then a finite subset D C M is called data set and (x,y) € D is
called labeled sample. N = |D| denotes the number of samples in the data set D and y;
the [th label out of the L possible labels.

Feature Extraction Component

In the introduction of this section it was assumed that the data set contains height and
weight as measure. This is true if one wants to build a[PRS] that works on data sets that
are made by zoologists. In this case neither a sensing nor a segmentation component is
needed as sensing and segmentation is performed by humans.

However, if one wants to build a that enables a robot in the wilderness to distin-
guish giraffes from hippos, the data set will more likely be a collection of images. If the
camera resolution is 640 x 480, each image is represented by a 3 - 640 - 480 = 921, 600
dimensional vector x. While it is possible to build a successful on a raw data set,
with high feature dimensions like this, the approach to transform the samples into a bet-
ter discriminating and meaningful space is more common. This process is called feature
extraction. The goal of the feature extraction component is to extract features that differ
largely for samples from different classes and are very similar for samples from the same
class.

Definition 2. A feature extraction function ¢ is a function that maps samples from
the measurement space X to a new measurement space Xfeat. @97 : X — Xfear- 0 are
parameters that are learned from the data set D, and 7 are parameters that have to be
chosen by the designer, often called hyper-parameters. I call

Drear = {(xfeatay) : (x,y) € D A Zfear = ¢€,T(x)}
the feature data set.

The feature extraction component can consist of the composite of arbitrary many
feature extraction functions ¢, o ¢,_1 o ...¢1. Each feature extraction function ¢; has
parameters 7; and , where 0; is learned using the data set transformed by ¢;_1. With
that in mind I will just speak of the feature extraction function in the remainder

¢9,T = ¢no¢n710---¢1 (211)
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There are two approaches to obtain a feature extraction function. The first approach is
the incorporation of prior knowledge about the underlying problem. It is, for example,
known that on average giraffes are taller than hippos. Therefore, the height of an animal
should be a feature that enables a good distinction between giraffes and hippos. The
extraction of the height as feature also reduces the number of feature dimensions from the
921600 pixels of the picture to 1 height value. Therefore, it drastically reduces demands
on memory and computation time. This approach simplifies the learning task for the[PRS|
by delegating part of the learning to the designer. The designer specifies and implements
the, in this case at least very complex, feature extraction function. If this approach is
chosen, no parameters have to be learned from the data set; 6 = 0.

The second approach relies less on prior knowledge. It uses a so-called learning algo-
rithm to induce the feature extraction function from the data set or in other words to
populate 6.

Definition 3. An algorithm Iy, (D) = ¢y that takes as input an untrained feature
extraction function ¢ ;(x) and a data set D and returns the trained feature extraction
function ¢g () is called a learning algorithm

Example algorithms that fall into this category are: Principal Component Analysis
Duda. et alJ, |2011d, pp. 568), Independent Component Analysis (Duda et alJ, mOIj, pp.
570), and Common Spatial Patterns (CSP)) (see Section 2Z2.3). These algorithms consist
of an untrained feature extraction function ¢-, and the corresponding learning algo-
rithm Iy, . I will call such algorithms feature eztraction methods in the remainder.
When a learning algorithm is used to populate 6, the designer of the still heavily
influences the hypothesized model by choosing the feature extraction method and its
hyper-parameters.

Classification Component

The heart of each [PRSlis the classification component. The choice of the classification
component is crucial.

Definition 4. A trained classifier ¥y ; is a function that maps samples from the feature
space Xfear to labels Wy - 1 Xpeay — Y.

Analogous to the feature extraction component, there are two ways to build a classifier,
one can define a static classifier based on prior knowledge or use a learning algorithm
to induce a classifier from a data set. In contrast to the feature extraction method,
no state-of-the-art general purpose exists, to my knowledge, that does not employ
a learning algorithm for training its classifier. The classification component takes the
feature data set as input.

Note that a classifier could also be defined as the feature extraction function for that
the new measurement space is the label set Y. This implies that 6 is also populated
by the corresponding learning algorithm and 7 are hyper-parameters, which must be
chosen by the designer. The population of # by a learning algorithm, which leads to a
classifier, is also referred to as the learning algorithm Iy induces a classifier W. T will
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call the combination of an untrained classifier and its corresponding learning algorithm
classification method.

An example classification method is the mean classifier. The learning algorithm of the
mean classifier calculates the mean for each class

1
My, = Z T

D
[ Dy (z,y)EDy,

where Dy, = {(2,y) € Dfeas : y = y1}. The trained mean classifier assigns a new sample
x to the class to whose mean it has the smallest distance, with respect to some distance
measure d. Therefore, the discriminating model consists of the mean of every class and
the distance function d that is employed . The set of parameters learned from the data
consists of the class-wise means § = {m,,,...,my, } and the hyper-parameter reflects
the choice of the distance function 7 = d. A new sample x € Xgea is classified according
to the following formula
Wy, (x) = arg min (d(my, 7))
ey

Note that the concatenation of the classifier and the feature extraction function
Yogp: X — Y (2.1.2)

also results in a classifier. Therefore, I will speak of a classifier Wy , for the concatenation
of the feature extraction and the classification function in the remainder of this thesis.
Furthermore, T will summarize the learning algorithm of the feature extraction method
and the learning algorithm of the classification method as Iy, (D). Remember that it is
a short for

Iy, (D) := Iy, (¢0+(D)) = Ly, . (I3, . (D)(D)) = ¥y s

where I, is the learning algorithm of the feature extraction function, Iy, , the learning
algorithm of the classifier, and ¢g (D) denotes that the raw data set is mapped to the
feature data set by applying ¢y . to each sample in D.

Post Processing Component

The post processing component is defined as everything that is done with the classification
of a sample.

Most perform some action that is dependent on the classification decision. For
example, an iris scanner could open a door if the classifier decided that the iris put in
front of the sensors belongs to a person who has access rights to the room.

The post processing component might also be able to add context to a classification.
If, for example, a letter recognition system is unsure if a picture of a letter represents a
c or an o, but the same system classified the context of the letter with high certainty
as “f7r”, the post processing component may decide that, based on the context, o has a
much higher a-priori likelihood and, hence, assign the sample to the class o.

Another function of the post processing component can be the integration of multiple
classifiers working on multiple aspects of the input to one decision. This will be presented
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in more detail in Section 23l But first, I explain how to get a valid measure of the
performance of a classifier.

2.1.2. Notation

Throughout this work I will use the following notation, originating from the previous
section. D will be the raw data set, containing samples (x;,y;), with cardinality N. D
is assumed to be a representative subset of the whole population M. Y = {y1,...,yr}
describes the set of labels with cardinality L, X denotes the measurement space, and ¥
a classifier induced by the learning algorithm Iy. y; refers to the label of the ith sample
in the data set D, while y; refers to the [th out of the possible labels Y.

2.1.3. Estimation of the Performance of a Classifier

Loss and Risk

After creating a classifier, its performance is usually of interest. Questions related to the
performance are typically: Is the performance of a classifier sufficient for a given task?
Is it performing better than another classifier? The performance of a classifier is usually
quantified with the help of a loss function.

Definition 5. A loss function L is a function that maps a labeled sample (z,y) € M
and a classifier ¥ to a cost term. L(z,y, ¥) € R>g

The most basic and most often employed loss function is the zero-one loss function.

Definition 6. Let z,y,¥ be as in Definition Bl The zero-one loss function is then defined
as
0 if, U(x)=y

1 otherwise

L()l(x, Y, \I/) = {

The zero-one loss function assigns, independently from the true label y, every mis-
classification the cost 1. Correct classifications are assigned zero cost. Other loss func-
tions are, for example, used if the cost of a misclassification depends on the true class.
A typical example for unequal misclassification costs are medical tests. In most cases
the consequences are less severe if a medical test classifies a patient as sick who is not
sick compared to the situation when the test classifies a patient as healthy who is sick.
Therefore, for a medical test mostly asymmetric loss functions are used, which assign the
misclassification of a sick patient a high cost.

The risk of a classifier is the expected loss. It is the most common performance measure
for classifiers.

Definition 7. The risk of a classifier is defined as

R(T,p) — / L.y, )p(a, y)dady
zeX,yeY

where L is a loss function and p(z,y) the joint probability mass function of X and Y.

10
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When using the zero-one loss function, an equivalent measure for the risk is the accu-
racy.

Definition 8. Let Roi (¥, p) be the risk calculated with Lg; as loss function. Then
acc(¥,p) =1 — Rp1(¥,p)
is called accuracy of classifier W.

Note that the accuracy represents the probability that a classifier ¥ predicts the true
class, acc(V,p) = P(¥ = correct). If p(z,y) were known, the accuracy could be calcu-
lated directly .

Also, if p(z,y) were known, the classification task would become trivial. It can be
shown that the Bayes classifier

Bayes(x) = arg max Y = y) PV =)
yey p(x)
is the classifier with the highest accuracy d[hldaﬁ_aﬂ, lZD_Qd, pp. 24). No classifier is
able to achieve a higher accuracy than Bayes.
But when building a classifier, the joint probability mass function p(z,y) is rarely
known. Only a finite subset D of the whole population M is available. Hence, the design

of other classifiers than Bayes is reasonable, and the accuracy can only be estimated on
the finite data set D.

Estimation Methods

There are several methods for estimating the accuracy, which I will introduce in the
remainder of this section. Independently of the method one chooses to estimate the
accuracy, it is defined as follows.

Definition 9. Let D be a data set, the estimated accuracy of the classifier ¥ on that
data set is

1
aCCeS(\Il7D) =1- N Z LOl(«'E,y,\I/)

(z.y)eD
Recall that N = |D|.

Note that one usually is not interested in the performance of a static classifier ¥ but
in the performance of the classifier that is induced by a learning algorithm Iy from the
data set D. The most naive method to estimate the accuracy is to use the same data set
for estimating the accuracy as for inducing the classifier.

Definition 10. When estimating the accuracy on the same data set that was used for
inducing the classifier, the estimated accuracy is called training accuracy and calculated
as follows

1
aCCtrain (lw, D) = acces(lw (D), D)) =1 — N( Z)D Loi(z,y, Iy(D))
x,y)e

11
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The training accuracy is not a good estimate of the accuracy. It is a biased estimate.
The training accuracy is usually significantly higher than the true accuracy because the
data on that the accuracy is estimated is not independent from the data that was used
to induce the classifier.

The general solution to that problem is to divide the data set D into two disjoint data
sets, Dy, and D;. The inducer Iy employes D; to induce the classifier . The accuracy
of U is then estimated on Dp. Since one part of the data set is held out from training,
this method is called holdout method.

Definition 11. The accuracy estimated by the holdout method is defined as

1
acces(Iy, D) = acces(I(Dy), Du) = 1= = > Loi(w,y, Tu(Dy))

(Ivy)eDh

where Dy, = D/D;.

It is common to use % of the data set for the training set D; and % for the holdout
set Dj. Assuming that the learning algorithm [y gets better with a bigger data set,
the accuracy estimated by the holdout method in o smon to the training accuracy,
yields an underestimation of the accuracy . This problem is severe when
the data set is small.

To utilize the complete data set for the estimation of the accuracy, a method called
n-fold cross-validation is often employed. This method basically repeats the holdout
method with different holdout sets. The data set is separated into n disjunctive sub
sets, each containing N/n samples. For each subset D; the learning algorithm is trained
with the remainder of the data set D/D;, and the accuracy of the resulting classifier is
estimated on D;. The accuracy estimated by n-fold cross-validation is the summed loss
over the n folds divided by the number of samples N.

Definition 12. The accuracy estimated by the n-fold cross-validation method is defined
as

acCey(ly, D) =1— — Z Z Loi(z,y,Iv(D/D;))

1 (z,y)eD;

where D = Uie{l,..,n}Di and D; N D; = 0 if i # 5.

When estimating the accuracy using n-fold cross-validation, one has to decide how
many disjunctive data sets to create and how to create them. (@ showed
that 10 data sets (folds) are a good trade-off between bias and variance of the resulting
estimator and that stratification leads to a decrease of both variance and bias of the
estimated accuracy. Stratification means that the folds D; contain roughly the same
proportions of the classes as the original data set D.

When the data set D is imbalanced, i.e., D does not contain equal proportions of
all classes, a better measure of the performance of a classifier than the accuracy is the

Balanced Accuracy (BAC) (Brodersen et all, [2010).

12
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Definition 13. The [BACis defined as the average per class accuracy

bac(¥, p) Zacc (¥, D, (2,9))
l 1

where M, :== {(z,y) € M :y =y}

Analogous to the accuracy, the [BAC] can also be estimated using one of the introduced
methods.

2.1.4. Comparison of Classifiers

Independent of the method used for the estimation of the performance of a classifier,
the performance measure depends on the data set. As long as D # M, it is a random
variable that potentially changes if a different data set is drawn from M. Thus, methods
from the field of statistical inferences need to be applied to answer questions like, “does
a classifier perform better than chance” or “does a classifier perform better than another
one”.

The general procedure used in statistical inference is to formulate a hypothesis. Hy-
potheses are expressed in so called test statistics. Test statistics are certain characteristics
of the data. E.g., a test statistic is the estimated [BAC] of a classifier.

To substantiate that the hypothesis is true, the contrary of the hypothesis, called null
hypothesis, is assumed, and the probability under the null hypothesis of obtaining test
statistics that are at least as extreme as those observed is calculated. This probability is
often called p-value. If the p-value falls below a certain threshold, which is often called
«, the null hypothesis is rejected, and the original hypothesis is believed to be true.

When the hypothesis is a difference hypothesis, e.g., classifier A has a higher accuracy
than classifier B, the difference is called statistically significant at the 5% level, which is
often simply referred to as significant if the corresponding p-value falls below 5%.

2.1.4.1. Comparing Against Random Guessing

When comparing a classifier U against random guessing using the [BAC] as test statis-
tic, the null hypothesis is bac(¥,p) = 0.5. Under the null hypothesis and independent
samples, the estimated accuracy acceg for each class is distributed as

1
—B(Nyl ’ 0-5)
Y

where Ny, is the number of samples in the data set D with label y;, and B(n,p) is the
binomial distribution with n trials and success probability p per trial. Note that p is
different from the probability mass function. The estimated [BAClis distributed as

Lo
ZN— (N,,0.5)

h |

13
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The Binomial distribution converges to the normal distribution for large n, approximately
in the range of n > 30. The data sets that are used for estimating the[BAC|usually contain
more than 30 samples per class. Therefore, the sum converges to a normal distribution
with mean 0.5 and variance

1 1 1 1
var(+ ) | N B0 05) = 75 Zvar B(Ny,05) = =5 3 < var(B(Ny,, 0.5))

1
- LQZNM yl:ﬁzm

Let b be the [BAC] achieved on D. The probability that the estimated [BAC| b or a higher
BAC is achieved by a classifier that independently guesses is therefore:

1 1
P(baces (¥,D) > blbac(V¥,p) =0.5) = /N(w;0.5, 73 Z Wyl)dx (2.1.3)

where N (x;p,0?) is the likelihood of z under the univariate normal distribution with
mean p and variance o2. If this probability is smaller than 5%, we say that ¥ performs
significantly better than random guessing.

Comparing two Classifiers on a Single Data Set

For comparing two classifiers, ¥ and Vo, (@) suggests a different procedure.
He proposes to use the following test statistics. The number of samples in the data set
where ¥, predicts the correct class and Wy predicts the wrong class.

s={(z,y) € D:¥1(z) =y A Vy(z) # y}|

Analogous to that, the number of samples in the data set where Wy predicts the correct
class and ¥y predicts the wrong class.

= {(z,y) € D: Wy(x) =y A Wi(x) # y}|
The null hypothesis says that no classifier performs better and guesses are independent.
Thus, E(s) = 0.5(s + f) = E(f), where E(s) denotes the expected value of the random
variable s. Let semp and femp be the values observed for a certain data set. Furthermore
let semp be greater than femp. Then, under the null hypothesis, the probability that a
value for s that is at least as high as semp is observed is

Semp~+femp
P(s > semp|¥1 =T3) = > B(k; Semp + fomp,0.5)
k=Semp
where B(k;n,p) denotes the probability of k successes under the binomial distribution
with n trials and success probability p. Thus, if this value falls below 5%, it is believed
that Wy performs better than Ws. If the original hypothesis was “WU1 > WUy or Uy < Wy
the p-value has to be multiplied by two to correct for the two comparisons.
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2.1.4.2. Comparing Multiple Classifiers on Multiple Data Sets

For comparing multiple classifiers Wy,..., Vg on multiple data sets D1,..., Dy,
) proposes to use the Friedman test.

The Friedman test computes for every classifier ¥, and data set D; the rank, based on
an arbitrary performance measure, compared to the other classifiers. It is not important
if the best or the worst performing learning algorithms gets assigned rank 1 or rank K.
I will assume that the best classifier gets assigned rank K in the remainder. Let 7"2; be
the rank of the classifier ¥ on the data set D;. The Friedman test employs the mean

rank over all data sets .

1 4

Ry = — Ty

per classifier as test statistics. The test statistics and distribution for the null hypothesis
that all averaged ranks Ry are equal can be found in (M)

After the hypothesis that there are no differences between the classifiers was falsified, a
post-hoc procedure can be applied to test which pairs of classifiers differ. Under the null
hypothesis, no difference between the two learning algorithms ¥, and W,,, the difference
of the two ranks is mapped to a z-value by the following formula

R, R,

K(K+1)
6n

z

The z-value can be transformed to a p-value as follows
z
p= /N(x;O,l)dx
—z

When comparing a set of classifiers over a set of data sets, usually two typical question
are of interest. Which classifier out of a set of classifiers T' := {WUq,..., ¥ g} performs
better than a base-line classifier ¥, and which classifier out of a set of classifiers performs
best.

For comparing a set of classifiers against a base-line classifier a p-value for each classifier
from the set can be obtained by comparing the classifier against the base-line method,
using the aforementioned method. But the threshold « has to be decreased.

Let H be the null hypothesis that there are no differences between any classifier from
the set T" and the base-line classifier, and let Hy be the null hypothesis that the classifier
W, is identical to the base-line classifier. Note that the null hypothesis Hy,..., Hg are
independent. Thus, under the null hypothesis H, the expected number of rejected null
hypothesis Hy is Ka. To correct for this inflated « error, the « threshold for each
hypothesis H; € {Hy,...,H} is divided by K. This procedure is called Bonferroni
correction.

15
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Static Shaffer Procedure

If comparing all pairs of classifiers, it is also possible to use the Bonferroni correction.
However, the Bonferroni correction assumes that each comparison made is completely
independent of the others. Because this assumption is not met, the Bonferroni correction
is overly conservative.

Garcia_and Herreral (Im)g) compared correction schemes that exploit dependencies be-
tween the hypothesis with regard to their suitability for the comparison of multiple
classifiers. They concluded that the Bergmann-Hommel procedure performs best but is
also computational complex and hard to understand. Shaffer’s Static Procedure (SSPI)
has almost equivalent power but is much simpler.

When comparing all pairs out of K classifiers, there exists a total of w =G
difference hypotheses. Each differences hypothesis corresponds to a hypothesis ¥,,, # ¥,,.
For each hypothesis the p-value for the corresponding null hypothesis can be obtained by
employing the post-hoc Friedman test, introduced in the previous section. The first step
of the is to sort the null hypothesis by their p-values. Let Hq,..., Hg be the null
hypotheses sorted by their corresponding p-value. In general, the « value corresponding
to the ith hypothesis is corrected by the number of hypotheses that can be true given
that (¢ — 1) hypotheses are false.

Hence, H; is rejected if p < «/G. Note that each null hypothesis corresponds to
the proposition that one pair of classifiers, ¥,, and V¥,, performs the same ¥, = ¥,,.
If Hy is rejected, Im,0 € {1,...,K} : ¥, # U,,. Therefore, for all other classifier
Vi € {1,...,K}/{m,0}¥ # ¥, V ¥, # ¥,. Hence, if H; is wrong, at least K — 1
additional null hypothesis have to be wrong. Thus, the correction term ¢ for the second
hypothesis is t9 = G — (K — 1). The algorithm to calculate the correction term for every
stage and a more extensive description of can be found in [Shaffer ).

A final remark

In this section, for simplicity, I always assumed to compare classifiers. In this thesis I will
rather compare learning algorithms. T will do so by estimating the [BAC] of the learning
algorithms on each data set, using 10-fold stratified cross-validation. The introduces test
can then be applied on these estimates in the same way.

2.2. Classification of Electroencephalographic Signals

The classification of Electroencephalography (EEG]) signals is an application area, out of
many, of Pattern Recognition (PRI). In the remainder of this section T will first introduce
the basics of [EEGL After that, I will give an overview about why the classification of
[EEG]is useful and what its applications are. The last subsections will focus on the feature
extraction and classification methods that are usually employed to build [EEGL Pattern

Recognition Systems (PRSE).
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2.2.1. Electroencephalography

[EEGI is a neuroimaging method based on electrical fields generated by neural activity.
The field potentials are measured by electrodes at different locations on the scalp, at a
certain sampling rate. Each electrode provides a time series of electrical potentials.

Classification of [EEGI signals aims at separating different brain states. While resting
state classification is also of interest, most [EEGHPRSE try to separate signals that are
induced by certain events. This signals are called Event Related Potentials (ERP)). For
example, one of the data sets used in this thesis comes from an experiment where the
participants heard a high- or a low-pitched tone. The potentials that were generated by
the processing of the tone are the[ERPlL The remaining brain activity is considered noise.
The main task of a[EEGHPRS|is to separate the [ERPI from the noise.

To generate the data sets that are needed for supervised learning, typically for every to-
be-separated class multiple repetitions are recorded. For example, multiple repetitions of
the presentation of a high- and a low-pitched tone. In the [EEGI context these repetitions
are called trials. The samples for the data sets are usually generated by cutting a fixed
sized time interval out of each trial. Thus, each element of the raw data set typically is
of the form

zeRET

where C' is the number of channels (electrodes) and T the number of time points that
are extracted. Because there usually is a one to one relationship between experimental
trials and samples in the data set, I will also call samples trials in the remainder of this
thesis.

The [ERP] are typically weaker than the ongoing brain activity. Even worse, the [EEG]
signal is additionally disturbed by external noise sources (Lotte et alJ, |201)_ﬂ) The most
prominent noise sources are electrical fields induced by eye movements, muscle activity,
and electrical devices / power jams. Typically, the magnitude of those noise signals is
of orders higher than the magnitude of the brain signal. Additionally, because recording
[EEGI signals is comparatively time consuming and the to-be-performed tasks are often
monotonous and, hence, exhausting, the data sets typically contain less than thousand
trials; often substantially less. One trial is usually around one seconds long and sampled
at 1000Hz. Thus, for one trial the dimensionality of the raw amplitude data is C' -
T = 60 - 1000 = 60,000. Most reduce the number of data dimensions by
extracting features from the raw data. But still, it is often the case that the number
of features is higher than the number of trials. This problem is often referred to as
curse-of-dimensionality.

To summarize this: The three major challenges when building an are small
training data sets, high dimensionality, and a low signal to noise ratio. As we will see
in Section 2.2.3] researchers came up with various methods to deal with these problems.
I will first introduce the major applications of the classification of [EEG signals in the
following section.
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Figure 2.2.1.: (a) Picture of a participant during an [EEG] Experiment. (b) [EEGI signal
from 8 channels during 1 second. (c¢) Example of a 64 channel electrode

cap montage (Brain Products, [2012).
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2.2.2. Applications

There are two types of major applications of [EEGI classification: Enabling direct brain
computer communication and the utilization of [EEGI classification as an analysis method
in neuroscience.

Brain Computer Interfaces

A Brain Computer Interface (BCI) is a that enables the communication between
a person and a computer via brain signals. Most current systems use [EEG] as
sensor because, compared to other neuroimaging methods, such as functional magnetic
resonance imaging (fMRI) and Magnetoencephalography (MEG), [EEG] is cheap, has a
good time resolution and is portable.

The most prominent application of is the enabling of communication for par-
alyzed patients (Sellers et al.| lZQOj, m.‘ lZQOj |Rﬁ1r1§£helleuLalJ lZDIHl
Blankertz et all, 2007). Another popular application of [BCIk is the control of artificial
limbs (IRﬁlrLs_Qh_QlLQt'_eLaJ.J, lZQO_ﬂ) Both applications are realized by distinguishing brain
patterns that can willfully be generated by the patients.

Most current are only able to distinguish two classes and work in a synchronous
mode. Synchronous mode hereby refers to the fact that the classification has to be trig-
gered by external cues. A patient can not send commands to the computer spontaneously.
These are the two main reasons why the information transfer rate of current systems
is less than 0.5bit/s. However, for people who are not able to communicate at all even
this small information transfer rate means a tremendous improvement of their situation.

One major outstanding issue of research is that, while it was proven that most
healthy subjects and also patients with only little residual muscular control are able
to control a [BCIl no research lab has yet reported the successful control of [BCI| by
a completely locked-in patient (IKii.blﬁr_e_t_alJ, lZDIHl) In the completely locked-in state
no muscular control and, thus, no communication is possible. The tragedy of that cir-
cumstance is that the completely locked-in patients would benefit most of a It is
simply the only chance for them to communicate. All other patients are also able to
communicate with the help of their muscles.

This tragic situation might be one cause why recently the use of for healthy
subjects has gained attention. It was, e.g., used as controlling device for computer games

(Blankertz et all, 2010h), an autonomous car (Autonomos Labs, 2011), and a pinball

machme ).

can be subdivided 1nto active and passive[BCIk (Zander and Kothe,[2011). Active
[BIZHS are characterized by the fact that the brain activity that is classified is willfully
generated by the user. The application examples above all belong to the group of active
[BCIk. In contrast to that, passive [BCIs aim at classifying different brain patterns that
are not willfully generated by the user. For example, a passive was used as a tool
in a neuroscience study (Jensen et alJ, M) to introduce brain-state dependent stimuli.
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Single-trial Analysis

The classification of [EEG] signals can be employed as so called single-trial analysis
method. A classifier is trained on a particular [EEG] data set, and the model that is
hypothesized by the classifier is interpreted. This differs from the conventional analysis
of [EEGIsignals, which reduces the noise by averaging over trials and subjects. In contrast
to the conventional analysis technique, single-trial analysis is able to detect differences
that are based on interactions between multiple variables (features) (van_Gerven et all,
). Additionally, it accounts for the per-subject and the per-trial variance. In spite
of these advantages, there are relatively few publications that apply single-trial analy-
sis to [EEQ] data (Parra et all, 2002, Blankertz et all, 2011, van Gerven et. all, 2009). In
contrast to that, the employment of [PRl methods for data analysis is widely spread in
the fMRI community.

2.2.3. Feature Extraction Methods
Notation

In the remainder of this chapter I will use the following notation. A data set consists
of N trials. A trial from the raw data set consists of an element E; € RE*T from the
raw input space and the corresponding label y; € Y. Each trial from the feature data set
consists of a feature vector x; € X and the corresponding label y;. When the index is
not needed, it is omitted. X is called the feature space. The number of different classes
is denoted by L. r denotes the dimensionality of the feature space X.

Raw Electroencephalography Signals

The most straightforward feature extraction method for the classification of EEGI data is
to employ the raw field potentials. The feature vector x consists of the concatenation of
the time series of all channels z € RS, Indeed, as Lotte et all (IZOll’ﬂ) describe, several
successful used the raw field potentials as input for their classification component.

Spatio-temporal features

To reduce the dimensionality of the feature vector, in comparison to the feature extraction
method that simply employs the raw amplitude data, [Blankertz et all (IZOH) suggest to
average the time series from each channel in certain intervals. Let I = {[1,...,Ix} be
sets of time points of interest. I € [ is typically an interval. For every channel ¢ the
method generates K features

zc(I) = [mean({E(c,t) her, ), - - - smean({ E(c, t) hery )]

where E(c,t) refers to the data point in the cth channel at time point ¢ in trial E. The
final feature vector x is the concatenation of the feature vectors x. from all channels. In
general, this methods leads to so called Spatio Temporal Features (STE).
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This approach is, of course, not limited to the usage of the mean as aggregation method.
Indeed, all feature extraction methods presented in the following can also by applied to
a set of intervals.

Bandpass Filter

For [EEGI signals several frequency bands were established in which characteristic dom-
inant brain rhythms can be found. The bands are referred to as « (8-12 Hz), 8 (12-30
Hz), 7(30-80 Hz), 6(0-4 Hz) and 6(4-8 Hz) (Herrmann_ et all, 2004).

A bandpass filter can be used to extract the signal of these bands. It transforms a
signal such that it only contains frequency components of the specified band. All other
oscillatory components are removed. For an extensive introduction to bandpass filters
refer to Em M)

Bandpass filters are often used as prepossessing step for successive feature extraction
methods. But they are also used as the only feature extraction method. There exist
several that employ a bandpass filter as feature extraction method (Mj,

2007).

Log Band-power

Another feature extraction method that is, for example, employed by Pfurtscheller and Neupet

(M) is the logarithm of the band power.
Band-power hereby refers to the power of the signal in a given frequency band. The
power of a time varying signal f(t) is defined as

F(t)*dt

lim
R—o00

|
vl ol

Hence, it is the average squared mean deviation from zero.
One method to estimate the band power is to first bandpass-filter the data and then

to calculate the power using the variance (Pfurtscheller and Neypeﬂ, 2001). This results

in the following feature per channel

. = log(var(E(c)))

where E(c) refers to all time points from channel c.

Common Spatial Patterns

The original Common Spatial Patterns (CSP]) algorithm was introduced for binary clas-
sification tasks. The goal of is to find a transformation matrix that transforms each
trial such that the variances of the resulting time series are optimal for discriminating
the two classes dB@msgr_em_aﬂ, |2011d) Recall that the variance of a bandpass-filtered
signal is a good estimator of its power. Hence, can be seen as a more advanced
method then the log band-power to extract power differences.
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More formally, seeks W € RE*C such that Z = W E has high variance in the first
rows for trials from class y; and low variance for trials from class y. Analogous to that,
the last rows of Z should contain high variance for trials from class yo and low variance
for trials from class y1. This goal is archived by the simultaneous diagonalization of two
covariance matrices (Fukunagal, 1990).

The[CSPlalgorithm assumes that each channel in each trial has zero mean, mean(E(c)) =
0, Ve € {1,..,C}. The normalized spatial covariance matrix of each trial is then

EET

Y= ——— 2.2.1
trace(EET) ( )

For both classes the mean of their per trial covariance matrices is calculated, resulting
in covariance matrices X, and X,,.
The composite covariance matrix is obtained by

Yo = Eyl + Ey2

Because ¥, is non-singular and symmetric, >, can be decomposed, by an eigenvalue
decomposition, into

Yo = QAQT (2.2.2)

where A is a diagonal matrix and contains the eigenvalues and ) contains the eigenvectors.
Based on that equation, the whitening transformation matrix for Y., can be calculated

P=vA1Q"
The whitening transformation matrix fulfills the following property

Py Pl =1
Fukunagal (1990) showed that if Yy, and X, are transformed by P

S, = pP%, P’
Sy2 = PZWPT

Sy, and Sy, share the same eigenvectors, and the sum of their corresponding eigenvalues
is one. More formally, if S,, is decomposed to

Sy, = B\, BT

Sy, is diagonalized by
Sy, =B )‘y2BT

and Ay, + Ay, = I. What follows is that the eigenvector corresponding to the biggest
eigenvalue in )y, is the eigenvector that explains the most variance of the [EEG trials
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from class y; and the least variance of the trials from class yo. If B is sorted by its
eigenvalues )y, in descending order, a transformed trial of class y;

Z=(BTP)TE

has high variance for the first rows and low variance for the last rows. The opposite
applies for trials from class yo. Hence, the transformation fulfills the desired properties.

The last step of the[CSPllearning algorithm is to select rows from both ends of (BT P)T.
Usually an equal number of rows is selected from both sides of the matrix. So the final
transformation matrix is

. 0 ... ... .. ... ... .0
0 :
1k
0
W= (BTP)T
0
1y
: . 0
(U | B U7

where the number of ones on each sides of the diagonal is even and must be selected
as the hyper-parameter k. Note that (BT P)T are the model parameters #, which are
learned from the data.

The logarithm of the variance of the resulting k time series is usually employed as fea-
ture. [CSPis currently one of the most used feature extraction methods for the extraction
of power differences.

Permutation Entropy

The Permutation Entropy (PE) was introduced by Bandt and Pomped (2002) as a com-

plexity measure for time series. The overall idea is to reduce a time series to an order
pattern between m neighbors. m is called embedding dimension in the remainder.

Definition 14. Let {f(¢)}+=1.7 be a time series. The permutation distribution of em-
bedding dimension m is then defined as

CH{t:0<t<T —m,(x(t+1),...,2(t +m)) has type m}|
B T'-m+1

Pm(T) (2.2.3)

where 7 represents one permutation of the m! possible permutations.

The value p,,(m) represents the probability of the occurrence of the ordering that is
represented by the permutation 7. I clarify the definition of the permutation distribution
with a simple example.
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Example 15. Assume that the embedding dimension m is 2, and the time series for
that we want to calculate the permutation distribution is

(1,2,20,30,2,1)

There are two possible orderings of two unequal elements x(¢) and x(¢+1). Either x(t) is
greater than x(t41) or x(t+1) is greater than x(¢) . The first ordering can be represented
by the permutation 10 and the second ordering by 01. In the example time series there
are three occurrences of z(t) < z(t+1) and two occurrences of z(t) > x(t+1). Therefore,
the permutation distribution with embedding size 2 for that time series is

p2(10) = 3/5
p2(01) = 2/5

The permutation distribution itself could be used as feature. However, |B_a.nd1;_and_&zm1ﬁ
(@) suggest to aggregate it to the Permutation Entropy (PE).

Definition 16. The [PE] of embedding dimension m > 2 is defined as the Shannon
entropy of the permutation distribution of embedding dimension m,

H(m) == pm(r)logp(r)

Example 17. The permutation entropy of the permutation distribution from Example

e 31 5 21 2 =0.971
~(Clog(Z) + = log(2)) =0.

When using the [PEl as feature extraction method for [EEG] classification, the [PEl is
calculated separately for each channel. This results in a feature vector of the form z € R¢
for each trial. There is one hyper-parameter that has to be chosen by the designer, the
embedding dimension m. Recently, Brandmaier (IZOQ) described a heuristic for choosing
the embedding dimension automatically.

The Permutation Entropy was introduced as a feature extraction method for
(Nicolaou and Georgiou, @Pﬁ) Furthermore, Brandmaiex (IZOQ) demonstrated that di-
vergence measures based on the permutation distribution perform well in clustering EEG
trials.

2.2.4. Classification Methods
Ledoit’s Regularized Linear Discriminant Analysis

Ledoit’s Regularized Linear Discriminant Analysis (LRLDA]) is based on Linear Discrim-
inant Analysis (LDA]). The idea behind [LDAlis to adjust a normal distribution for each
class. A new trial is assigned to the class for that the a-posteriori likelihood is the highest
(von_Oertzen, 2011).

Assume that for every class the class conditional probability distribution Pj(X) =
P(X|Y = y;) is known and normal, i.e., P, ~ N (u;,Y;). Additionally, the a-priori like-
lihoods for every class P(Y = y;) are the same P(Y = y) = 1/L. Furthermore, the
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variances and covariances are the same for each class ¥; = ¥, VI € {1,...,L}. Under
these assumptions, the classifier that classifies a new sample to the class for that the
a-posteriori likelihood is the highest is called [LDAL

LDA(z) =y,

where .
[ = argmax(N(z; yu, X)) (2.2.4)

where N (z; u, X)) is the likelihood of 2 under the multivariate normal distribution with
mean u and variance o. Equation 2Z.2.4] can be simplified to

arg rpéfi(/\/(fﬂ; p, X)) = arg r{léfc(log(/\/(fv; 11, %)))

= argr{éfc(log((%)*%|z|*%e*%(rfm)T2—l(xwz)))

L 1 _
= argmax(—g(z = )" 27z - )

Furthermore,

1 _ _ 1
—5lz— ) S N = ) = 2Ty — —Ml (S - §9ETE e

For simplicity I will continue the treatment for the binary classification task, with y; = 1

and yo = 2.

LDA(z) 1

1 1
<:>xT271,u1 —,ulz w1 — 2 eIx e > xTzfl,uQ——,uQE o =5 Ty gy

sy — _Ml Ty=ty > 2Ty — §M2TZ* 12
_ 1 _
& (7 — p2)) e - (k1 + p2)B M —p2)" >0 (2.2.5)
Equation is of the form
wlz+e > 0 (2.2.6)

with w = 71 (p1 — po) and ¢ = —3 (1 +p2) X7 (1 — p12)T. That means that the decision
surface learned by [LDAl between two classes is a hyperplane. If a classifier fulfills this
property, it is called linear classifier.

In practice the means p1, . .., u7, and the covariance matrix X! are usually not known.
These values have to be estimated from the data set by the learning algorithm It ps. The
estimation of the means is straightforward

Z x

(x,y JED;
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Figure 2.2.2.: Tllustration of the separating model that is learned by [LDAlL For each
class a multivariate normal distributions is estimated. A novel sample is
assigned to the class with the highest a-posteriori likelihood. The figure
displays the a-posteriori likelihood for a sample to be in class y; or ys
for different values. The different colors illustrate the regions in which a
point is classified as class y; (red) or class yo (blue). The decision surface
between the two classes is a hyperplane.
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where D; := {(z,y) € D : y = y; }.[LDAlis known to be relatively robust to the violation of
the assumption that the per-class covariances matrices are the same. Thus, the standard
[LDA] learning algorithm estimates the common covariance matrix by

A 1 - A
Y= 5(21 + Xo) (2.2.7)
where 3 is the empirical covariance matrix of class y;

A 1 . .
Y= D1l Z (@ — u)(z — fu)" (2.2.8)
: (x,y)EDl

When the covariance matrix is estimated separately for each class, the decision sur-
face becomes quadratic. Consequently, the corresponding classification method is called
Quadratic Discriminant Analysis.

Under the usual conditions in statistical analysis, the number of samples per class | D]
is large compared to the dimensionality r of the feature space, the empirical covariance
matrix is an unbiased estimate of the true covariance matrix. But if |D;| is not signifi-
cantly larger than the dimensionality of the feature space r, it is known that the empirical
covariance is systematically biased. Large Eigenvalues of 3 are estimated too large and
small eigenvalues are estimated too small (Friedman, |L9_&d) An approach to correct for
this systematic bias is to replace 3 by

SE=(1—7)% +7@I (2.2.9)
where tr(A) refers to the trace of matrix A, I is the identity matrix and v € [0,1] is
a hyper-parameter. Equation 2.2.9] regularizes 3, towards the multiple of the identity
matrix. Therefore, larger eigenvalues are decreased and smaller eigenvalues are increased
(IEti_edmaﬂ, |_L9ﬁg), correcting for the systematic bias.

When estimating the covariance matrix according to Equation 2.2.9] the resulting clas-
sification method is called Regularized Linear Discriminant Analysis (RLDA]). An open
question was how to choose the hyper-parameter ~. [Ledoit and Wolf (IZOM) presented
an analytic solution for choosing the optimal . Their method estimates v such that
15" — %||2 is minimized, where ||A||, is defined as ||A||, = /tr(AAT)/r . ||Al|, is
equivalent to the Frobenius norm divided by r. Remember that r denotes the dimen-
sionality of the feature space X. According to their results, the optimal ~y is

b2
At = o (2.2.10)
where N
A tr(X
& = |15, - T g
and
1 ~
9 . N A N\T 2 2
b° = min W Z (@ — ) (z — )" — %[5, d
($7y)eDl
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d? describes the deviation of the sample covariance from the scaled identity matrix. b?
describes the deviation of the per-trial covariance matrices (z — ;)7 (z — ji;) from their
mean ;. The minimum operator ensures that the shrinking parameter +* stays below
1.

In the literature the resulting classification method is also called RLDA] when estimat-
ing v according to 2210l To distinguish this method from the classical RLDAl method,
for which + has to be chosen by the designer, I will call this method Ledoit’s Regularized
Linear Discriminant Analysis (LRLDA]).

[CRLDAlis the classification method that leading[BCT groups use and advocate (Blankertz ef. all,

2011).

Support Vector Machines

Support Vector Machines (SYME) were invented by (Cortes and Vapnik (1995). My de-

scription of [S is inspired by Ng (2011).
Without loss of generality, Y = {—1,1}. In analogy to Equation [Z2.6] I define a linear
classifier

1 if, wlz+b>0

) (2.2.11)
—1 otherwise

Ui (25w, b) = {

The basic form of SVMk assumes that the training data set D is linearly separable, i.e.,
there exists a linear classifier that perfectly separates the two classes

wtz; +b >0 ify; =1
wt$i+b<0 lfyl —1

Jw, b : V(ﬂ:z,yl) eD {
Notice that this condition is equivalent to

Jw, b : V(i ;) € Dy;(w'a; +b) >0 (2.2.12)
In general, for a linearly separable data set there are many choices for w and b that
satisfy Equation 22111 The idea behind is to choose w and b such that the
geometric margin is maximized. The geometric margin is the smallest distance between
the hyperplane described by w and b and any point in the training set D. The motivation
behind that is that maximizing the margin should be a good strategy to maximize the
accuracy as it decreases the risk of a new point to be at the wrong side of the decision
plane.

What follows is a formalization of this idea. The geometric margin is defined as

Yg(D;w,b) =

Hence, the optimization problem of the [SVM]lis: Find w,b,%; such that the geometric
margin is maximized

N/
arg max (2.2.13)
g ||w]]

subject to constraints y;(w? z; 4+ b) > ¥r, Vie{l,...,N}
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Figure 2.2.3.: (a) Multiple decision planes that perfectly separate the data set. (b) The
decision plane that maximizes the geometric margin v,. The marked omts
are the support vectors. Adapted with permission from m (EIEE

Unfortunately, this optimization problem is hard to solve as ﬁ is non-convex. Thus,
the problem has to be transformed into an easier, equivalent optimization problem.

The value 4 is often called functional margin. For given w and b it can be expressed
as a function, which additionally depends on the training data set D.

T

N
v¢(D;w,b) = miny;(w” z; + b)

i=1
where v, = v¢/||w||. Notice that
S(whz +b) = swlz + b, V6 € RT
Therefore,
Ve € RT /o038 € RT /oo & y¢(D; 0w, b) > ¢

is true for every w, b for that Equation holds. Furthermore, scaling w, b like that
does not change the classification function Z22.17] as it only depends on the sign. Thus,
for every linear separating classifier an arbitrary functional margin can be achieved by
simply scaling w and b without changing the geometric margin or the actual classification
function. Therefore, by setting 4, to 1 the space in which the classifiers are searched is
not decreased. Moreover,

1
argmln = arg max ||w|| = arg max — ||w]|?
w w2

Thus, the optimization problem 2213 can be rephrased as
1
arg max — ||w]|? (2.2.14)
wb 2
subject to constraints y;(w'x; +b) > 1, Vi€ {1,...,N} (2.2.15)

This optimization problem can be solved using quadratic programming. Let wy, b, the
optimal values for w and b. Each sample (z;,y;) for that

yz(w*TJUZ +b,) =
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is then called support vector. The values of wy, b, only depend on these samples. They
support the decision plane.
The assumption that the training data set is linearly separable makes this classification
method applicable to only a small subset of all existing data sets. r n ni
) enhanced their method to make it applicable to arbitrary data sets. For each
violation of the original constraints a cost term is added to the objective function

2214

argmm ||w||2 + C’Z@

=1
subject to constraints y;(wlz; +b) >1—&,Vie {1,...,N}
& >0,V {l,...,N}

where C' > 0 is a hyper-parameter. Each trial ; that lies inside the margin gets assigned
cost &. Notice that if & > 1, x; is on the wrong side of the decision plane.

In this section I introduced linear [S , which induce linear classifiers. Linear [S
can be extended to nonlinear classifiers using the so called kernel trick d&n;t_%_a.ndlamlkl,
1999). 5 have been successfully employed as classification method in various

(Lotte et all, [2007).

k-Nearest Neighbors

The k-Nearest Neighbor (k=NN)) classification method is one of the most simple classifi-
cation methods. It assigns a new trial x to the class to that the simple majority of the
k-nearest training trials belong to.

Let d(z,y) be a distance function defined over the feature space X. For a novel trial
x let Qr(x) C D be the k-nearest neighbors of = in the training data set D, that is

Qr(z) =S CD:|S| =kAY(x,y:) € SB(zj,y;) € D/S : d(zj,7) < d(w;,x)
The k-nearest neighbor classifier assigns then = to the class that gets the most votes
kNN(z; D, k) = arg mAx Z (Y1)

=1
(%4,y:)€QK(T)

where

1 ifa=b
Sab)=4 "7 (2.2.16)
0 otherwise

k-NN| has been used as a classification method in multiple [EEGI classification setups

(Lotte et all, 2007).

2.3. Combination of Classifiers

The term combination of classifiers refers to the process of combining multiple classifiers
for the same problem to a new classifier, an ensemble classifier.
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Definition 18. Let Uy,..., ¥  be classifiers for one particular pattern recognition task.
Let ro - (¥1(x),..., ¥ s(x),x) = Wens be a rule that combines the outputs of the classifiers
to a new classifier Wo,s. The classifiers Wq,..., ¥ are then called base-level classifiers,
the rule rg, combination rule, and the classifier Wens ensemble classifier. Analogous
to the feature extraction function, the combination rule has parameters 6 that have
to be learned by the corresponding learning algorithm and parameters 7 that have to
be specified by the designer. The combination of learning algorithm and combination
rule is called combiner. A Pattern Recognition System (PRS)) that employes an ensemble
classifier is called Multiple Classifier System (MCS)). The learning algorithms that induce
the base-level classifiers are called base-level learners.

I will start the following treatment of the combination of classifiers with the introduc-
tion of a taxonomy. It will include a categorization of the different approaches to build
different base-level classifiers and a classification of different types of combiners. After
that, I will present a selection of combiners for the combination of labels. I will conclude
this section with a treatment why and under what conditions an ensemble classifier is
more accurate than the most accurate base-level classifier.

2.3.1. Taxonomy

When creating an ensemble classifier, one has to fulfill two tasks: The creation of accu-
rate and diverse base-level classifiers and the appropriate combination of the base-level
classifier.

Kuncheval (IZD_(MI, chapter 3) identifies three approaches that are used to generate diverse
base-level classifiers:

1. The employment of different classification methods
2. The employment of different feature extraction methods

3. The employment of different subsets of the data set as input for the learning algo-
rithm

These three methods can be arbitrarily combined.
, chapter 3) classifies the different combiners based on two properties:
The type of the input on that they operate and if they are trainable or nontrainable.
She distinguishes between three types of base-level classifier outputs and, hence, com-
biner inputs.

e Type 1 (The Abstract level): Each base-level classifier returns a label for each
sample. There is no information about the certainty of the classification.

e Type 2 (The Rank level): The output of each base-level classifier is an ordered
subset of Y. It is ordered by a-posteriori likelihood.

e Type 3 (The Measurement level). Every base-level classifier produces a L-dimensional
vector [s1,...,sr], where s; represents the likelihood that the sample = belongs to
class y;.
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Combination level:
Use different combiners

Combiner

Classifier level:
Use different classifica-
tion methods

Feature level:
Use different feature ex-
traction methods

Data level:
Use different data sub-
sets

Figure 2.3.1.: Approaches to build ensemble classifiers. Adapted from [Kuncheva (2004,
p 105).
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Nontrainable combiners combine the output of the base-level classifiers using fixed rules.

Definition 19. A nontrainable combiner consist of a combination rule comb that com-
bines the outputs of the base-level classifiers. Wens = 19 (¥1(x),..., ¥ (x)). The com-
bination rule is static and independent of the data set. Hence, 6 = ().

Trainable combiners, in contrast, use learning algorithms to induce the combination
rule from the data. The trainable combiners are further distinguished in implicit and
explicit trainable combiners. The learning algorithm of implicit trainable combiners
induces one combination rule for all samples, i. e., the combination rule is independent
of the to-be-classified sample x. Explicit trainable combiners, in contrast, induce a
combination rule that can potentially be different for every sample x.

Definition 20. A trainable combiner consists of a learning algorithm that induces a
combination rule based on a data set Ir?’T(D) = rg . If the combination rule has the
following signature ro -(V1(x),..., ¥ (x)), hence, it does not dependent on x itself, the
combiner is called implicit trainable. If the combination rule directly depends on z,
ro(Vi(x),..., ¥ (x),x), it is called explicit trainable.

2.3.2. Abstract Level Combiners

In this section I will review nontrainable and implicit trainable combiners that combine
the outputs at the abstract level. This is called combination of labels in the remainder
of this thesis.

The situation is as follows: A variety of base-level learners Iy, (Dirain)s - - - s 1o, (Dtrain)
have been trained on the data set Di;ain and produced base-level classifiers {Wq,..., ¥} =:
B. The task of the combiners is to build an ensemble classifier based on the base-level
classifiers. For that they may employ a separate data set Deomp, Sampled independently
from the same distribution as Dirain-

2.3.2.1. Majority Voting

Majority Voting (MY)) is perhaps the most simple combiner. It is a nontrainable com-
biner. Therefore, it does not consume Doy to generate the combination rule. The
combination rule is fixed and defined as follows.

Definition 21. The combination rule of majority voting is defined as

J
mv(Vq(x),..., ¥ (z)) = argmax S(Wj(x), )

ey
Ui =1

where ¢ is defined as in Equation 2.2.176]

assigns x to the class y; for that most of the base-level classifiers ¥; voted. Ties
are resolved arbitrarily. Despite of its simplicity or maybe because of its simplicity,
is one of the most used combiners.

When certain assumptions are made about the base-level classifiers, the accuracy of
the ensemble classifier created by the rule can be calculated.
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p J=7 J=15 J=51 J=101 J=301 J=500
0.45 0.3917 0.3465 0.2359  0.1562 0.0409 0.0124
0.55 0.6083 0.6535 0.7641  0.8438 0.9591 0.9876

Table 2.2.: Accuracy of the ensemble classifier built by [MV] for different numbers of base-
level classifiers, under the assumption of independence. p denotes the accu-
racy of the base-level classifiers.

Theorem 22. Let the number of base-level classifiers J be odd and the accuracy of
every base-level classifier be p. Furthermore, let the outputs of the base-level classifiers
be independent. That means that for each subset {U1,..., Uk} C B the joint probability
Py =uy1,...,. Vg = yg) equals Hszl P(Vy = yi). Then the accuracy of the ensemble
classifier built by employing (MW as combiner is

P = i}(j)wu—m*O

—
Proof. The ensemble classifier built by [MV] classifies a sample x correctly if at least %
base-level classifiers ¥, classify x correctly. Hence, if we assume that the accuracy of
each base-level classifier is p, the accuracy of the ensemble classifier built by [MV] is as
claimed. O

The following results require the same assumptions as Theorem Table shows
how the accuracy of the ensemble classifier built by changes when the number of
base-level classifier increases for p = 0.45 and p = 0.55. It can, furthermore, be shown
that

lim Pmv =
J—o0

1 if, p>05
0 if, p<0.5

Additionally, if p > 0.5 (p < 0.5), pmy is monotonically increasing (decreasing) as J ex-
pands. This proof can also be extended to the case where the accuracy of the base-level
classifiers are unequal. Indeed, the only necessary condition is that they are symmet-
rically distributed with a mean above 0.5 (see [Kuncheva, M, p 114 and references
therein) Hence, the intuition that an ensemble classifier boosts the accuracy if the base-
level classifiers are accurate and diverse is supported.

2.3.2.2. Weighted Majority Voting

Example 23. Assume that J =3, L = 2, p1 = 0.4, po = 0.4, p3 = 0.65, and indepen-
dence as in Theorem 22, where p; refers to the accuracy of base-level classifier ¥;. The
accuracy of the ensemble classifier generated by is then

Pmv = p1p2ps + (1 — p1)peps + pi(1 — p2)ps + pip2(1 — p3)
= 04-04-065+06-04-065+04-0.6-0.60+0.4-0.4-0.35
= 0472
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As you may confirm, this is smaller than the accuracy of the most accurate base-level
classifier ¥3.

In this section I will introduce a combiner that in the situation of independent base-level
classifiers maximizes the ensemble accuracy. This combiner is called Weighted Majority
Voting (WMV]). T will show that, in contrast to [MV] the ensemble classifier built by
leads to a more accurate classifier than the most accurate base-level classifier
when applied to the previous example

First, I will establish Weighted Voting (WY)) in general, then, I will show how the
optimal weights are obtained by [WMV]

Definition 24. A [WVlrule is of the following form

J
wv(¥i(x),...,Vj(x)) = argmax w;0(V,;(x),
(0s(o) . () = g Y0 (o))
where wi,...,wy € R are weights for the corresponding base-level classifiers and § is

defined as in Equation 2.2.16l

Example 25. Let the base-level classifiers be as in Example 23l Let the weights for the
[WV] rule be wy = —0.4055,wy = —0.4055 and w3 = 0.6190. Then the accuracy of the
ensemble classifier build by (WV] is

pwv = (I=p1)-(1—=p2)-(1—p3)+ (1 —p1)-(1—p2)-p3+p1(1—p2)ps + (1 — p1)paps
= 0.672

Proof. Notice that 6(W;(x),y;) is 1 for exactly one [ € {1,..., L} as every classifier pre-
dicts exactly one label because in the example L =2, 6(V;(z),y1) =0 & 6(V;(x),y2) =
1. Hence, if 6(¥;(z),y1) is known, 6(¥;(x),y2) is also known. Thus, if a base-level
classifiers predicts the correct (wrong) class, its weight influences only the sum of the
correct (wrong) class. Let y. be the correct class and y,, be the wrong class. An ensemble
classifier built by a [WV] rule makes the correct decision if

J J

D wid(W(x),ye) > Y wi(¥(2), yu)

j=1 j=1

This is exactly the case if the voting behavior is: 000 or 001 or 101 or 011. Where a
1(0) at the jth place means that the jth base-level classifier classifies a sample correctly
(incorrectly). O

Until now, we have seen that [WV] can drastically improve the ensemble accuracy
compared to [MV] The interesting question is how to choose the weights.

Theorem 26. Consider a set of J independent classifiers that are combined using the
weighted voting combination rule. Furthermore the a-priori probabilities for all classes
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are the same. The accuracy of the resulting ensemble gets mazimized by assigning each
classifier W; the weight

Dj
1-— pj

Proof. See (Kuncheva, 2004, pp. 124) O

When the [WV] rule is employed and the weights are set as in the above theorem, the

resulting combiner is called Weighted Majority Voting (WMY). [Shapley and Grofman

) even showed, for binary decisions, that if the a-priori probabilities for both classes

are the same, under the independence assumption, [WMYV] is the combiner, out of all

possible combiners, that maximizes the accuracy of the ensemble classifier. If the a-

priori likelihoods are not the same, they have to be taken into account for the decision
function. This leads to the general form of

w; = log

wmv (U (z),..., ¥ (x)) = argglg%([P(Y =)+ ZIOgjﬂ T fjpj 0(¥ji(z),y))] (2.3.1)

Note that p; for every classifier ¥; and P(Y = y;) have to be estimated using Dcom.

2.3.2.3. Adaptive Boosting

Adaptive Boosting (AB) is a boosting algorithm invented by [Freund and Schapire (1997).

It is an application of their algorithm for the on-line allocation problem. According to
Freund and Schapird (|L9_9_Z|, p 120), boosting refers to the “general problem of producing
a very accurate prediction rule by combining rough and moderately inaccurate rules
of thumb”. The original algorithm generates arbitrarily many base-level classifiers by
training a weak learner on different subsamples from the data set D.

However, [ABl can also be applied to the situation in which a predefined set of base-
level classifiers has to be combined, as described at the beginning of this section. The
[ABl algorithm for that situation, as described by m (@), is shown as Algorithm
2T and called fized Adaptive Boosting ([AB]) in the remainder.

[FABl is also a [WV] combiner. and only differ in the way they compute
the weights for the base-level classifiers. While for the weight of each base-level
classifier ¥; only depends on the performance of itself, also takes into account the
performance of other base-level classifier in the set. This is done by iteratively adding
base-level classifier to the ensemble and using an importance for each sample. After
adding a base-level classifier ¥ to the ensemble, the importance of each sample that
U classifies wrong is increased and the importance of samples that W classifies correct
is decreased. The next classifier that gets added to the set is the one with the lowest
error, in respect to the importance of the samples. Thus, while is optimal if the
base-level classifiers are dependent, potentially produces a more accurate ensemble
classifier if the independence assumption is violated.
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Algorithm 2.1 Pseudocode for the learning algorithm of the FAB| combiner

Input:
e data set Deomb = {(z1, 1), .-, (xn,yn)}
e base-level classifiers {Uq,..., ¥}

Procedure
Initialize Vi € {1,..., N} W}! =1, sel' =0,
form=1to J do

1. Select the base classifier ¥; that was not already selected in the iterations 1, ...

1 with the lowest weighted error

N
_ i Lo (i, y;, W) W™
Sm argj:{l,{?}]ri/selm(; o1 (i, yi, U)W

where Lg; is the zero-one loss function

sel™l = gel™U sy,

2. Calculate the relative error of the selected base-level classifier

N Low(wi,yi, U, )W
err,, = ~ —
ZiZI WZ

€ [0,1]

3. Set the weight wg,, for the selected base-level classifier ¥, = to

1 1—
Wy, = log<ﬂ>eR

o2 err,,

4. Update the importance of the samples for the next step

TR L L P COR o 7
¢ ‘ e Wsm it Wy (x5) = y;

end
Output: the combination rule

J
ab(¥y(z),..., VU (x)) = argggngjé(\Ilj(x),yl)
j=1

, M—
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predicted class
Hippo | Giraffe
Hippo 10 13
Giraffe 8 )

actual class

Table 2.3.: Example for a confusion matrix. In this case the corresponding classifier
classifies 10 of the 23 hippos correctly. From the 13 giraffes 5 are classified
correctly.

2.3.2.4. Bayes Combination

Under the assumption of conditional independence between the base-level classifiers, the
probability of having observed a sample of class y; after having seen x is:

P(Y =) [T} P(¥; = ¥;(@)Y = y)
PV, = \:[11(1')/\, e, AUy = \I/J(.%'))

Pyle) = (2.32)
The denominator is independent of the candidate class y;, its purpose is only to scale
P(y;|z) such that it fulfills the conditions of a probability measure. Hence, for classifica-
tion only the nominator is needed. Therefore, the support for class y; is

J
supy, (z) = P(Y = ) [[ P(¥; = U;(2)|Y = ) (2.3.3)
j=1

It seems reasonable to assign a new sample to the class with the highest support. This
leads to Bayes Combination (BC).

be(¥y(z),..., U (z)) = arg glg}/((supyl) (2.3.4)

Note that not all of the needed probabilities are known, but they can easily be estimated
employing Dcomb-
The probabilities needed for can be estimated by the confusion matrix.

Definition 27. Let D be a data set and ¥ a classifier. Each entry cf; (¥, D) of the
confusion matrix CF(V, D) is then defined as

cfir(¥,D) = {(z,y) € D:y =y AV(z) =y}

The entry cf; j, corresponds to the number of the samples (z,y) in D with label y; that
were labeled with the label y; by the classifier ¥. For a perfect classifier all off diagonal
elements of the confusion matrix are zero. An example for a confusion matrix can be
seen in Table 231

The confusion matrix for all base-level classifiers has to estimated. T will call CFJ
the confusion matrix of base-level classifier W;, with entries cfik. Let yg; be the label
predicted by base-level classifier W;, W;(x) = yx;; Vi € {1,...,J}k; € {1,...,L}. Let
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Ni=|{(z,y) € D : y = y}| denote the number of samples (x,y) € D with label y,.

N;/N can then be used as an estimate for P(Y = y;) and cf] kj/Nl as an estimate for

P(¥; = W;(x)|Y = y;). Thus, the support for each class (see Equation 23.3)) can be
estimated as

NS 1 4
sup,, (r) = N H(Cfikj/Nl) NN H Cfg,kj
j=1 l j=1

Because N is independent of the candidate class, this can be further simplified to
1 &
7
N1 H cfi,
l j=1

Note that if 37, k; : cf{kj = 0, the support of the whole class y; is zero. Because the
probabilities are estimated and, hence, a probability that is estimated as 0 may not be
0, this is an undesired behavior. Therefore, (IKJ.lI].Qh.GALaL lZD_QéIL p 127) suggests a different
method to calculate the support, which she adapted from the work of Mgm_aﬂ
(@) The resulting estimator of the support is

J Cf{,kj +1/J

upj(#) = | 1] N +1
j=1

(2.3.5)

where B is a hyper-parameter.

2.3.2.5. Stacking

Stacking refers to the procedure of applying a classification method to to the outputs
of the base-level classifiers. The classifier that works on the output of the base-level
classifiers is often called meta-classifier. The definition of stacking includes that the data
set that is used for the induction of the base-level classifiers has to be disjoint of that
used for the induction of the meta-classifier.

In our case the features for the classification methods are the labels predicted by the
base-level classifiers. Every classification method may be used for stacking.

2.3.2.6. Information Theoretic Combiner

Meynet and Thiran 12(!1(!) proposed a combiner based on the mutual information. Their
combiner tries to exploit the fact that ensemble classifiers tend to perform well if the

base-level classifiers are diverse and accurate. I will review this fact in more detail in
Section 2.3.31

The main contribution of their work is a new score that measures the accuracy and
diversity of a set of base-level classifiers on a data set simultaneously, called information
theoretic score. But they also show how to to select the best subset of base-level classifiers
out of a given set employing this score. I will start this section by introducing the
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information theoretic score. After that, I will present the combiner that is based on that
score.

The information theoretic score is based on the mutual information. The mutual
information is a central concept in information theory.

Definition 28. The mutual information between two discrete random variables A, B is
defined as

I(A4;B)=)_> P(A=aAB=b)b

acAbeB

(Fa—am=s)

where 1b refers to the binary logarithm.
The mutual information can also be calculated using any other logarithm instead.

Definition 29. The information theoretic accuracy of the base-level classifier {Uq,..., ¥}
on the data set D¢omp is defined as the mean mutual information between the labels pre-
dicted by the base-level classifiers and the correct labels

ITA(Uy, ..., ¥ ; Deomp) = I(Lj;Y)

<l

J=1

where L; is the random variable that represents the predictions of the base-level classifier
U, on the data set Deomp and Y = {y1,...,yn} the random variable that represents the
true labels of the samples in the data set D¢omp .

Definition 30. The information theoretic diversity between the base-level classifiers
{Wq,..., ¥} is defined as

J

2

ITD(\IJl’--- ,\IJJQDcomb) = P
i=1 2uj=i+1 I(Li; Lj)

(2.3.6)

Note that < g > is the number of distinct pairs that can be built out of J base entities.

The information theoretic diversity is the inverse of the mean mutual information between
all pairs of base-level classifiers.

Definition 31. The information theoretic score of an ensemble of K classifiers is defined
as

ITS(¥y, ...,V Deomp) = (1 + ITA(W1, ..., U, Deomp)) TTD(V1, ..., ¥, Deomp)
(2.3.7)

Employing this score, Meynet and Thiran (|2Qld) propose to use the algorithm that is

displayed in Algorithm to select a subset of base-level classifiers from a given set of
base-level classifiers. I will call the resulting combiner Information Theoretic Combina-

tion (ITC).
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Algorithm 2.2 The learning algorithm of [TC
Input:

e data set Deomb = (21,91), -, (TN, YN)
e set of base-level classifiers {¥y,...,V;} := B
e 0dd size of the to be selected subset K

Procedure
Initialize k = 1, sel' =0
Select the best individual classifier

Ui = I(L;)Y
o= g, max (LY
sell! = Uy
for k=2to (K —1)/2 do

1. Select the two base-level classifiers ¥;, ¥, that maximize the information theoretic
score

U, 0,) = ITS(sel* ™1 U ¥; UTy: D
(¥, V) arg(q/i,qfk)eB/gz%}flxB/sezkfl( ( 0¥ Deomb))

2. and add them to the set of selected classifiers

self = sel*~"1U U, U Ty,

end
Output: the discrimination function

it(Uy(z),..., 0 (x)) = mv(sel®)

where mv(Wq,..., W) refers to the majority voting rule as defined in Definition 211
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2.3.2.7. Select The Best

The Select the Best (SelectBestl) combiner refers to the procedure of model selection.
Instead of fusing the decision from all base-level classifiers, the most accurate base-level
classifier is selected to make the decisions.

The learning algorithm for [SelectBest] outputs the classifier ¥; that has the highest
accuracy on the set Dcomb-

Sb(\Ill(.’E), ey \I/J(.%')) = \IJJ(.%')

where YU € {Uy,..., ¥ }acces(¥;, Deomb) < acCes(V, Deomb)

[SelectBest] can also be interpreted as the [WV] combiner for that all but the most accu-
rate base-level classifier get assigned zero weight. Unlike the other combiners introduced
in this section, the selection of the best classifier does not reduce the risk for one par-
ticular data set compared to the best base-level classifier. But if applied to more than
one data set, it can decrease the average risk tremendously by picking different base-level
classifiers for different data sets.

2.3.3. Why and When do Multiple Classifier Systems Perform Better?
Why?

In the last section I reviewed a variety of combiners for the creation of ensemble classifiers.
I gave examples for which the accuracy of the ensemble classifier was higher than the
accuracy of any base-level classifier. These examples were theoretical in nature and did
not address the question why in practice it is often possible to construct an ensemble
classifier that is more accurate than the most accurate base-level classifier. Because
of that, I want to introduce three reasons why in practice an ensemble classifier often
outperforms classification methods that are based on a single classifier. These reasons

were originally introduced by Dietterich (2000).

1. Statistical: A learning algorithm can be viewed as searching within a space of
classifiers C' for the best classifier V,. When the training data set D is to small,
the learning algorithm may find many different classifiers that all achieve the same
accuracy on the training data set. By averaging these classifiers, the risk to choose
an inadequate classifier is reduced.

2. Computational: Even when the statistical problem is absent, learning algorithms
that perform some local search may get stuck in local optima. Furthermore, optimal
training for two very important classification methods that employ a local search,
namely neural networks m, ) and decision trees , ), is shown
to be NP-hard. An ensemble classifier consisting of base-level classifiers that are
generated by running the local search using different starting points may be a better
classifier than any of the base-level classifiers.

3. Representational: Assume that an algorithm that finds the best classifier in C' is
available. In this case the use of multiple classifier may still be beneficial as the
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optimal classifier U« may lie outside of C'. By combining classifiers from within C
it may be possible to expand the space of representable hypotheses.

When?

Of course, the performance of an ensemble classifier is not independent of the performance
of its base-level classifiers. It is known that a necessary condition for an increase of the
accuracy of the ensemble classifier compared to the most accurate base-level classifier is
that the base-level classifiers are accurate and diverse dﬂanwn_am]_s_aiam, |L9_9_d) An
accurate classifier is a classifier that has an accuracy better than random guessing. Two
classifiers are diverse if they make errors on different trials (Dietterichl, 2000).

Thus, before using a combiner to fuse the decisions of the base-level classifiers makes
sense, it has to be verified that the base-level classifiers fulfill this conditions. The
accuracy can be estimated using one of the methods introduced in Section T3l If a
base-level classifier performs better than random guessing, can be tested using the test
introduced in Section ZT.4.1]

Besides the information theoretic diversity, defined in Definition B0l various other
diversity measures exist. [Kuncheva (IZOM, chap. 10) compared many diversity measure
in terms of their relationship to the final ensemble accuracy. She found that for every
diversity measure the relationship between the measured diversity and the final ensemble
accuracy is relatively weak. However, if the measured diversity was zero no improvement
over the accuracy of most accurate base-level classifier was possible. Because the results
are the same for every diversity measure, I will introduce her results in detail for one
diversity measure.

One of the most intuitive diversity measures is the disagreement measure.

Definition 32. The disagreement measure between two classifiers ¥;, ¥}, is defined as
Di; = P(Vi(z) =y AV (2) #y) + P(V;(2) = y A Vi(z) # y) (2.3.8)
where (z,y) € M

For a binary decision problem Di;, is the probability that W;, ¥, disagree. For ar-
bitrary decision problems Di; j is the probability that one classifier predicts the correct
class and the other classifier predicts a wrong class . The extension to a set of classifiers
is straightforward.

Definition 33. The disagreement measure Di for a set of J base-level classifiers is the
mean disagreement measure Di; ;, between all ( ; > pairs, ¥; ,WUy, of base-level classi-

fiers.

The probabilities needed for the calculation of the disagreement measure have to be
estimated from a data set.

Kuncheva (IZD_(MI, chap 10) showed for ensemble classifiers built by that the rela-
tionship between the disagreement measure and the accuracy of the ensemble classifier
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Classifier Space C

Good Classifiers

(a) The ellipsoid represents the classifiers that per-
form well on the data set.

Classifier Space C Classifier Space C

(b) The dashed lines represent (¢) U, lies outside the space
the hypothetical trajecto- in which the classifiers are
ries of the classifiers during searched.
the local search.

Figure 2.3.2.: Illustration of the (a) statistical, (b) computational and (c) representa-

tional reason why a an ensemble classifier often performs better than a
classification method based on a single classifier. The classifiers W1, Wy, U3
represent three classifiers that are induced on the same data set for one
particular [PR] problem. W, is the optimal classifier. For all three illustra-
tions, the circle represents the space C' in which the classifiers are searched.

Adapted from Dietterich (2000).
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Figure 2.3.3.: Relationship between the disagreement measure and the ensemble accuracy
Pmyv- Each dot represents one ensemble classifier that was build out of the
three base-level classifiers with accuracy 0.6. The z-axis describes the
disagreement measure and the y-axis the accuracy improvement pm, — p.
Copied from [Kuncheva (2004, chap 10) and modified for better quality
with permission of the author.

is relatively weak. She compared the accuracy of the ensemble classifier py,, against the
accuracy of the base-level classifiers theoretically. She defined that the set of base-level
classifiers consists of three classifiers that are correct on 18 out of 30 trials, leading to
an accuracy of p = 0.6. With this constraints a total of 563 different distribution of the
correct votes to the trials is possible. Each distribution leads to a different ensemble
classifier, for which the accuracy ppy and the disagreement measure can be calculated.
The scatterplot for the accuracy improvement pyy — p can be seen in Figure 233l From
two ensemble classifiers that are based on equally accurate but variably diverse base-level
classifiers the classifier that is based on base-level classifiers with a higher disagreement
measure does not have to be the classifier with the higher accuracy. Indeed, the accu-
racy improvement pn,, — p of all ensemble classifier based on base-level classifiers with a
disagreement measure of Di = 0.4 span between —0.2 and 0.2, the reason being that the
accuracy largely depends on the distribution of the votes of the base-level classifiers to
the trials (see Kuncheva, 2004, chap 10). However, her data show that the higher the di-
versity, the higher is the expected improvement. Furthermore, if Di = 0, no improvement
over the most accurate base-level classifier is possible.
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3. Combination of Classifiers to Increase
Accuracy

The following list repeats the hypotheses from Chapter [[l Recall that ORACLE returns
the classifier from the set of base-level classifiers that achieves the highest mean accuracy
over all data sets for one particular Pattern Recognition (PR task.

1. The combination of the different feature extraction and classification methods that
are employed for the classification of Electroencephalography (EEG) signals im-
proves the accuracy of the resulting classifier compared to the best single classifier
as estimated by ORACLE and results in a Pattern Recognition System (PRS) that
performs well on a variety of [EEGI data sets.

2. A combination of the decisions of the base-level classifiers leads to a more ac-
curate ensemble classifier than the selection of the best classifier by Select the

Best (SelectBest))

3. The employment of a Multiple Classifier System (MCS)) leads to a more accurate
classifier than the Concatenation (CONCATI) approach.

Using the background knowledge presented in Chapter 2 T want to present additional
reasons for these hypotheses.

1+2: In Section 2.3.3] we have seen that a [MCS|is more accurate than the best single
classifier if the base-level classifiers are diverse and accurate. Thus, the first hypothesis
can only be true if the proposed set of base-level learners produce accurate and diverse
base-level classifiers. However, as we saw in the Sections 223 and 2.2.4] there exists
a large variety of feature extraction and classification methods that lead to accurate
classifiers. Because they all rely on different characteristics of the [EEG] signals, there is
high a chance that they are diverse.

3: The employment of [CONCAT] has the advantage that interactions between the
different feature extraction methods can be taken into account. However, through the
combination of multiple feature extraction methods, the number of features per trial is
very high. Thus, I hypothesize that [CONCATI will overfit the training data and not lead
to a model that generalizes well. Contrary to that, for each base-level learner in the [MCS]
the number of features per trial is comparatively small. The same is true for the combiner.
Thus, analogous to Ledoit’s Reqularized Linear Discriminant Analysis (LRLDAI), a[MCS]
can be seen as regularization method (Dornhege et all, [2004). Furthermore, a
enables the employment of the best fitting classification method per feature extraction
method.
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3. Combination of Classifiers to Increase Accuracy

The rest of this chapter is organized as follows. First, [ will review related work. After
that, T will present the methodological details for the comparison. It will include an
introduction of new combiners, which I specifically invented for the comparison. The
chapter will end with a description of the implementation details.

3.1. Review

3.1.1. Combination of Feature Extraction Methods

Mhﬂgm_alj (IZQOAI) already found that a combination of base-level classifiers based on
different features performed better than [CONCAT] and ORACLE. [CONCAT] performed

even worse than ORACLE.

Three feature extraction methods were employed, which resulted in three base-level
classifiers. The three different methods were a feature extraction method similar to
the method introduced in Section 2.2.3] Autoregressive models, and Common Spatial
Patterns (CSP)). As classification method for the base-level classifiers, as well as for
[CONCAT| Regularized Linear Discriminant Analysis (RLDA]) was used. The base-level
classifiers were combined at the measurement level (see Section 23.1]). The outputs of
the base-level classifiers were of the form

gj(z) = whzj + ¢

where w; and ¢; are the parameters learned by one of the three [RLDAI learning algo-
rithms, each trained on the output of one of the three feature extraction methods z;,
j € {1,2,3}. The two combination methods employed were stacking with Linear Dis-
criminant Analysis (LDA)) as meta classifier (see Section 2.3.2.5]), which Megw_aﬂ
(@) called META and probabilistic voting, in this article called PROB. The ensemble
decision for PROB was the average of the three RLDA] instances

J
‘IJPROB(x) =1 Zgj(m) >0
j=1

for META it was
\I/META(«'E) =1 wgetag(x) + Cmeta > 0 (311)

where g(x) = [g1(z),...gs(x)]T represent the outputs of the base-level classifiers and
Wmetas Cmeta are the parameters that were learned by the meta classifier.

Although META is the special case of PROB in which all weights wmeta and the bias
Cmeta are learned to be zero, PROB led to a better mean accuracy than META. Their
comparison was based on ten subjects.

Boostani et al| (2007) found similar results. By using a combination of features ex-
traction methods, they were able to increase the accuracy compared to ORACLE. They
did not employ an ensemble classifier for the feature combination but used a genetic
algorithm. They also investigated as feature combination method and as
well found it performed worse than ORACLE. As classification methods they employed
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3. Combination of Classifiers to Increase Accuracy

Adaptive Boosting (AB)JLDAlL and Support Vector Machine ([SVM]) separately. Their
comparison was based on 5 subjects.

[Fatourechi ef al! (2008) used a two-stage combination of classifiers to build an asyn-
chronous Brain Computer Interface (BCI) (see Section 2.2.2]). They extracted features
for three different types of neurological phenomena. For each channel and phenomenon a
SVM]| was trained. The decision from all for one phenomenon was combined using
Magjority Voting (MY]). In the second stage the outputs of the three ensemble classifiers,
one for each phenomenon, was combined by one out of five fixed combination rules. The
rule, as well as the features to use, and the parameters for the were simultaneously
optimized using a hybrid genetic algorithm. Their resulting achieved a higher infor-
mation transfer rate than any existing asynchronous [BCIl Their comparison was based
on four subjects.

3.1.2. Combination of Predefined Base-Level Classifiers

Ensemble classifiers are not limited to the combination of different feature types. They
might be beneficial in all cases were a large set of heterogeneous features is combined.

Fazli et all (2009) were able to build a subject independent system employing an
ensemble classifier. The base classification method was [LDAL For each session a [LDA]
was trained on power features. A session hereby refers to one recording session
for one subject. A varying number of sessions per subject was recorded. Before the
training of [LDA] the data was bandpass-filtered in 9 different frequency bands. This led
to a total of 9 x #sessions base-level classifiers. The final classification was done by a
weighted sum of the continuous outputs of the[LDA]base-level classifiers, similar to META
described above. But instead of [LDA] [Fazli et al (IZOQQ) used quadratic regression with
Iy regularization to obtain wmeta and cpeta- Their ensemble classifier performed better
than various baseline methods, including ORACLE, and other ensemble classifiers. Their
comparison was based on four subjects.

Rakotomamonjy and Guigud (2008) used a combination of VM to build a BCI. It
won one discipline of the Competition III (Blankertz ef. all, 2006). For feature
extraction they bandpass-filtered the data with cut-off frequencies 0.1 and 10Hz and
decimated the signal to 14 samples per channel. Fach of the 17 was trained on
a partition of the data. They tried to choose the partitions such that they were as
homogenous as possible. The final classification was done by averaging the continuous
outputs of all[SVMk, analogously to PROB. Their comparison was based on two subjects.

3.1.3. Methods That Generate Base-Level Classifiers

Ensemble classifiers are not limited to the combination of base-level classifiers that are
defined by the designer. There are multiple methods that, besides a combiner, also
include a technique to create multiple base-level classifiers from a data set.

(lZQO_ﬂ) showed that [AB] Bagging (Im, M), and random subspace
(Bryll et alJ, mOj) are able to boost the accuracy compared to a single classifier. They
came to this conclusion after evaluating these methods on nine subjects performing a
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3. Combination of Classifiers to Increase Accuracy

motor imaginary task. The different base-level classifier were generated by using power
spectral densities as features and the base-level classifier generating capabilities of the
compared methods. They evaluated the three methods for SVM] k-Nearest Neighbor
(K=NNI), and C4.5 decision trees (Quinlan ) as base clasmﬁcatmn methods separatel

|Bmsian1_and_MQLadJ| ) compared w1th an one hidden layer neuron m,
M) as weak learner against[LDA]on three dlfferent types of features, Hjorth parameters,
band power and fractal dimension. No combination of features was considered. They
based their comparison on five subjects, performing a motor imaginary task. Their results
show that while the combination of band power and [LDA]yielded the best mean accuracy
(over all subjects) for two subjects the combination of fractal dimension and led to
the best accuracy. They concluded that “for each individual, we have to find the best
combination of feature and classifier or on some occasions, a combination of the features
by evolutionary algorithms or a tree combination of classifiers which can lead to the best
result.” i i, lZDIléIL p 217)

m ) employed an explicit trainable combiner, the so called improved random
subspace method, for the classification of mental imagery data. The base-level classifiers
were build by training a with different subspaces of the feature space. The final
classification decision was

Uirsp(z) = arggllg/(Zw] (), y) (3.1.2)

where w;(z) is the fraction of correctly classified samples by ¥; of the k nearest neighbors,
with respect to the Euclidean distance, of z. They showed that their method performs
better than another similar ensemble method.

Although it seems promising, to my knowledge nobody tried to use one of the multiple
classifier methods that are able to generate base-level classifiers on a combination of
features.

3.2. Learning Algorithm for Ensemble Classifiers

In this section I will introduce the learning algorithm that I use to induce the different
ensemble classifiers. Independently of the base-level classifiers and the combiner, the
ensemble classifiers are induced as follows: The designer specifies a set of base-level
learners Iy,,...,Iy,. The classification behavior of each base-level learner is estimated
using 10-fold stratified cross validation. The estimated behavior is fed to the combiner
I.. To clarify this: Let D be the available data set. The data set is split into 10 partitions
{D1,...,D1o}. For each partition and base-level learner a base-level classifier is induced
V;n = Iy, (D/Dy). For each base-level learner Iy, the combiner gets the predicted class
of each trial (z,y) € D by the classifier ¥, for that (z,y) ¢ D, as input. Based on
this information every combiner that I introduced can estimate the necessary properties
of the base-level classifiers. After the combination method learned the combination rule,
the base-level learners induce the base-level classifiers based on the complete data set D.
The base-level classifiers are combined using the combination rule that was inferred in

49
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Algorithm 3.1 The employed training algorithm for inducing the ensemble classifiers.

Input

A set of base-level learners Iy, ,..., Iy
An untrained combiner I,

A data set D

Procedure

J

1. Split D into 10 disjoint subsets D,,,n € {1,...,10} in respect to the stratified
10-fold cross-validation scheme

a) For each subset D,,

i. Train each base-level learner on the remaining data set D/D,. ¥;, =
I\pj(D/Dn)

ii. Calculate the prediction of each base-level classifier W; , for each trial
(,y) € Dy, l; j =V, n(x), where ¢ is the index of (z,y) in D.

b) Train the combiner with the matrix L, with entries ; j. I,(L). Remember the
inferred combination rule 7.

2. Train all base-level learners with the complete data set D, V; = Iy (D)

3. Create the ensemble classifier Wq,s by combining the base-level classifiers with the
rule r inferred in step 2 (b).

Output
The ensemble classifier Ve

the previous step. This procedure is explained as pseudo code in Algorithm Bl Tt can

be interpreted as a classification method with the hyper-parameters Iy, ,..., Iy, and I,.

3.3. Combiners

Because the combination at the abstract level (see Section [Z3.1]) is the only level of
combination that allows the usage of arbitrary classification methods, T only include
combiners that combine the base-level classifiers at the abstract level in the comparison.
In previous studies, only stacking with as meta classifier (Fazli et all, 2009),
and [AB] (Sun_et all, M) have been used if the base-level classifier were combined at the
abstract level. I compare all combiners that have been introduced in Section In
addition to the existing combiners, I invented several new combiners, mostly extensions
of existing combiners, for the comparison.

This section will continue with the introduction of the combiners that I invented.
Furthermore, it will contain the detailed settings for the existing combiners. Assume
that the situation is as described at the beginning of Section
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3. Combination of Classifiers to Increase Accuracy

3.3.1. Significance Majority Voting

Suppose that the base-level classifiers consist of 100 classifiers with accuracy 50% and
one classifier with accuracy 100%. The accuracy of the ensemble classifier built by
would hardly be over 50%. To make applicable to situations in which a majority
of the base-level classifiers do not perform better than random guessing, I extend it
such that only the votes of the base-level classifiers that have an estimated Balanced
Accuracy (BAC) that is significantly higher than 0.5 are included in the decision.

For each base-level classifier, significance against random guessing is tested using the
test introduced in Section ZT.Z1] T call this extension significance extension and the
resulting combiner Signifigance Majority Voting (SMV]). Note that contrary to [MV]
is a trainable combiner. This extension can also be applied to Weighted Magjority
Voting (WMY]). T call the resulting combiner Signifigance Weighted Majority Voting

(SWMY]).

3.3.2. Dependent Weighted Majority Voting

While it was shown that [WMYV]is the optimal combiner when the base-level classifiers are

independent (see Section 2.3.2.1]), 'WMVlis not the optimal combiner if the independence
assumption is violated .

Theorem 34. Let Vq,..., V7 be base-level classifiers. Let V1, Vg, V7 be independent. Let
U, =Wy... =g, d.e., Vi,j € {1,. .. ,5}V$ € XVy, € YP(\IJZ(x) = yl|\I/]($) = yl) =1.
In addition, acc(¥1,p) = 0.7 and acc(Vq,p) = acc(¥7,p) = 0.8. Then the accuracy
acc(Vymy, p) of the ensemble classifier created by is 0.7.

Proof. The weights as learned by [WMVlare w; = wo = ... = ws = 0.8473 and wg = wy =
1.3863. Because of the equality of ;... W5, the class for which W, votes gets assigned
weight 4 -0.8473 = 4.2365. The remaining two classifiers ¥g and W7 share a total weight

of 2.27726. Hence, because 4.2365 > 2.27726, acc(Wymy, p) = acc(¥1,p) = 0.7 O
Theorem 35. Let Vy,..., V7 be as in Theorem [3) but wi = 0.8473, wy = ... = w5 =0

and wg = w7 = 1.3863. Then acc(Wyy,p) = 0.8320

Proof. The ensemble classifier Wy, makes the correct decision if Wy, or ¥g and U7 make
the correct decision.

Pwmo = 0.7-08-08+03-08-08+0.7-0.2-0.8+0.7-0.8-0.2=0.864
O

The ensemble accuracy is increased by giving only one classifier out of the dependent
classifiers a non zero weight. This strategy is used by fized Adaptive Boosting ([[AB) to
correct for dependencies between base-level classifiers. A different strategy is to decrease
the weight of each dependent base-level classifier. The same accuracy as in Theorem
can be obtained by dividing the weights wy = ... = ws by 5. If the classifiers are really
identical, the two different strategies lead to the same ensemble accuracy. However, we
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3. Combination of Classifiers to Increase Accuracy

can only estimate the behavior of the base-level classifiers and, thus, reducing the weight
for every dependent base-level classifier may be a more robust strategy than assigning
one base-level classifier a large weight and the rest a small weight.

Of course, the question is how to generally correct the weights for dependencies and
how to treat the most common case when classifiers are neither completely dependent
nor independent. I propose the following strategy: To estimate the dependence of a
base-level classifier to all other base-level classifiers the mutual information between the
classifier and the remaining base-level classifiers is estimated. The corrected weight for
each base level classifier is then

J
wy =wmy( Y I(¥;,0) +1)7" (3.3.1)
i=1,i#j

where wm; is the weight obtained by the original combiner, I(¥;, ¥;) the mutual
information between two classifiers as in Section This correction procedure is
motivated by the fact that the mutual information is zero for two independent classifiers
and min(H (V;), H(¥;)) for two identical classifiers, where H(¥;) denotes the entropy
of the classifier W;. T call this correction of the weights dependency correction and
the resulting combiner Dependent Weighted Majority Voting (DWMY]). It can, of course,
also be combined with the significance extension. I call the resulting combiner Dependent
Significant Weighted Magjority Voting (DSWMY]).

Another possibility would be to use the normalized mutual information as estimate of
the dependencies, which leads the correction scheme

(¥, ¥,

! I
T
J ’ z‘=1z,z‘7éj min(H (¥;), H(¥;))

+1)71

I(V;,%;)

min(H (L), H(T;)) is one. This

and ensures that for two completely dependent classifier
correction scheme is not examined in this thesis.

3.3.3. Harmonic Series Weighted Voting

Another combiner that I invented for the comparison is the Harmonic Series Weighted
Voting (HSWY]) combiner. It is also a Weighted Voting (W) combiner. The weight for
each classifier is

’LU] = E

where r; denotes the rank of the corresponding base-level classifier in comparison to the
remaining base-level classifiers. The rank is calculated by sorting the base-level classifiers
with respect to their BACk. Hence, the base-level classifier that gets assigned weight %
is the base-level classifier that produces the second highest [BAC| on D¢omp.

As the [HSWYV] combiner does not take into account dependencies between base-level
classifiers, the dependency extension is also applied to [HSWV], leading to the Dependent
Harmonic Series Weighted Voting (DHSWY]) combiner.
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3.3.4. Random Weighted Voting

As base-line method for the comparison I define Random Weighted Voting (RWY)), also
a [WV] combiner. The weight w; for each base-level classifier ¥; is randomly picked
according to the uniform distribution over the interval (0, 1).

3.3.5. Details for the Existing Combiners

The details for the existing combiners are as follows. For Bayes Combination (BC)
Equation is used to estimate the support. I choose B = 1 for the hyper-parameter
B. As meta classifiers for stacking, I employ two different classification methods, [LDAI
and [LRLDA] resulting in the two combiners, Stacking with Linear Discriminant Analysis
(STLDA]) and Stacking with Ledoit’s Regularized Linear Discriminant Analysis (STLRLDA]).
For all combiners that need an estimate of the accuracy, I use the [BAC] as estimate as
some data sets are imbalanced. As classification method for[CONCATII employ [LRLDAI
[LRLDAlgets as input the concatenation of the feature vectors originating from all unique
feature extraction methods. For Information Theoretic Combination ([TC) I set the size

K of the to be selected subset to seven.

3.4. Base-Level Learners

While the proposed ensemble learning algorithm accepts arbitrary base-level learners as
input, I have to define a set of base-level learners that is used for the comparison of the
different combiners. Remember that one goal of this thesis is to build a classification
method that works well on a variety of different [EEGI data sets. I want to compare
the combiners on heterogeneous data sets. If no base-level learner produces an accurate
base-level classifier, a comparison of the different combiners is not possible. Because of
these reasons, the set of base-level learners has to be broad and has to capture the most
prominent characteristics of [EEG] signals. This implies that for any particular [EEG] data
set it is very likely that some base-level learner lead to inaccurate base-level classifiers.

As classification methods only linear classifiers are employed, following the reasoning
of Blankertz et all (IMaL p 118) that in their experience “linear methods perform well,
if an appropriate prepossessing of the data is performed”.

Every method that I will introduce in the remainder of this section is applied to data
from the following seven frequency bands separately: « (8-12 Hz), § (12-30 Hz), v(30-70
Hz), §(0-4 Hz), 0(4-8 Hz), con (1-45Hz) and rem (70+ Hz). This leads to a total of
#methods - 7 base-level learners.

The[CSPlfeature extraction method is used because it is currently the standard method
in[BCllresearch to quantify signal power changes. The hyper-parameter k is set to three as
advised by Blankertz et all (2008). The feature that is extracted of the signal transformed
by the patterns is the logarithm of the variance. As classification method for the
base-level learners based on [CSP], [LRLDAl is used.

To quantify amplitude changes a set of base-level learners based on Spatio Temporal
Features (STE) (see Section 2.2.3]) is employed. Three different approaches are used, Local
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Figure 3.4.1.: llustration of the base-level learners.
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Algorithm 3.2 Learning algorithm of SVMOPTC],
Input

Data set D

Set of candidates for C', Cean

Procedure

maxbac = 0

maxC =0

for each ¢ € Cean

1. Estimate the [BAC of the SVM] instance with C' = ¢ using stratified 10-fold cross-
validation; bacey(SVMe=., D), where SVM¢—. denotes the learning algorithm of
SVM] with the hyper-parameter C' set to c.

2. If bacey (SVMe=., D) > maxbac, maxbac = bace,(SVMo—¢, D) and maxC = c.

end
Output
SVMc:maxC (D)

Means (LM), Regional Means (BM) and Global Mean (GM). The means are calculated
on non-overlapping intervals of length 50ms for the approach. For the approach,
the means are calculated on five non-overlapping equally sized intervals that span the
whole trial. For [GM] the mean is calculated over the complete trial.

The Permutation Entropy (PE) is used as measure of complexity. It is calculated for the
embedding dimensions 3 (PEB), 4 (PEX) and 5 (PEb). For smaller embedding dimensions
the [PE] would hardly contain any information and for larger embedding dimensions the
typical number of time points per channel and trial would not be sufficient to get a
reasonable estimate of the [PEL

As classification method for the base-level learners based on the [PEl and the a
linear is used. The hyper-parameter C' is optimized using stratified 10-fold cross-
validation and the [BAC] as performance measure. Candidates for C' are chosen from
{10 : i € {-5,-3,-1,1,3,5,7,9,11,13,15}}. The resulting classification method will be
called Support Vector Machine with Optimization of the C hyper-parameter (SYMOPTC])
in the remainder. The learning algorithm for SVMOPTC] is shown in Algorithm A
different possible approach is to include every as a different base-level learner.
However, pilot experiments suggested that base-level classifiers that only differ in the
C hyper-parameter of their are either completely dependent, or one base-level
classifier performs clearly superior. Hence, the selection of the best C' hyper-parameter
seems more appropriate.

The overall number of base-level learners is

#frequencybands: (#£CSPLDA + #STFSVM + #PESVM) = 7- (1 + 3 + 3) = 49

where #frequencybands is the number of frequency band on which all feature extraction
methods are applied, #CSPLDA the number of feature extraction methods that are
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based on [CSPl #STFSVM the number of feature extraction methods that are based on
STH and, and #PESVM the number of feature extraction methods that are based on
[PEL

3.5. Details for CONCAT and ORACLE

As input for for [CONCAT]the concatenation of the feature vectors obtained by the differ-
ent feature extraction methods from the base-level learners is employed. As classification
method for I choose [LRLDAI because it is a very powerful and regularized
method. I compare the classification methods on five different simulation scenarios and
on data sets originating from four different [EEGI studies. ORACLE returns, for each
data set, the classifier that achieves the highest mean [BAC] over all data sets from the
respective study/scenario out of all base-level classifiers. The [BAC] is estimated using
stratified 10-fold cross-validation.

3.6. Implementation

The generic learning algorithm for ensemble classifiers, the combiners, as well as all the
methods needed for the base-level learners are integrated into the multivariate toolbox
of Fieldtrip (Oostenveld et alJ, M) Fieldtrip is an [EEG] analysis toolbox for Matlab
(MathWQrks], M) Fieldtrip’s multivariate toolbox contains algorithms from the field
of [PR] for the analysis of [EEG] data.

The integration of the code into an existing analysis toolbox serves multiple purposes.
It makes it easier for others to verify and reproduce the results. Furthermore, the learning
algorithm for ensemble classifiers can be easily used to implement and test new combiners
or base-level learners. Another advantage is that many of the algorithms implemented
for this work, e.g., the classification and the feature extraction methods, can be easily
reused for completely different projects.

Fieldtrip was chosen over other existing toolboxes such as BioSig (Schlogl and Brunneﬂ,

) and BCILAB, which is included in EEGLAB ig, [2004), because
it focuses more on single-trial analysis than on building [BCIk, it is object oriented (at
least the multivariate toolbox), and it is the major [EEG] analysis toolbox used at my
institute.

The design of the learning algorithm for ensemble classifiers is oriented at and reuses
some of the code from the ft mv_gridsearch class of fieldtrip. Furthermore, for efficiency
reasons it is implemented such that it accepts a set of combiners and returns a set of
ensemble classifiers.

While the ensemble learning algorithm and the combiners are implemented by me,
some methods needed for the base-level learners do already exists in fieldtrip, namely
and Also, the cross-validation procedure from fieldtrip is used.

The leading paradigm for the implementation is the extensive employment of auto-
mated testing to ensure the correctness of the implemented algorithms, leading to a total
of 68 test cases.
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In this section I will present the results of an empirical comparison of the proposed
methods. Recall that the questions I want to answer are:

1. Does a combination of base-level classifiers based on different feature extraction
and classification methods improve the Balanced Accuracy (BAC) in comparison
to the ORACLE?

2. Does a combination of base-level classifiers based on the different feature extraction
and classification methods lead to a more accurate classifier than Select the Best

(SelectBestl) and Concatenation (CONCATI)

3. Which of the combiners produces the most accurate ensemble classifier?

4. Is the set of base-level learners that I defined sufficient? Does it produce accurate
and diverse classifiers?

5. Does the best method result in a classification method that works well not only on
a single but on a variety of Electroencephalography (EEG]) data sets?

This section will start with an introduction of the methods that are used to compute the
results. It will continue with the presentation of the results of a simulation study. After
that, the results on the [EEG] data sets will be presented. I will use many abbreviations
throughout this chapter. If you are reading this thesis on a computer, you may click on
the abbreviation to get to the list of abbreviations (see Chapter[@]). If you are reading this
thesis in paper form, the list of abbreviations is provided to you as separate spreadsheet.

4.1. Methods

The Balanced Accuracy (BAC) (see Definition [I3]) for each method on each data set is
estimated using stratified 10-fold cross-validation (see Definition [I2]). This results in a so
called nested cross-validation procedure for the Multiple Classifier System (MCS). The
outer cross-validation loop is used to estimate the accuracy of the ensemble classifiers
and the inner cross-validation loop is part of the training of the ensemble classifiers
(see Algorithm [B.1]). Within the training of the ensemble classifiers there is even another
cross-validation loop as part of the training of Support Vector Machine with Optimization
of the C hyper-parameter (SYMOPTC).

As aggregated performance measures, over the data sets, the mean of the [BACk and
the ranks computed by the Friedman test (see Section 2.I.4.2)) are presented.
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For addressing the statistical significance of the results, depending on the situation, two
different tests are employed. The differences between the different methods is translated
into a p-value using the post-hoc procedure on the test statistics calculated by the Fried-
man test (see Section 2Z1.4.2]). When comparing a set of combiners against a base-line
method, e.g., Select the Best (SelectBestl), Concatenation (CONCAT]) and ORACLE, the
probability threshold « is adjusted for multiple testing using the Bonferroni correction.
For the comparison of all pairs of combiners, the critical value is adjusted stepwise using
the Shaffer’s Static Procedure (SSP)) (see Section ZZT.42). When a method is tested
against random guessing, the test introduced in Section ZT.4T]is used. When multiple
methods are compared against random guessing on the same data set, the critical value
« is adjusted using the Bonferroni correction.

As characteristics of the set of base-level classifiers I report the average disagreement
measure and the average number of base-level classifiers that achieve a[BAC| better than
random guessing. The [BAC] is estimated using 10-fold stratified cross-validation. If a
classifier performs better than random guessing, is tested using the test introduced in
Section ZIL4&T]l T do not correct for multiple comparisons, because I want to test for
each classifier independently if it performs better than random guessing. Hence, if all
49 base-level classifier guess randomly, this test will, on average, find 49 - 0.05 = 2.45
classifiers to perform better than random guessing.

4.2. Implementation

As with the algorithms introduced in the last section, I integrate the algorithms that are
needed to generate the results, e.g., the statistical tests, into the multivariate toolbox of
Fieldtrip.

Because of the large amount of data sets and the amount of methods that are compared,
the total computing time to generate the results for the real data set exceeds four years.
Hence, a regular computer would not be sufficient to calculate the results in a reasonable
time. Therefore, I use a 180 core cluster computer to calculate the results on the real data
sets, and employ a 30 core cluster computer to estimate the Balanced Accuracys (BACK)
on the simulated data sets.

I modify the cross-validation procedure of fieldtrip such that it accepts learning al-
gorithms that return a set of classifiers to be compatible with the implementation of
the learning algorithm for ensemble classifiers. Furthermore, because parallelism on the
data set level is not sufficient to get the results in a reasonable time, I modify the cross-
validation procedure such that each of the 10 folds can be processed independently on a
separate machine.

4.3. Simulation
Before comparing the different combiners on real Electroencephalography (EEG) data sets,

I compare them on simulated data sets. Besides the comparison of different combiners on
data sets with known properties, the main goal of the simulation study is to reduce the

28



4. Results

number of combiners that have to be included in the comparison on the real data sets.
This is motivated by two facts: First, when testing the differences between the combiners
and the base-line methods for significance, the more combiners are included in the test
the less likely is it to find a significant effect. Every additional combiner increases the
rank differences required for a significant effect. Second, the reduction of the number of
combiner reduces the computation time.

For the simulation study, different base-level classifiers are simulated for five different
scenarios. The scenarios are inspired by situations that occurred on real data sets.
For every scenario, 1000 data sets are simulated. Each data set represents a binary
classification problem and consists of 1000 trials per class.

4.3.1. Scenarios
Base Scenario

For the base scenario, 15 base-level classifiers are simulated. The Balanced Accuracys
(BACE) of the base-level classifiers are equally distributed in the interval [0.55,0.8].
Hence, every base-level classifier is accurate. After ensuring that the per-class accuracies
are the same, which ensures that the [BAC] is equivalent to the accuracy, the classifier
outputs are shuffled within the class. This ensures high diversity between the classifiers.

The base scenario represents the situation when the base-level classifiers are indepen-
dent and accurate. It can be seen as the optimal scenario. The remaining scenarios
are extensions of the base scenario. They all contain the base-level classifiers that were
generated for the base scenario.

Noise Scenario

For the noise scenario, 45 classifiers are added that arbitrarily predict class one or two,
with equal probability, independently of the true label. This scenario evaluates the
capacity of the combiners to deal with base-level classifiers that do not provide any
information about the true label. Because I chose a broad set of base-level learners, it is
very likely that such classifiers are part of the base-level classifiers set.

Doubles Scenario

For the doubles scenario, randomly one of the 15 classifiers from the base scenario is
picked and duplicated five times. Each classifier has the same chance to get picked. This
procedure is repeated 9 times, resulting in 45 classifiers. These 45 classifier are simply
repetitions of existing classifiers. This scenario represents the case when there are strong
dependencies between the base-level classifiers.

Constant Scenario

For the constant scenario, 45 classifiers that constantly predict one class are added.
This scenario represents the worst case of dependent noise. It is motivated by pilot
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‘ method ‘ base ‘ -+ noise ‘ + constant ‘ + doubles ‘ + all ‘

STLRLDAI | 93.77 | 93.68 93.67 93.67 | 93.41
CTLDAl | 93.67 | 93.40 93.67 93.67 | 93.40
[FADI 93.67 | 93.08 93.65 93.62 93.03
93.72 | 93.69 93.72 92.70 92.66
93.72 | 93.58 93.72 92.70 92.49
SWMV| | 93.80 | 93.78 93.8 86.79 86.79
93.80 | 93.71 93.8 86.79 86.79
B 93.79 | 93.70 93.79 86.78 86.78
HSWVI 88.84 | 88.65 80.94 82.79 82.75
SNV 92.17 | 90.26 92.17 83.50 83.65
DASWYV| | 89.80 | 89.37 72.55 83.42 75.35
SelectBest] | 77.87 | 77.87 77.87 77.87 77.87
ORACLE | 67.79 | 67.79 67.79 67.79 67.79
RWV] 88.44 | 72.05 50 83.84 57.56
92.17 | 75.25 50 83.50 55.84
ITC 76.92 | 58.68 50 76.92 50.00

Table 4.1.: Mean [BAC], in percent, for each method and scenario, sorted by their [BACk
on the all scenario. The values printed in bold letters represent the best
method on the respective scenario. If in one column there is more than one
value printed in bold, there was no significant difference between those meth-
ods. For the all scenario, missing column delimiters imply that no significant
difference could be observed between these methods. The gray rows mark the
combiners that are proposed in this thesis.

experiments, in which base-level classifiers that only differed in the C' hyper-parameter
of their Support Vector Machine ([SVM]) were part of the base-level classifier set. It was
observed that for some C values these base-level classifiers constantly predict one class.

All Scenario

The all scenario contains the base-level classifiers from the base scenario and the base-
level classifiers from all other scenarios, resulting in a total of 150 base-level classifiers.
The main motivation for this scenario is to evaluate the performance of the different
combiners in the case when all noise sources occur at the same time. This is believed to
be the most realistic scenario.

4.3.2. Results

By construction, the diversity between the base-level classifiers from the base scenario is
high. The average disagreement measure is 0.4390 with a standard deviation of 0.0132.
All other scenarios include the set of base-level classifiers from the base scenario. Hence,
for each scenario, there exists a subset of accurate and diverse base-level classifiers.
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The results for all combiners and scenarios are summarized in Table &Il The ensemble
classifiers created by almost every combiner perform better than ORACLE on all sce-
narios. On the base scenario the ensemble classifiers built by the best combiners achieve
a mean [BAC of 93.80%, while ORACLE achieves a mean [BAC of 67.79%. Hence, the
combination of the base-level classifiers is able to boost the mean [BAC| by more than
26%.

Not surprising, the ensemble classifier built by Select the Best (SelectBestl) results in
a mean [BAC] of 77.87% on all scenarios. Thus, the combination of base-level classifiers
produces more accurate ensemble classifiers than the selection of the most accurate base-
level classifier.

The ensemble classifiers build by Stacking with Ledoit’s Regularized Linear Discrimi-

nant Analysis (STLRLDA)), Stacking with Linear Discriminant Analysis (STLDA)), fized
Adaptive Boosting ([{ABl), Dependent Significant Weighted Majority Voting (DSWMV)),

Signifigance Weighted Magjority Voting (SWMY]), Weighted Majority Voting (WMY)),
Bayes Combination (BC), and Signifigance Majority Voting (SMY]) perform, with a
mean [BAC] span of 92.17% to 93.77%, relatively similar on the base scenario. I will call
this group of combiners promising combiners in the remainder of this work, because the
remaining combiners produce tremendously less accurate ensemble classifiers on the base
scenario.

On the all scenario there is one group that performs much better than the rest of
the combiners. STLRLDA] [STLDAI FAB|, DSWMV], and Dependent Weighted Majority
Voting (DWMY]) produce mean[BACE that are higher than 94.48%, while the mean [BACk
achieved by the remaining combiners are below 86.8%. I will call this group of combiners
winning combiners in the remainder of this work. Note that the winning combiners are
a subset of the promising combiners.

Of course, the question is what is the reason for the big differences between the winning
combiners and the rest of the combiners. When comparing the learning algorithms of the
winning combiners against the learning algorithms of the promising combiners, one big
difference becomes apparent. The winning combiners create the combination rule such
that it takes into account dependencies between the base-level classifiers. Furthermore,
there is empirical evidence that the proper handling of dependent classifiers leads to the
fact that the winning combiners perform best. On the noise and the constant scenario
the promising combiners perform almost on the same level than on the base scenario.
Contrary to that, on the doubles scenario only the winning combiners yield a similar mean
[BAC] compared to the base scenario. The mean [BACk for the rest of the combiners on
the doubles scenario is considerably smaller than their mean [BACE on the base scenario.

After having identified the combiners that produce the most accurate ensemble classi-
fiers on the all scenario, I will continue this section with a detailed performance analysis
for every combiner. Based on that analysis the combiners that will be included in the
comparison on the real [EEG] data sets are selected.

The stacking combiners and share the first rank on the all scenario
with mean [BACE of 93.41% and 93.4%. They perform significantly better than all other
combiners. Over all scenarios the performance of these two combiners is promising.
performs better than on each scenario. Because of that, from the
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stacking combiners, only will be included in the comparison on the real data
sets, although per scenario the difference is negligible.

With a mean [BAC of 93.03%, achieves the second rank for the “all scenario” and
also performs well over all scenarios. Therefore, will be included in the real data
comparison.

The combination methods from the Weighted Majority Voting (WMY]) family also
produce promising results. For the base, the noise and the constant scenario at least one
combiner from that family ranks first. For the all scenario[DSWMV] (mean [BAC]|92.66%)
and (mean [BAC] 92.49%) share the fourth place. (mean [BAC] 86.79%)
and (mean [BAC] 86.79%) follow on the shared fifth place. The application of the
significance correction, which T introduced in Section B3] to constantly boosts
BACE of the resulting ensemble classifiers. always performs better or equally
well than [WMV]l The same is true when comparing and DWMV] But the
differences are very small. However, because the significance correction led to a more
accurate ensemble classifier on every scenario, and will not be included
in the final comparison.

What follows is the evaluation of the dependency extension (see Section [3.3.2]). On the
base, noise and constant scenario performs significantly better than [DSWMVI
So, it seems that in the case when there are no dependencies between the base-level
classifiers the dependency extension actually worsens the performance of the resulting
ensemble classifier. However, the [BAC] differences are relatively small. In contrast to
that, there is a relatively huge difference of 6% in favor of on the doubles
and all scenario. This provides evidence that the dependency extension produces, in
fact, a better combination rule than if there are dependencies between the base-
level classifiers. Therefore, and will both be included in the real data
comparison. performs significantly worse than three other methods, that take
into account dependencies between the base-level classifiers, namely and the two
stacking combiners

[BC is part of the promising combiners. When there are no dependencies between the
classifiers, is one of the best combiners. It achieves the shared first place on the base
and the constant scenario and the shared second place on the noise scenario. However, as
for all the other promising but not winning combiners, the BAC of the resulting ensemble
classifier drops significantly on the doubles scenario, leading to a mean [BAC] of 86.78%
on the all scenario. This is not surprising as does not take into account dependencies
between base-level classifiers.

The two harmonic series combiners, Harmonic Series Weighted Voting (HSWV]) and
Dependent Harmonic Series Weighted Voting (DHSWYV]), are not part of the promis-
ing combiners. The resulting ensemble classifiers perform significantly worse than the
promising combiners, but still significantly better than the base-line methods
and ORACLE. [HSWV] achieves a mean [BAC] of 82.75% and [DHSWYV] achieves a mean
BAC] of 75.25% on the all scenario. DHSWYV] performs better than [HSWV] on the noise,
base, and doubles scenario. [ISWV] performs better than [DHSWV] on the constant and
all scenario. The reason for that seems to be that [DHSWV] is disturbed by the con-
stant classifiers. Because of this unclear relationship both methods will nevertheless be
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included in the comparison on the real data.

The simple Majority Voting (MV]) combiner produces a promising mean[BAC|of 92.17%
on the base scenario. For all other scenarios, it is, not surprisingly, heavily disturbed
by the noisy and depended base-level classifiers; leading to a mean [BAC of 55.84% on
the all scenario. The extension to the combiner performs better than on all
scenarios. With the exception of the doubles and the all scenario, it performed similar to
the promising combiners. Hence, only SMV] will be included in the comparison on real
data sets.

Information Theoretic Combination ([TC)) always performs worse or equally bad than
Random Weighted Voting (RWV]). The mean [BAC] of the ensemble classifier built by
ITC on the all scenario is 50%. Because of that, [TC| will not be included in the final
comparison. [TC| chooses bad base-level classifier subsets. They consist of the base-level
classifier with the highest [BAC] and 6 base-level classifiers that perform comparatively
bad. The reason for that seems to be that the information theoretic score is dominated
by the information theoretic diversity.

4.4. Electroencephalography Data Sets

In this section, I will present the results on FElectroencephalography (EEG) data sets.
In addition to the main questions specified at the beginning of this chapter, I will ad-
dress what feature extraction and classification methods are employed for classification.
Furthermore, to access the potential of my methods, I will compare the classification
accuracies of my methods to the accuracies that were achieved by other researchers on
similar data sets.

I will start this section by introducing the different studies from which the data sets
originate. After that, I will present the results separately for each study. The emphasis
during this part is to find out if the proposed set of base-level learners is sufficient for a
fair comparison of the methods and if the employment of ensemble classifiers produces
more accurate classifiers than the base-line methods Select the Best (SelectBest]), ORA-
CLE, and Concatenation ([CONCAT]). Following this part, I will compare the different
combiners on data sets originating from various studies to find out if there is a superior
combiner. After that, I will apply the most promising methods on a data set on that no
successful classification has been achieved yet.

4.4.1. Description of the Studies
Attention

The classification task for the data sets originating from the Attention study is to classify
if the participant attends to the left or the right half of a computer screen, while looking at
a fixation cross. The original results of this study, as well as a more extensive description
of the experimental design, can be found in Sander et al) (IZQ].ﬂ)

The participants of the study originate from three groups, 22 children (f1a5e = 11.9,
Oage = 0.52, range 10 — 13 years), 12 young adults (ptage = 24.19, 0age = 1.57, range
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Figure 4.4.1.: Sequence of screens for one trial of the Attention study. Adapted with
permission from [Sander et al. (2012).

20 — 26 years), and 22 older adults (tage = 73.3, 0age = 1.54, range 70 — 75 years).

During the experiment, the participants were seated comfortably in an electromagneti-
cally and acoustically shielded room. They were shown a screen that displayed a fixation
cross and a set of colored squares for 100ms. A cue, which was permanently shown from
-500ms until Oms relative to the presentation of the screen, indicated to which half of the
screen the participants should attend. The participants were instructed to only shift their
attention but to keep their visual focus on the fixation cross. After a retention interval
of 1000ms, they were shown a screen that potentially differed in the half to which they
were asked to attend to.

Their task was to respond if the screen differed from the screen they had seen before.
The response time was limited to a maximum of 5000ms. Each participant completed
360 trials. Between the trials there was a 1500ms break, in which a fixation cross was
shown.

For the comparison, the task of the classifier is to predict if a participant attends to the
left or the right half of the screen, based on the [EEG] signals from 0 to 1000ms relative
to the onset of the presentation of the to be memorized screen. Only those trials for that
the response of the participants is correct are included in the analysis.

The [EEG] signals were recorded using 61 Ag/Ag-Cl electrodes. Electrode impedance
was below 5k() before the recording. The sampling rate was 1000hz. During the record-
ing, a 0.1 —250Hz band-pass filter was applied and electrodes were referenced to the right
mastoid electrode, but the left mastoid electrode was also recorded.

For preprocessing the [EEG] signals were re-referenced to the mathematically linked
mastoids and high-pass filtered with 0.5Hz. Trials that included eye movement or ex-
cessive muscle activity were removed. On the remaining data independent component
analysis was used to project the residual noise sources out of the data (Jung et al.,2000).
This was done by visually inspecting the components and rejecting those components that
represented noise sources.
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Motor Imaginary

The classification task for data sets originating from the Motor Imaginary study is to
discriminate between a right and left index finger button press. Data from 36 participants
are analyzed. The data sets were recorded by |Zander et all (IZ(M) In their paper a more
extensive description of the experimental paradigm can be found.

During each trial, the participants were shown a “L” or an “R” for 700ms followed by
a pause of 300ms. The presentation of “L” or “R” indicated that they should press the
left (L) or right (R) CTRL-key as quickly and accurately as possible with their left (L)
or right index finger (R). Between the trials there was a 1000ms break.

The [EEG] signals were recorded using 32 Ag/Ag-Cl electrodes. The sampling rate
was 1000hz. During the recording, the [EEG] signals were filtered using a 0.1-1000Hz
band-pass filter.

As input for the base-level learners, I extract the EEGIsignals from -500ms up to 200ms
relative to the button press. A previous approach to only extract the [EEGI signals from
-500 to -200ms relative to the button press did not lead to accurate base-level classifiers.

Auditory Oddball

The classification task for data sets originating from the Auditory Oddball study is to
classify if a participant listens to a rare or a common tone.

The data sets originate from a pilot study employed at the Max Planck Institute
for Human Development. Data sets for six subjects were recorded. The experiment
implemented the auditory oddball paradigm (see [Squires et alJ, |L9_Zd)

During the experiment, the participants were standing still. The room in that they were
standing was neither electromagnetically nor acoustically shielded. The participants were
presented high- and low-pitched tones with varying timely gaps. The high-pitched tone
was presented in 80% (common) of the cases and the low-pitched tone in the remaining
20% (rare) of the cases. The task of the participants was to count how many times the
rare tone occurred. The tones were played for 50ms. The frequency of the common tone
was 1000Hz and 800Hz for the rare tone. The gap between two consecutive tones was
varied between 1200 and 1500ms.

The [EEGI signals were recorded using 60 Ag/Ag-Cl electrodes. The sampling rate was
1000hz. During the recording, electrodes were referenced to the right mastoid electrode,
but the left mastoid electrode was also recorded. Furthermore, a 0.1 — 250Hz band-pass
filter was applied.

As input for the base-level learners I extract, analogously to Beckmann (IZOLd), the
[EEG] data from Oms to 512ms relative to the onset of the auditory stimuli.

For preprocessing the [EEG] signals were re-referenced to the mathematically linked
mastoids and high-pass filtered with 0.5Hz.

Memory

The classification task for the data sets originating from the memory study is to classify if
the participant is able to memorize an object based on [EEGI data from the memorization
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phase. That is, the classifier should predict if a person will be able to remember something
at the time they is trying to memorize it.

For this task a data set for one subject was recorded by me and my colleagues.

The paradigm described by Brehmer et all (IZOM) was used. The participant was
seated comfortably in an acoustically as well as electromagnetically shielded room. The
participant was presented a set of location-word pairs. The task of him was to remember
the pairs. The participant was trained to fulfill this task by employing the method of
loci (see Bower, @)

The experiment consisted of 36 blocks. Each block was separated in an encoding and
a recall phase. During the encoding phase, location cues were presented visually on a
monitor and the to-be-recalled words were presented aurally over headphones. For each
location-word pair, first the location cue was shown for 500ms. This was followed by the
presentation of the word. After that, followed a break, in which the participant should
memorize the location-word pair. Then, the next location cue followed immediately. For
each block 16 location-word pairs had to be remembered. In every block each location

was part of exactly one pair.

After all 16 location-word pairs had been shown, the participant could start the recall
phase at his own will. In the recall phase each location cue was presented for 5000ms.
During the presentation of the location, the participant had to type in the first three
letters of the memorized word. After successive 6 Blocks, the subjects was allowed to
pause for several minutes.

If a word occurred in one block, it was guaranteed not to occur in the following block.
A total of 16 locations and 413 highly imaginable words were used as stimuli. The time
between the presentation of two successive locations was 2300ms. In prior sessions it was
adjusted such that the participant could remember approximately 10 out of 16 pairs.

For the classification one trial consists of the [EEGI signals from the beginning of the
location presentation until the beginning of the next location presentation. The to-
be-separated classes are “the person will remember the pair” and “the person will not
remember the pair”.

The [EEG] signals were recorded using 60 Ag/Ag-Cl electrodes. Electrode impedance
was below 2k() before the recording. The sampling rate was 5000Hz. A 0.1 — 1000Hz

acr|

location word memorization

500 2300 recall
ms ms max 5000ms

(a) (b)

Figure 4.4.2.: Sequence of screens for the (a) encoding and the (b) recall.
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band-pass filter was applied. During the recording, electrodes were referenced to the
right mastoid electrode, but the left mastoid electrode was also recorded.

For preprocessing the [EEG] data was re-referenced to the mathematically linked mas-
toids and down-sampled to 500Hz. Trials that included eye movement or excessive muscle
activity were removed.

4.4.2. Results

A short notational remark. Most measures employed are per data set measures. I will
often report means of that measures. The number between the brackets after the number
for the mean denotes the corresponding standard deviation.

Attention

One subject had to be excluded from the analysis. The training of the Ledoit’s Reqularized
Linear Discriminant Analysis (LRLDA]) classifier that was used for needed
more main memory than was request-able on the computing cluster (see Section [£.2)).

From the 49 base-level classifiers on average 16.64(6.24) achieve an accuracy better than
random guessing. The average disagreement measure between the base-level classifiers
that performed better than random guessing is 0.436(0.0249). Hence, the proposed set
of base-level learners produces a set of diverse and accurate base-level classifiers on the
Attention data sets. Thus, an appropriate combination of the base-level classifiers is
expected to result in an ensemble classifier that is more accurate than ORACLE.

In fact, the ensemble classifier built by the best combiner achieves a mean [BAC of
66% and a mean rank of 7.43, while ORACLE achieves a mean [BAC of 61.83% and a
mean rank of 4.28. Furthermore, all combiners generate ensemble classifiers that are
more accurate than ORACLE. With the exception of fized Adaptive Boosting ([[AB]) and
Signifigance Magjority Voting (SMY]), the rank differences between all combiners and
ORACLE are significant.

On top of that, all combiners, with the exception of FAB] and [SMV], produce more ac-
curate ensemble classifiers than [SelectBestl (mean [BAC| 64.28% rank 5.24) and [CONCAT]
(mean BAC| 64.25% rank 5.68). The ranks of the top three performing combiners,
[DSWMV], DHSWV] and [DHSWV] all proposed in this thesis, are significantly larger than
the ranks of Testing the differences between the combiners and
for significance reveals that only the rank difference between and [CONCAT] is
significant.

There were two previous studies that successfully classified spatial attention based
an neuroimaging data. [Kelly et all dl(ﬂ)ﬂ) achieved a mean accuracy of 73%. Because
both classes were of equal size this measure is equivalent to the BAC. While their mean
BAC is 7% higher than the [BAC| for my best classification method, a direct compar-
ison seems at least questionable as the subjects that participated in their study could
concentrate on the attention task, while in the study from which the data sets I used
originate from, the participants also had to concentrate on the memory task. Hence,
it is reasonable to assume that the classification task for my data sets is more difficult.
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‘ method ‘ Balanced Accuracy (BAC]) ‘ rank ‘

(DSWMVI 66 7.43
HSWVI 65.89 7.13
DHSWV] 65.84 7.05
BC] 65.33 6.51
SWMV] 65.33 6.64
STLRLDAI 65.21 6.41
[CONCAT] 64.25 5.68
[SelectBest| 64.28 5.25
[SMV] 64.06 4.97
AR 63.91 4.66
ORACLE 61.83 4.28

Table 4.2.: Mean [BACE, in percent, and ranks, for all methods, over all data sets orig-
inating from the Attention study. The methods are ordered by their mean
ranks. The gray rows mark the combiners that are proposed in this thesis.

van_Gerven and Jensen (2009) even classified four different directions of covert spatial

attention at a reasonable classification rate using Magnetoencephalography (MEG) for
signal acquisition. Because they used, instead of[EEG]L MEG as signal acquisition method
a direct comparison seems inappropriate.

Another interesting question is: What base-level classifiers are used for the classifi-
cation? To address this question I calculate the mean weights over all folds from all
subjects as learned by the best method Dependent Significant Weighted Majority Vot-
ing (DSWMY)). For each data set D; and each fold f a weight vector w; s is learned,
which consists of a weight w; ¢(j) for each base-level classifier. There are n = 55 data sets
and 10 folds per data set. Each entry w,(j) of the mean vector is calculated as follows

10niz

i=1 f=1

Analogous to that, the entries of the standard deviation vector w, are calculated as

w(j)a = 10n — 1 Z Z ,f - ‘)M)Q

i=1 f=1

The mean vector w,, and the standard deviation vector w, of all weights are displayed
in Figure 4.3l The models that correspond to the 10 largest entries in the mean vector
w,, can be seen in Table @3l While one needs to be careful when comparing the mean
weights of the different base-level learners, especially because the standard deviation is
comparatively high, it is interesting that from the ten base-level learners corresponding
to the largest weights, nine are based on Common Spatial Patterns (CSP)) or Local Means
(LM]) features. Especially when taking into account that previous classification of spatial
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Figure 4.4.3.: Means w,, and standard deviations w, of the weights for each base-level

learner as learned by [DSWMV] over all folds from all data sets from the
Attention study. The table that translates #base-level learner to the cor-
responding base-level learner can be found in Appendix [A1l

‘ base-level classifier ‘ weight

v+ + [LRLDAl | 0.2943
rem + [CSP| + [LRLDA] | 0.2901
B +I[CSPl + [LRLDAl | 0.2532

6 + LM + SVMOPTCl | 0.2523
§ HLMISVMOPTC 0.2495

0 + RMl + EVMOPTC | 0.2149
con + |CSPl+ [LRLDAI | 0.1814
con -HLM| + BVMOPTC] | 0.1791
o +HCSP| + [LRLDAI 0.1652

6 +CSP] + [LRLDAI 0.1529

Table 4.3.: Ten largest entries of the mean vector w, and the corresponding base-level

learners.
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attention (IKell;LeL_alJ, 2003, lvan_Gerven and Jenser, IZDQQ) was solely based on o power

features, this an interesting finding.
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Motor Imaginary

From the 49 base-level classifiers on average 15.78(3.66) achieve an accuracy better than
random guessing. The average disagreement measure between the base-level classifiers
that performed better than random guessing is 0.4294(0.0201). Hence, the proposed
set of base-level learners produces a set of diverse and accurate base-level classifiers on
the Motor Imaginary data sets. Thus, an appropriate combination of these base level
classifiers should result in an ensemble classifier that is more accurate than ORACLE.

Analogously to the Attention data sets, all combiner produce ensemble classifiers that
have higher mean [BACk than ORACLE. The most accurate ensemble classifier is created
by and achieve a mean [BAC] of 76.45%, while the classifier selected by ORA-
CLE achieves a mean [BAC] of 68.88%. With the exception of SMV], the rank differences
between the ensemble classifiers and ORACLE are significant.

Also, with the exception of SMV] all combiners build ensemble classifiers that perform
better than the ensemble classifier built by (mean [BAC] 72.65%). Excluding
Harmonic Series Weighted Voting (HSWY]) and Dependent Harmonic Series Weighted
Voting (DHSWY)), the rank differences between all ensemble classifiers and [SelectBestlare
significant. However, the high difference between and [HSWV], and
and [DASWYV], both in mean [BAC] and rank, suggest that with a larger set of data sets
the differences could be found to be significant.

In contrast to the Attention data sets, [CONCAT]clearly outperforms all other methods
on the Motor Imaginary data sets. With 87.91% its mean [BAClis 11.46% higher than the
mean [BAC] of the ensemble classifier built by the best combiner STLRLDAl Furthermore,
its mean rank is 11, that means that is the method that produces the most
accurate classifier on every single data set. This very pregnant difference between the
Attention and the Motor Imaginary data sets will be further investigated in the following
sections.

It is known that motor imaginary can be classified robustly. Indeed, it is one of the
main paradigms in Brain Computer Interface (BCI)) research. There exist classification
results for exactly the same data sets as were used for this study. While
(@) do not report exact values, their figure suggest that performs better
than most of the classification methods they tried, and at a similar level than their best
classification method.

Analogously to the Attention data sets, I also want to examine what features are
employed for the classification. As clearly is the most accurate method, I
interpret the classifier built by [CONCAT] To do that the weight vectors w learned by
[LRLDA] are examined. Note that learns a weight for each feature, contrary to
that learns a weight for each base-level classifier. The larger the deviation of
a weight w(k) from 0, the higher is the contribution of the corresponding feature to the
classification score w”x + ¢ (see Equation 2.2.6)).

In contrast to the mean weights presented in Section [£4.2] for each data set D; out
of the n = 36 data set only one weight vector w; is obtained by applying the learning
algorithm of to the complete data set. Hence, each entry of the mean vector
wy, is calculated as
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‘ method ‘ (BACI ‘ rank

[CONCATI | 87.91 | 11
STLRIDAI | 76.45 | 8.25
fAB 76.18 | 8.01
[DSWMVI | 75.87 | 7.33
B 75.37 | 6.47
75.42 | 6.42
HSWV] | 74.28 | 5.07
[DHSWYV| | 74.32 | 5.03
[SelectBest] | 72.65 | 3.43
MV 72.09 | 2.97
ORACLE | 68.88 | 2.01

Table 4.4.: Mean [BACE, in percent, and ranks, for all methods, over all data sets orig-
inating from the Motor Imaginary study.The methods are ordered by their
mean ranks. The gray rows mark the combiners that are proposed in this
thesis.

w) = 5 Y wilk)

Analogous to that, each entry of the standard deviation vector w, is calculated as

wolk) = \| = S (wi(h) — w(h))?
1=1

In Figure 4.4.3] w,, and w, are plotted for all features.

There are eight accumulations of highly deviating weights: S; = {w,(k) : k €
{1,...,42}}, Sy = {wyu(k) : k € {139,...,778}}, S3 = {wyu(k) : k € {875,...,1514}},
Sy = {wu(k) : B € {1611,...,2250}}, S5 = {wu(k) : k € {2347,...,2986}}, S¢ =
{wu(k) - k € {3083,...,3722}}, Sy = {w, (k) : k € {3819, ...,4458}}, and Sg = {w,(k) :
k € {4555,...,5194}}. These accumulations are interrupted by accumulations of almost
zero weights. The first set of highly deviating weights, S, corresponds to the [CSP] fea-
tures calculated on all frequency bands. The next group Ss corresponds to the Spatio
Temporal Features (STE), LMl Regional Means (RM), and Global Mean (GM), calcu-
lated on the con (1-45 Hz) frequency band. The following peaks Ss,...,Sg correspond
to the [STE calculated on the §, 6, a, 8, v and rem (70+ Hz) frequency bands in that
order. For all features based on the Permutation Entropy (PE) the [LRLDA] algorithm
consistently learned very low weights. Thus, their influence on the classification score is
negligible.

For weights with a large mean the variance is also relatively high. For weights with
a small mean the variance is also relatively small. This implies that, the same types of
features have been employed for every subject.
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Figure 4.4.4.: Means w, and standard deviations w, of the weights for each feature as
learned by [CONCAT] over all data sets from the Motor Imaginary study.

Auditory Oddball

From the 49 base-level classifiers on average 6.67(1.5055) achieve an accuracy better than
random guessing. The average disagreement measure between the base-level classifiers
that perform better than random guessing is 0.1831(0.0201). This means that only very
few base-level learners produce accurate classifiers. Furthermore, these classifiers are not
very diverse. Hence, a combination of base-level classifiers may be able to improve the
performance, but independently of the employed combiner drastic improvements are not
to be expected. The reason for this lacking diversity seems to be that for most subjects
only the classifiers based on [STE] were more accurate than random guessing.

Considering the previous examination it is not surprising that no combiner is able to
significantly improve the performance. Indeed, from the combiners, only Bayes Com-
bination (BC) (mean [BAC] 70.21) performs a little better than ORACLE (mean [BAC|
69.71). Also, no improvement over [SelectBesil (mean [BAC] 69.28) is observable.

What is very interesting is that the combination is still able to boost the
accuracy significantly. [CONCAT] produces a mean [BAC] of 74.86% and an average rank
of 9.83 in comparison to a mean [BAC of 69.71% and a mean rank of 8.17 for ORACLE.

The classification of the Event Related Potentials (ERD)) elicited by a rare target stimuli
is one of the most popular approaches for building [BCIk. Thus, it is not surprising that
a successful classification is possible. The same data sets are used for the analysis as
employed by Beckmann (2010). His best method achieved a mean [BAC of 83%. He
estimated the [BAC] using the holdout method. Hence, it is questionable if a direct
comparison of the results is appropriate. However, it seems like his specialized method
performs even better than [CONCATI

Analogously to the previous studies, I also want to examine what features have been
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‘ method ‘ (BACI ‘ rank ‘

CONCAT] | 74.86 | 9.83
B 7021 9
ORACLE | 69.71 | 8.17
STLRLDAI | 69.49 | 8.33
SelectBestl | 69.28 | 7.67
A8 68.98 | 7.83
64.2 | 4.33
SWMV] | 63.35 | 4.33
HSWYVI | 61.43 | 3.08
DSWMV! | 58.49 | 1.66
DASWY] | 53.59 | 1.7

Table 4.5.: Mean [BACk, in percent, and ranks for all methods over all data sets origi-
nating from the Auditory Oddball study. The methods are ordered by their
mean ranks. The gray rows mark the combiners that are proposed in this
thesis.

used for the classification. As clearly was the best classification method,
I interpret it. I calculate the mean vector w, and the standard deviation vector w,
analogously to the approach that was used for the Motor Imaginary study. The entries
of the mean and the standard deviation vector are displayed in Figure As the
weights are basically the same as for the Motor Imaginary data sets, please refer to the
interpretation presented there.

Intermediate Summary and Open Questions

For the Motor Imaginary and the Attention study, the proposed set of base-level learners
was clearly sufficient and produced accurate and diverse base-level classifiers. For the
Auditory Oddball data sets that was not the case. It is unclear whether this is an
elementary property of the data sets or if the set of base-level learners was not sufficient.

It was shown that if the base-level classifiers are diverse and accurate, the combination
of base-level classifiers clearly outperforms ORACLE. Furthermore, a fusion of the base-
level classifier decisions led to more accurate ensemble classifiers than the selection of the
best base-level classifier by SelectBestl

However, while the combination of base-level classifiers performed better than [CONCAT]
on the Attention data sets, on the Motor Imaginary data sets clearly outper-
formed the ensemble classifiers. When taking into account that the Attention data sets
consist of r = 5194 features and on average N = 608.17(19.95) trials, so the mean num-
ber of features per trial is - ~ 8.54, this is a surprising result. The original Linear
Discriminant Analysis (LDAI) algorithm fails if 5z > 1 because the estimated covariance
matrix is non-invertible. Of course, the estimator of the covariance matrix used for the
training of LRLDA] was built such that it produces a reasonable estimate if 5 > 1, but I
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Figure 4.4.5.: Means w, and standard deviations w, of the weights for each feature as
learned by [CONCAT] over all data sets from the Auditory Oddball study.

did not expect it to work that well if the relationship is as extreme. Also, this is incon-
sistent with the findings of Dornhege et all (2004) and Boostani et. all (2007). They both
found that performs worse than ORACLE. However, none of them employed
the very advanced [LRLDAI classification method, specifically tailored for the situation
when the number of trials is small compared to the number of features.

As result of searching for differences between the Attention and the Motor Imaginary
data sets, I found that the two groups of data sets mainly differ in the number of features
per trial 5. While the mean number of features per trial is 8.54 for the Motor Imaginary
data sets, it is 12222/260.89 = 46.85 for the Attention data sets. This may very well be
the reason why the ensemble classifiers perform better than on the Attention
data sets.

To confirm this relationship, I rerun the analysis for the Motor Imaginary data sets
and modify the set base-level learners such that the total number of features increases to
72394, resulting in an average feature per trial ratio of 72394/608.17 = 119.0358. This is
done by including three new base-level learners to the set. As features the raw amplitude
[EEGI signals from the con (1-45 Hz), o, and 8 band are extracted separately.

It is not possible to employ [LRLDA] as classification method for on the
modified set of base-level learners. Recall that the learning algorithm of [LRLDA] esti-
mates the per-class covariance matrix of the features. Hence, if the number of features
is r = 72394, it will have to estimate @ ~ 2.6205 - 10? values. Taking into account
that Matlab allocates 8 Byte main memory for every entry, this results in a memory
consumption of 2.0964 - 1019Byte = 20.964GB. The maximum request-able amount of
main memory on the computing cluster is smaller than 17GB. Hence, it is impossible to
execute the learning algorithm of the [LRLDAIl on the available hardware. Therefore, I
used Support Vector Machine with Optimization of the C hyper-parameter (SYMOPTC))
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as classification method for [CONCATI
The second open question is, which out of the combiners leads to the most accurate
ensemble classifier. This question will be answered in Section [4.4.2]

Modified Motor Imaginary

Three subjects had to be excluded from the analysis because the time needed for cal-
culation of the results for each fold exceeded the maximum available computing time of
two days. The reason for that was that the learning algorithm took several
hours for the high dimensional feature vectors based on the raw [EEG] amplitude data.
To get a result for these subjects, I employ Support Vector Machine (SYM)) as classifi-
cation method instead. The C parameter is chosen according to the standard routine
of Fieldtrip if no C hyper-parameter is specified. By reading Appendix [A.2] it can be
confirmed that the results of these subjects do not vary substantially from the results
presented here.

As expected, completely fails on the very high dimensional features. With
a mean [BAC] of 60.32% and a mean rank of 1.03 it performs significantly worse than
every combiner. Further analysis reveals that it performs worse than every combiner on
all data sets. The mean [BAC] achieved by the best combiner is 77.05. This
is tremendously lower than the mean [BAC] achieved by on the original set of
base-level learners (87.91%).

Furthermore, all combiners perform better than ORACLE (mean [BAC 68.83%). With
the exception of SMV] the differences between them and ORACLE are significant.
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‘ method ‘ IBAC ‘ rank ‘

[STLRIDAI | 77.05 | 9.79
AR 76.28 | 8.70
[DSWMVI | 76.10 | 8.64
BC 75.26 | 7.30
SWMYV] 75.09 | 6.67
HSWV] | 74.83 | 6.45
DOHSWV] | 74.71 | 6.42
[SelectBest] | 73.04 | 4.47
SMV] 71.87 | 3.64
ORACLE | 68.83 | 2.89
[CONCAT] | 60.32 | 1.03

Table 4.6.: Mean [BACE, in percent, and ranks for all methods over all data sets originat-
ing from the Modified Motor Imaginary study. The methods are ordered by
their mean ranks. The gray rows mark the combiners that are proposed in
this thesis.

Comparison of the Combiners

The comparison of the combination methods is based on the results of the Attention data
sets and on the results of the set of modified base-level learners on the Motor Imaginary
data sets, introduced in the previous section. For the original set of base-level learners
on the Motor Imaginary data sets and the Auditory Oddball data sets, it is apparent
that performs best.

The best combiner yields a mean [BAC] of 69.78%. With the exception of
SMV], all combiners perform better than (mean BAC] 67.56%). The rank
differences are significant for all combiners but

Overall the combiners perform very similar. With the exception of SMV] the mean
[BAC] varies only between 68.55% for [ABland 69.78% for DSWMYVI The rank differences
are higher but also not very big. Comparing all combiners, excluding [SelectBest] against
each other reveals the following picture: While performs best, the differences
between it and STLRLDAI [HSWV] and [BC| are not significant. However, when looking
at the data, especially at the ranks, it seems like and are the best
combiners.

The extension of Signifigance Weighted Majority Voting (SWMY]) performs
significantly better than SWMV] (mean [BACI68.99%, p < 0.01). DSWMYV], also, performs
significantly better than (p < 0.01), indicating that the strategy that was chosen
to correct the weights for dependencies (see Equation B.3.1]), which led to DSWMYV] is
superior to the strategy FABI uses. The extension [DHSWYV] performs worse than the
original [HSWV] algorithm (p = 0.8790).
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| [ AT ] rank |
[DSWMV| | 69.78 | 6.30
STLRLDAI | 69.65 | 6.13

[HSWVI 69.06 | 5.33
B 69.20 | 5.29
[DHSWV| | 69.21 | 5.27
68.99 | 5.17
[FAD] 68.55 | 4.69
[SelectBest] | 67.56 | 3.67
SMV] 66.99 | 3.16

Table 4.7.: Mean[BAGCE, in percent, and ranks for all combiners over all data sets originat-
ing from the Modified Motor Imaginary study and the Attention study. The
methods are ordered by their mean ranks. The gray rows mark the combiners
that are proposed in this thesis.

Memory

Since the classification of a successful memorization has not yet been achieved, the pur-
pose of this data set is not to compare the different methods but rather to use the most
powerful methods to try the successful classification.

From the 49 base-level classifiers 8 achieve a [BAC| better than random guessing. The
disagreement measure between those base-level classifiers is 0.3.

The number of features is 15582 and the number of trials 557. Hence, the number of
features per trial is 27.97. Because this value lies between 8.54 and 46.85, it is unclear if
[CONCATI or one of the combiners should be chosen. But because of the large numbers
of features, as classification method for [CONCATISVMOPTC] has to be used. Because
of that, I propose that the ensemble classifiers will be the superior methods and choose
to include only them in the significance test against random guessing.

In Table 8 you can see the mean accuracies for the five most promising combiners,
as identified in the previous section. The combiner out of these combiners that yields to
the highest [BAC] is (58.04%). With the exception of STLRLDA] and [DHSWYV], the
[BACE achieved by these combiners are significantly better than the expected [BAC by

| combiner | BAC |

BC] 58.04
HSWYVI 57.3
(DSWMV] | 55.31
TLREDAI 53.52
IDHSWVI | 53.34

Table 4.8.: BACE, in percent, for the most promising combiners on the memory data set.
The gray rows mark the combiners that are proposed in this thesis.
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‘ base-level learner ‘ (BAC] ‘

rem + [CSPl + [LRLDA] | 59.81
B + [CSPl + [LRLDA] | 58.43
con + [CSP| + [LRLDAI | 56.92
0+ 1CSPI + [LRLDAI 55.91
v +[CSP] + LRLDAI | 55.73
5+ +[LRLDAIl | 55.12
a + +[LRLDA] | 54.33
0+ [LM] + SVMOPTC] | 54.25

Table 4.9.: The ten most accurate base-level learners for the memory data set ordered by
their corresponding [BAC]

random guessing. The [BAC] of is also estimated. With 48.40 it is in the area
of random guessing.

Since the interpretation of an ensemble classifier built by is not straightforward,
I report the base-level classifiers that performed better than chance instead. The [BACk
for the ten more accurate base-level learners can be seen in Table All nine base-level
learners that are based on features are included in the set of the ten base-level
learners that produce the most accurate base-level classifiers.

With 59.81% ORACLE performs better than any ensemble classifier. It is important
to note that, in contrast to the other data sets, only one data set is available from the
memory study. Thus, when picking the best single classifier after having evaluated the
accuracies the statistical advantage of ensemble classifiers vanishes (see Section 2.3.3)).
Furthermore, comparing the best base-level classifier against the best combiners is a
biased comparison. There are 49 base-level classifiers and only five combiners. Hence,
there is a statistical advantage for the base-level classifiers. A fair comparison is the
comparison against [SelectBestl [SelectBest] produces an ensemble classifier with a [BACI
of 56.57%.

4.5. Summary

With the exception of the Auditory Oddball data sets, the proposed set of base-level
learners produced accurate and diverse base-level classifiers. It was, thus, suited for a
fair comparison of the several methods.

The combination of base-level classifiers based on different feature and classifica-
tion methods produced significantly more accurate classifiers than ORACLE. Also, the
true combination of base-level classifiers produced ensemble classifiers that had higher
Balanced Accuracys (BACK) than the ensemble classifiers created by Select the Best
(SeleciBest).

The comparison against Concatenation (CONCAT)) revealed that produces
more accurate classifiers when the number of features per trial is relatively low and that
the ensemble classifiers generate more accurate classifiers when the number of features
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per trial is relatively high. When the number of features per trials was smaller than
8.54, the classifier built by was more accurate than the classifier induced by
any combiner. When the number of features per trial was larger than 30, the ensemble
classifiers were more accurate than [CONCAT]

Out of the combiners DSWMV], which was proposed in this thesis, produced the most
accurate ensemble classifiers on the Electroencephalography (EEG]) data sets. The [BACI
differences between it and the remaining combiners was, with the exception of Stacking
with Ledoit’s Regularized Linear Discriminant Analysis (STLRLDAI), Harmonic Series
Weighted Voting (HSWY]), and Bayes Combination (BC)) significant .

On the simulation data sets induced the most accurate classifier, while
Dependent Significant Weighted Majority Voting (DSWMYV]) followed on the 3rd rank. It
is interesting that fized Adaptive Boosting (FABI), which was the second best combiner in
the simulation study, was the second worst combiner on the [EEG] data sets. In the other
direction [HSWV] performed relatively bad on the simulation data sets but achieved the
shared first rank on the real data sets.

For all presented data sets, one of the compared classification methods was able to infer
a separating model. Furthermore, the best combiners could be employed to successfully
classify if a person memorizes something based on the [EEG] signals during the encoding
phase. This is the first proof of concept for this classification task.
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5.1. Summary and Conclusion

The main hypothesis of this thesis was (see Chapter B]) that the combination of the
different feature extraction (see Section 2.2.3) and classification methods (see Section
2.2.4)) that are employed for the classification of Electroencephalography (EEGI) signals
leads to a more accurate classifier than the best classifier based on only one combination of
feature extraction and classifier method, estimated by the ORACLE classifier. ORACLE
returned the classifier that achieved the best mean accuracy after having evaluated a set of
classifiers on all data sets from one Pattern Recognition (PR task. A further proposition
was that this results in a classification method that achieves good classification accuracies
on a variety of [EEG] data sets resulting in a very powerful [EEGI single-trial analysis
tool. Furthermore, it was proposed that the combination of the classification and feature
extraction methods through a Multiple Classifier System (MCS) (see Section 2.3)) leads
to a more accurate classifier than the employment of a single classification method on
the concatenation of the outputs of all feature extraction methods. The latter approach
was called Concatenation (CONCAT]) throughout this thesis. The last hypothesis was
that a combination of the classifiers leads to a more accurate ensemble classifier than the
selection of the best classifier, by Select the Best (SelectBestl) (see Section Z3.2.7]).

To examine this hypotheses, the aforementioned methods were compared on a number
of data sets originating from four different [EEGI studies. To examine if an ensemble
classifier is superior, a set of base-level classifiers was defined. The set was chosen to
consist of base-level classifiers that extract different characteristics of the[EEG]signals (see
Section [3.4]). Multiple different combiners were employed to generate multiple ensemble
classifiers based on the defined set of base-level classifiers. In addition to well known
combiners, new combiners were introduced, implemented, and evaluated (see Section
B3). Because the combiners used the same set of base-level classifiers to build the
ensemble classifier, no further analysis was required to determine which combiner results
in the most accurate ensemble classifier.

The combination of base-level classifiers, for example, by Stacking with Ledoit’s Reg-
ularized Linear Discriminant Analysis (STLRLDA]) and Dependent Significant Weighted
Majority Voting (DSWMY]), boosted the Balanced Accuracy (BAC) compared to ORA-
CLE by up to 7.57% (see Chapter M). Furthermore, the combination of the base-level
classifiers by led to an increase of the mean [BAC of 2.22% compared to the
selection of the most accurate base-level classifier by [SelectBestl When comparing the
against [CONCAT], the picture is not as clear. The had an clear advantage
when the number of features per trial was larger than 30. Contrary to that, [CONCAT]
performed substantially better than any if the number of features per trial was

82



5. Summary, Conclusion and Outlook

smaller than 9.

The results suggest (see Section £.4.2)) that, out of the employed combiners (see Sec-
tion B3)), Dependent Significant Weighted Majority Voting (DSWMYV]) and Stacking with
Ledoit’s Regularized Linear Discriminant Analysis (STLRLDA]), from which
was proposed in this thesis, are the best combiners for heterogeneous classifiers. It is
worth noting that, produced significantly more accurate ensemble classifiers
than the two famous and powerful combiners Adaptive Boosting (ABl) and Weighted
Magjority Voting (WMV]).

In combination with the the proposed set of base-level learners, the best combiners and
can be used as a very powerful single-trial analysis tool. It was shown that
these methods are able to infer a separating model (classifier) for a variety of different
[EEG] data sets. Also, it was shown how to interpret these models (see Chapter H). The
Pattern Recognition Systems (PRSk) presented in this thesis are the first that have
been shown to be able to infer separating models on more than one type of [EEG] data,
sets.

The classification task for the memory data set was to classify if the participant will
remember a location-word pair based on the[EEGIsignals during the encoding (see Section
M7 ). The best combiners were employed to create ensemble classifiers that achieve
a [BAC of 58.04% on the memory data set, which is significantly better than the [BAC]
expected by random guessing (see Section[L.4.2]). This represents the first proof of concept
that it is possible to classify if somebody will remember something at the time they is
trying to memorize it.

Overall, the results imply that the general direction in [EEG] classification research
should be changed from “finding the best single classification method” to “finding the
best combination of classification methods”.

5.2. Outlook

Another very popular approach to deal with high dimensional feature vectors is to per-
form feature selection before the data set is fed to the classification method. It would
be interesting to compare the performance of a[PRS| that employs feature selection, e.g.,
Boostani et all (2007), against the built by the best combiners on the data sets
with a number of features per trial of greater than 30. The employment of a [MCS| may
also be a better strategy when features are combined that originate from the same fea-
ture extraction method but are extracted on different time intervals. This procedure is
very often employed as feature extraction method for Brain Computer Interfaces (BCIR).
In this case, for each interval a separate base-level classifier could be induced. Indeed,
the employment of could be superior in any case where the feature space is large
compared to the numbers of trials.

My results suggest that the regularization performed by is beneficial compared
to the regularization performed by Ledoit’s Regularized Linear Discriminant Analysis
(LRLDA)) if the number of features per trial is above 30. A further investigation when
and under what circumstances which regularization is appropriate could be informative.
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Another interesting question is if it is possible to further increase the accuracy by in-
cluding more base-level learners. There are various popular feature extraction methods
that have not been employed in this thesis, such as Autoregressive models (Dornhege et aIJ,
), Power Spectral Densities, Adaptive Autoregressive Parameters (ILﬂLeiLaﬂ, Izmj,
and references within), Common Sparse Spectral Spatial Pattern (IIhlmhegeﬁ_alJ, l20_(ld),
and Regularized Common Spatial Patterns (Lotte and Guan, 2011).

What might also have great potential is the combination of the a-posteriori likelihoods,
as used by Dornhege et all (2004) (see Section BLI), with the combiner. In
that way not only the accuracies of the base-level classifier are considered, but also the a-
posteriori likelihood for each class. Another very interesting approach is the employment
of a trainable combiner, as introduced by Sunl (M) (see Section B.1.3). It should by
examined if the resulting ensemble classifiers gets more accurate, when the normalized
mutual information is used as estimate for the dependency between two base-level clas-
sifiers, instead of the mutual information. Motivated by the fact that was the
best combiner, it should definitely be examined if popular methods that automatically
generate the base-level classifiers, such as [AB] Bagging and Random Subspace, can be
improved by employing as combiner.

The finding that it is possible to classify if a person will remember something at the
time the person is trying to memorize it has definitely to be further investigated. If
the accuracy of such a classifier could be increased, a cheap and mobile [EEG] system
could become a revolutionary tool for the study and practice of learning. For example, a
device could be worn by students to alert them when they have successfully memorized

an equation.

It is unclear if the proposed [PRSk can be used as[BCIk because the real-time capabilities
were not tested. Thus, it is worthwhile to examine if the proposed can be used as
and provide a higher information transfer rate than the existing [BCI.
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6. List of Abbreviations

AB Adaptive Boosting, see Section 2.3.2.3]

BAC Balanced Accuracy, see Definition [I3]

BC Bayes Combination, see Section 223.2.4]

BCI Brain Computer Interface, see Section

CONCAT Concatenation, see chapter 3]

CSP Common Spatial Patterns, see Section 2.2.3]

DHSWV Dependent Harmonic Series Weighted Voting, see Section 3.3.3]
DSWMV Dependent Significant Weighted Majority Voting, see Section
DWMV Dependent Weighted Majority Voting, see Section

EEG Electroencephalography, see Section 2.2.1]

ERP Ewvent Related Potentials, see Section 222,11

fAB fized Adaptive Boosting, see Section 2.3.2.3]

GM Global Mean, see Section 3.4

HSWV Harmonic Series Weighted Voting, see Section 3.3.3]

ITC Information Theoretic Combination, see Section

k-NN k-Nearest Neighbor, see Section [2.2.4]

LDA Linear Discriminant Analysis, see Section 2.2.4]

LM Local Means, see Section 3.4

LRLDA [Ledoit’s Reqularized Linear Discriminant Analysis, see Section 2.2.4]
MCS Multiple Classifier System, see Section 2.3l

MV  Majority Voting, see Section 2.3.2.1]

PE Permutation Entropy, see Section 223

PR Pattern Recognition, see Section 2.1
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6. List of Abbreviations

PRS Pattern Recognition System, see Section 2]

RLDA Regularized Linear Discriminant Analysis, see Section 2.2.4]
RM Regional Means, see Section [3.4]

RWV Random Weighted Voting, see Section [3.3.4]

SelectBest Select the Best, see Section 2.3.2.7]

SSP Shaffer’s Static Procedure, see Section

STF Spatio Temporal Features, see Section 2.2.3]

STLDA Stacking with Linear Discriminant Analysis, see Section

STLRLDA Stacking with Ledoit’s Regularized Linear Discriminant Analysis, see Section
3.3.0)

SVMOPTC Support Vector Machine with Optimization of the C hyper-parameter, see
Section [3.4]

SMV Signifigance Majority Voting, see Section B.3.1]

SVM Support Vector Machine, see Section [2.2.4]

SWMV Signifigance Weighted Majority Voting, see Section B3.1]
WMV Weighted Majority Voting, see Section

WV Weighted Voting, see Section 2.3.2.2]
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A. Result Section Appendices

A.1. Complete List of Base-Level Learners

‘ number ‘ base-level learner ‘ ‘ —mber ‘ TR PR I p—
L con + Xol + LULDJ % | o DPEB  BVMOPTO
3 ‘;igsﬂsgiw 57 | o P | BYMODT
. am+w 28 o +[PEb + SVMOPT(
LELDA 29 a + LM + SVMOPTC
> 5 +CSD + LRLDA] 30 | o BM | SYMODPTO
0 7 HCSD! + LELDAI 31 | o+ GM | BYMOPTO
7 rem -HCSP] + [LRLDAI 5 5 PIB | BYMODTC
8 con + [PEB + SVMOPTC 33 5 PIH | BYMODTC
9 con + [PEM + SVMOPTC] 31 7 D5 BVM =
10 con + [PEb + BVMOPTC 3% EES I
11 con + [LM]| + [SVMOPTC] 36 R VR
12 con + [RMl + SVMOPTC] T 7 CM | BUMOPT(
13 con + [GM] + EVMOPTC 33 TPEB L BVMODPT
14 | ¢-+[PEs +RVMOPTG 35T DO EYMODT
15 5 + PEH + BYMOPT( 5 7+[EEB+
16 5 + PEb + BYMOPT( - 'L+m+w
17 5 + LM + BYMOPTC 5 ,HIBMJSMMQRTQ, .
13 5 + BM + BYMOPTC = 7+w+'b-w -
;g gi%:w 44 | rem +PEB + EVMOPTO
o1 7 DIl - SUNODPTO 45 rem + [PEY + SVMOPTC
% | ¢+ D5 - SYMOPTd 0 rem**
53 | 0+ LM+ BUMODTO " o e
24 0 + BM + BYMODPTC 5 rem+w+w
% 0 + GM + BVMODTC Sy MOPLO
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A. Result Section Appendices

A.2. Results: Left out Subjects From the Modified Motor
Imaginary Data Sets

‘ method ‘ mean ‘ rank ‘
STLRLDAI | 71.72 | 9.33
70.91 | 8.83

71.53 8
BC 70.87 8
70.54 | 6.83
DHSWYVI | 69.64 | 5.67

ORACLE | 69.14 | 5.33
SelectBest] | 68.30 b)
MV] 69.64 )
HSWV] | 69.09 | 3
ICONCAT] | 55.35 1
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