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AbstratThe suessful lassi�ation of single-trial Eletroenephalography (EEG) signals enablesparalyzed people to ommuniate and an be employed as analysis tool. This thesis in-vestigates the possibility to inrease the auray of EEG lassi�ation systems by om-bining lassi�ers that are based on di�erent feature extration and lassi�ation methodsthat are employed for the lassi�ation of EEG signals. This is ahieved by omparingmultiple lassi�ers that are based on a ombination of lassi�ers against the best singlelassi�er on data sets originating from four di�erent EEG studies. The results show thata ombination of lassi�ers is able to inrease the auray by more than 7%. This impliesthat the general diretion in EEG lassi�ation researh should be hanged from ��ndingthe best single lassi�ation method� to ��nding the best ombination of lassi�ationmethods�.
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1. IntrodutionReently, the automati lassi�ation of Eletroenephalography (EEG) signals via Pat-tern Reognition Systems (PRSs) has gained attention. One main motivation behind thisis that the automati lassi�ation of EEG signals enables ommuniation for paralyzedpeople. Given that there are di�erenes between lasses, a PRS hypothesizes a model,based on a labeled data set that aptures these di�erenes and an reliably lassify anovel sample based on that model. PRSs an be used as an EEG data analysis toolby interpreting the separating model a PRS infers from a data set. In ontrast to theonventional analysis tehniques, whih are mostly univariate approahes, the employ-ment of a PRS as analysis tool enables the detetion of di�erenes that are based oninterations between multiple variables (van Gerven et al., 2009).In the last 10 years, researhers proposed a variety of di�erent feature extrationand lassi�ation methods for the lassi�ation of EEG signals (see Setions 2.2.3 and2.2.4). Most EEG-PRS are based on one partiular ombination of feature extrationand lassi�ation method (Lotte et al., 2007). It is promising to ombine the di�erentfeature extration and lassi�ation methods to potentially reate a PRS that is, for anygiven Pattern Reognition (PR) task, more aurate than the best PRS that is basedon one partiular ombination of feature extration and lassi�ation method. Beausethe best out of all possible lassi�ers an not be obtained, I use the so alled ORACLElassi�er as base-line omparison. If the ORACLE is asked, it returns the lassi�er, outof a andidate set of lassi�ers, that ahieves the highest mean auray over all data setsfor one partiular PR task. Due to the employment of various di�erent feature extrationand lassi�ation methods, this PRS might be able to perform well on a large variety ofEEG data sets. Hene, it produes a separating model, whih an be interpreted, on alarge set of di�erent data sets. Thus, the �rst hypothesis of this thesis is: A ombinationof the di�erent feature extration and lassi�ation methods that are employed for thelassi�ation of EEG signals improves the auray of the resulting lassi�er omparedto ORACLE and results in a PRS that performs well on a variety of EEG data sets.The most popular approah to ombine feature extration and lassi�ation methods isthe employment of so alled Multiple Classi�er System (MCS). A MCS onsists of a setof base-level lassi�ers and a ombiner. All base-level lassi�er are trained for the samePR task, but eah base-level lassi�er di�ers from the other base-level lassi�ers. Theombiner ombines the deisions from all base-level lassi�ers to one overall ensembledeision. The resulting lassi�er is alled ensemble lassi�er.One of the most famous ombiners is the simple seletion of the best lassi�er, as esti-mated on a part of the training set. This ombiner is alled Selet the Best (SeletBest)in the remainder. The seond hypothesis of this thesis is that a ombination of the de-isions of the base-level lassi�ers leads to a more aurate ensemble lassi�er than the1



1. Introdutionseletion of the best lassi�er by SeletBest.An even simpler approah is to only ombine the di�erent feature extration methods,and to employ a single lassi�ation method on the onatenation of the outputs of allfeature extration methods. This approah is alled Conatenation (CONCAT) through-out this thesis. The last hypothesis of this thesis is that the employment of a MCS leadsto a more aurate lassi�er than the CONCAT approah.When ORACLE is ompared against a MCS, the set of andidate lassi�ers is identialto the set of base-level lassi�ers. MCSs have been applied suessfully for many diverseEEG-PR tasks. Furthermore, it was shown that the ombination of multiple featureextration methods is able to boost the auray ompared to ORACLE. In all previousstudies, MCSs outperformed the simple CONCAT approah. The previous omparisonswere all made on one partiular type of EEG data sets. However, a systemati omparisonon a large set of many di�erent data sets is missing. In this thesis, I ompare severaldi�erent MCSs against CONCAT, ORACLE, SeletBest, and eah other on a large setof di�erent EEG data sets. The di�erent MCSs only di�er in the ombiner they employ.They are all based on the same diverse and broad base-level lassi�ers (see setion 3.4).A majority of the ombiners that I ompare have not yet been applied to the lassi-�ation of EEG signals. Furthermore, I propose several new ombiners, whih are notlimited to the appliation to EEG-PRSs. While all previous studies used the lassi�a-tion of EEG signals to build a PRS that works well on one partiular type of EEG datasets, my goal is to build a PRS that works well on a variety of di�erent EEG data sets.I apply a subset of the MCS that I propose to an EEG lassi�ation problem for thatsuessful lassi�ation has not yet been ahieved. The motivation behind this is toexamine if one MCS is powerful enough to infer a separating model for that problem.1.1. OutlineThe remainder of this thesis is laid out as follows.In Chapter 2, the mathematial and psyhophysiologial foundations will be intro-dued. It will start with a short introdution to PR. After that, the appliations ofthe lassi�ation of EEG signals will be introdued in detail. Then, various featureextration and lassi�ation methods that have been employed in previous studies willbe introdued. The hapter ends with an introdution to MCS, with an emphasis ondi�erent ombiners.Chapter 3 will start with a detailed review of previous work. After that, the learningalgorithm that is used to train the ensemble lassi�ers will be introdued. Also, thenewly proposed ombiners and the settings for the existing ombiners will be presented.Chapter 3 also ontains the desription of the employed set of base-level lassi�ers. Itwill onlude with the details of the implementation.In Chapter 4, the results of the omparison of the di�erent methods will be presented.The methods will be ompared on four di�erent EEG lassi�ation tasks and on simulateddata sets. After the methods and the implementation details will have been presented,the results on the simulated data sets will be introdued. After that, the results on the2



1. IntrodutionEEG data sets will be shown. Chapter 4 onludes with a summary of the results.In Chapter 5 a summary of this thesis will be presented and onlusions based on theresults will be drawn. It will also ontain an Outlook that identi�es further possibleimprovements.
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2. FoundationsThis setion introdues the foundations that are neessary for the understanding of thisthesis. It will start with a brief introdution to Pattern Reognition (PR), inluding atreatment of the proper omparison of lassi�ers. Thereafter, the foundations of, theappliation of, and the methods for the lassi�ation of Eletroenephalography (EEG)signals will be introdued. The last setion will introdue the ombination of lassi�ers.2.1. Pattern ReognitionThis setion ontains a short introdution to the �eld of Pattern Reognition (PR). Amore extensive introdution an, e.g., be found in Duda et al. (2000). PR is a sub-�eldof mahine learning, whih in turn is a sub-�eld of arti�ial intelligene.Assume that someone asked you to build a system that separates hippos and gira�esbased on their height and weight. To ful�ll this task you ollet a data set that ontainsthe weight and height for eah member of a set of hippos and gira�es. One approah toful�ll this task would be to look at the data set and de�ne a separating model based onwhat you have learned about the di�erenes between the two lasses, hippos and gira�es.Supervised learning aims at transferring this learning proess, whih is neessary tohypothesize a model of the di�erenes, to a omputer. Given that there are di�erenesbetween lasses, a supervised learning algorithm is an algorithm that hypothesizes amodel, based on a labeled data set, re�eting these di�erenes and lassi�es a novelsample based on that model. The labeled data set ontains a number of samples forwhih the lass membership is given by an external soure. In our example, the lassesare hippos and gira�es. The model ould, for example, suggest that if an animal has aheight of less than 4 meters it is an hippo, otherwise it is a gira�e. An animal that wasnot inluded in the data set an now be automatially lassi�ed using this model.A Pattern Reognition System (PRS) is a system that employs a supervised or un-supervised learning algorithm to infer a separating model, whih is then employed tolassify novel samples. In the remainder of this setion I will explain the funtionality ofa PRS by desribing the omponents of that a PRS typially onsists. These omponentsrepresent the solutions of the di�erent problems one has to solve when designing a PRS.For this thesis, I am onerned only with those PRSs that employ a supervised learningapproah.2.1.1. ComponentsThe omponents of a PRS are usually sequentially proessed. I will introdue the om-ponents in their proessing order. 4



2. FoundationsInputSensing ComponentSegmentation ComponentFeature Extration ComponentClassi�ation ComponentPost Proessing ComponentDeision

Data StreamSampleFeatures Extrated from the SampleLabel
Figure 2.1.1.: Illustration of the data �ow between the typial omponents of a PRS.Sensing ComponentBeause a PRS works on a omputer, it is only able to proess digital data. The taskof the �rst omponent, named sensing omponent, is to transform hosen aspets of thereality into a format that is readable by a omputer.The sensing omponent should sense those aspets of the reality that re�et the dif-ferenes between the lasses. Hene, the hoie of an appropriate sensing omponent isruial for the suess of a PRS.For our hippo and gira�e example, the sensing devie might be a amera. For otherdomains, a mirophone or Eletroenephalography (EEG) eletrodes might be used.Segmentation ComponentWhen using a mirophone as sensor for a speeh reognition PRS, the omputer getsa onstant data stream as input. However, most supervised learning algorithms areonly able to handle disrete samples as input. Therefore, the onstant data stream hasto be segmented into samples. The deision how to segment the data results in thesegmentation omponent.Depending on the domain of the lassi�ation problem the segmentation omponentmay be ruial to the suess of the PRS, or may be ompletely unneessary. For aspeeh PRS the design of a good segmentation omponent is ruial, as opposed to ane-mail spam �lter, where the data is naturally segmented into e-mails. A set of multiple5



2. Foundations

Figure 2.1.2.: Illustration of the outputs of eah omponent. The sensing omponentsreturns a piture from whih the segmentation omponent extrats ani-mals. In this ase the gira�e. The feature extration omponent extratsthe height from the piture of an animal and the lassi�ation omponentlassi�es animals based on their height.
6



2. FoundationsSegmentation A I like thisSegmentation B Il ik eth isTable 2.1.: Illustration of the importane of proper segmentationsamples is alled raw data set.De�nition 1. Let X ⊆ Kr be the set of unlabeled samples from multiple lasses, alledmeasurement spae, where K is a �eld. Let Y = {y1, . . . , yL} be the �nite set of possiblelabels representing the lasses. Furthermore, let M ⊆ X × Y be the set of samples thatare labeled orretly. Then a �nite subset D ⊆ M is alled data set and (x, y) ∈ D isalled labeled sample. N = |D| denotes the number of samples in the data set D and ylthe lth label out of the L possible labels.Feature Extration ComponentIn the introdution of this setion it was assumed that the data set ontains height andweight as measure. This is true if one wants to build a PRS that works on data sets thatare made by zoologists. In this ase neither a sensing nor a segmentation omponent isneeded as sensing and segmentation is performed by humans.However, if one wants to build a PRS that enables a robot in the wilderness to distin-guish gira�es from hippos, the data set will more likely be a olletion of images. If theamera resolution is 640 × 480, eah image is represented by a 3 · 640 · 480 = 921, 600dimensional vetor x. While it is possible to build a suessful PRS on a raw data set,with high feature dimensions like this, the approah to transform the samples into a bet-ter disriminating and meaningful spae is more ommon. This proess is alled featureextration. The goal of the feature extration omponent is to extrat features that di�erlargely for samples from di�erent lasses and are very similar for samples from the samelass.De�nition 2. A feature extration funtion φ is a funtion that maps samples fromthe measurement spae X to a new measurement spae Xfeat. φθ,τ : X → Xfeat. θ areparameters that are learned from the data set D, and τ are parameters that have to behosen by the designer, often alled hyper-parameters. I all
Dfeat = {(xfeat, y) : (x, y) ∈ D ∧ xfeat = φθ,τ (x)}the feature data set.The feature extration omponent an onsist of the omposite of arbitrary manyfeature extration funtions φn ◦ φn−1 ◦ . . . φ1. Eah feature extration funtion φi hasparameters τi and , where θi is learned using the data set transformed by φi−1. Withthat in mind I will just speak of the feature extration funtion in the remainder

φθ,τ = φn ◦ φn−1 ◦ . . . φ1 (2.1.1)7



2. FoundationsThere are two approahes to obtain a feature extration funtion. The �rst approah isthe inorporation of prior knowledge about the underlying problem. It is, for example,known that on average gira�es are taller than hippos. Therefore, the height of an animalshould be a feature that enables a good distintion between gira�es and hippos. Theextration of the height as feature also redues the number of feature dimensions from the
921600 pixels of the piture to 1 height value. Therefore, it drastially redues demandson memory and omputation time. This approah simpli�es the learning task for the PRSby delegating part of the learning to the designer. The designer spei�es and implementsthe, in this ase at least very omplex, feature extration funtion. If this approah ishosen, no parameters have to be learned from the data set; θ = ∅.The seond approah relies less on prior knowledge. It uses a so-alled learning algo-rithm to indue the feature extration funtion from the data set or in other words topopulate θ.De�nition 3. An algorithm Iφ?,τ

(D) = φθ,τ that takes as input an untrained featureextration funtion φ?,τ (x) and a data set D and returns the trained feature extrationfuntion φθ,τ (x) is alled a learning algorithmExample algorithms that fall into this ategory are: Prinipal Component Analysis(Duda et al., 2000, pp. 568), Independent Component Analysis (Duda et al., 2000, pp.570), and Common Spatial Patterns (CSP) (see Setion 2.2.3). These algorithms onsistof an untrained feature extration funtion φ?,τ and the orresponding learning algo-rithm Iφ?,τ
. I will all suh algorithms feature extration methods in the remainder.When a learning algorithm is used to populate θ, the designer of the PRS still heavilyin�uenes the hypothesized model by hoosing the feature extration method and itshyper-parameters.Classi�ation ComponentThe heart of eah PRS is the lassi�ation omponent. The hoie of the lassi�ationomponent is ruial.De�nition 4. A trained lassi�er Ψθ,τ is a funtion that maps samples from the featurespae Xfeat to labels Ψθ,τ : Xfeat → Y .Analogous to the feature extration omponent, there are two ways to build a lassi�er,one an de�ne a stati lassi�er based on prior knowledge or use a learning algorithmto indue a lassi�er from a data set. In ontrast to the feature extration method,no state-of-the-art general purpose PRS exists, to my knowledge, that does not employa learning algorithm for training its lassi�er. The lassi�ation omponent takes thefeature data set as input.Note that a lassi�er ould also be de�ned as the feature extration funtion for thatthe new measurement spae is the label set Y . This implies that θ is also populatedby the orresponding learning algorithm and τ are hyper-parameters, whih must behosen by the designer. The population of θ by a learning algorithm, whih leads to alassi�er, is also referred to as the learning algorithm IΨ indues a lassi�er Ψ. I will8



2. Foundationsall the ombination of an untrained lassi�er and its orresponding learning algorithmlassi�ation method.An example lassi�ation method is the mean lassi�er. The learning algorithm of themean lassi�er alulates the mean for eah lass
myl =

1

|Dyl |
∑

(x,y)∈Dyl

xwhere Dyl = {(x, y) ∈ Dfeat : y = yl}. The trained mean lassi�er assigns a new sample
x to the lass to whose mean it has the smallest distane, with respet to some distanemeasure d. Therefore, the disriminating model onsists of the mean of every lass andthe distane funtion d that is employed . The set of parameters learned from the dataonsists of the lass-wise means θ = {my1 , . . . ,myL} and the hyper-parameter re�etsthe hoie of the distane funtion τ = d. A new sample x ∈ Xfeat is lassi�ed aordingto the following formula

Ψθ,r(x) = arg min
yl∈Y

(d(myl , x))Note that the onatenation of the lassi�er and the feature extration funtion
Ψ ◦ φ : X → Y (2.1.2)also results in a lassi�er. Therefore, I will speak of a lassi�er Ψθ,τ for the onatenationof the feature extration and the lassi�ation funtion in the remainder of this thesis.Furthermore, I will summarize the learning algorithm of the feature extration methodand the learning algorithm of the lassi�ation method as IΨ?,τ

(D). Remember that it isa short for
IΨ?,τ

(D) := IΨ?,τ
(φθ,τ (D)) = IΨ?,τ

(Iφ?,τ
(D)(D)) = Ψθ,τwhere Iφ?,τ

is the learning algorithm of the feature extration funtion, IΨ?,τ
the learningalgorithm of the lassi�er, and φθ,τ (D) denotes that the raw data set is mapped to thefeature data set by applying φθ,τ to eah sample in D.Post Proessing ComponentThe post proessing omponent is de�ned as everything that is done with the lassi�ationof a sample.Most PRS perform some ation that is dependent on the lassi�ation deision. Forexample, an iris sanner ould open a door if the lassi�er deided that the iris put infront of the sensors belongs to a person who has aess rights to the room.The post proessing omponent might also be able to add ontext to a lassi�ation.If, for example, a letter reognition system is unsure if a piture of a letter represents a or an o, but the same system lassi�ed the ontext of the letter with high ertaintyas �f?r�, the post proessing omponent may deide that, based on the ontext, o has amuh higher a-priori likelihood and, hene, assign the sample to the lass o.Another funtion of the post proessing omponent an be the integration of multiplelassi�ers working on multiple aspets of the input to one deision. This will be presented9



2. Foundationsin more detail in Setion 2.3. But �rst, I explain how to get a valid measure of theperformane of a lassi�er.2.1.2. NotationThroughout this work I will use the following notation, originating from the previoussetion. D will be the raw data set, ontaining samples (xi, yi), with ardinality N . Dis assumed to be a representative subset of the whole population M . Y = {y1, . . . , yL}desribes the set of labels with ardinality L, X denotes the measurement spae, and Ψa lassi�er indued by the learning algorithm IΨ. yi refers to the label of the ith samplein the data set D, while yl refers to the lth out of the possible labels Y .2.1.3. Estimation of the Performane of a Classi�erLoss and RiskAfter reating a lassi�er, its performane is usually of interest. Questions related to theperformane are typially: Is the performane of a lassi�er su�ient for a given task?Is it performing better than another lassi�er? The performane of a lassi�er is usuallyquanti�ed with the help of a loss funtion.De�nition 5. A loss funtion L is a funtion that maps a labeled sample (x, y) ∈ Mand a lassi�er Ψ to a ost term. L(x, y,Ψ) ∈ R≥0The most basi and most often employed loss funtion is the zero-one loss funtion.De�nition 6. Let x, y,Ψ be as in De�nition 5. The zero-one loss funtion is then de�nedas
L01(x, y,Ψ) =

{

0 if, Ψ(x) = y

1 otherwiseThe zero-one loss funtion assigns, independently from the true label y, every mis-lassi�ation the ost 1. Corret lassi�ations are assigned zero ost. Other loss fun-tions are, for example, used if the ost of a mislassi�ation depends on the true lass.A typial example for unequal mislassi�ation osts are medial tests. In most asesthe onsequenes are less severe if a medial test lassi�es a patient as sik who is notsik ompared to the situation when the test lassi�es a patient as healthy who is sik.Therefore, for a medial test mostly asymmetri loss funtions are used, whih assign themislassi�ation of a sik patient a high ost.The risk of a lassi�er is the expeted loss. It is the most ommon performane measurefor lassi�ers.De�nition 7. The risk of a lassi�er is de�ned as
R(Ψ, p) =

ˆ

x∈X,y∈Y

L(x, y,Ψ)p(x, y)dxdywhere L is a loss funtion and p(x, y) the joint probability mass funtion of X and Y .10



2. FoundationsWhen using the zero-one loss funtion, an equivalent measure for the risk is the au-ray.De�nition 8. Let R01(Ψ, p) be the risk alulated with L01 as loss funtion. Thena(Ψ, p) = 1−R01(Ψ, p)is alled auray of lassi�er Ψ.Note that the auray represents the probability that a lassi�er Ψ predits the truelass, a(Ψ, p) = P (Ψ = orret). If p(x, y) were known, the auray ould be alu-lated diretly .Also, if p(x, y) were known, the lassi�ation task would beome trivial. It an beshown that the Bayes lassi�erBayes(x) = argmax
yl∈Y

p(x|Y = yl)P (Y = yl)

p(x)is the lassi�er with the highest auray (Duda et al., 2000, pp. 24). No lassi�er isable to ahieve a higher auray than Bayes.But when building a lassi�er, the joint probability mass funtion p(x, y) is rarelyknown. Only a �nite subset D of the whole population M is available. Hene, the designof other lassi�ers than Bayes is reasonable, and the auray an only be estimated onthe �nite data set D.Estimation MethodsThere are several methods for estimating the auray, whih I will introdue in theremainder of this setion. Independently of the method one hooses to estimate theauray, it is de�ned as follows.De�nition 9. Let D be a data set, the estimated auray of the lassi�er Ψ on thatdata set is aes(Ψ,D) = 1− 1

N

∑

(x,y)∈D

L01(x, y,Ψ)Reall that N = |D|.Note that one usually is not interested in the performane of a stati lassi�er Ψ butin the performane of the lassi�er that is indued by a learning algorithm IΨ from thedata set D. The most naive method to estimate the auray is to use the same data setfor estimating the auray as for induing the lassi�er.De�nition 10. When estimating the auray on the same data set that was used forinduing the lassi�er, the estimated auray is alled training auray and alulatedas follows atrain(IΨ,D) = aes(IΨ(D),D)) = 1− 1

N

∑

(x,y)∈D

L01(x, y, IΨ(D))

11



2. FoundationsThe training auray is not a good estimate of the auray. It is a biased estimate.The training auray is usually signi�antly higher than the true auray beause thedata on that the auray is estimated is not independent from the data that was usedto indue the lassi�er.The general solution to that problem is to divide the data set D into two disjoint datasets, Dh and Dt. The induer IΨ employes Dt to indue the lassi�er Ψ. The aurayof Ψ is then estimated on Dh. Sine one part of the data set is held out from training,this method is alled holdout method.De�nition 11. The auray estimated by the holdout method is de�ned asaes(IΨ,D) = aes(I(Dt),Dh) = 1− 1

N

∑

(x,y)∈Dh

L01(x, y, IΨ(Dt))where Dh = D/Dt.It is ommon to use 2
3 of the data set for the training set Dt and 1

3 for the holdoutset Dh. Assuming that the learning algorithm IΨ gets better with a bigger data set,the auray estimated by the holdout method, in opposition to the training auray,yields an underestimation of the auray (Kohavi, 1995). This problem is severe whenthe data set is small.To utilize the omplete data set for the estimation of the auray, a method alled
n-fold ross-validation is often employed. This method basially repeats the holdoutmethod with di�erent holdout sets. The data set is separated into n disjuntive subsets, eah ontaining N/n samples. For eah subset Di the learning algorithm is trainedwith the remainder of the data set D/Di, and the auray of the resulting lassi�er isestimated on Di. The auray estimated by n-fold ross-validation is the summed lossover the n folds divided by the number of samples N .De�nition 12. The auray estimated by the n-fold ross-validation method is de�nedas av(IΨ,D) = 1− 1

N

n
∑

i=1

∑

(x,y)∈Di

L01(x, y, IΨ(D/Di))where D = ∪i∈{1,..,n}Di and Di ∩Dj = ∅ if i 6= j.When estimating the auray using n-fold ross-validation, one has to deide howmany disjuntive data sets to reate and how to reate them. Kohavi (1995) showedthat 10 data sets (folds) are a good trade-o� between bias and variane of the resultingestimator and that strati�ation leads to a derease of both variane and bias of theestimated auray. Strati�ation means that the folds Di ontain roughly the sameproportions of the lasses as the original data set D.When the data set D is imbalaned, i.e., D does not ontain equal proportions ofall lasses, a better measure of the performane of a lassi�er than the auray is theBalaned Auray (BAC) (Brodersen et al., 2010).12



2. FoundationsDe�nition 13. The BAC is de�ned as the average per lass aurayba(Ψ, p) =
1

L

L
∑

l=1

a(Ψ, p|Myl
(x, y))where Myl := {(x, y) ∈ M : y = yl}Analogous to the auray, the BAC an also be estimated using one of the introduedmethods.2.1.4. Comparison of Classi�ersIndependent of the method used for the estimation of the performane of a lassi�er,the performane measure depends on the data set. As long as D 6= M , it is a randomvariable that potentially hanges if a di�erent data set is drawn from M . Thus, methodsfrom the �eld of statistial inferenes need to be applied to answer questions like, �doesa lassi�er perform better than hane� or �does a lassi�er perform better than anotherone�.The general proedure used in statistial inferene is to formulate a hypothesis. Hy-potheses are expressed in so alled test statistis. Test statistis are ertain harateristisof the data. E.g., a test statisti is the estimated BAC of a lassi�er.To substantiate that the hypothesis is true, the ontrary of the hypothesis, alled nullhypothesis, is assumed, and the probability under the null hypothesis of obtaining teststatistis that are at least as extreme as those observed is alulated. This probability isoften alled p-value. If the p-value falls below a ertain threshold, whih is often alled

α, the null hypothesis is rejeted, and the original hypothesis is believed to be true.When the hypothesis is a di�erene hypothesis, e.g., lassi�er A has a higher auraythan lassi�er B, the di�erene is alled statistially signi�ant at the 5% level, whih isoften simply referred to as signi�ant if the orresponding p-value falls below 5%.2.1.4.1. Comparing Against Random GuessingWhen omparing a lassi�er Ψ against random guessing using the BAC as test statis-ti, the null hypothesis is ba(Ψ,p) = 0.5. Under the null hypothesis and independentsamples, the estimated auray aes for eah lass is distributed as
1

Nyl

B(Nyl , 0.5)where Nyl is the number of samples in the data set D with label yl, and B(n, p) is thebinomial distribution with n trials and suess probability p per trial. Note that p isdi�erent from the probability mass funtion. The estimated BAC is distributed as
1

L

L
∑

l=1

1

Nyl

B(Nyl , 0.5)13



2. FoundationsThe Binomial distribution onverges to the normal distribution for large n, approximatelyin the range of n > 30. The data sets that are used for estimating the BAC usually ontainmore than 30 samples per lass. Therefore, the sum onverges to a normal distributionwith mean 0.5 and varianevar( 1
L

∑ 1

Nyl

B(Nyi , 0.5)) =
1

L2

∑ var( 1

Nyl

B(Nyl , 0.5)) =
1

L2

∑ 1

N2
yl

var(B(Nyl , 0.5))

=
1

L2

∑ 1

N2
yl

1

4
Nyl =

1

L2

∑ 1

4NylLet b be the BAC ahieved on D. The probability that the estimated BAC b or a higherBAC is ahieved by a lassi�er that independently guesses is therefore:
P (baes (Ψ,D) > b|ba(Ψ, p) = 0.5) =

1
ˆ

b

N (x; 0.5,
1

L2

∑ 1

4Nyl

)dx (2.1.3)where N(x;µ, σ2) is the likelihood of x under the univariate normal distribution withmean µ and variane σ2. If this probability is smaller than 5%, we say that Ψ performssigni�antly better than random guessing.Comparing two Classi�ers on a Single Data SetFor omparing two lassi�ers, Ψ1 and Ψ2, Salzberg (1997) suggests a di�erent proedure.He proposes to use the following test statistis. The number of samples in the data setwhere Ψ1 predits the orret lass and Ψ2 predits the wrong lass.
s = |{(x, y) ∈ D : Ψ1(x) = y ∧Ψ2(x) 6= y}|Analogous to that, the number of samples in the data set where Ψ2 predits the orretlass and Ψ1 predits the wrong lass.
f = |{(x, y) ∈ D : Ψ2(x) = y ∧Ψ1(x) 6= y}|The null hypothesis says that no lassi�er performs better and guesses are independent.Thus, E(s) = 0.5(s + f) = E(f), where E(s) denotes the expeted value of the randomvariable s. Let semp and femp be the values observed for a ertain data set. Furthermorelet semp be greater than femp. Then, under the null hypothesis, the probability that avalue for s that is at least as high as semp is observed is

P (s > semp|Ψ1 = Ψ2) =

semp+femp
∑

k=semp B(k; semp + femp, 0.5)where B(k;n, p) denotes the probability of k suesses under the binomial distributionwith n trials and suess probability p. Thus, if this value falls below 5%, it is believedthat Ψ1 performs better than Ψ2. If the original hypothesis was �Ψ1 > Ψ2 or Ψ1 < Ψ2�,the p-value has to be multiplied by two to orret for the two omparisons.14



2. Foundations2.1.4.2. Comparing Multiple Classi�ers on Multiple Data SetsFor omparing multiple lassi�ers Ψ1, . . . ,ΨK on multiple data sets D1, . . . ,Dn Dem²ar(2006) proposes to use the Friedman test.The Friedman test omputes for every lassi�er Ψk and data set Di the rank, based onan arbitrary performane measure, ompared to the other lassi�ers. It is not importantif the best or the worst performing learning algorithms gets assigned rank 1 or rank K.I will assume that the best lassi�er gets assigned rank K in the remainder. Let rik bethe rank of the lassi�er Ψk on the data set Di. The Friedman test employs the meanrank over all data sets
Rk =

1

n

n
∑

i=1

rikper lassi�er as test statistis. The test statistis and distribution for the null hypothesisthat all averaged ranks Rk are equal an be found in Dem²ar (2006).After the hypothesis that there are no di�erenes between the lassi�ers was falsi�ed, apost-ho proedure an be applied to test whih pairs of lassi�ers di�er. Under the nullhypothesis, no di�erene between the two learning algorithms Ψo and Ψm, the di�ereneof the two ranks is mapped to a z-value by the following formula
z =

Ro −Rm
√

K(K+1)
6nThe z-value an be transformed to a p-value as follows

p =

z
ˆ

−z

N(x; 0, 1) dxWhen omparing a set of lassi�ers over a set of data sets, usually two typial questionare of interest. Whih lassi�er out of a set of lassi�ers T := {Ψ1, . . . ,ΨK} performsbetter than a base-line lassi�er Ψ, and whih lassi�er out of a set of lassi�ers performsbest.For omparing a set of lassi�ers against a base-line lassi�er a p-value for eah lassi�erfrom the set an be obtained by omparing the lassi�er against the base-line method,using the aforementioned method. But the threshold α has to be dereased.Let H be the null hypothesis that there are no di�erenes between any lassi�er fromthe set T and the base-line lassi�er, and let Hk be the null hypothesis that the lassi�er
Ψk is idential to the base-line lassi�er. Note that the null hypothesis H1, . . . ,HK areindependent. Thus, under the null hypothesis H, the expeted number of rejeted nullhypothesis Hk is Kα. To orret for this in�ated α error, the α threshold for eahhypothesis Hi ∈ {H1, . . . ,Hk} is divided by K. This proedure is alled Bonferroniorretion.
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2. FoundationsStati Sha�er ProedureIf omparing all pairs of lassi�ers, it is also possible to use the Bonferroni orretion.However, the Bonferroni orretion assumes that eah omparison made is ompletelyindependent of the others. Beause this assumption is not met, the Bonferroni orretionis overly onservative.Garía and Herrera (2008) ompared orretion shemes that exploit dependenies be-tween the hypothesis with regard to their suitability for the omparison of multiplelassi�ers. They onluded that the Bergmann-Hommel proedure performs best but isalso omputational omplex and hard to understand. Sha�er's Stati Proedure (SSP)has almost equivalent power but is muh simpler.When omparing all pairs out of K lassi�ers, there exists a total of K(K−1)
2 := Gdi�erene hypotheses. Eah di�erenes hypothesis orresponds to a hypothesis Ψm 6= Ψo.For eah hypothesis the p-value for the orresponding null hypothesis an be obtained byemploying the post-ho Friedman test, introdued in the previous setion. The �rst stepof the SSP is to sort the null hypothesis by their p-values. Let H1, . . . ,HG be the nullhypotheses sorted by their orresponding p-value. In general, the α value orrespondingto the ith hypothesis is orreted by the number of hypotheses that an be true giventhat (i− 1) hypotheses are false.Hene, H1 is rejeted if p ≤ α/G. Note that eah null hypothesis orresponds tothe proposition that one pair of lassi�ers, Ψm and Ψo, performs the same Ψo = Ψm.If H1 is rejeted, ∃m, o ∈ {1, . . . ,K} : Ψo 6= Ψm. Therefore, for all other lassi�er

∀k ∈ {1, . . . ,K}/{m, o}Ψk 6= Ψm ∨ Ψk 6= Ψo. Hene, if H1 is wrong, at least K − 1additional null hypothesis have to be wrong. Thus, the orretion term t2 for the seondhypothesis is t2 = G− (K − 1). The algorithm to alulate the orretion term for everystage and a more extensive desription of SSP an be found in Sha�er (1986).A �nal remarkIn this setion, for simpliity, I always assumed to ompare lassi�ers. In this thesis I willrather ompare learning algorithms. I will do so by estimating the BAC of the learningalgorithms on eah data set, using 10-fold strati�ed ross-validation. The introdues testan then be applied on these estimates in the same way.2.2. Classi�ation of Eletroenephalographi SignalsThe lassi�ation of Eletroenephalography (EEG) signals is an appliation area, out ofmany, of Pattern Reognition (PR). In the remainder of this setion I will �rst introduethe basis of EEG. After that, I will give an overview about why the lassi�ation ofEEG is useful and what its appliations are. The last subsetions will fous on the featureextration and lassi�ation methods that are usually employed to build EEG-PatternReognition Systems (PRSs).
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2. Foundations2.2.1. EletroenephalographyEEG is a neuroimaging method based on eletrial �elds generated by neural ativity.The �eld potentials are measured by eletrodes at di�erent loations on the salp, at aertain sampling rate. Eah eletrode provides a time series of eletrial potentials.Classi�ation of EEG signals aims at separating di�erent brain states. While restingstate lassi�ation is also of interest, most EEG-PRSs try to separate signals that areindued by ertain events. This signals are alled Event Related Potentials (ERP). Forexample, one of the data sets used in this thesis omes from an experiment where thepartiipants heard a high- or a low-pithed tone. The potentials that were generated bythe proessing of the tone are the ERP. The remaining brain ativity is onsidered noise.The main task of a EEG-PRS is to separate the ERP from the noise.To generate the data sets that are needed for supervised learning, typially for every to-be-separated lass multiple repetitions are reorded. For example, multiple repetitions ofthe presentation of a high- and a low-pithed tone. In the EEG ontext these repetitionsare alled trials. The samples for the data sets are usually generated by utting a �xedsized time interval out of eah trial. Thus, eah element of the raw data set typially isof the form
x ∈ RC·Twhere C is the number of hannels (eletrodes) and T the number of time points thatare extrated. Beause there usually is a one to one relationship between experimentaltrials and samples in the data set, I will also all samples trials in the remainder of thisthesis.The ERP are typially weaker than the ongoing brain ativity. Even worse, the EEGsignal is additionally disturbed by external noise soures (Lotte et al., 2007). The mostprominent noise soures are eletrial �elds indued by eye movements, musle ativity,and eletrial devies / power jams. Typially, the magnitude of those noise signals isof orders higher than the magnitude of the brain signal. Additionally, beause reordingEEG signals is omparatively time onsuming and the to-be-performed tasks are oftenmonotonous and, hene, exhausting, the data sets typially ontain less than thousandtrials; often substantially less. One trial is usually around one seonds long and sampledat 1000Hz. Thus, for one trial the dimensionality of the raw amplitude data is C ·

T = 60 · 1000 = 60, 000. Most EEG-PRSs redue the number of data dimensions byextrating features from the raw data. But still, it is often the ase that the numberof features is higher than the number of trials. This problem is often referred to asurse-of-dimensionality.To summarize this: The three major hallenges when building an EEG-PRS are smalltraining data sets, high dimensionality, and a low signal to noise ratio. As we will seein Setion 2.2.3, researhers ame up with various methods to deal with these problems.I will �rst introdue the major appliations of the lassi�ation of EEG signals in thefollowing setion.
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2. Foundations

(a)

(b) ()Figure 2.2.1.: (a) Piture of a partiipant during an EEG Experiment. (b) EEG signalfrom 8 hannels during 1 seond. () Example of a 64 hannel eletrodeap montage (Brain Produts, 2012).18



2. Foundations2.2.2. AppliationsThere are two types of major appliations of EEG lassi�ation: Enabling diret brainomputer ommuniation and the utilization of EEG lassi�ation as an analysis methodin neurosiene.Brain Computer InterfaesA Brain Computer Interfae (BCI) is a PRS that enables the ommuniation betweena person and a omputer via brain signals. Most urrent BCI systems use EEG assensor beause, ompared to other neuroimaging methods, suh as funtional magnetiresonane imaging (fMRI) and Magnetoenephalography (MEG), EEG is heap, has agood time resolution and is portable.The most prominent appliation of BCIs is the enabling of ommuniation for par-alyzed patients (Sellers et al., 2007, Hinterberger et al., 2007, Pfurtsheller et al., 2007,Blankertz et al., 2007). Another popular appliation of BCIs is the ontrol of arti�iallimbs (Pfurtsheller et al., 2007). Both appliations are realized by distinguishing brainpatterns that an willfully be generated by the patients.Most urrent BCIs are only able to distinguish two lasses and work in a synhronousmode. Synhronous mode hereby refers to the fat that the lassi�ation has to be trig-gered by external ues. A patient an not send ommands to the omputer spontaneously.These are the two main reasons why the information transfer rate of urrent BCI systemsis less than 0.5bit/s. However, for people who are not able to ommuniate at all eventhis small information transfer rate means a tremendous improvement of their situation.One major outstanding issue of BCI researh is that, while it was proven that mosthealthy subjets and also patients with only little residual musular ontrol are ableto ontrol a BCI, no researh lab has yet reported the suessful ontrol of BCI bya ompletely loked-in patient (Kübler et al., 2007). In the ompletely loked-in stateno musular ontrol and, thus, no ommuniation is possible. The tragedy of that ir-umstane is that the ompletely loked-in patients would bene�t most of a BCI. It issimply the only hane for them to ommuniate. All other patients are also able toommuniate with the help of their musles.This tragi situation might be one ause why reently the use of BCIs for healthysubjets has gained attention. It was, e.g., used as ontrolling devie for omputer games(Blankertz et al., 2010b), an autonomous ar (Autonomos Labs, 2011), and a pinballmahine (Tangermann et al., 2009).BCIs an be subdivided into ative and passive BCIs (Zander and Kothe, 2011). AtiveBCIs are haraterized by the fat that the brain ativity that is lassi�ed is willfullygenerated by the user. The appliation examples above all belong to the group of ativeBCIs. In ontrast to that, passive BCIs aim at lassifying di�erent brain patterns thatare not willfully generated by the user. For example, a passive BCI was used as a toolin a neurosiene study (Jensen et al., 2011) to introdue brain-state dependent stimuli.
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2. FoundationsSingle-trial AnalysisThe lassi�ation of EEG signals an be employed as so alled single-trial analysismethod. A lassi�er is trained on a partiular EEG data set, and the model that ishypothesized by the lassi�er is interpreted. This di�ers from the onventional analysisof EEG signals, whih redues the noise by averaging over trials and subjets. In ontrastto the onventional analysis tehnique, single-trial analysis is able to detet di�erenesthat are based on interations between multiple variables (features) (van Gerven et al.,2009). Additionally, it aounts for the per-subjet and the per-trial variane. In spiteof these advantages, there are relatively few publiations that apply single-trial analy-sis to EEG data (Parra et al., 2002, Blankertz et al., 2011, van Gerven et al., 2009). Inontrast to that, the employment of PR methods for data analysis is widely spread inthe fMRI ommunity.2.2.3. Feature Extration MethodsNotationIn the remainder of this hapter I will use the following notation. A data set onsistsof N trials. A trial from the raw data set onsists of an element Ei ∈ RC×T from theraw input spae and the orresponding label yi ∈ Y. Eah trial from the feature data setonsists of a feature vetor xi ∈ X and the orresponding label yi. When the index isnot needed, it is omitted. X is alled the feature spae. The number of di�erent lassesis denoted by L. r denotes the dimensionality of the feature spae X.Raw Eletroenephalography SignalsThe most straightforward feature extration method for the lassi�ation of EEG data isto employ the raw �eld potentials. The feature vetor x onsists of the onatenation ofthe time series of all hannels x ∈ RC·T . Indeed, as Lotte et al. (2007) desribe, severalsuessful BCIs used the raw �eld potentials as input for their lassi�ation omponent.Spatio-temporal featuresTo redue the dimensionality of the feature vetor, in omparison to the feature extrationmethod that simply employs the raw amplitude data, Blankertz et al. (2011) suggest toaverage the time series from eah hannel in ertain intervals. Let I = {I1, . . . , IK} besets of time points of interest. Ik ∈ I is typially an interval. For every hannel c themethod generates K features
xc(I) = [mean({E(c, t)}t∈I1 ), . . . ,mean({E(c, t)}t∈IK )]where E(c, t) refers to the data point in the cth hannel at time point t in trial E. The�nal feature vetor x is the onatenation of the feature vetors xc from all hannels. Ingeneral, this methods leads to so alled Spatio Temporal Features (STF).
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2. FoundationsThis approah is, of ourse, not limited to the usage of the mean as aggregation method.Indeed, all feature extration methods presented in the following an also by applied toa set of intervals.Bandpass FilterFor EEG signals several frequeny bands were established in whih harateristi dom-inant brain rhythms an be found. The bands are referred to as α (8-12 Hz), β (12-30Hz), γ(30-80 Hz), δ(0-4 Hz) and θ(4-8 Hz) (Herrmann et al., 2004).A bandpass �lter an be used to extrat the signal of these bands. It transforms asignal suh that it only ontains frequeny omponents of the spei�ed band. All otherosillatory omponents are removed. For an extensive introdution to bandpass �ltersrefer to Shenoi (2005).Bandpass �lters are often used as prepossessing step for suessive feature extrationmethods. But they are also used as the only feature extration method. There existseveral BCIs that employ a bandpass �lter as feature extration method (Lotte et al.,2007).Log Band-powerAnother feature extration method that is, for example, employed by Pfurtsheller and Neuper(2001) is the logarithm of the band power.Band-power hereby refers to the power of the signal in a given frequeny band. Thepower of a time varying signal f(t) is de�ned as
lim

R→∞

R
2
ˆ

−R
2

f(t)2dtHene, it is the average squared mean deviation from zero.One method to estimate the band power is to �rst bandpass-�lter the data and thento alulate the power using the variane (Pfurtsheller and Neuper, 2001). This resultsin the following feature per hannel
xc = log(var(E(c)))where E(c) refers to all time points from hannel c.Common Spatial PatternsThe original Common Spatial Patterns (CSP) algorithm was introdued for binary las-si�ation tasks. The goal of CSP is to �nd a transformation matrix that transforms eahtrial suh that the varianes of the resulting time series are optimal for disriminatingthe two lasses (Ramoser et al., 2000). Reall that the variane of a bandpass-�lteredsignal is a good estimator of its power. Hene, CSP an be seen as a more advanedmethod then the log band-power to extrat power di�erenes.21



2. FoundationsMore formally, CSP seeks W ∈ RC×C suh that Z = WE has high variane in the �rstrows for trials from lass y1 and low variane for trials from lass y2. Analogous to that,the last rows of Z should ontain high variane for trials from lass y2 and low varianefor trials from lass y1. This goal is arhived by the simultaneous diagonalization of twoovariane matries (Fukunaga, 1990).The CSP algorithm assumes that eah hannel in eah trial has zero mean, mean(E(c)) =
0, ∀c ∈ {1, .., C}. The normalized spatial ovariane matrix of eah trial is then

Σ =
EET

trace(EET )
(2.2.1)For both lasses the mean of their per trial ovariane matries is alulated, resultingin ovariane matries Σy1 and Σy2 .The omposite ovariane matrix is obtained by

Σo = Σy1 +Σy2Beause Σo is non-singular and symmetri, Σo an be deomposed, by an eigenvaluedeomposition, into
Σo = QλQT (2.2.2)where λ is a diagonal matrix and ontains the eigenvalues andQ ontains the eigenvetors.Based on that equation, the whitening transformation matrix for Σo an be alulated
P =

√
λ−1QTThe whitening transformation matrix ful�lls the following property

PΣoP T = IFukunaga (1990) showed that if Σy1 and Σy2 are transformed by P

Sy1 = PΣy1P
T

Sy2 = PΣy2P
T

Sy1 and Sy2 share the same eigenvetors, and the sum of their orresponding eigenvaluesis one. More formally, if Sy1 is deomposed to
Sy1 = Bλy1B

T

Sy2 is diagonalized by
Sy2 = Bλy2B

Tand λy1 + λy2 = I. What follows is that the eigenvetor orresponding to the biggesteigenvalue in λy1 is the eigenvetor that explains the most variane of the EEG trials
22



2. Foundationsfrom lass y1 and the least variane of the trials from lass y2. If B is sorted by itseigenvalues λy1 in desending order, a transformed trial of lass y1
Z = (BTP )TEhas high variane for the �rst rows and low variane for the last rows. The oppositeapplies for trials from lass y2. Hene, the transformation ful�lls the desired properties.The last step of the CSP learning algorithm is to selet rows from both ends of (BTP )T .Usually an equal number of rows is seleted from both sides of the matrix. So the �naltransformation matrix is

W =
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(BTP )T

where the number of ones on eah sides of the diagonal is even and must be seletedas the hyper-parameter k. Note that (BTP )T are the model parameters θ, whih arelearned from the data.The logarithm of the variane of the resulting k time series is usually employed as fea-ture. CSP is urrently one of the most used feature extration methods for the extrationof power di�erenes.Permutation EntropyThe Permutation Entropy (PE) was introdued by Bandt and Pompe (2002) as a om-plexity measure for time series. The overall idea is to redue a time series to an orderpattern between m neighbors. m is alled embedding dimension in the remainder.De�nition 14. Let {f(t)}t=1..T be a time series. The permutation distribution of em-bedding dimension m is then de�ned as
pm(π) =

|{t : 0 ≤ t ≤ T −m, (x(t+ 1), . . . , x(t+m)) has type π}|
T −m+ 1

(2.2.3)where π represents one permutation of the m! possible permutations.The value pm(π) represents the probability of the ourrene of the ordering that isrepresented by the permutation π. I larify the de�nition of the permutation distributionwith a simple example. 23



2. FoundationsExample 15. Assume that the embedding dimension m is 2, and the time series forthat we want to alulate the permutation distribution is
(1, 2, 20, 30, 2, 1)There are two possible orderings of two unequal elements x(t) and x(t+1). Either x(t) isgreater than x(t+1) or x(t+1) is greater than x(t) . The �rst ordering an be representedby the permutation 10 and the seond ordering by 01. In the example time series thereare three ourrenes of x(t) < x(t+1) and two ourrenes of x(t) > x(t+1). Therefore,the permutation distribution with embedding size 2 for that time series is
p2(10) = 3/5

p2(01) = 2/5The permutation distribution itself ould be used as feature. However, Bandt and Pompe(2002) suggest to aggregate it to the Permutation Entropy (PE).De�nition 16. The PE of embedding dimension m ≥ 2 is de�ned as the Shannonentropy of the permutation distribution of embedding dimension m,
H(m) = −

∑

pm(π) log p(π)Example 17. The permutation entropy of the permutation distribution from Example15 is
−(

3

5
log(

3

5
) +

2

5
log(

2

5
)) = 0.971When using the PE as feature extration method for EEG lassi�ation, the PE isalulated separately for eah hannel. This results in a feature vetor of the form x ∈ RCfor eah trial. There is one hyper-parameter that has to be hosen by the designer, theembedding dimension m. Reently, Brandmaier (2012) desribed a heuristi for hoosingthe embedding dimension automatially.The Permutation Entropy was introdued as a feature extration method for BCIs(Niolaou and Georgiou, 2010). Furthermore, Brandmaier (2012) demonstrated that di-vergene measures based on the permutation distribution perform well in lustering EEGtrials.2.2.4. Classi�ation MethodsLedoit's Regularized Linear Disriminant AnalysisLedoit's Regularized Linear Disriminant Analysis (LRLDA) is based on Linear Disrim-inant Analysis (LDA). The idea behind LDA is to adjust a normal distribution for eahlass. A new trial is assigned to the lass for that the a-posteriori likelihood is the highest(von Oertzen, 2011).Assume that for every lass the lass onditional probability distribution Pl(X) =

P (X|Y = yl) is known and normal, i.e., Pl ∼ N (µl,Σl). Additionally, the a-priori like-lihoods for every lass P (Y = yl) are the same P (Y = y) = 1/L. Furthermore, the24



2. Foundationsvarianes and ovarianes are the same for eah lass Σl = Σ, ∀l ∈ {1, . . . , L}. Underthese assumptions, the lassi�er that lassi�es a new sample to the lass for that thea-posteriori likelihood is the highest is alled LDA.LDA(x) = ylwhere
l = arg

L
max
l=1

(N (x;µl,Σ)) (2.2.4)where N (x;µ,Σ) is the likelihood of x under the multivariate normal distribution withmean µ and variane σ. Equation 2.2.4 an be simpli�ed to
arg

L
max
l=1

(N (x;µl,Σ)) = arg
L

max
l=1

(log(N (x;µl,Σ)))

= arg
L

max
l=1

(log((2π)−
r
2 |Σ|− 1

2 e−
1

2
(x−µl)

TΣ−1(x−µl)))

= arg
L

max
l=1

(−1

2
(x− µl)

TΣ−1(x− µl))Furthermore,
−1

2
(x− µl)

TΣ−1(x− µl) = xTΣ−1µl −
1

2
µT
l Σ

−1µl −
1

2
xTΣ−1xFor simpliity I will ontinue the treatment for the binary lassi�ation task, with y1 = 1and y2 = 2. LDA(x) = 1

⇔ xTΣ−1µ1 −
1

2
µT
1Σ

−1µ1 −
1

2
xTΣ−1x ≥ xTΣ−1µ2 −

1

2
µT
2 Σ

−1µ2 −
1

2
xTΣ−1x

⇔ xTΣ−1µ1 −
1

2
µT
1 Σ

−1µ1 ≥ xTΣ−1µ2 −
1

2
µT
2 Σ

−1µ2

⇔ (Σ−1(µ1 − µ2))
Tx− 1

2
(µ1 + µ2)Σ

−1(µ1 − µ2)
T ≥ 0 (2.2.5)Equation 2.2.5 is of the form

wTx+ c ≥ 0 (2.2.6)with w = Σ−1(µ1−µ2) and c = −1
2(µ1+µ2)Σ

−1(µ1−µ2)
T . That means that the deisionsurfae learned by LDA between two lasses is a hyperplane. If a lassi�er ful�lls thisproperty, it is alled linear lassi�er.In pratie the means µ1, . . . , µL and the ovariane matrix Σ−1 are usually not known.These values have to be estimated from the data set by the learning algorithm ILDA. Theestimation of the means is straightforward

µ̂l =
1

|Dl|
∑

(x,y)∈Di

x25



2. Foundations

Figure 2.2.2.: Illustration of the separating model that is learned by LDA. For eahlass a multivariate normal distributions is estimated. A novel sample isassigned to the lass with the highest a-posteriori likelihood. The �guredisplays the a-posteriori likelihood for a sample to be in lass y1 or y2for di�erent values. The di�erent olors illustrate the regions in whih apoint is lassi�ed as lass y1 (red) or lass y2 (blue). The deision surfaebetween the two lasses is a hyperplane.

26



2. FoundationswhereDl := {(x, y) ∈ D : y = yl}. LDA is known to be relatively robust to the violation ofthe assumption that the per-lass ovarianes matries are the same. Thus, the standardLDA learning algorithm estimates the ommon ovariane matrix by
Σ̂ =

1

2
ˆ(Σ1 + Σ̂2) (2.2.7)where Σ̂l is the empirial ovariane matrix of lass yl

Σ̂l =
1

|Dl|
∑

(x,y)∈Dl

(x− µ̂l)(x− µ̂l)
T (2.2.8)When the ovariane matrix is estimated separately for eah lass, the deision sur-fae beomes quadrati. Consequently, the orresponding lassi�ation method is alledQuadrati Disriminant Analysis.Under the usual onditions in statistial analysis, the number of samples per lass |Dl|is large ompared to the dimensionality r of the feature spae, the empirial ovarianematrix is an unbiased estimate of the true ovariane matrix. But if |Dl| is not signi�-antly larger than the dimensionality of the feature spae r, it is known that the empirialovariane is systematially biased. Large Eigenvalues of Σ are estimated too large andsmall eigenvalues are estimated too small (Friedman, 1989). An approah to orret forthis systemati bias is to replae Σ̂l by

Σ̂∗
l = (1− γ)Σ̂l + γ

tr(Σ̂l)

r
I (2.2.9)where tr(A) refers to the trae of matrix A, I is the identity matrix and γ ∈ [0, 1] isa hyper-parameter. Equation 2.2.9 regularizes Σ̂l towards the multiple of the identitymatrix. Therefore, larger eigenvalues are dereased and smaller eigenvalues are inreased(Friedman, 1989); orreting for the systemati bias.When estimating the ovariane matrix aording to Equation 2.2.9, the resulting las-si�ation method is alled Regularized Linear Disriminant Analysis (RLDA). An openquestion was how to hoose the hyper-parameter γ. Ledoit and Wolf (2004) presentedan analyti solution for hoosing the optimal γ. Their method estimates γ suh that

||Σ̂l
∗ − Σl||2r is minimized, where ||A||r is de�ned as ||A||r =

√

tr(AAT )/r . ||A||r isequivalent to the Frobenius norm divided by r. Remember that r denotes the dimen-sionality of the feature spae X. Aording to their results, the optimal γ is
γ∗ =

b2

d2
(2.2.10)where

d2 = ||Σ̂l −
tr(Σ̂l)

r
I||2rand

b2 = min





1

|Dl|2
∑

(x,y)∈Dl

||(x− µ̂l)(x− µ̂l)
T − Σ̂l||2r , d2
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2. Foundations
d2 desribes the deviation of the sample ovariane from the saled identity matrix. b2desribes the deviation of the per-trial ovariane matries (x− µ̂l)

T (x − µ̂l) from theirmean Σl. The minimum operator ensures that the shrinking parameter γ∗ stays below1. In the literature the resulting lassi�ation method is also alled RLDA when estimat-ing γ aording to 2.2.10. To distinguish this method from the lassial RLDA method,for whih γ has to be hosen by the designer, I will all this method Ledoit's RegularizedLinear Disriminant Analysis (LRLDA).LRLDA is the lassi�ation method that leading BCI groups use and advoate (Blankertz et al.,2011).Support Vetor MahinesSupport Vetor Mahines (SVMs) were invented by Cortes and Vapnik (1995). My de-sription of SVMs is inspired by Ng (2011).Without loss of generality, Y = {−1, 1}. In analogy to Equation 2.2.6, I de�ne a linearlassi�er
Ψlin(x;w, b) = {

1 if, wtx+ b ≥ 0

−1 otherwise (2.2.11)The basi form of SVMs assumes that the training data set D is linearly separable, i.e.,there exists a linear lassi�er that perfetly separates the two lasses
∃w, b : ∀(xi, yi) ∈ D

{

wtxi + b > 0 if yi = 1

wtxi + b < 0 if yi = −1Notie that this ondition is equivalent to
∃w, b : ∀(xi, yi) ∈ Dyi(w

txi + b) > 0 (2.2.12)In general, for a linearly separable data set there are many hoies for w and b thatsatisfy Equation 2.2.11. The idea behind SVMs is to hoose w and b suh that thegeometri margin is maximized. The geometri margin is the smallest distane betweenthe hyperplane desribed by w and b and any point in the training set D. The motivationbehind that is that maximizing the margin should be a good strategy to maximize theauray as it dereases the risk of a new point to be at the wrong side of the deisionplane.What follows is a formalization of this idea. The geometri margin is de�ned as
γg(D;w, b) =

N
min
i=1

yi(w
Txi + b)

||w||Hene, the optimization problem of the SVM is: Find w, b, γ̂f suh that the geometrimargin is maximized
arg max

γ̂f ,w,b

γ̂f
||w|| (2.2.13)subjet to onstraints yi(w

Txi + b) ≥ γ̂f , ∀i ∈ {1, . . . , N}28



2. Foundations
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(b)Figure 2.2.3.: (a) Multiple deision planes that perfetly separate the data set. (b) Thedeision plane that maximizes the geometri margin γg. The marked pointsare the support vetors. Adapted with permission from Shilling (2012).Unfortunately, this optimization problem is hard to solve as γ̂f
||w|| is non-onvex. Thus,the problem has to be transformed into an easier, equivalent optimization problem.The value γ̂f is often alled funtional margin. For given w and b it an be expressedas a funtion, whih additionally depends on the training data set D.

γf (D;w, b) =
N
min
i=1

yi(w
Txi + b)where γg = γf/||w||. Notie that

δ(wT x+ b) = δwTx+ δb, ∀δ ∈ R+Therefore,
∀ε ∈ R+/∞∃δ ∈ R+/∞ : γf (D; δw, δb) > εis true for every w, b for that Equation 2.2.12 holds. Furthermore, saling w, b like thatdoes not hange the lassi�ation funtion 2.2.11 as it only depends on the sign. Thus,for every linear separating lassi�er an arbitrary funtional margin an be ahieved bysimply saling w and b without hanging the geometri margin or the atual lassi�ationfuntion. Therefore, by setting γ̂f to 1 the spae in whih the lassi�ers are searhed isnot dereased. Moreover,

argmin
w

1

||w|| = argmax
w

||w|| = argmax
w

1

2
||w||2Thus, the optimization problem 2.2.13 an be rephrased as

argmax
w,b

1

2
||w||2 (2.2.14)subjet to onstraints yi(w

txi + b) ≥ 1, ∀i ∈ {1, . . . , N} (2.2.15)This optimization problem an be solved using quadrati programming. Let w∗, b∗ theoptimal values for w and b. Eah sample (xi, yi) for that
yi(w

T
∗ xi + b∗) = 129



2. Foundationsis then alled support vetor. The values of w∗, b∗ only depend on these samples. Theysupport the deision plane.The assumption that the training data set is linearly separable makes this lassi�ationmethod appliable to only a small subset of all existing data sets. Cortes and Vapnik(1995) enhaned their method to make it appliable to arbitrary data sets. For eahviolation of the original onstraints 2.2.15 a ost term is added to the objetive funtion2.2.14.
argmin

w,b

1

2
||w||2 + C

N
∑

i=1

ξisubjet to onstraints yi(w
txi + b) ≥ 1− ξi, ∀i ∈ {1, . . . , N}

ξi ≥ 0, ∀i ∈ {1, . . . , N}where C ≥ 0 is a hyper-parameter. Eah trial xi that lies inside the margin gets assignedost ξi. Notie that if ξi > 1, xi is on the wrong side of the deision plane.In this setion I introdued linear SVMs, whih indue linear lassi�ers. Linear SVMsan be extended to nonlinear lassi�ers using the so alled kernel trik (Cortes and Vapnik,1995). SVMs have been suessfully employed as lassi�ation method in various BCIs(Lotte et al., 2007).k-Nearest NeighborsThe k-Nearest Neighbor (k-NN) lassi�ation method is one of the most simple lassi�-ation methods. It assigns a new trial x to the lass to that the simple majority of the
k-nearest training trials belong to.Let d(x, y) be a distane funtion de�ned over the feature spae X. For a novel trial
x let Qk(x) ⊆ D be the k-nearest neighbors of x in the training data set D, that is

Qk(x) = S ⊆ D : |S| = k ∧ ∀(xi, yi) ∈ S∄(xj , yj) ∈ D/S : d(xj , x) < d(xi, x)The k-nearest neighbor lassi�er assigns then x to the lass that gets the most voteskNN(x;D, k) = arg
L

max
l=1

∑

(xi,yi)∈Qk(x)

δ(yi, yl)where
δ(a, b) =

{

1 if, a = b

0 otherwise (2.2.16)k-NN has been used as a lassi�ation method in multiple EEG lassi�ation setups(Lotte et al., 2007).2.3. Combination of Classi�ersThe term ombination of lassi�ers refers to the proess of ombining multiple lassi�ersfor the same problem to a new lassi�er, an ensemble lassi�er.30



2. FoundationsDe�nition 18. Let Ψ1, . . . ,ΨJ be lassi�ers for one partiular pattern reognition task.Let rθ,τ (Ψ1(x), . . . ,ΨJ(x),x) = Ψens be a rule that ombines the outputs of the lassi�ersto a new lassi�er Ψens. The lassi�ers Ψ1, . . . ,ΨJ are then alled base-level lassi�ers,the rule rθ,τ ombination rule, and the lassi�er Ψens ensemble lassi�er. Analogousto the feature extration funtion, the ombination rule has parameters θ that haveto be learned by the orresponding learning algorithm and parameters τ that have tobe spei�ed by the designer. The ombination of learning algorithm and ombinationrule is alled ombiner. A Pattern Reognition System (PRS) that employes an ensemblelassi�er is alled Multiple Classi�er System (MCS). The learning algorithms that induethe base-level lassi�ers are alled base-level learners.I will start the following treatment of the ombination of lassi�ers with the introdu-tion of a taxonomy. It will inlude a ategorization of the di�erent approahes to builddi�erent base-level lassi�ers and a lassi�ation of di�erent types of ombiners. Afterthat, I will present a seletion of ombiners for the ombination of labels. I will onludethis setion with a treatment why and under what onditions an ensemble lassi�er ismore aurate than the most aurate base-level lassi�er.2.3.1. TaxonomyWhen reating an ensemble lassi�er, one has to ful�ll two tasks: The reation of au-rate and diverse base-level lassi�ers and the appropriate ombination of the base-levellassi�er.Kunheva (2004, hapter 3) identi�es three approahes that are used to generate diversebase-level lassi�ers:1. The employment of di�erent lassi�ation methods2. The employment of di�erent feature extration methods3. The employment of di�erent subsets of the data set as input for the learning algo-rithmThese three methods an be arbitrarily ombined.Kunheva (2004, hapter 3) lassi�es the di�erent ombiners based on two properties:The type of the input on that they operate and if they are trainable or nontrainable.She distinguishes between three types of base-level lassi�er outputs and, hene, om-biner inputs.
• Type 1 (The Abstrat level): Eah base-level lassi�er returns a label for eahsample. There is no information about the ertainty of the lassi�ation.
• Type 2 (The Rank level): The output of eah base-level lassi�er is an orderedsubset of Y . It is ordered by a-posteriori likelihood.
• Type 3 (The Measurement level). Every base-level lassi�er produes a L-dimensionalvetor [s1, . . . , sL], where sl represents the likelihood that the sample x belongs tolass yl. 31



2. Foundations

Combiner Combination level :Use di�erent ombiners
Ψ1 Ψ2 . . . ΨJ

Classi�er level :Use di�erent lassi�a-tion methods
φ1 φ2 . . . φJ

Feature level :Use di�erent feature ex-tration methodsxData set Data level :Use di�erent data sub-setsFigure 2.3.1.: Approahes to build ensemble lassi�ers. Adapted from Kunheva (2004,p 105).
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2. FoundationsNontrainable ombiners ombine the output of the base-level lassi�ers using �xed rules.De�nition 19. A nontrainable ombiner onsist of a ombination rule omb that om-bines the outputs of the base-level lassi�ers. Ψens = rθ,τ (Ψ1(x), . . . ,ΨJ(x)). The om-bination rule is stati and independent of the data set. Hene, θ = ∅.Trainable ombiners, in ontrast, use learning algorithms to indue the ombinationrule from the data. The trainable ombiners are further distinguished in impliit andexpliit trainable ombiners. The learning algorithm of impliit trainable ombinersindues one ombination rule for all samples, i. e., the ombination rule is independentof the to-be-lassi�ed sample x. Expliit trainable ombiners, in ontrast, indue aombination rule that an potentially be di�erent for every sample x.De�nition 20. A trainable ombiner onsists of a learning algorithm that indues aombination rule based on a data set Ir?,τ (D) = rθ,τ . If the ombination rule has thefollowing signature rθ,τ (Ψ1(x), . . . ,ΨJ(x)), hene, it does not dependent on x itself, theombiner is alled impliit trainable. If the ombination rule diretly depends on x,
rθ,τ (Ψ1(x), . . . ,ΨJ(x),x), it is alled expliit trainable.2.3.2. Abstrat Level CombinersIn this setion I will review nontrainable and impliit trainable ombiners that ombinethe outputs at the abstrat level. This is alled ombination of labels in the remainderof this thesis.The situation is as follows: A variety of base-level learners IΨ1

(Dtrain), . . . , IΨJ
(Dtrain)have been trained on the data setDtrain and produed base-level lassi�ers {Ψ1, . . . ,ΨJ} =:

B. The task of the ombiners is to build an ensemble lassi�er based on the base-levellassi�ers. For that they may employ a separate data set Domb, sampled independentlyfrom the same distribution as Dtrain.2.3.2.1. Majority VotingMajority Voting (MV) is perhaps the most simple ombiner. It is a nontrainable om-biner. Therefore, it does not onsume Domb to generate the ombination rule. Theombination rule is �xed and de�ned as follows.De�nition 21. The ombination rule of majority voting is de�ned asmv(Ψ1(x), . . . ,ΨJ(x)) = argmax
yl∈Y

J
∑

j=1

δ(Ψj(x), yl)where δ is de�ned as in Equation 2.2.16.MV assigns x to the lass yl for that most of the base-level lassi�ers Ψj voted. Tiesare resolved arbitrarily. Despite of its simpliity or maybe beause of its simpliity, MVis one of the most used ombiners.When ertain assumptions are made about the base-level lassi�ers, the auray ofthe ensemble lassi�er reated by the MV rule an be alulated.33



2. Foundationsp J = 7 J = 15 J = 51 J = 101 J = 301 J = 5000.45 0.3917 0.3465 0.2359 0.1562 0.0409 0.01240.55 0.6083 0.6535 0.7641 0.8438 0.9591 0.9876Table 2.2.: Auray of the ensemble lassi�er built by MV for di�erent numbers of base-level lassi�ers, under the assumption of independene. p denotes the au-ray of the base-level lassi�ers.Theorem 22. Let the number of base-level lassi�ers J be odd and the auray ofevery base-level lassi�er be p. Furthermore, let the outputs of the base-level lassi�ersbe independent. That means that for eah subset {Ψ1, . . . ,ΨK} ⊆ B the joint probability
P (Ψ1 = y1, . . . ,ΨK = yK) equals ∏K

k=1 P (Ψk = yk). Then the auray of the ensemblelassi�er built by employing MV as ombiner is
pmv = J

∑

o=J+1

2

(

J
o

)

po(1− p)J−oProof. The ensemble lassi�er built by MV lassi�es a sample x orretly if at least J+1
2base-level lassi�ers Ψj lassify x orretly. Hene, if we assume that the auray ofeah base-level lassi�er is p, the auray of the ensemble lassi�er built by MV is aslaimed.The following results require the same assumptions as Theorem 22. Table 2.2 showshow the auray of the ensemble lassi�er built by MV hanges when the number ofbase-level lassi�er inreases for p = 0.45 and p = 0.55. It an, furthermore, be shownthat

lim
J→∞

pmv = {

1 if, p > 0.5

0 if, p < 0.5Additionally, if p > 0.5 (p < 0.5), pmv is monotonially inreasing (dereasing) as J ex-pands. This proof an also be extended to the ase where the auray of the base-levellassi�ers are unequal. Indeed, the only neessary ondition is that they are symmet-rially distributed with a mean above 0.5 (see Kunheva, 2004, p 114 and referenestherein) Hene, the intuition that an ensemble lassi�er boosts the auray if the base-level lassi�ers are aurate and diverse is supported.2.3.2.2. Weighted Majority VotingExample 23. Assume that J = 3, L = 2, p1 = 0.4, p2 = 0.4, p3 = 0.65, and indepen-dene as in Theorem 22, where pj refers to the auray of base-level lassi�er Ψj . Theauray of the ensemble lassi�er generated by MV is then
pmv = p1p2p3 + (1− p1)p2p3 + p1(1− p2)p3 + p1p2(1− p3)

= 0.4 · 0.4 · 0.65 + 0.6 · 0.4 · 0.65 + 0.4 · 0.6 · 0.65 + 0.4 · 0.4 · 0.35
= 0.472 34



2. FoundationsAs you may on�rm, this is smaller than the auray of the most aurate base-levellassi�er Ψ3.In this setion I will introdue a ombiner that in the situation of independent base-levellassi�ers maximizes the ensemble auray. This ombiner is alled Weighted MajorityVoting (WMV). I will show that, in ontrast to MV, the ensemble lassi�er built byWMV leads to a more aurate lassi�er than the most aurate base-level lassi�erwhen applied to the previous exampleFirst, I will establish Weighted Voting (WV) in general, then, I will show how theoptimal weights are obtained by WMV.De�nition 24. A WV rule is of the following formwv(Ψ1(x), . . . ,ΨJ(x)) = argmax
yl∈Y

J
∑

j=1

wjδ(Ψj(x), yl)where w1, . . . , wJ ∈ R are weights for the orresponding base-level lassi�ers and δ isde�ned as in Equation 2.2.16.Example 25. Let the base-level lassi�ers be as in Example 23. Let the weights for theWV rule be w1 = −0.4055,w2 = −0.4055 and w3 = 0.6190. Then the auray of theensemble lassi�er build by WV is
pwv = (1− p1) · (1− p2) · (1− p3) + (1− p1) · (1− p2) · p3 + p1(1− p2)p3 + (1− p1)p2p3

= 0.672Proof. Notie that δ(Ψj(x), yl) is 1 for exatly one l ∈ {1, . . . , L} as every lassi�er pre-dits exatly one label beause in the example L = 2, δ(Ψj(x), y1) = 0 ⇔ δ(Ψj(x), y2) =
1. Hene, if δ(Ψj(x), y1) is known, δ(Ψj(x), y2) is also known. Thus, if a base-levellassi�ers predits the orret (wrong) lass, its weight in�uenes only the sum of theorret (wrong) lass. Let yc be the orret lass and yw be the wrong lass. An ensemblelassi�er built by a WV rule makes the orret deision if

J
∑

j=1

wjδ(Ψj(x), yc) >

J
∑

j=1

wjδ(Ψj(x), yw)This is exatly the ase if the voting behavior is: 000 or 001 or 101 or 011. Where a1(0) at the jth plae means that the jth base-level lassi�er lassi�es a sample orretly(inorretly).Until now, we have seen that WV an drastially improve the ensemble aurayompared to MV. The interesting question is how to hoose the weights.Theorem 26. Consider a set of J independent lassi�ers that are ombined using theweighted voting ombination rule. Furthermore the a-priori probabilities for all lasses35



2. Foundationsare the same. The auray of the resulting ensemble gets maximized by assigning eahlassi�er Ψj the weight
wj = log

pj
1− pjProof. See (Kunheva, 2004, pp. 124)When the WV rule is employed and the weights are set as in the above theorem, theresulting ombiner is alled Weighted Majority Voting (WMV). Shapley and Grofman(1984) even showed, for binary deisions, that if the a-priori probabilities for both lassesare the same, under the independene assumption, WMV is the ombiner, out of allpossible ombiners, that maximizes the auray of the ensemble lassi�er. If the a-priori likelihoods are not the same, they have to be taken into aount for the deisionfuntion. This leads to the general form of WMV.wmv(Ψ1(x), . . . ,ΨJ(x)) = argmax

yl∈Y
[P (Y = yl) +

∑

logJj=1

pj
1− pj

δ(Ψj(x), yl))] (2.3.1)Note that pj for every lassi�er Ψj and P (Y = yl) have to be estimated using Domb.2.3.2.3. Adaptive BoostingAdaptive Boosting (AB) is a boosting algorithm invented by Freund and Shapire (1997).It is an appliation of their algorithm for the on-line alloation problem. Aording toFreund and Shapire (1997, p 120), boosting refers to the �general problem of produinga very aurate predition rule by ombining rough and moderately inaurate rulesof thumb�. The original algorithm generates arbitrarily many base-level lassi�ers bytraining a weak learner on di�erent subsamples from the data set D.However, AB an also be applied to the situation in whih a prede�ned set of base-level lassi�ers has to be ombined, as desribed at the beginning of this setion. TheAB algorithm for that situation, as desribed by Rojas (2009), is shown as Algorithm2.1 and alled �xed Adaptive Boosting (fAB) in the remainder.fAB is also a WV ombiner. WMV and fAB only di�er in the way they omputethe weights for the base-level lassi�ers. While for WMV the weight of eah base-levellassi�er Ψj only depends on the performane of itself, fAB also takes into aount theperformane of other base-level lassi�er in the set. This is done by iteratively addingbase-level lassi�er to the ensemble and using an importane for eah sample. Afteradding a base-level lassi�er Ψ to the ensemble, the importane of eah sample that
Ψ lassi�es wrong is inreased and the importane of samples that Ψ lassi�es orretis dereased. The next lassi�er that gets added to the set is the one with the lowesterror, in respet to the importane of the samples. Thus, while WMV is optimal if thebase-level lassi�ers are dependent, fAB potentially produes a more aurate ensemblelassi�er if the independene assumption is violated.
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2. FoundationsAlgorithm 2.1 Pseudoode for the learning algorithm of the fAB ombinerInput:
• data set Domb = {(x1, y1), ..., (xN , yN )}

• base-level lassi�ers {Ψ1, . . . ,ΨJ}ProedureInitialize ∀i ∈ {1, . . . , N}W 1
i = 1, sel1 = ∅,for m = 1 to J do1. Selet the base lassi�er Ψj that was not already seleted in the iterations 1, . . . ,m−

1 with the lowest weighted error
sm = arg min

j={1,...,J}/selm
(

N
∑

i=1

L01(xi, yi,Ψj)W
m
i )where L01 is the zero-one loss funtionselm+1 = selm ∪ sm2. Calulate the relative error of the seleted base-level lassi�ererrm =

∑N
i=1 L01(xi, yi,Ψsm)W

m
i

∑N
i=1 W

m
i

∈ [0, 1]3. Set the weight wsm for the seleted base-level lassi�er Ψsm to
wsm =

1

2
log

(

1− errmerrm )

∈ R4. Update the importane of the samples for the next step
Wm+1

i = Wm
i ·

{

ewsm if Ψsm(xi) 6= yi

e−wsm if Ψsm(xi) = yiendOutput: the ombination ruleab(Ψ1(x), . . . ,ΨJ(x)) = argmax
yl∈Y

J
∑

j=1

wjδ(Ψj(x), yl)
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2. Foundationspredited lassHippo Gira�eatual lass Hippo 10 13Gira�e 8 5Table 2.3.: Example for a onfusion matrix. In this ase the orresponding lassi�erlassi�es 10 of the 23 hippos orretly. From the 13 gira�es 5 are lassi�edorretly.2.3.2.4. Bayes CombinationUnder the assumption of onditional independene between the base-level lassi�ers, theprobability of having observed a sample of lass yl after having seen x is:
P (yl|x) =

P (Y = yl)
∏J

j=1 P (Ψj = Ψj(x)|Y = yl)

P (Ψ1 = Ψ1(x)∧, . . . ,∧ΨJ = ΨJ(x))
(2.3.2)The denominator is independent of the andidate lass yl, its purpose is only to sale

P (yl|x) suh that it ful�lls the onditions of a probability measure. Hene, for lassi�a-tion only the nominator is needed. Therefore, the support for lass yl issupyl(x) = P (Y = yl)

J
∏

j=1

P (Ψj = Ψj(x)|Y = yl) (2.3.3)It seems reasonable to assign a new sample to the lass with the highest support. Thisleads to Bayes Combination (BC).b(Ψ1(x), . . . ,ΨJ(x)) = argmax
yl∈Y

(supyl) (2.3.4)Note that not all of the needed probabilities are known, but they an easily be estimatedemploying Domb.The probabilities needed for BC an be estimated by the onfusion matrix.De�nition 27. Let D be a data set and Ψ a lassi�er. Eah entry fl,k(Ψ,D) of theonfusion matrix CF(Ψ,D) is then de�ned asfl,k(Ψ,D) = |{(x, y) ∈ D : y = yl ∧Ψ(x) = yk}|The entry fl,k orresponds to the number of the samples (x, y) in D with label yl thatwere labeled with the label yk by the lassi�er Ψ. For a perfet lassi�er all o� diagonalelements of the onfusion matrix are zero. An example for a onfusion matrix an beseen in Table 2.3.The onfusion matrix for all base-level lassi�ers has to estimated. I will all CFjthe onfusion matrix of base-level lassi�er Ψj , with entries fjl,k. Let ykj be the labelpredited by base-level lassi�er Ψj , Ψj(x) = ykj ; ∀j ∈ {1, . . . , J}kj ∈ {1, . . . , L}. Let38



2. Foundations
Nl=|{(x, y) ∈ D : y = yl}| denote the number of samples (x, y) ∈ D with label yl.
Nl/N an then be used as an estimate for P (Y = yl) and fjl,kj/Nl as an estimate for
P (Ψj = Ψj(x)|Y = yl). Thus, the support for eah lass (see Equation 2.3.3) an beestimated as

ˆsupyl(x) = Nl

N

J
∏

j=1

(fjl,kj/Nl) =
1

NJ−1
l N

J
∏

j=1

fjl,kjBeause N is independent of the andidate lass, this an be further simpli�ed to
1

NJ−1
l

J
∏

j=1

fjl,kjNote that if ∃j, kj : fjl,kj = 0, the support of the whole lass yl is zero. Beause theprobabilities are estimated and, hene, a probability that is estimated as 0 may not be0, this is an undesired behavior. Therefore, (Kunheva, 2004, p 127) suggests a di�erentmethod to alulate the support, whih she adapted from the work of Titterington et al.(1981). The resulting estimator of the support is
ˆsup∗yl(x) = 



J
∏

j=1

fjl,kj + 1/J

Nl + 1





B (2.3.5)where B is a hyper-parameter.2.3.2.5. StakingStaking refers to the proedure of applying a lassi�ation method to to the outputsof the base-level lassi�ers. The lassi�er that works on the output of the base-levellassi�ers is often alled meta-lassi�er. The de�nition of staking inludes that the dataset that is used for the indution of the base-level lassi�ers has to be disjoint of thatused for the indution of the meta-lassi�er.In our ase the features for the lassi�ation methods are the labels predited by thebase-level lassi�ers. Every lassi�ation method may be used for staking.2.3.2.6. Information Theoreti CombinerMeynet and Thiran (2010) proposed a ombiner based on the mutual information. Theirombiner tries to exploit the fat that ensemble lassi�ers tend to perform well if thebase-level lassi�ers are diverse and aurate. I will review this fat in more detail inSetion 2.3.3.The main ontribution of their work is a new sore that measures the auray anddiversity of a set of base-level lassi�ers on a data set simultaneously, alled informationtheoreti sore. But they also show how to to selet the best subset of base-level lassi�ersout of a given set employing this sore. I will start this setion by introduing the39



2. Foundationsinformation theoreti sore. After that, I will present the ombiner that is based on thatsore.The information theoreti sore is based on the mutual information. The mutualinformation is a entral onept in information theory.De�nition 28. The mutual information between two disrete random variables A,B isde�ned as
I(A;B) =

∑

a∈A

∑

b∈B

P (A = a ∧B = b)lb(P (A = a ∧B = b)

P (A = a)(B = b)

)where lb refers to the binary logarithm.The mutual information an also be alulated using any other logarithm instead.De�nition 29. The information theoreti auray of the base-level lassi�er {Ψ1, . . . ,ΨJ}on the data set Domb is de�ned as the mean mutual information between the labels pre-dited by the base-level lassi�ers and the orret labelsITA(Ψ1, . . . ,ΨJ ;Domb) = 1

J

J
∑

j=1

I(Lj ; Ŷ )where Lj is the random variable that represents the preditions of the base-level lassi�er
Ψj on the data set Domb and Ŷ = {y1, . . . , yN} the random variable that represents thetrue labels of the samples in the data set Domb.De�nition 30. The information theoreti diversity between the base-level lassi�ers
{Ψ1, . . . ,ΨJ} is de�ned asITD(Ψ1, . . . ,ΨJ ;Domb) = (

J
2

)

∑J−1
i=1

∑J
j=i+1 I(Li;Lj)

(2.3.6)Note that ( J
2

) is the number of distint pairs that an be built out of J base entities.The information theoreti diversity is the inverse of the mean mutual information betweenall pairs of base-level lassi�ers.De�nition 31. The information theoreti sore of an ensemble of K lassi�ers is de�nedas ITS(Ψ1, . . . ,ΨJ ;Domb) = (1 + ITA(Ψ1, . . . ,ΨJ ,Domb))3ITD(Ψ1, . . . ,ΨJ ,Domb)(2.3.7)Employing this sore, Meynet and Thiran (2010) propose to use the algorithm that isdisplayed in Algorithm 2.2 to selet a subset of base-level lassi�ers from a given set ofbase-level lassi�ers. I will all the resulting ombiner Information Theoreti Combina-tion (ITC). 40



2. Foundations
Algorithm 2.2 The learning algorithm of ITCInput:

• data set Domb = (x1, y1), ..., (xN , yN )

• set of base-level lassi�ers {Ψ1, . . . ,ΨJ} := B

• odd size of the to be seleted subset KProedureInitialize k = 1, sel1 = ∅Selet the best individual lassi�er
Ψ1∗ = arg max

Li,i=1,...,J
I(Li, Ŷ )sel1 = Ψ1∗for k = 2 to (K − 1)/2 do1. Selet the two base-level lassi�ers Ψi, Ψk that maximize the information theoretisore

(Ψi,Ψk) = arg max
(Ψi,Ψk)∈B/selk−1×B/selk−1

(ITS(selk−1 ∪Ψi ∪Ψk;Domb))2. and add them to the set of seleted lassi�ersselk = selk−1 ∪Ψi ∪ΨkendOutput: the disrimination funtionit(Ψ1(x), . . . ,ΨJ(x)) = mv(selK)where mv(Ψ1, . . . ,ΨK) refers to the majority voting rule as de�ned in De�nition 21.
41



2. Foundations2.3.2.7. Selet The BestThe Selet the Best (SeletBest) ombiner refers to the proedure of model seletion.Instead of fusing the deision from all base-level lassi�ers, the most aurate base-levellassi�er is seleted to make the deisions.The learning algorithm for SeletBest outputs the lassi�er Ψj that has the highestauray on the set Domb. sb(Ψ1(x), . . . ,ΨJ(x)) = Ψj(x)where ∀Ψ ∈ {Ψ1, . . . ,ΨJ}aes(Ψj ,Domb) ≤ aes(Ψ,Domb)SeletBest an also be interpreted as the WV ombiner for that all but the most au-rate base-level lassi�er get assigned zero weight. Unlike the other ombiners introduedin this setion, the seletion of the best lassi�er does not redue the risk for one par-tiular data set ompared to the best base-level lassi�er. But if applied to more thanone data set, it an derease the average risk tremendously by piking di�erent base-levellassi�ers for di�erent data sets.2.3.3. Why and When do Multiple Classi�er Systems Perform Better?Why?In the last setion I reviewed a variety of ombiners for the reation of ensemble lassi�ers.I gave examples for whih the auray of the ensemble lassi�er was higher than theauray of any base-level lassi�er. These examples were theoretial in nature and didnot address the question why in pratie it is often possible to onstrut an ensemblelassi�er that is more aurate than the most aurate base-level lassi�er. Beauseof that, I want to introdue three reasons why in pratie an ensemble lassi�er oftenoutperforms lassi�ation methods that are based on a single lassi�er. These reasonswere originally introdued by Dietterih (2000).1. Statistial: A learning algorithm an be viewed as searhing within a spae oflassi�ers C for the best lassi�er Ψ∗. When the training data set D is to small,the learning algorithm may �nd many di�erent lassi�ers that all ahieve the sameauray on the training data set. By averaging these lassi�ers, the risk to hoosean inadequate lassi�er is redued.2. Computational: Even when the statistial problem is absent, learning algorithmsthat perform some loal searh may get stuk in loal optima. Furthermore, optimaltraining for two very important lassi�ation methods that employ a loal searh,namely neural networks (Rojas, 1996) and deision trees (Quinlan, 1992), is shownto be NP-hard. An ensemble lassi�er onsisting of base-level lassi�ers that aregenerated by running the loal searh using di�erent starting points may be a betterlassi�er than any of the base-level lassi�ers.3. Representational: Assume that an algorithm that �nds the best lassi�er in C isavailable. In this ase the use of multiple lassi�er may still be bene�ial as the42



2. Foundationsoptimal lassi�er Ψ* may lie outside of C. By ombining lassi�ers from within Cit may be possible to expand the spae of representable hypotheses.When?Of ourse, the performane of an ensemble lassi�er is not independent of the performaneof its base-level lassi�ers. It is known that a neessary ondition for an inrease of theauray of the ensemble lassi�er ompared to the most aurate base-level lassi�er isthat the base-level lassi�ers are aurate and diverse (Hansen and Salamon, 1990). Anaurate lassi�er is a lassi�er that has an auray better than random guessing. Twolassi�ers are diverse if they make errors on di�erent trials (Dietterih, 2000).Thus, before using a ombiner to fuse the deisions of the base-level lassi�ers makessense, it has to be veri�ed that the base-level lassi�ers ful�ll this onditions. Theauray an be estimated using one of the methods introdued in Setion 2.1.3. If abase-level lassi�er performs better than random guessing, an be tested using the testintrodued in Setion 2.1.4.1.Besides the information theoreti diversity, de�ned in De�nition 30, various otherdiversity measures exist. Kunheva (2004, hap. 10) ompared many diversity measurein terms of their relationship to the �nal ensemble auray. She found that for everydiversity measure the relationship between the measured diversity and the �nal ensembleauray is relatively weak. However, if the measured diversity was zero no improvementover the auray of most aurate base-level lassi�er was possible. Beause the resultsare the same for every diversity measure, I will introdue her results in detail for onediversity measure.One of the most intuitive diversity measures is the disagreement measure.De�nition 32. The disagreement measure between two lassi�ers Ψi,Ψk is de�ned asDii,k = P (Ψi(x) = y ∧Ψj(x) 6= y) + P (Ψj(x) = y ∧Ψi(x) 6= y) (2.3.8)where (x, y) ∈ MFor a binary deision problem Dii,k is the probability that Ψi,Ψk disagree. For ar-bitrary deision problems Dii,k is the probability that one lassi�er predits the orretlass and the other lassi�er predits a wrong lass . The extension to a set of lassi�ersis straightforward.De�nition 33. The disagreement measure Di for a set of J base-level lassi�ers is themean disagreement measure Dii,k between all ( J
2

) pairs, Ψi ,Ψk, of base-level lassi-�ers.The probabilities needed for the alulation of the disagreement measure have to beestimated from a data set.Kunheva (2004, hap 10) showed for ensemble lassi�ers built by MV that the rela-tionship between the disagreement measure and the auray of the ensemble lassi�er43



2. Foundations
Classi�er Spae CGood Classi�ers
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(a) The ellipsoid represents the lassi�ers that per-form well on the data set.
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(b) The dashed lines representthe hypothetial trajeto-ries of the lassi�ers duringthe loal searh. Classi�er Spae Cb
Ψ1

b
Ψ∗

b
Ψ2
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Ψ3

() Ψ∗ lies outside the spaein whih the lassi�ers aresearhed.Figure 2.3.2.: Illustration of the (a) statistial, (b) omputational and () representa-tional reason why a an ensemble lassi�er often performs better than alassi�ation method based on a single lassi�er. The lassi�ers Ψ1,Ψ2,Ψ3represent three lassi�ers that are indued on the same data set for onepartiular PR problem. Ψ∗ is the optimal lassi�er. For all three illustra-tions, the irle represents the spae C in whih the lassi�ers are searhed.Adapted from Dietterih (2000).
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2. Foundations

Figure 2.3.3.: Relationship between the disagreement measure and the ensemble auray
pmv. Eah dot represents one ensemble lassi�er that was build out of thethree base-level lassi�ers with auray 0.6. The x-axis desribes thedisagreement measure and the y-axis the auray improvement pmv − p.Copied from Kunheva (2004, hap 10) and modi�ed for better qualitywith permission of the author.is relatively weak. She ompared the auray of the ensemble lassi�er pmv against theauray of the base-level lassi�ers theoretially. She de�ned that the set of base-levellassi�ers onsists of three lassi�ers that are orret on 18 out of 30 trials, leading toan auray of p = 0.6. With this onstraints a total of 563 di�erent distribution of theorret votes to the trials is possible. Eah distribution leads to a di�erent ensemblelassi�er, for whih the auray pmv and the disagreement measure an be alulated.The satterplot for the auray improvement pmv− p an be seen in Figure 2.3.3. Fromtwo ensemble lassi�ers that are based on equally aurate but variably diverse base-levellassi�ers the lassi�er that is based on base-level lassi�ers with a higher disagreementmeasure does not have to be the lassi�er with the higher auray. Indeed, the au-ray improvement pmv − p of all ensemble lassi�er based on base-level lassi�ers with adisagreement measure of Di = 0.4 span between −0.2 and 0.2, the reason being that theauray largely depends on the distribution of the votes of the base-level lassi�ers tothe trials (see Kunheva, 2004, hap 10). However, her data show that the higher the di-versity, the higher is the expeted improvement. Furthermore, if Di = 0, no improvementover the most aurate base-level lassi�er is possible.
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3. Combination of Classi�ers to InreaseAurayThe following list repeats the hypotheses from Chapter 1. Reall that ORACLE returnsthe lassi�er from the set of base-level lassi�ers that ahieves the highest mean aurayover all data sets for one partiular Pattern Reognition (PR) task.1. The ombination of the di�erent feature extration and lassi�ation methods thatare employed for the lassi�ation of Eletroenephalography (EEG) signals im-proves the auray of the resulting lassi�er ompared to the best single lassi�eras estimated by ORACLE and results in a Pattern Reognition System (PRS) thatperforms well on a variety of EEG data sets.2. A ombination of the deisions of the base-level lassi�ers leads to a more a-urate ensemble lassi�er than the seletion of the best lassi�er by Selet theBest (SeletBest)3. The employment of a Multiple Classi�er System (MCS) leads to a more auratelassi�er than the Conatenation (CONCAT) approah.Using the bakground knowledge presented in Chapter 2, I want to present additionalreasons for these hypotheses.1+2: In Setion 2.3.3, we have seen that a MCS is more aurate than the best singlelassi�er if the base-level lassi�ers are diverse and aurate. Thus, the �rst hypothesisan only be true if the proposed set of base-level learners produe aurate and diversebase-level lassi�ers. However, as we saw in the Setions 2.2.3 and 2.2.4 there existsa large variety of feature extration and lassi�ation methods that lead to auratelassi�ers. Beause they all rely on di�erent harateristis of the EEG signals, there ishigh a hane that they are diverse.3: The employment of CONCAT has the advantage that interations between thedi�erent feature extration methods an be taken into aount. However, through theombination of multiple feature extration methods, the number of features per trial isvery high. Thus, I hypothesize that CONCAT will over�t the training data and not leadto a model that generalizes well. Contrary to that, for eah base-level learner in the MCSthe number of features per trial is omparatively small. The same is true for the ombiner.Thus, analogous to Ledoit's Regularized Linear Disriminant Analysis (LRLDA), a MCSan be seen as regularization method (Dornhege et al., 2004). Furthermore, a MCSenables the employment of the best �tting lassi�ation method per feature extrationmethod. 46



3. Combination of Classi�ers to Inrease AurayThe rest of this hapter is organized as follows. First, I will review related work. Afterthat, I will present the methodologial details for the omparison. It will inlude anintrodution of new ombiners, whih I spei�ally invented for the omparison. Thehapter will end with a desription of the implementation details.3.1. Review3.1.1. Combination of Feature Extration MethodsDornhege et al. (2004) already found that a ombination of base-level lassi�ers based ondi�erent features performed better than CONCAT and ORACLE. CONCAT performedeven worse than ORACLE.Three feature extration methods were employed, whih resulted in three base-levellassi�ers. The three di�erent methods were a feature extration method similar tothe method introdued in Setion 2.2.3, Autoregressive models, and Common SpatialPatterns (CSP). As lassi�ation method for the base-level lassi�ers, as well as forCONCAT, Regularized Linear Disriminant Analysis (RLDA) was used. The base-levellassi�ers were ombined at the measurement level (see Setion 2.3.1). The outputs ofthe base-level lassi�ers were of the form
gj(x) = wt

jxj + cjwhere wj and cj are the parameters learned by one of the three RLDA learning algo-rithms, eah trained on the output of one of the three feature extration methods xj ,
j ∈ {1, 2, 3}. The two ombination methods employed were staking with Linear Dis-riminant Analysis (LDA) as meta lassi�er (see Setion 2.3.2.5), whih Dornhege et al.(2004) alled META and probabilisti voting, in this artile alled PROB. The ensembledeision for PROB was the average of the three RLDA instanes

ΨPROB(x) = 1 ⇔
J
∑

j=1

gj(x) > 0for META it was
ΨMETA(x) = 1 ⇔ wTmetag(x) + cmeta > 0 (3.1.1)where g(x) = [g1(x), . . . gJ(x)]

T represent the outputs of the base-level lassi�ers and
wmeta, cmeta are the parameters that were learned by the meta lassi�er.Although META is the speial ase of PROB in whih all weights wmeta and the bias
cmeta are learned to be zero, PROB led to a better mean auray than META. Theiromparison was based on ten subjets.Boostani et al. (2007) found similar results. By using a ombination of features ex-tration methods, they were able to inrease the auray ompared to ORACLE. Theydid not employ an ensemble lassi�er for the feature ombination but used a genetialgorithm. They also investigated CONCAT as feature ombination method and aswell found it performed worse than ORACLE. As lassi�ation methods they employed47



3. Combination of Classi�ers to Inrease AurayAdaptive Boosting (AB),LDA, and Support Vetor Mahine (SVM) separately. Theiromparison was based on 5 subjets.Fatourehi et al. (2008) used a two-stage ombination of lassi�ers to build an asyn-hronous Brain Computer Interfae (BCI) (see Setion 2.2.2). They extrated featuresfor three di�erent types of neurologial phenomena. For eah hannel and phenomenon aSVM was trained. The deision from all SVMs for one phenomenon was ombined usingMajority Voting (MV). In the seond stage the outputs of the three ensemble lassi�ers,one for eah phenomenon, was ombined by one out of �ve �xed ombination rules. Therule, as well as the features to use, and the parameters for the SVMs were simultaneouslyoptimized using a hybrid geneti algorithm. Their resulting BCI ahieved a higher infor-mation transfer rate than any existing asynhronous BCI. Their omparison was basedon four subjets.3.1.2. Combination of Prede�ned Base-Level Classi�ersEnsemble lassi�ers are not limited to the ombination of di�erent feature types. Theymight be bene�ial in all ases were a large set of heterogeneous features is ombined.Fazli et al. (2009) were able to build a subjet independent BCI system employing anensemble lassi�er. The base lassi�ation method was LDA. For eah session a LDAwas trained on CSP power features. A session hereby refers to one reording sessionfor one subjet. A varying number of sessions per subjet was reorded. Before thetraining of LDA, the data was bandpass-�ltered in 9 di�erent frequeny bands. This ledto a total of 9 ×#sessions base-level lassi�ers. The �nal lassi�ation was done by aweighted sum of the ontinuous outputs of the LDA base-level lassi�ers, similar to METAdesribed above. But instead of LDA, Fazli et al. (2009) used quadrati regression with
l1 regularization to obtain wmeta and cmeta. Their ensemble lassi�er performed betterthan various baseline methods, inluding ORACLE, and other ensemble lassi�ers. Theiromparison was based on four subjets.Rakotomamonjy and Guigue (2008) used a ombination of SVMs to build a BCI. Itwon one disipline of the BCI Competition III (Blankertz et al., 2006). For featureextration they bandpass-�ltered the data with ut-o� frequenies 0.1 and 10Hz anddeimated the signal to 14 samples per hannel. Eah of the 17 SVMs was trained ona partition of the data. They tried to hoose the partitions suh that they were ashomogenous as possible. The �nal lassi�ation was done by averaging the ontinuousoutputs of all SVMs, analogously to PROB. Their omparison was based on two subjets.3.1.3. Methods That Generate Base-Level Classi�ersEnsemble lassi�ers are not limited to the ombination of base-level lassi�ers that arede�ned by the designer. There are multiple methods that, besides a ombiner, alsoinlude a tehnique to reate multiple base-level lassi�ers from a data set.Sun et al. (2007) showed that AB, Bagging (Breiman, 1996), and random subspae(Bryll et al., 2003) are able to boost the auray ompared to a single lassi�er. Theyame to this onlusion after evaluating these methods on nine subjets performing a48



3. Combination of Classi�ers to Inrease Auraymotor imaginary task. The di�erent base-level lassi�er were generated by using powerspetral densities as features and the base-level lassi�er generating apabilities of theompared methods. They evaluated the three methods for SVM, k-Nearest Neighbor(k-NN), and C4.5 deision trees (Quinlan, 1992) as base lassi�ation methods separately.Boostani and Moradi (2004) ompared AB with an one hidden layer neuron (Rojas,1996) as weak learner against LDA on three di�erent types of features, Hjorth parameters,band power and fratal dimension. No ombination of features was onsidered. Theybased their omparison on �ve subjets, performing a motor imaginary task. Their resultsshow that while the ombination of band power and LDA yielded the best mean auray(over all subjets) for two subjets the ombination of fratal dimension and AB led tothe best auray. They onluded that �for eah individual, we have to �nd the bestombination of feature and lassi�er or on some oasions, a ombination of the featuresby evolutionary algorithms or a tree ombination of lassi�ers whih an lead to the bestresult.� (Boostani and Moradi, 2004, p 217)Sun (2007) employed an expliit trainable ombiner, the so alled improved randomsubspae method, for the lassi�ation of mental imagery data. The base-level lassi�erswere build by training a SVM with di�erent subspaes of the feature spae. The �nallassi�ation deision was
Ψirsp(x) = argmax

yl∈Y

J
∑

j=1

wj(x)δ(Ψj(x), yl) (3.1.2)where wj(x) is the fration of orretly lassi�ed samples by Ψj of the k nearest neighbors,with respet to the Eulidean distane, of x. They showed that their method performsbetter than another similar ensemble method.Although it seems promising, to my knowledge nobody tried to use one of the multiplelassi�er methods that are able to generate base-level lassi�ers on a ombination offeatures.3.2. Learning Algorithm for Ensemble Classi�ersIn this setion I will introdue the learning algorithm that I use to indue the di�erentensemble lassi�ers. Independently of the base-level lassi�ers and the ombiner, theensemble lassi�ers are indued as follows: The designer spei�es a set of base-levellearners IΨ1
, . . . , IΨJ

. The lassi�ation behavior of eah base-level learner is estimatedusing 10-fold strati�ed ross validation. The estimated behavior is fed to the ombiner
Ir. To larify this: Let D be the available data set. The data set is split into 10 partitions
{D1, . . . ,D10}. For eah partition and base-level learner a base-level lassi�er is indued
Ψj,n = IΨj

(D/Dn). For eah base-level learner IΨj
the ombiner gets the predited lassof eah trial (x, y) ∈ D by the lassi�er Ψj,n for that (x, y) /∈ Dn as input. Based onthis information every ombiner that I introdued an estimate the neessary propertiesof the base-level lassi�ers. After the ombination method learned the ombination rule,the base-level learners indue the base-level lassi�ers based on the omplete data set D.The base-level lassi�ers are ombined using the ombination rule that was inferred in49



3. Combination of Classi�ers to Inrease AurayAlgorithm 3.1 The employed training algorithm for induing the ensemble lassi�ers.InputA set of base-level learners IΨ1
, . . . , IΨJAn untrained ombiner IrA data set DProedure1. Split D into 10 disjoint subsets Dn, n ∈ {1, . . . , 10} in respet to the strati�ed10-fold ross-validation shemea) For eah subset Dni. Train eah base-level learner on the remaining data set D/Dn. Ψj,n =

IΨj
(D/Dn)ii. Calulate the predition of eah base-level lassi�er Ψj,n for eah trial

(x, y) ∈ Dn, li,j =Ψj,n(x), where i is the index of (x, y) in D.b) Train the ombiner with the matrix L, with entries li,j . Ir(L). Remember theinferred ombination rule r.2. Train all base-level learners with the omplete data set D, Ψj = IΨj
(D)3. Create the ensemble lassi�er Ψens by ombining the base-level lassi�ers with therule r inferred in step 2 (b).OutputThe ensemble lassi�er Ψensthe previous step. This proedure is explained as pseudo ode in Algorithm 3.1. It anbe interpreted as a lassi�ation method with the hyper-parameters IΨ1

, . . . , IΨJ
and Ir.3.3. CombinersBeause the ombination at the abstrat level (see Setion 2.3.1) is the only level ofombination that allows the usage of arbitrary lassi�ation methods, I only inludeombiners that ombine the base-level lassi�ers at the abstrat level in the omparison.In previous studies, only staking with SVM as meta lassi�er (Fazli et al., 2009), MVand AB (Sun et al., 2007) have been used if the base-level lassi�er were ombined at theabstrat level. I ompare all ombiners that have been introdued in Setion 2.3.2. Inaddition to the existing ombiners, I invented several new ombiners, mostly extensionsof existing ombiners, for the omparison.This setion will ontinue with the introdution of the ombiners that I invented.Furthermore, it will ontain the detailed settings for the existing ombiners. Assumethat the situation is as desribed at the beginning of Setion 2.3.2.50



3. Combination of Classi�ers to Inrease Auray3.3.1. Signi�ane Majority VotingSuppose that the base-level lassi�ers onsist of 100 lassi�ers with auray 50% andone lassi�er with auray 100%. The auray of the ensemble lassi�er built by MVwould hardly be over 50%. To make MV appliable to situations in whih a majorityof the base-level lassi�ers do not perform better than random guessing, I extend itsuh that only the votes of the base-level lassi�ers that have an estimated BalanedAuray (BAC) that is signi�antly higher than 0.5 are inluded in the deision.For eah base-level lassi�er, signi�ane against random guessing is tested using thetest introdued in Setion 2.1.4.1. I all this extension signi�ane extension and theresulting ombiner Signi�gane Majority Voting (SMV). Note that ontrary to MV,SMV is a trainable ombiner. This extension an also be applied to Weighted MajorityVoting (WMV). I all the resulting ombiner Signi�gane Weighted Majority Voting(SWMV).3.3.2. Dependent Weighted Majority VotingWhile it was shown that WMV is the optimal ombiner when the base-level lassi�ers areindependent (see Setion 2.3.2.1), WMV is not the optimal ombiner if the independeneassumption is violated .Theorem 34. Let Ψ1, . . . ,Ψ7 be base-level lassi�ers. Let Ψ1,Ψ6,Ψ7 be independent. Let
Ψ1 = Ψ2 . . . = Ψ5, i.e., ∀i, j ∈ {1, . . . , 5}∀x ∈ X∀yl ∈ Y P (Ψi(x) = yl|Ψj(x) = yl) = 1.In addition, a(Ψ1, p) = 0.7 and a(Ψ6, p) = a(Ψ7, p) = 0.8. Then the auraya(Ψwmv, p) of the ensemble lassi�er reated by WMV is 0.7.Proof. The weights as learned byWMV are w1 = w2 = . . . = w5 = 0.8473 and w6 = w7 =
1.3863. Beause of the equality of Ψ1 . . .Ψ5, the lass for whih Ψ1 votes gets assignedweight 4 · 0.8473 = 4.2365. The remaining two lassi�ers Ψ6 and Ψ7 share a total weightof 2.27726. Hene, beause 4.2365 > 2.27726, a(Ψwmv, p) = a(Ψ1, p) = 0.7Theorem 35. Let Ψ1, . . . ,Ψ7 be as in Theorem 34 but w1 = 0.8473, w2 = . . . = w5 = 0and w6 = w7 = 1.3863. Then a(Ψwv, p) = 0.8320Proof. The ensemble lassi�er Ψwv makes the orret deision if Ψ1, or Ψ6 and Ψ7 makethe orret deision.

pwmv = 0.7 · 0.8 · 0.8 + 0.3 · 0.8 · 0.8 + 0.7 · 0.2 · 0.8 + 0.7 · 0.8 · 0.2 = 0.864The ensemble auray is inreased by giving only one lassi�er out of the dependentlassi�ers a non zero weight. This strategy is used by �xed Adaptive Boosting (fAB) toorret for dependenies between base-level lassi�ers. A di�erent strategy is to dereasethe weight of eah dependent base-level lassi�er. The same auray as in Theorem 35an be obtained by dividing the weights w1 = . . . = w5 by 5. If the lassi�ers are reallyidential, the two di�erent strategies lead to the same ensemble auray. However, we51



3. Combination of Classi�ers to Inrease Aurayan only estimate the behavior of the base-level lassi�ers and, thus, reduing the weightfor every dependent base-level lassi�er may be a more robust strategy than assigningone base-level lassi�er a large weight and the rest a small weight.Of ourse, the question is how to generally orret the weights for dependenies andhow to treat the most ommon ase when lassi�ers are neither ompletely dependentnor independent. I propose the following strategy: To estimate the dependene of abase-level lassi�er to all other base-level lassi�ers the mutual information between thelassi�er and the remaining base-level lassi�ers is estimated. The orreted weight foreah base level lassi�er is then
wj = wmj(

J
∑

i=1,i6=j

I(Ψj,Ψi) + 1)−1 (3.3.1)where wmj is the weight obtained by the original WMV ombiner, I(Ψj,Ψi) the mutualinformation between two lassi�ers as in Setion 2.3.2.6. This orretion proedure ismotivated by the fat that the mutual information is zero for two independent lassi�ersand min(H(Ψj),H(Ψi)) for two idential lassi�ers, where H(Ψj) denotes the entropyof the lassi�er Ψj . I all this orretion of the weights dependeny orretion andthe resulting ombiner Dependent Weighted Majority Voting (DWMV). It an, of ourse,also be ombined with the signi�ane extension. I all the resulting ombiner DependentSigni�ant Weighted Majority Voting (DSWMV).Another possibility would be to use the normalized mutual information as estimate ofthe dependenies, whih leads the orretion sheme
wj = wmj(

J
∑

i=1,i6=j

I(Ψj,Ψi)min(H(Ψj),H(Ψi)) + 1)−1and ensures that for two ompletely dependent lassi�er I(Ψj ,Ψi)min(H(Ψj), H(Ψi)) is one. Thisorretion sheme is not examined in this thesis.3.3.3. Harmoni Series Weighted VotingAnother ombiner that I invented for the omparison is the Harmoni Series WeightedVoting (HSWV) ombiner. It is also a Weighted Voting (WV) ombiner. The weight foreah lassi�er is
wj =

1

rjwhere rj denotes the rank of the orresponding base-level lassi�er in omparison to theremaining base-level lassi�ers. The rank is alulated by sorting the base-level lassi�erswith respet to their BACs. Hene, the base-level lassi�er that gets assigned weight 1
2is the base-level lassi�er that produes the seond highest BAC on Domb.As the HSWV ombiner does not take into aount dependenies between base-levellassi�ers, the dependeny extension is also applied to HSWV, leading to the DependentHarmoni Series Weighted Voting (DHSWV) ombiner.52



3. Combination of Classi�ers to Inrease Auray3.3.4. Random Weighted VotingAs base-line method for the omparison I de�ne Random Weighted Voting (RWV), alsoa WV ombiner. The weight wj for eah base-level lassi�er Ψj is randomly pikedaording to the uniform distribution over the interval (0, 1).3.3.5. Details for the Existing CombinersThe details for the existing ombiners are as follows. For Bayes Combination (BC)Equation 2.3.5 is used to estimate the support. I hoose B = 1 for the hyper-parameter
B. As meta lassi�ers for staking, I employ two di�erent lassi�ation methods, LDAand LRLDA, resulting in the two ombiners, Staking with Linear Disriminant Analysis(STLDA) and Staking with Ledoit's Regularized Linear Disriminant Analysis (STLRLDA).For all ombiners that need an estimate of the auray, I use the BAC as estimate assome data sets are imbalaned. As lassi�ation method for CONCAT I employ LRLDA.LRLDA gets as input the onatenation of the feature vetors originating from all uniquefeature extration methods. For Information Theoreti Combination (ITC) I set the size
K of the to be seleted subset to seven.3.4. Base-Level LearnersWhile the proposed ensemble learning algorithm aepts arbitrary base-level learners asinput, I have to de�ne a set of base-level learners that is used for the omparison of thedi�erent ombiners. Remember that one goal of this thesis is to build a lassi�ationmethod that works well on a variety of di�erent EEG data sets. I want to omparethe ombiners on heterogeneous data sets. If no base-level learner produes an auratebase-level lassi�er, a omparison of the di�erent ombiners is not possible. Beause ofthese reasons, the set of base-level learners has to be broad and has to apture the mostprominent harateristis of EEG signals. This implies that for any partiular EEG dataset it is very likely that some base-level learner lead to inaurate base-level lassi�ers.As lassi�ation methods only linear lassi�ers are employed, following the reasoningof Blankertz et al. (2010a, p 118) that in their experiene �linear methods perform well,if an appropriate prepossessing of the data is performed�.Every method that I will introdue in the remainder of this setion is applied to datafrom the following seven frequeny bands separately: α (8-12 Hz), β (12-30 Hz), γ(30-70Hz), δ(0-4 Hz), θ(4-8 Hz), on (1-45Hz) and rem (70+ Hz). This leads to a total of
#methods · 7 base-level learners.The CSP feature extration method is used beause it is urrently the standard methodin BCI researh to quantify signal power hanges. The hyper-parameter k is set to three asadvised by Blankertz et al. (2008). The feature that is extrated of the signal transformedby the CSP patterns is the logarithm of the variane. As lassi�ation method for thebase-level learners based on CSP, LRLDA is used.To quantify amplitude hanges a set of base-level learners based on Spatio TemporalFeatures (STF) (see Setion 2.2.3) is employed. Three di�erent approahes are used, Loal53



3. Combination of Classi�ers to Inrease Auray

Figure 3.4.1.: Illustration of the base-level learners.
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3. Combination of Classi�ers to Inrease AurayAlgorithm 3.2 Learning algorithm of SVMOPTC,InputData set DSet of andidates for C, CanProeduremaxba = 0maxC = 0for eah c ∈ Can1. Estimate the BAC of the SVM instane with C = c using strati�ed 10-fold ross-validation; bav(SVMC=c,D), where SVMC=c denotes the learning algorithm ofSVM with the hyper-parameter C set to c.2. If bav(SVMC=c,D) > maxba, maxba = bav(SVMC=c,D) and maxC = c.endOutputSVMc=maxC(D)Means (LM), Regional Means (RM) and Global Mean (GM). The means are alulatedon non-overlapping intervals of length 50ms for the LM approah. For the RM approah,the means are alulated on �ve non-overlapping equally sized intervals that span thewhole trial. For GM, the mean is alulated over the omplete trial.The Permutation Entropy (PE) is used as measure of omplexity. It is alulated for theembedding dimensions 3 (PE3), 4 (PE4) and 5 (PE5). For smaller embedding dimensionsthe PE would hardly ontain any information and for larger embedding dimensions thetypial number of time points per hannel and trial would not be su�ient to get areasonable estimate of the PE.As lassi�ation method for the base-level learners based on the PE and the STF alinear SVM is used. The hyper-parameter C is optimized using strati�ed 10-fold ross-validation and the BAC as performane measure. Candidates for C are hosen from
{10i : i ∈ {−5,−3,−1, 1, 3, 5, 7, 9, 11, 13, 15}}. The resulting lassi�ation method will bealled Support Vetor Mahine with Optimization of the C hyper-parameter (SVMOPTC)in the remainder. The learning algorithm for SVMOPTC is shown in Algorithm 3.2. Adi�erent possible approah is to inlude every SVM as a di�erent base-level learner.However, pilot experiments suggested that base-level lassi�ers that only di�er in the
C hyper-parameter of their SVM are either ompletely dependent, or one base-levellassi�er performs learly superior. Hene, the seletion of the best C hyper-parameterseems more appropriate.The overall number of base-level learners is

#frequenybands·(#CSPLDA +#STFSVM+#PESVM) = 7 · (1 + 3 + 3) = 49where #frequenybands is the number of frequeny band on whih all feature extrationmethods are applied, #CSPLDA the number of feature extration methods that are55



3. Combination of Classi�ers to Inrease Auraybased on CSP, #STFSVM the number of feature extration methods that are based onSTF and, and #PESVM the number of feature extration methods that are based onPE.3.5. Details for CONCAT and ORACLEAs input for for CONCAT the onatenation of the feature vetors obtained by the di�er-ent feature extration methods from the base-level learners is employed. As lassi�ationmethod for CONCAT I hoose LRLDA beause it is a very powerful and regularizedmethod. I ompare the lassi�ation methods on �ve di�erent simulation senarios andon data sets originating from four di�erent EEG studies. ORACLE returns, for eahdata set, the lassi�er that ahieves the highest mean BAC over all data sets from therespetive study/senario out of all base-level lassi�ers. The BAC is estimated usingstrati�ed 10-fold ross-validation.3.6. ImplementationThe generi learning algorithm for ensemble lassi�ers, the ombiners, as well as all themethods needed for the base-level learners are integrated into the multivariate toolboxof Fieldtrip (Oostenveld et al., 2011). Fieldtrip is an EEG analysis toolbox for Matlab(MathWorks, 2012). Fieldtrip's multivariate toolbox ontains algorithms from the �eldof PR for the analysis of EEG data.The integration of the ode into an existing analysis toolbox serves multiple purposes.It makes it easier for others to verify and reprodue the results. Furthermore, the learningalgorithm for ensemble lassi�ers an be easily used to implement and test new ombinersor base-level learners. Another advantage is that many of the algorithms implementedfor this work, e.g., the lassi�ation and the feature extration methods, an be easilyreused for ompletely di�erent projets.Fieldtrip was hosen over other existing toolboxes suh as BioSig (Shlogl and Brunner,2008) and BCILAB, whih is inluded in EEGLAB (Delorme and Makeig, 2004), beauseit fouses more on single-trial analysis than on building BCIs, it is objet oriented (atleast the multivariate toolbox), and it is the major EEG analysis toolbox used at myinstitute.The design of the learning algorithm for ensemble lassi�ers is oriented at and reusessome of the ode from the ft_mv_gridsearh lass of �eldtrip. Furthermore, for e�ienyreasons it is implemented suh that it aepts a set of ombiners and returns a set ofensemble lassi�ers.While the ensemble learning algorithm and the ombiners are implemented by me,some methods needed for the base-level learners do already exists in �eldtrip, namelyCSP and SVM. Also, the ross-validation proedure from �eldtrip is used.The leading paradigm for the implementation is the extensive employment of auto-mated testing to ensure the orretness of the implemented algorithms, leading to a totalof 68 test ases. 56



4. ResultsIn this setion I will present the results of an empirial omparison of the proposedmethods. Reall that the questions I want to answer are:1. Does a ombination of base-level lassi�ers based on di�erent feature extrationand lassi�ation methods improve the Balaned Auray (BAC) in omparisonto the ORACLE?2. Does a ombination of base-level lassi�ers based on the di�erent feature extrationand lassi�ation methods lead to a more aurate lassi�er than Selet the Best(SeletBest) and Conatenation (CONCAT)3. Whih of the ombiners produes the most aurate ensemble lassi�er?4. Is the set of base-level learners that I de�ned su�ient? Does it produe aurateand diverse lassi�ers?5. Does the best method result in a lassi�ation method that works well not only ona single but on a variety of Eletroenephalography (EEG) data sets?This setion will start with an introdution of the methods that are used to ompute theresults. It will ontinue with the presentation of the results of a simulation study. Afterthat, the results on the EEG data sets will be presented. I will use many abbreviationsthroughout this hapter. If you are reading this thesis on a omputer, you may lik onthe abbreviation to get to the list of abbreviations (see Chapter 6). If you are reading thisthesis in paper form, the list of abbreviations is provided to you as separate spreadsheet.4.1. MethodsThe Balaned Auray (BAC) (see De�nition 13) for eah method on eah data set isestimated using strati�ed 10-fold ross-validation (see De�nition 12). This results in a soalled nested ross-validation proedure for the Multiple Classi�er System (MCS). Theouter ross-validation loop is used to estimate the auray of the ensemble lassi�ersand the inner ross-validation loop is part of the training of the ensemble lassi�ers(see Algorithm 3.1). Within the training of the ensemble lassi�ers there is even anotherross-validation loop as part of the training of Support Vetor Mahine with Optimizationof the C hyper-parameter (SVMOPTC).As aggregated performane measures, over the data sets, the mean of the BACs andthe ranks omputed by the Friedman test (see Setion 2.1.4.2) are presented.57



4. ResultsFor addressing the statistial signi�ane of the results, depending on the situation, twodi�erent tests are employed. The di�erenes between the di�erent methods is translatedinto a p-value using the post-ho proedure on the test statistis alulated by the Fried-man test (see Setion 2.1.4.2). When omparing a set of ombiners against a base-linemethod, e.g., Selet the Best (SeletBest), Conatenation (CONCAT) and ORACLE, theprobability threshold α is adjusted for multiple testing using the Bonferroni orretion.For the omparison of all pairs of ombiners, the ritial value is adjusted stepwise usingthe Sha�er's Stati Proedure (SSP) (see Setion 2.1.4.2). When a method is testedagainst random guessing, the test introdued in Setion 2.1.4.1 is used. When multiplemethods are ompared against random guessing on the same data set, the ritial value
α is adjusted using the Bonferroni orretion.As harateristis of the set of base-level lassi�ers I report the average disagreementmeasure and the average number of base-level lassi�ers that ahieve a BAC better thanrandom guessing. The BAC is estimated using 10-fold strati�ed ross-validation. If alassi�er performs better than random guessing, is tested using the test introdued inSetion 2.1.4.1. I do not orret for multiple omparisons, beause I want to test foreah lassi�er independently if it performs better than random guessing. Hene, if all49 base-level lassi�er guess randomly, this test will, on average, �nd 49 · 0.05 = 2.45lassi�ers to perform better than random guessing.4.2. ImplementationAs with the algorithms introdued in the last setion, I integrate the algorithms that areneeded to generate the results, e.g., the statistial tests, into the multivariate toolbox ofFieldtrip.Beause of the large amount of data sets and the amount of methods that are ompared,the total omputing time to generate the results for the real data set exeeds four years.Hene, a regular omputer would not be su�ient to alulate the results in a reasonabletime. Therefore, I use a 180 ore luster omputer to alulate the results on the real datasets, and employ a 30 ore luster omputer to estimate the Balaned Aurays (BACs)on the simulated data sets.I modify the ross-validation proedure of �eldtrip suh that it aepts learning al-gorithms that return a set of lassi�ers to be ompatible with the implementation ofthe learning algorithm for ensemble lassi�ers. Furthermore, beause parallelism on thedata set level is not su�ient to get the results in a reasonable time, I modify the ross-validation proedure suh that eah of the 10 folds an be proessed independently on aseparate mahine.4.3. SimulationBefore omparing the di�erent ombiners on real Eletroenephalography (EEG) data sets,I ompare them on simulated data sets. Besides the omparison of di�erent ombiners ondata sets with known properties, the main goal of the simulation study is to redue the58



4. Resultsnumber of ombiners that have to be inluded in the omparison on the real data sets.This is motivated by two fats: First, when testing the di�erenes between the ombinersand the base-line methods for signi�ane, the more ombiners are inluded in the testthe less likely is it to �nd a signi�ant e�et. Every additional ombiner inreases therank di�erenes required for a signi�ant e�et. Seond, the redution of the number ofombiner redues the omputation time.For the simulation study, di�erent base-level lassi�ers are simulated for �ve di�erentsenarios. The senarios are inspired by situations that ourred on real data sets.For every senario, 1000 data sets are simulated. Eah data set represents a binarylassi�ation problem and onsists of 1000 trials per lass.4.3.1. SenariosBase SenarioFor the base senario, 15 base-level lassi�ers are simulated. The Balaned Aurays(BACs) of the base-level lassi�ers are equally distributed in the interval [0.55, 0.8].Hene, every base-level lassi�er is aurate. After ensuring that the per-lass auraiesare the same, whih ensures that the BAC is equivalent to the auray, the lassi�eroutputs are shu�ed within the lass. This ensures high diversity between the lassi�ers.The base senario represents the situation when the base-level lassi�ers are indepen-dent and aurate. It an be seen as the optimal senario. The remaining senariosare extensions of the base senario. They all ontain the base-level lassi�ers that weregenerated for the base senario.Noise SenarioFor the noise senario, 45 lassi�ers are added that arbitrarily predit lass one or two,with equal probability, independently of the true label. This senario evaluates theapaity of the ombiners to deal with base-level lassi�ers that do not provide anyinformation about the true label. Beause I hose a broad set of base-level learners, it isvery likely that suh lassi�ers are part of the base-level lassi�ers set.Doubles SenarioFor the doubles senario, randomly one of the 15 lassi�ers from the base senario ispiked and dupliated �ve times. Eah lassi�er has the same hane to get piked. Thisproedure is repeated 9 times, resulting in 45 lassi�ers. These 45 lassi�er are simplyrepetitions of existing lassi�ers. This senario represents the ase when there are strongdependenies between the base-level lassi�ers.Constant SenarioFor the onstant senario, 45 lassi�ers that onstantly predit one lass are added.This senario represents the worst ase of dependent noise. It is motivated by pilot59



4. Resultsmethod base + noise + onstant + doubles + allSTLRLDA 93.77 93.68 93.67 93.67 93.41STLDA 93.67 93.40 93.67 93.67 93.40fAB 93.67 93.08 93.65 93.62 93.03DSWMV 93.72 93.69 93.72 92.70 92.66DWMV 93.72 93.58 93.72 92.70 92.49SWMV 93.80 93.78 93.8 86.79 86.79WMV 93.80 93.71 93.8 86.79 86.79BC 93.79 93.70 93.79 86.78 86.78HSWV 88.84 88.65 80.94 82.79 82.75SMV 92.17 90.26 92.17 83.50 83.65DHSWV 89.80 89.37 72.55 83.42 75.35SeletBest 77.87 77.87 77.87 77.87 77.87ORACLE 67.79 67.79 67.79 67.79 67.79RWV 88.44 72.05 50 83.84 57.56MV 92.17 75.25 50 83.50 55.84ITC 76.92 58.68 50 76.92 50.00Table 4.1.: Mean BAC, in perent, for eah method and senario, sorted by their BACson the all senario. The values printed in bold letters represent the bestmethod on the respetive senario. If in one olumn there is more than onevalue printed in bold, there was no signi�ant di�erene between those meth-ods. For the all senario, missing olumn delimiters imply that no signi�antdi�erene ould be observed between these methods. The gray rows mark theombiners that are proposed in this thesis.experiments, in whih base-level lassi�ers that only di�ered in the C hyper-parameterof their Support Vetor Mahine (SVM) were part of the base-level lassi�er set. It wasobserved that for some C values these base-level lassi�ers onstantly predit one lass.All SenarioThe all senario ontains the base-level lassi�ers from the base senario and the base-level lassi�ers from all other senarios, resulting in a total of 150 base-level lassi�ers.The main motivation for this senario is to evaluate the performane of the di�erentombiners in the ase when all noise soures our at the same time. This is believed tobe the most realisti senario.4.3.2. ResultsBy onstrution, the diversity between the base-level lassi�ers from the base senario ishigh. The average disagreement measure is 0.4390 with a standard deviation of 0.0132.All other senarios inlude the set of base-level lassi�ers from the base senario. Hene,for eah senario, there exists a subset of aurate and diverse base-level lassi�ers.60



4. Results
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4. ResultsThe results for all ombiners and senarios are summarized in Table 4.1. The ensemblelassi�ers reated by almost every ombiner perform better than ORACLE on all se-narios. On the base senario the ensemble lassi�ers built by the best ombiners ahievea mean BAC of 93.80%, while ORACLE ahieves a mean BAC of 67.79%. Hene, theombination of the base-level lassi�ers is able to boost the mean BAC by more than26%.Not surprising, the ensemble lassi�er built by Selet the Best (SeletBest) results ina mean BAC of 77.87% on all senarios. Thus, the ombination of base-level lassi�ersprodues more aurate ensemble lassi�ers than the seletion of the most aurate base-level lassi�er.The ensemble lassi�ers build by Staking with Ledoit's Regularized Linear Disrimi-nant Analysis (STLRLDA), Staking with Linear Disriminant Analysis (STLDA), �xedAdaptive Boosting (fAB), Dependent Signi�ant Weighted Majority Voting (DSWMV),Signi�gane Weighted Majority Voting (SWMV), Weighted Majority Voting (WMV),Bayes Combination (BC), and Signi�gane Majority Voting (SMV) perform, with amean BAC span of 92.17% to 93.77%, relatively similar on the base senario. I will allthis group of ombiners promising ombiners in the remainder of this work, beause theremaining ombiners produe tremendously less aurate ensemble lassi�ers on the basesenario.On the all senario there is one group that performs muh better than the rest ofthe ombiners. STLRLDA, STLDA, fAB, DSWMV, and Dependent Weighted MajorityVoting (DWMV) produe mean BACs that are higher than 94.48%, while the mean BACsahieved by the remaining ombiners are below 86.8%. I will all this group of ombinerswinning ombiners in the remainder of this work. Note that the winning ombiners area subset of the promising ombiners.Of ourse, the question is what is the reason for the big di�erenes between the winningombiners and the rest of the ombiners. When omparing the learning algorithms of thewinning ombiners against the learning algorithms of the promising ombiners, one bigdi�erene beomes apparent. The winning ombiners reate the ombination rule suhthat it takes into aount dependenies between the base-level lassi�ers. Furthermore,there is empirial evidene that the proper handling of dependent lassi�ers leads to thefat that the winning ombiners perform best. On the noise and the onstant senariothe promising ombiners perform almost on the same level than on the base senario.Contrary to that, on the doubles senario only the winning ombiners yield a similar meanBAC ompared to the base senario. The mean BACs for the rest of the ombiners onthe doubles senario is onsiderably smaller than their mean BACs on the base senario.After having identi�ed the ombiners that produe the most aurate ensemble lassi-�ers on the all senario, I will ontinue this setion with a detailed performane analysisfor every ombiner. Based on that analysis the ombiners that will be inluded in theomparison on the real EEG data sets are seleted.The staking ombiners STLRLDA and STLDA share the �rst rank on the all senariowith mean BACs of 93.41% and 93.4%. They perform signi�antly better than all otherombiners. Over all senarios the performane of these two ombiners is promising.STLRLDA performs better than STLDA on eah senario. Beause of that, from the62



4. Resultsstaking ombiners, only STLRLDA will be inluded in the omparison on the real datasets, although per senario the di�erene is negligible.With a mean BAC of 93.03%, fAB ahieves the seond rank for the �all senario� andalso performs well over all senarios. Therefore, fAB will be inluded in the real dataomparison.The ombination methods from the Weighted Majority Voting (WMV) family alsoprodue promising results. For the base, the noise and the onstant senario at least oneombiner from that family ranks �rst. For the all senario DSWMV (mean BAC 92.66%)and DWMV (mean BAC 92.49%) share the fourth plae. SWMV (mean BAC 86.79%)and WMV (mean BAC 86.79%) follow on the shared �fth plae. The appliation of thesigni�ane orretion, whih I introdued in Setion 3.3.1, to WMV onstantly boostsBACs of the resulting ensemble lassi�ers. SWMV always performs better or equallywell than WMV. The same is true when omparing DSWMV and DWMV. But thedi�erenes are very small. However, beause the signi�ane orretion led to a moreaurate ensemble lassi�er on every senario, WMV and DWMV will not be inludedin the �nal omparison.What follows is the evaluation of the dependeny extension (see Setion 3.3.2). On thebase, noise and onstant senario SWMV performs signi�antly better than DSWMV.So, it seems that in the ase when there are no dependenies between the base-levellassi�ers the dependeny extension atually worsens the performane of the resultingensemble lassi�er. However, the BAC di�erenes are relatively small. In ontrast tothat, there is a relatively huge di�erene of 6% in favor of DSWMV on the doublesand all senario. This provides evidene that the dependeny extension produes, infat, a better ombination rule than WMV if there are dependenies between the base-level lassi�ers. Therefore, DSWMV and SWMV will both be inluded in the real dataomparison. DSWMV performs signi�antly worse than three other methods, that takeinto aount dependenies between the base-level lassi�ers, namely fAB and the twostaking ombinersBC is part of the promising ombiners. When there are no dependenies between thelassi�ers, BC is one of the best ombiners. It ahieves the shared �rst plae on the baseand the onstant senario and the shared seond plae on the noise senario. However, asfor all the other promising but not winning ombiners, the BAC of the resulting ensemblelassi�er drops signi�antly on the doubles senario, leading to a mean BAC of 86.78%on the all senario. This is not surprising as BC does not take into aount dependeniesbetween base-level lassi�ers.The two harmoni series ombiners, Harmoni Series Weighted Voting (HSWV) andDependent Harmoni Series Weighted Voting (DHSWV), are not part of the promis-ing ombiners. The resulting ensemble lassi�ers perform signi�antly worse than thepromising ombiners, but still signi�antly better than the base-line methods SeletBestand ORACLE. HSWV ahieves a mean BAC of 82.75% and DHSWV ahieves a meanBAC of 75.25% on the all senario. DHSWV performs better than HSWV on the noise,base, and doubles senario. HSWV performs better than DHSWV on the onstant andall senario. The reason for that seems to be that DHSWV is disturbed by the on-stant lassi�ers. Beause of this unlear relationship both methods will nevertheless be63



4. Resultsinluded in the omparison on the real data.The simpleMajority Voting (MV) ombiner produes a promising mean BAC of 92.17%on the base senario. For all other senarios, it is, not surprisingly, heavily disturbedby the noisy and depended base-level lassi�ers; leading to a mean BAC of 55.84% onthe all senario. The extension to the SMV ombiner performs better than MV on allsenarios. With the exeption of the doubles and the all senario, it performed similar tothe promising ombiners. Hene, only SMV will be inluded in the omparison on realdata sets.Information Theoreti Combination (ITC) always performs worse or equally bad thanRandom Weighted Voting (RWV). The mean BAC of the ensemble lassi�er built byITC on the all senario is 50%. Beause of that, ITC will not be inluded in the �nalomparison. ITC hooses bad base-level lassi�er subsets. They onsist of the base-levellassi�er with the highest BAC and 6 base-level lassi�ers that perform omparativelybad. The reason for that seems to be that the information theoreti sore is dominatedby the information theoreti diversity.4.4. Eletroenephalography Data SetsIn this setion, I will present the results on Eletroenephalography (EEG) data sets.In addition to the main questions spei�ed at the beginning of this hapter, I will ad-dress what feature extration and lassi�ation methods are employed for lassi�ation.Furthermore, to aess the potential of my methods, I will ompare the lassi�ationauraies of my methods to the auraies that were ahieved by other researhers onsimilar data sets.I will start this setion by introduing the di�erent studies from whih the data setsoriginate. After that, I will present the results separately for eah study. The emphasisduring this part is to �nd out if the proposed set of base-level learners is su�ient for afair omparison of the methods and if the employment of ensemble lassi�ers produesmore aurate lassi�ers than the base-line methods Selet the Best (SeletBest), ORA-CLE, and Conatenation (CONCAT). Following this part, I will ompare the di�erentombiners on data sets originating from various studies to �nd out if there is a superiorombiner. After that, I will apply the most promising methods on a data set on that nosuessful lassi�ation has been ahieved yet.4.4.1. Desription of the StudiesAttentionThe lassi�ation task for the data sets originating from the Attention study is to lassifyif the partiipant attends to the left or the right half of a omputer sreen, while looking ata �xation ross. The original results of this study, as well as a more extensive desriptionof the experimental design, an be found in Sander et al. (2012).The partiipants of the study originate from three groups, 22 hildren (µage = 11.9,
σage = 0.52, range 10 − 13 years), 12 young adults (µage = 24.19, σage = 1.57, range64



4. Results

Figure 4.4.1.: Sequene of sreens for one trial of the Attention study. Adapted withpermission from Sander et al. (2012).
20− 26 years), and 22 older adults (µage = 73.3, σage = 1.54, range 70− 75 years).During the experiment, the partiipants were seated omfortably in an eletromagneti-ally and aoustially shielded room. They were shown a sreen that displayed a �xationross and a set of olored squares for 100ms. A ue, whih was permanently shown from-500ms until 0ms relative to the presentation of the sreen, indiated to whih half of thesreen the partiipants should attend. The partiipants were instruted to only shift theirattention but to keep their visual fous on the �xation ross. After a retention intervalof 1000ms, they were shown a sreen that potentially di�ered in the half to whih theywere asked to attend to.Their task was to respond if the sreen di�ered from the sreen they had seen before.The response time was limited to a maximum of 5000ms. Eah partiipant ompleted360 trials. Between the trials there was a 1500ms break, in whih a �xation ross wasshown.For the omparison, the task of the lassi�er is to predit if a partiipant attends to theleft or the right half of the sreen, based on the EEG signals from 0 to 1000ms relativeto the onset of the presentation of the to be memorized sreen. Only those trials for thatthe response of the partiipants is orret are inluded in the analysis.The EEG signals were reorded using 61 Ag/Ag-Cl eletrodes. Eletrode impedanewas below 5kΩ before the reording. The sampling rate was 1000hz. During the reord-ing, a 0.1−250Hz band-pass �lter was applied and eletrodes were referened to the rightmastoid eletrode, but the left mastoid eletrode was also reorded.For preproessing the EEG signals were re-referened to the mathematially linkedmastoids and high-pass �ltered with 0.5Hz. Trials that inluded eye movement or ex-essive musle ativity were removed. On the remaining data independent omponentanalysis was used to projet the residual noise soures out of the data (Jung et al., 2000).This was done by visually inspeting the omponents and rejeting those omponents thatrepresented noise soures.
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4. ResultsMotor ImaginaryThe lassi�ation task for data sets originating from the Motor Imaginary study is todisriminate between a right and left index �nger button press. Data from 36 partiipantsare analyzed. The data sets were reorded by Zander et al. (2011). In their paper a moreextensive desription of the experimental paradigm an be found.During eah trial, the partiipants were shown a �L� or an �R� for 700ms followed bya pause of 300ms. The presentation of �L� or �R� indiated that they should press theleft (L) or right (R) CTRL-key as quikly and aurately as possible with their left (L)or right index �nger (R). Between the trials there was a 1000ms break.The EEG signals were reorded using 32 Ag/Ag-Cl eletrodes. The sampling ratewas 1000hz. During the reording, the EEG signals were �ltered using a 0.1-1000Hzband-pass �lter.As input for the base-level learners, I extrat the EEG signals from -500ms up to 200msrelative to the button press. A previous approah to only extrat the EEG signals from-500 to -200ms relative to the button press did not lead to aurate base-level lassi�ers.Auditory OddballThe lassi�ation task for data sets originating from the Auditory Oddball study is tolassify if a partiipant listens to a rare or a ommon tone.The data sets originate from a pilot study employed at the Max Plank Institutefor Human Development. Data sets for six subjets were reorded. The experimentimplemented the auditory oddball paradigm (see Squires et al., 1975).During the experiment, the partiipants were standing still. The room in that they werestanding was neither eletromagnetially nor aoustially shielded. The partiipants werepresented high- and low-pithed tones with varying timely gaps. The high-pithed tonewas presented in 80% (ommon) of the ases and the low-pithed tone in the remaining20% (rare) of the ases. The task of the partiipants was to ount how many times therare tone ourred. The tones were played for 50ms. The frequeny of the ommon tonewas 1000Hz and 800Hz for the rare tone. The gap between two onseutive tones wasvaried between 1200 and 1500ms.The EEG signals were reorded using 60 Ag/Ag-Cl eletrodes. The sampling rate was1000hz. During the reording, eletrodes were referened to the right mastoid eletrode,but the left mastoid eletrode was also reorded. Furthermore, a 0.1− 250Hz band-pass�lter was applied.As input for the base-level learners I extrat, analogously to Bekmann (2010), theEEG data from 0ms to 512ms relative to the onset of the auditory stimuli.For preproessing the EEG signals were re-referened to the mathematially linkedmastoids and high-pass �ltered with 0.5Hz.MemoryThe lassi�ation task for the data sets originating from the memory study is to lassify ifthe partiipant is able to memorize an objet based on EEG data from the memorization66



4. Resultsphase. That is, the lassi�er should predit if a person will be able to remember somethingat the time they is trying to memorize it.For this task a data set for one subjet was reorded by me and my olleagues.The paradigm desribed by Brehmer et al. (2004) was used. The partiipant wasseated omfortably in an aoustially as well as eletromagnetially shielded room. Thepartiipant was presented a set of loation-word pairs. The task of him was to rememberthe pairs. The partiipant was trained to ful�ll this task by employing the method ofloi (see Bower, 1970).The experiment onsisted of 36 bloks. Eah blok was separated in an enoding anda reall phase. During the enoding phase, loation ues were presented visually on amonitor and the to-be-realled words were presented aurally over headphones. For eahloation-word pair, �rst the loation ue was shown for 500ms. This was followed by thepresentation of the word. After that, followed a break, in whih the partiipant shouldmemorize the loation-word pair. Then, the next loation ue followed immediately. Foreah blok 16 loation-word pairs had to be remembered. In every blok eah loationwas part of exatly one pair.After all 16 loation-word pairs had been shown, the partiipant ould start the reallphase at his own will. In the reall phase eah loation ue was presented for 5000ms.During the presentation of the loation, the partiipant had to type in the �rst threeletters of the memorized word. After suessive 6 Bloks, the subjets was allowed topause for several minutes.If a word ourred in one blok, it was guaranteed not to our in the following blok.A total of 16 loations and 413 highly imaginable words were used as stimuli. The timebetween the presentation of two suessive loations was 2300ms. In prior sessions it wasadjusted suh that the partiipant ould remember approximately 10 out of 16 pairs.For the lassi�ation one trial onsists of the EEG signals from the beginning of theloation presentation until the beginning of the next loation presentation. The to-be-separated lasses are �the person will remember the pair� and �the person will notremember the pair�.The EEG signals were reorded using 60 Ag/Ag-Cl eletrodes. Eletrode impedanewas below 2kΩ before the reording. The sampling rate was 5000Hz. A 0.1 − 1000Hz
(a) (b)Figure 4.4.2.: Sequene of sreens for the (a) enoding and the (b) reall.67



4. Resultsband-pass �lter was applied. During the reording, eletrodes were referened to theright mastoid eletrode, but the left mastoid eletrode was also reorded.For preproessing the EEG data was re-referened to the mathematially linked mas-toids and down-sampled to 500Hz. Trials that inluded eye movement or exessive musleativity were removed.4.4.2. ResultsA short notational remark. Most measures employed are per data set measures. I willoften report means of that measures. The number between the brakets after the numberfor the mean denotes the orresponding standard deviation.AttentionOne subjet had to be exluded from the analysis. The training of the Ledoit's RegularizedLinear Disriminant Analysis (LRLDA) lassi�er that was used for CONCAT neededmore main memory than was request-able on the omputing luster (see Setion 4.2).From the 49 base-level lassi�ers on average 16.64(6.24) ahieve an auray better thanrandom guessing. The average disagreement measure between the base-level lassi�ersthat performed better than random guessing is 0.436(0.0249). Hene, the proposed setof base-level learners produes a set of diverse and aurate base-level lassi�ers on theAttention data sets. Thus, an appropriate ombination of the base-level lassi�ers isexpeted to result in an ensemble lassi�er that is more aurate than ORACLE.In fat, the ensemble lassi�er built by the best ombiner ahieves a mean BAC of66% and a mean rank of 7.43, while ORACLE ahieves a mean BAC of 61.83% and amean rank of 4.28. Furthermore, all ombiners generate ensemble lassi�ers that aremore aurate than ORACLE. With the exeption of �xed Adaptive Boosting (fAB) andSigni�gane Majority Voting (SMV), the rank di�erenes between all ombiners andORACLE are signi�ant.On top of that, all ombiners, with the exeption of fAB and SMV, produe more a-urate ensemble lassi�ers than SeletBest (mean BAC 64.28% rank 5.24) and CONCAT(mean BAC 64.25% rank 5.68). The ranks of the top three performing ombiners,DSWMV, DHSWV and DHSWV, all proposed in this thesis, are signi�antly larger thanthe ranks of SeletBest. Testing the di�erenes between the ombiners and CONCATfor signi�ane reveals that only the rank di�erene between DSWMV and CONCAT issigni�ant.There were two previous studies that suessfully lassi�ed spatial attention basedan neuroimaging data. Kelly et al. (2005) ahieved a mean auray of 73%. Beauseboth lasses were of equal size this measure is equivalent to the BAC. While their meanBAC is 7% higher than the BAC for my best lassi�ation method, a diret ompar-ison seems at least questionable as the subjets that partiipated in their study ouldonentrate on the attention task, while in the study from whih the data sets I usedoriginate from, the partiipants also had to onentrate on the memory task. Hene,it is reasonable to assume that the lassi�ation task for my data sets is more di�ult.68



4. Resultsmethod Balaned Auray (BAC) rankDSWMV 66 7.43HSWV 65.89 7.13DHSWV 65.84 7.05BC 65.33 6.51SWMV 65.33 6.64STLRLDA 65.21 6.41CONCAT 64.25 5.68SeletBest 64.28 5.25SMV 64.06 4.97fAB 63.91 4.66ORACLE 61.83 4.28Table 4.2.: Mean BACs, in perent, and ranks, for all methods, over all data sets orig-inating from the Attention study. The methods are ordered by their meanranks. The gray rows mark the ombiners that are proposed in this thesis.van Gerven and Jensen (2009) even lassi�ed four di�erent diretions of overt spatialattention at a reasonable lassi�ation rate using Magnetoenephalography (MEG) forsignal aquisition. Beause they used, instead of EEG, MEG as signal aquisition methoda diret omparison seems inappropriate.Another interesting question is: What base-level lassi�ers are used for the lassi�-ation? To address this question I alulate the mean weights over all folds from allsubjets as learned by the best method Dependent Signi�ant Weighted Majority Vot-ing (DSWMV). For eah data set Di and eah fold f a weight vetor wi,f is learned,whih onsists of a weight wi,f (j) for eah base-level lassi�er. There are n = 55 data setsand 10 folds per data set. Eah entry wµ(j) of the mean vetor is alulated as follows
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(w(j)i,f − w(j)µ)2The mean vetor wµ and the standard deviation vetor wσ of all weights are displayedin Figure 4.4.3. The models that orrespond to the 10 largest entries in the mean vetor
wµ an be seen in Table 4.3. While one needs to be areful when omparing the meanweights of the di�erent base-level learners, espeially beause the standard deviation isomparatively high, it is interesting that from the ten base-level learners orrespondingto the largest weights, nine are based on Common Spatial Patterns (CSP) or Loal Means(LM) features. Espeially when taking into aount that previous lassi�ation of spatial69



4. Results

Figure 4.4.3.: Means wµ and standard deviations wσ of the weights for eah base-levellearner as learned by DSWMV over all folds from all data sets from theAttention study. The table that translates #base-level learner to the or-responding base-level learner an be found in Appendix A.1.
base-level lassi�er weight
γ + CSP + LRLDA 0.2943rem + CSP + LRLDA 0.2901
β + CSP + LRLDA 0.2532

θ + LM + SVMOPTC 0.2523
δ +LM SVMOPTC 0.2495

δ + RM + SVMOPTC 0.2149on + CSP + LRLDA 0.1814on +LM + SVMOPTC 0.1791
α +CSP + LRLDA 0.1652
θ +CSP + LRLDA 0.1529Table 4.3.: Ten largest entries of the mean vetor wµ and the orresponding base-levellearners.
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4. Resultsattention (Kelly et al., 2005, van Gerven and Jensen, 2009) was solely based on α powerfeatures, this an interesting �nding.
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4. ResultsMotor ImaginaryFrom the 49 base-level lassi�ers on average 15.78(3.66) ahieve an auray better thanrandom guessing. The average disagreement measure between the base-level lassi�ersthat performed better than random guessing is 0.4294(0.0201). Hene, the proposedset of base-level learners produes a set of diverse and aurate base-level lassi�ers onthe Motor Imaginary data sets. Thus, an appropriate ombination of these base levellassi�ers should result in an ensemble lassi�er that is more aurate than ORACLE.Analogously to the Attention data sets, all ombiner produe ensemble lassi�ers thathave higher mean BACs than ORACLE. The most aurate ensemble lassi�er is reatedby STLRLDA and ahieve a mean BAC of 76.45%, while the lassi�er seleted by ORA-CLE ahieves a mean BAC of 68.88%. With the exeption of SMV, the rank di�erenesbetween the ensemble lassi�ers and ORACLE are signi�ant.Also, with the exeption of SMV, all ombiners build ensemble lassi�ers that performbetter than the ensemble lassi�er built by SeletBest (mean BAC 72.65%). ExludingHarmoni Series Weighted Voting (HSWV) and Dependent Harmoni Series WeightedVoting (DHSWV), the rank di�erenes between all ensemble lassi�ers and SeletBest aresigni�ant. However, the high di�erene between SeletBest and HSWV, and SeletBestand DHSWV, both in mean BAC and rank, suggest that with a larger set of data setsthe di�erenes ould be found to be signi�ant.In ontrast to the Attention data sets, CONCAT learly outperforms all other methodson the Motor Imaginary data sets. With 87.91% its mean BAC is 11.46% higher than themean BAC of the ensemble lassi�er built by the best ombiner STLRLDA. Furthermore,its mean rank is 11, that means that CONCAT is the method that produes the mostaurate lassi�er on every single data set. This very pregnant di�erene between theAttention and the Motor Imaginary data sets will be further investigated in the followingsetions.It is known that motor imaginary an be lassi�ed robustly. Indeed, it is one of themain paradigms in Brain Computer Interfae (BCI) researh. There exist lassi�ationresults for exatly the same data sets as were used for this study. While Zander et al.(2011) do not report exat values, their �gure suggest that CONCAT performs betterthan most of the lassi�ation methods they tried, and at a similar level than their bestlassi�ation method.Analogously to the Attention data sets, I also want to examine what features areemployed for the lassi�ation. As CONCAT learly is the most aurate method, Iinterpret the lassi�er built by CONCAT. To do that the weight vetors w learned byLRLDA are examined. Note that CONCAT learns a weight for eah feature, ontrary toDSWMV that learns a weight for eah base-level lassi�er. The larger the deviation ofa weight w(k) from 0, the higher is the ontribution of the orresponding feature to thelassi�ation sore wTx+ c (see Equation 2.2.6).In ontrast to the mean weights presented in Setion 4.4.2, for eah data set Di outof the n = 36 data set only one weight vetor wi is obtained by applying the learningalgorithm of CONCAT to the omplete data set. Hene, eah entry of the mean vetor
wµ is alulated as 72



4. Resultsmethod BAC rankCONCAT 87.91 11STLRLDA 76.45 8.25fAB 76.18 8.01DSWMV 75.87 7.33BC 75.37 6.47SWMV 75.42 6.42HSWV 74.28 5.07DHSWV 74.32 5.03SeletBest 72.65 3.43SMV 72.09 2.97ORACLE 68.88 2.01Table 4.4.: Mean BACs, in perent, and ranks, for all methods, over all data sets orig-inating from the Motor Imaginary study.The methods are ordered by theirmean ranks. The gray rows mark the ombiners that are proposed in thisthesis.
wµ(k) =

1

n

n
∑

i=1
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(wi(k)− wµ(k))2In Figure 4.4.3 wµ and wσ are plotted for all features.There are eight aumulations of highly deviating weights: S1 = {wµ(k) : k ∈
{1, . . . , 42}}, S2 = {wµ(k) : k ∈ {139, . . . , 778}}, S3 = {wµ(k) : k ∈ {875, . . . , 1514}},
S4 = {wµ(k) : k ∈ {1611, . . . , 2250}}, S5 = {wµ(k) : k ∈ {2347, . . . , 2986}}, S6 =
{wµ(k) : k ∈ {3083, . . . , 3722}}, S7 = {wµ(k) : k ∈ {3819, . . . , 4458}}, and S8 = {wµ(k) :
k ∈ {4555, . . . , 5194}}. These aumulations are interrupted by aumulations of almostzero weights. The �rst set of highly deviating weights, S1, orresponds to the CSP fea-tures alulated on all frequeny bands. The next group S2 orresponds to the SpatioTemporal Features (STF), LM, Regional Means (RM), and Global Mean (GM), alu-lated on the on (1-45 Hz) frequeny band. The following peaks S3, . . . , S8 orrespondto the STF alulated on the δ, θ, α, β, γ and rem (70+ Hz) frequeny bands in thatorder. For all features based on the Permutation Entropy (PE) the LRLDA algorithmonsistently learned very low weights. Thus, their in�uene on the lassi�ation sore isnegligible.For weights with a large mean the variane is also relatively high. For weights witha small mean the variane is also relatively small. This implies that, the same types offeatures have been employed for every subjet.73



4. Results

Figure 4.4.4.: Means wµ and standard deviations wσ of the weights for eah feature aslearned by CONCAT over all data sets from the Motor Imaginary study.Auditory OddballFrom the 49 base-level lassi�ers on average 6.67(1.5055) ahieve an auray better thanrandom guessing. The average disagreement measure between the base-level lassi�ersthat perform better than random guessing is 0.1831(0.0201). This means that only veryfew base-level learners produe aurate lassi�ers. Furthermore, these lassi�ers are notvery diverse. Hene, a ombination of base-level lassi�ers may be able to improve theperformane, but independently of the employed ombiner drasti improvements are notto be expeted. The reason for this laking diversity seems to be that for most subjetsonly the lassi�ers based on STF were more aurate than random guessing.Considering the previous examination it is not surprising that no ombiner is able tosigni�antly improve the performane. Indeed, from the ombiners, only Bayes Com-bination (BC) (mean BAC 70.21) performs a little better than ORACLE (mean BAC69.71). Also, no improvement over SeletBest (mean BAC 69.28) is observable.What is very interesting is that the CONCAT ombination is still able to boost theauray signi�antly. CONCAT produes a mean BAC of 74.86% and an average rankof 9.83 in omparison to a mean BAC of 69.71% and a mean rank of 8.17 for ORACLE.The lassi�ation of the Event Related Potentials (ERP) eliited by a rare target stimuliis one of the most popular approahes for building BCIs. Thus, it is not surprising thata suessful lassi�ation is possible. The same data sets are used for the analysis asemployed by Bekmann (2010). His best method ahieved a mean BAC of 83%. Heestimated the BAC using the holdout method. Hene, it is questionable if a diretomparison of the results is appropriate. However, it seems like his speialized methodperforms even better than CONCAT.Analogously to the previous studies, I also want to examine what features have been74



4. Resultsmethod BAC rankCONCAT 74.86 9.83BC 70.21 9ORACLE 69.71 8.17STLRLDA 69.49 8.33SeletBest 69.28 7.67fAB 68.98 7.83SMV 64.2 4.33SWMV 63.35 4.33HSWV 61.43 3.08DSWMV 58.49 1.66DHSWV 53.59 1.7Table 4.5.: Mean BACs, in perent, and ranks for all methods over all data sets origi-nating from the Auditory Oddball study. The methods are ordered by theirmean ranks. The gray rows mark the ombiners that are proposed in thisthesis.used for the lassi�ation. As CONCAT learly was the best lassi�ation method,I interpret it. I alulate the mean vetor wµ and the standard deviation vetor wσanalogously to the approah that was used for the Motor Imaginary study. The entriesof the mean and the standard deviation vetor are displayed in Figure 4.4.5. As theweights are basially the same as for the Motor Imaginary data sets, please refer to theinterpretation presented there.Intermediate Summary and Open QuestionsFor the Motor Imaginary and the Attention study, the proposed set of base-level learnerswas learly su�ient and produed aurate and diverse base-level lassi�ers. For theAuditory Oddball data sets that was not the ase. It is unlear whether this is anelementary property of the data sets or if the set of base-level learners was not su�ient.It was shown that if the base-level lassi�ers are diverse and aurate, the ombinationof base-level lassi�ers learly outperforms ORACLE. Furthermore, a fusion of the base-level lassi�er deisions led to more aurate ensemble lassi�ers than the seletion of thebest base-level lassi�er by SeletBest.However, while the ombination of base-level lassi�ers performed better than CONCATon the Attention data sets, on the Motor Imaginary data sets CONCAT learly outper-formed the ensemble lassi�ers. When taking into aount that the Attention data setsonsist of r = 5194 features and on average N = 608.17(19.95) trials, so the mean num-ber of features per trial is r
N ≈ 8.54, this is a surprising result. The original LinearDisriminant Analysis (LDA) algorithm fails if r

N > 1 beause the estimated ovarianematrix is non-invertible. Of ourse, the estimator of the ovariane matrix used for thetraining of LRLDA was built suh that it produes a reasonable estimate if r
N > 1, but I75



4. Results

Figure 4.4.5.: Means wµ and standard deviations wσ of the weights for eah feature aslearned by CONCAT over all data sets from the Auditory Oddball study.did not expet it to work that well if the relationship is as extreme. Also, this is inon-sistent with the �ndings of Dornhege et al. (2004) and Boostani et al. (2007). They bothfound that CONCAT performs worse than ORACLE. However, none of them employedthe very advaned LRLDA lassi�ation method, spei�ally tailored for the situationwhen the number of trials is small ompared to the number of features.As result of searhing for di�erenes between the Attention and the Motor Imaginarydata sets, I found that the two groups of data sets mainly di�er in the number of featuresper trial r
N . While the mean number of features per trial is 8.54 for the Motor Imaginarydata sets, it is 12222/260.89 = 46.85 for the Attention data sets. This may very well bethe reason why the ensemble lassi�ers perform better than CONCAT on the Attentiondata sets.To on�rm this relationship, I rerun the analysis for the Motor Imaginary data setsand modify the set base-level learners suh that the total number of features inreases to72394, resulting in an average feature per trial ratio of 72394/608.17 = 119.0358. This isdone by inluding three new base-level learners to the set. As features the raw amplitudeEEG signals from the on (1-45 Hz), α, and β band are extrated separately.It is not possible to employ LRLDA as lassi�ation method for CONCAT on themodi�ed set of base-level learners. Reall that the learning algorithm of LRLDA esti-mates the per-lass ovariane matrix of the features. Hene, if the number of featuresis r = 72394, it will have to estimate r(r+1)

2 ≈ 2.6205 · 109 values. Taking into aountthat Matlab alloates 8 Byte main memory for every entry, this results in a memoryonsumption of 2.0964 · 1010Byte = 20.964GB. The maximum request-able amount ofmain memory on the omputing luster is smaller than 17GB. Hene, it is impossible toexeute the learning algorithm of the LRLDA on the available hardware. Therefore, Iused Support Vetor Mahine with Optimization of the C hyper-parameter (SVMOPTC)76



4. Resultsas lassi�ation method for CONCAT.The seond open question is, whih out of the ombiners leads to the most aurateensemble lassi�er. This question will be answered in Setion 4.4.2.Modi�ed Motor ImaginaryThree subjets had to be exluded from the analysis beause the time needed for al-ulation of the results for eah fold exeeded the maximum available omputing time oftwo days. The reason for that was that the SVMOPTC learning algorithm took severalhours for the high dimensional feature vetors based on the raw EEG amplitude data.To get a result for these subjets, I employ Support Vetor Mahine (SVM) as lassi�-ation method instead. The C parameter is hosen aording to the standard routineof Fieldtrip if no C hyper-parameter is spei�ed. By reading Appendix A.2, it an beon�rmed that the results of these subjets do not vary substantially from the resultspresented here.As expeted, CONCAT ompletely fails on the very high dimensional features. Witha mean BAC of 60.32% and a mean rank of 1.03 it performs signi�antly worse thanevery ombiner. Further analysis reveals that it performs worse than every ombiner onall data sets. The mean BAC ahieved by the best ombiner STLRLDA is 77.05. Thisis tremendously lower than the mean BAC ahieved by CONCAT on the original set ofbase-level learners (87.91%).Furthermore, all ombiners perform better than ORACLE (mean BAC 68.83%). Withthe exeption of SMV, the di�erenes between them and ORACLE are signi�ant.
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4. Resultsmethod BAC rankSTLRLDA 77.05 9.79fAB 76.28 8.70DSWMV 76.10 8.64BC 75.26 7.30SWMV 75.09 6.67HSWV 74.83 6.45DHSWV 74.71 6.42SeletBest 73.04 4.47SMV 71.87 3.64ORACLE 68.83 2.89CONCAT 60.32 1.03Table 4.6.: Mean BACs, in perent, and ranks for all methods over all data sets originat-ing from the Modi�ed Motor Imaginary study. The methods are ordered bytheir mean ranks. The gray rows mark the ombiners that are proposed inthis thesis.Comparison of the CombinersThe omparison of the ombination methods is based on the results of the Attention datasets and on the results of the set of modi�ed base-level learners on the Motor Imaginarydata sets, introdued in the previous setion. For the original set of base-level learnerson the Motor Imaginary data sets and the Auditory Oddball data sets, it is apparentthat CONCAT performs best.The best ombiner DSWMV yields a mean BAC of 69.78%. With the exeption ofSMV, all ombiners perform better than SeletBest (mean BAC 67.56%). The rankdi�erenes are signi�ant for all ombiners but fAB.Overall the ombiners perform very similar. With the exeption of SMV, the meanBAC varies only between 68.55% for fAB and 69.78% for DSWMV. The rank di�erenesare higher but also not very big. Comparing all ombiners, exluding SeletBest, againsteah other reveals the following piture: While DSWMV performs best, the di�erenesbetween it and STLRLDA, HSWV and BC are not signi�ant. However, when lookingat the data, espeially at the ranks, it seems like DSWMV and STLRLDA are the bestombiners.The extension DSWMV of Signi�gane Weighted Majority Voting (SWMV) performssigni�antly better than SWMV (mean BAC 68.99%, p < 0.01). DSWMV, also, performssigni�antly better than fAB (p < 0.01), indiating that the strategy that was hosento orret the weights for dependenies (see Equation 3.3.1), whih led to DSWMV, issuperior to the strategy fAB uses. The extension DHSWV performs worse than theoriginal HSWV algorithm (p = 0.8790).
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4. ResultsBAC rankDSWMV 69.78 6.30STLRLDA 69.65 6.13HSWV 69.06 5.33BC 69.20 5.29DHSWV 69.21 5.27SWMV 68.99 5.17fAB 68.55 4.69SeletBest 67.56 3.67SMV 66.99 3.16Table 4.7.: Mean BACs, in perent, and ranks for all ombiners over all data sets originat-ing from the Modi�ed Motor Imaginary study and the Attention study. Themethods are ordered by their mean ranks. The gray rows mark the ombinersthat are proposed in this thesis.MemorySine the lassi�ation of a suessful memorization has not yet been ahieved, the pur-pose of this data set is not to ompare the di�erent methods but rather to use the mostpowerful methods to try the suessful lassi�ation.From the 49 base-level lassi�ers 8 ahieve a BAC better than random guessing. Thedisagreement measure between those base-level lassi�ers is 0.3.The number of features is 15582 and the number of trials 557. Hene, the number offeatures per trial is 27.97. Beause this value lies between 8.54 and 46.85, it is unlear ifCONCAT or one of the ombiners should be hosen. But beause of the large numbersof features, as lassi�ation method for CONCAT SVMOPTC has to be used. Beauseof that, I propose that the ensemble lassi�ers will be the superior methods and hooseto inlude only them in the signi�ane test against random guessing.In Table 4.8 you an see the mean auraies for the �ve most promising ombiners,as identi�ed in the previous setion. The ombiner out of these ombiners that yields tothe highest BAC is BC (58.04%). With the exeption of STLRLDA and DHSWV, theBACs ahieved by these ombiners are signi�antly better than the expeted BAC byombiner BACBC 58.04HSWV 57.3DSWMV 55.31STLRLDA 53.52DHSWV 53.34Table 4.8.: BACs, in perent, for the most promising ombiners on the memory data set.The gray rows mark the ombiners that are proposed in this thesis.79



4. Resultsbase-level learner BACrem + CSP + LRLDA 59.81
β + CSP + LRLDA 58.43on + CSP + LRLDA 56.92
θ+ CSP + LRLDA 55.91
γ + CSP + LRLDA 55.73
δ+ CSP + LRLDA 55.12
α + CSP + LRLDA 54.33
θ+ LM + SVMOPTC 54.25Table 4.9.: The ten most aurate base-level learners for the memory data set ordered bytheir orresponding BAC.random guessing. The BAC of CONCAT is also estimated. With 48.40 it is in the areaof random guessing.Sine the interpretation of an ensemble lassi�er built by BC is not straightforward,I report the base-level lassi�ers that performed better than hane instead. The BACsfor the ten more aurate base-level learners an be seen in Table 4.9. All nine base-levellearners that are based on CSP features are inluded in the set of the ten base-levellearners that produe the most aurate base-level lassi�ers.With 59.81% ORACLE performs better than any ensemble lassi�er. It is importantto note that, in ontrast to the other data sets, only one data set is available from thememory study. Thus, when piking the best single lassi�er after having evaluated theauraies the statistial advantage of ensemble lassi�ers vanishes (see Setion 2.3.3).Furthermore, omparing the best base-level lassi�er against the best ombiners is abiased omparison. There are 49 base-level lassi�ers and only �ve ombiners. Hene,there is a statistial advantage for the base-level lassi�ers. A fair omparison is theomparison against SeletBest. SeletBest produes an ensemble lassi�er with a BACof 56.57%.4.5. SummaryWith the exeption of the Auditory Oddball data sets, the proposed set of base-levellearners produed aurate and diverse base-level lassi�ers. It was, thus, suited for afair omparison of the several methods.The ombination of base-level lassi�ers based on di�erent feature and lassi�a-tion methods produed signi�antly more aurate lassi�ers than ORACLE. Also, thetrue ombination of base-level lassi�ers produed ensemble lassi�ers that had higherBalaned Aurays (BACs) than the ensemble lassi�ers reated by Selet the Best(SeletBest).The omparison against Conatenation (CONCAT) revealed that CONCAT produesmore aurate lassi�ers when the number of features per trial is relatively low and thatthe ensemble lassi�ers generate more aurate lassi�ers when the number of features80



4. Resultsper trial is relatively high. When the number of features per trials was smaller than8.54, the lassi�er built by CONCAT was more aurate than the lassi�er indued byany ombiner. When the number of features per trial was larger than 30, the ensemblelassi�ers were more aurate than CONCAT.Out of the ombiners DSWMV, whih was proposed in this thesis, produed the mostaurate ensemble lassi�ers on the Eletroenephalography (EEG) data sets. The BACdi�erenes between it and the remaining ombiners was, with the exeption of Stakingwith Ledoit's Regularized Linear Disriminant Analysis (STLRLDA), Harmoni SeriesWeighted Voting (HSWV), and Bayes Combination (BC) signi�ant .On the simulation data sets STLRLDA indued the most aurate lassi�er, whileDependent Signi�ant Weighted Majority Voting (DSWMV) followed on the 3rd rank. Itis interesting that �xed Adaptive Boosting (fAB), whih was the seond best ombiner inthe simulation study, was the seond worst ombiner on the EEG data sets. In the otherdiretion HSWV performed relatively bad on the simulation data sets but ahieved theshared �rst rank on the real data sets.For all presented data sets, one of the ompared lassi�ation methods was able to infera separating model. Furthermore, the best ombiners ould be employed to suessfullylassify if a person memorizes something based on the EEG signals during the enodingphase. This is the �rst proof of onept for this lassi�ation task.
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5. Summary, Conlusion and Outlook5.1. Summary and ConlusionThe main hypothesis of this thesis was (see Chapter 3) that the ombination of thedi�erent feature extration (see Setion 2.2.3) and lassi�ation methods (see Setion2.2.4) that are employed for the lassi�ation of Eletroenephalography (EEG) signalsleads to a more aurate lassi�er than the best lassi�er based on only one ombination offeature extration and lassi�er method, estimated by the ORACLE lassi�er. ORACLEreturned the lassi�er that ahieved the best mean auray after having evaluated a set oflassi�ers on all data sets from one Pattern Reognition (PR) task. A further propositionwas that this results in a lassi�ation method that ahieves good lassi�ation auraieson a variety of EEG data sets resulting in a very powerful EEG single-trial analysistool. Furthermore, it was proposed that the ombination of the lassi�ation and featureextration methods through a Multiple Classi�er System (MCS) (see Setion 2.3) leadsto a more aurate lassi�er than the employment of a single lassi�ation method onthe onatenation of the outputs of all feature extration methods. The latter approahwas alled Conatenation (CONCAT) throughout this thesis. The last hypothesis wasthat a ombination of the lassi�ers leads to a more aurate ensemble lassi�er than theseletion of the best lassi�er, by Selet the Best (SeletBest) (see Setion 2.3.2.7).To examine this hypotheses, the aforementioned methods were ompared on a numberof data sets originating from four di�erent EEG studies. To examine if an ensemblelassi�er is superior, a set of base-level lassi�ers was de�ned. The set was hosen toonsist of base-level lassi�ers that extrat di�erent harateristis of the EEG signals (seeSetion 3.4). Multiple di�erent ombiners were employed to generate multiple ensemblelassi�ers based on the de�ned set of base-level lassi�ers. In addition to well knownombiners, new ombiners were introdued, implemented, and evaluated (see Setion3.3). Beause the ombiners used the same set of base-level lassi�ers to build theensemble lassi�er, no further analysis was required to determine whih ombiner resultsin the most aurate ensemble lassi�er.The ombination of base-level lassi�ers, for example, by Staking with Ledoit's Reg-ularized Linear Disriminant Analysis (STLRLDA) and Dependent Signi�ant WeightedMajority Voting (DSWMV), boosted the Balaned Auray (BAC) ompared to ORA-CLE by up to 7.57% (see Chapter 4). Furthermore, the ombination of the base-levellassi�ers by DSWMV led to an inrease of the mean BAC of 2.22% ompared to theseletion of the most aurate base-level lassi�er by SeletBest. When omparing theMCSs against CONCAT, the piture is not as lear. The MCSs had an lear advantagewhen the number of features per trial was larger than 30. Contrary to that, CONCATperformed substantially better than any MCS if the number of features per trial was82



5. Summary, Conlusion and Outlooksmaller than 9.The results suggest (see Setion 4.4.2) that, out of the employed ombiners (see Se-tion 3.3), Dependent Signi�ant Weighted Majority Voting (DSWMV) and Staking withLedoit's Regularized Linear Disriminant Analysis (STLRLDA), from whih DSWMVwas proposed in this thesis, are the best ombiners for heterogeneous lassi�ers. It isworth noting that, DSWMV produed signi�antly more aurate ensemble lassi�ersthan the two famous and powerful ombiners Adaptive Boosting (AB) and WeightedMajority Voting (WMV).In ombination with the the proposed set of base-level learners, the best ombiners andCONCAT an be used as a very powerful single-trial analysis tool. It was shown thatthese methods are able to infer a separating model (lassi�er) for a variety of di�erentEEG data sets. Also, it was shown how to interpret these models (see Chapter 4). ThePattern Reognition Systems (PRSs) presented in this thesis are the �rst PRSs that havebeen shown to be able to infer separating models on more than one type of EEG datasets.The lassi�ation task for the memory data set was to lassify if the partiipant willremember a loation-word pair based on the EEG signals during the enoding (see Setion4.4.1 ). The best ombiners were employed to reate ensemble lassi�ers that ahievea BAC of 58.04% on the memory data set, whih is signi�antly better than the BACexpeted by random guessing (see Setion 4.4.2). This represents the �rst proof of oneptthat it is possible to lassify if somebody will remember something at the time they istrying to memorize it.Overall, the results imply that the general diretion in EEG lassi�ation researhshould be hanged from ��nding the best single lassi�ation method� to ��nding thebest ombination of lassi�ation methods�.5.2. OutlookAnother very popular approah to deal with high dimensional feature vetors is to per-form feature seletion before the data set is fed to the lassi�ation method. It wouldbe interesting to ompare the performane of a PRS that employs feature seletion, e.g.,Boostani et al. (2007), against the MCS built by the best ombiners on the data setswith a number of features per trial of greater than 30. The employment of a MCS mayalso be a better strategy when features are ombined that originate from the same fea-ture extration method but are extrated on di�erent time intervals. This proedure isvery often employed as feature extration method for Brain Computer Interfaes (BCIs).In this ase, for eah interval a separate base-level lassi�er ould be indued. Indeed,the employment of MCS ould be superior in any ase where the feature spae is largeompared to the numbers of trials.My results suggest that the regularization performed by MCSs is bene�ial omparedto the regularization performed by Ledoit's Regularized Linear Disriminant Analysis(LRLDA) if the number of features per trial is above 30. A further investigation whenand under what irumstanes whih regularization is appropriate ould be informative.83



5. Summary, Conlusion and OutlookAnother interesting question is if it is possible to further inrease the auray by in-luding more base-level learners. There are various popular feature extration methodsthat have not been employed in this thesis, suh as Autoregressive models (Dornhege et al.,2004), Power Spetral Densities, Adaptive Autoregressive Parameters (Lotte et al., 2007,and referenes within), Common Sparse Spetral Spatial Pattern (Dornhege et al., 2006),and Regularized Common Spatial Patterns (Lotte and Guan, 2011).What might also have great potential is the ombination of the a-posteriori likelihoods,as used by Dornhege et al. (2004) (see Setion 3.1.1), with the DSWMV ombiner. Inthat way not only the auraies of the base-level lassi�er are onsidered, but also the a-posteriori likelihood for eah lass. Another very interesting approah is the employmentof a trainable ombiner, as introdued by Sun (2007) (see Setion 3.1.3). It should byexamined if the resulting ensemble lassi�ers gets more aurate, when the normalizedmutual information is used as estimate for the dependeny between two base-level las-si�ers, instead of the mutual information. Motivated by the fat that DSWMV was thebest ombiner, it should de�nitely be examined if popular methods that automatiallygenerate the base-level lassi�ers, suh as AB, Bagging and Random Subspae, an beimproved by employing DSWMV as ombiner.The �nding that it is possible to lassify if a person will remember something at thetime the person is trying to memorize it has de�nitely to be further investigated. Ifthe auray of suh a lassi�er ould be inreased, a heap and mobile EEG systemould beome a revolutionary tool for the study and pratie of learning. For example, adevie ould be worn by students to alert them when they have suessfully memorizedan equation.It is unlear if the proposed PRSs an be used as BCIs beause the real-time apabilitieswere not tested. Thus, it is worthwhile to examine if the proposed PRSs an be used asBCIs and provide a higher information transfer rate than the existing BCIs.
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6. List of AbbreviationsPRS Pattern Reognition System, see Setion 2.1RLDA Regularized Linear Disriminant Analysis, see Setion 2.2.4RM Regional Means, see Setion 3.4RWV Random Weighted Voting , see Setion 3.3.4SeletBest Selet the Best , see Setion 2.3.2.7SSP Sha�er's Stati Proedure, see Setion 2.1.4.2STF Spatio Temporal Features, see Setion 2.2.3STLDA Staking with Linear Disriminant Analysis, see Setion 3.3.5STLRLDA Staking with Ledoit's Regularized Linear Disriminant Analysis, see Setion3.3.5SVMOPTC Support Vetor Mahine with Optimization of the C hyper-parameter , seeSetion 3.4SMV Signi�gane Majority Voting , see Setion 3.3.1SVM Support Vetor Mahine, see Setion 2.2.4SWMV Signi�gane Weighted Majority Voting , see Setion 3.3.1WMV Weighted Majority Voting , see Setion 2.3.2.2WV Weighted Voting , see Setion 2.3.2.2
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A. Result Setion AppendiesA.1. Complete List of Base-Level Learnersnumber base-level learner1 on + CSP + LRLDA2 δ + CSP + LRLDA3 θ +CSP + LRLDA4 α +CSP + LRLDA5 β +CSP + LRLDA6 γ +CSP + LRLDA7 rem +CSP + LRLDA8 on + PE3 + SVMOPTC9 on + PE4 + SVMOPTC10 on + PE5 + SVMOPTC11 on + LM + SVMOPTC12 on + RM + SVMOPTC13 on + GM + SVMOPTC14 δ + PE3 + SVMOPTC15 δ + PE4 + SVMOPTC16 δ + PE5 + SVMOPTC17 δ + LM + SVMOPTC18 δ + RM + SVMOPTC19 δ + GM + SVMOPTC20 θ + PE3 + SVMOPTC21 θ + PE4 + SVMOPTC22 θ + PE5 + SVMOPTC23 θ + LM + SVMOPTC24 θ + RM + SVMOPTC25 θ + GM + SVMOPTC

number base-level learner26 α + PE3 + SVMOPTC27 α + PE4 + SVMOPTC28 α + PE5 + SVMOPTC29 α + LM + SVMOPTC30 α + RM + SVMOPTC31 α + GM + SVMOPTC32 β + PE3 + SVMOPTC33 β + PE4 + SVMOPTC34 β + PE5 + SVMOPTC35 β + LM + SVMOPTC36 β + RM + SVMOPTC37 β + GM + SVMOPTC38 γ + PE3 + SVMOPTC39 γ + PE4 + SVMOPTC40 γ + PE5 + SVMOPTC41 γ + LM + SVMOPTC42 γ + RM + SVMOPTC43 γ + GM + SVMOPTC44 rem + PE3 + SVMOPTC45 rem + PE4 + SVMOPTC46 rem + PE5 + SVMOPTC47 rem + LM + SVMOPTC48 rem + RM + SVMOPTC49 rem + GM + SVMOPTC
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A. Result Setion AppendiesA.2. Results: Left out Subjets From the Modi�ed MotorImaginary Data Setsmethod mean rankSTLRLDA 71.72 9.33DSWMV 70.91 8.83AB 71.53 8BC 70.87 8SWMV 70.54 6.83DHSWV 69.64 5.67ORACLE 69.14 5.33SeletBest 68.30 5MV 69.64 5HSWV 69.09 3CONCAT 55.35 1
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