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Abstra
tThe su

essful 
lassi�
ation of single-trial Ele
troen
ephalography (EEG) signals enablesparalyzed people to 
ommuni
ate and 
an be employed as analysis tool. This thesis in-vestigates the possibility to in
rease the a

ura
y of EEG 
lassi�
ation systems by 
om-bining 
lassi�ers that are based on di�erent feature extra
tion and 
lassi�
ation methodsthat are employed for the 
lassi�
ation of EEG signals. This is a
hieved by 
omparingmultiple 
lassi�ers that are based on a 
ombination of 
lassi�ers against the best single
lassi�er on data sets originating from four di�erent EEG studies. The results show thata 
ombination of 
lassi�ers is able to in
rease the a

ura
y by more than 7%. This impliesthat the general dire
tion in EEG 
lassi�
ation resear
h should be 
hanged from ��ndingthe best single 
lassi�
ation method� to ��nding the best 
ombination of 
lassi�
ationmethods�.
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1. Introdu
tionRe
ently, the automati
 
lassi�
ation of Ele
troen
ephalography (EEG) signals via Pat-tern Re
ognition Systems (PRSs) has gained attention. One main motivation behind thisis that the automati
 
lassi�
ation of EEG signals enables 
ommuni
ation for paralyzedpeople. Given that there are di�eren
es between 
lasses, a PRS hypothesizes a model,based on a labeled data set that 
aptures these di�eren
es and 
an reliably 
lassify anovel sample based on that model. PRSs 
an be used as an EEG data analysis toolby interpreting the separating model a PRS infers from a data set. In 
ontrast to the
onventional analysis te
hniques, whi
h are mostly univariate approa
hes, the employ-ment of a PRS as analysis tool enables the dete
tion of di�eren
es that are based onintera
tions between multiple variables (van Gerven et al., 2009).In the last 10 years, resear
hers proposed a variety of di�erent feature extra
tionand 
lassi�
ation methods for the 
lassi�
ation of EEG signals (see Se
tions 2.2.3 and2.2.4). Most EEG-PRS are based on one parti
ular 
ombination of feature extra
tionand 
lassi�
ation method (Lotte et al., 2007). It is promising to 
ombine the di�erentfeature extra
tion and 
lassi�
ation methods to potentially 
reate a PRS that is, for anygiven Pattern Re
ognition (PR) task, more a

urate than the best PRS that is basedon one parti
ular 
ombination of feature extra
tion and 
lassi�
ation method. Be
ausethe best out of all possible 
lassi�ers 
an not be obtained, I use the so 
alled ORACLE
lassi�er as base-line 
omparison. If the ORACLE is asked, it returns the 
lassi�er, outof a 
andidate set of 
lassi�ers, that a
hieves the highest mean a

ura
y over all data setsfor one parti
ular PR task. Due to the employment of various di�erent feature extra
tionand 
lassi�
ation methods, this PRS might be able to perform well on a large variety ofEEG data sets. Hen
e, it produ
es a separating model, whi
h 
an be interpreted, on alarge set of di�erent data sets. Thus, the �rst hypothesis of this thesis is: A 
ombinationof the di�erent feature extra
tion and 
lassi�
ation methods that are employed for the
lassi�
ation of EEG signals improves the a

ura
y of the resulting 
lassi�er 
omparedto ORACLE and results in a PRS that performs well on a variety of EEG data sets.The most popular approa
h to 
ombine feature extra
tion and 
lassi�
ation methods isthe employment of so 
alled Multiple Classi�er System (MCS). A MCS 
onsists of a setof base-level 
lassi�ers and a 
ombiner. All base-level 
lassi�er are trained for the samePR task, but ea
h base-level 
lassi�er di�ers from the other base-level 
lassi�ers. The
ombiner 
ombines the de
isions from all base-level 
lassi�ers to one overall ensemblede
ision. The resulting 
lassi�er is 
alled ensemble 
lassi�er.One of the most famous 
ombiners is the simple sele
tion of the best 
lassi�er, as esti-mated on a part of the training set. This 
ombiner is 
alled Sele
t the Best (Sele
tBest)in the remainder. The se
ond hypothesis of this thesis is that a 
ombination of the de-
isions of the base-level 
lassi�ers leads to a more a

urate ensemble 
lassi�er than the1



1. Introdu
tionsele
tion of the best 
lassi�er by Sele
tBest.An even simpler approa
h is to only 
ombine the di�erent feature extra
tion methods,and to employ a single 
lassi�
ation method on the 
on
atenation of the outputs of allfeature extra
tion methods. This approa
h is 
alled Con
atenation (CONCAT) through-out this thesis. The last hypothesis of this thesis is that the employment of a MCS leadsto a more a

urate 
lassi�er than the CONCAT approa
h.When ORACLE is 
ompared against a MCS, the set of 
andidate 
lassi�ers is identi
alto the set of base-level 
lassi�ers. MCSs have been applied su

essfully for many diverseEEG-PR tasks. Furthermore, it was shown that the 
ombination of multiple featureextra
tion methods is able to boost the a

ura
y 
ompared to ORACLE. In all previousstudies, MCSs outperformed the simple CONCAT approa
h. The previous 
omparisonswere all made on one parti
ular type of EEG data sets. However, a systemati
 
omparisonon a large set of many di�erent data sets is missing. In this thesis, I 
ompare severaldi�erent MCSs against CONCAT, ORACLE, Sele
tBest, and ea
h other on a large setof di�erent EEG data sets. The di�erent MCSs only di�er in the 
ombiner they employ.They are all based on the same diverse and broad base-level 
lassi�ers (see se
tion 3.4).A majority of the 
ombiners that I 
ompare have not yet been applied to the 
lassi-�
ation of EEG signals. Furthermore, I propose several new 
ombiners, whi
h are notlimited to the appli
ation to EEG-PRSs. While all previous studies used the 
lassi�
a-tion of EEG signals to build a PRS that works well on one parti
ular type of EEG datasets, my goal is to build a PRS that works well on a variety of di�erent EEG data sets.I apply a subset of the MCS that I propose to an EEG 
lassi�
ation problem for thatsu

essful 
lassi�
ation has not yet been a
hieved. The motivation behind this is toexamine if one MCS is powerful enough to infer a separating model for that problem.1.1. OutlineThe remainder of this thesis is laid out as follows.In Chapter 2, the mathemati
al and psy
hophysiologi
al foundations will be intro-du
ed. It will start with a short introdu
tion to PR. After that, the appli
ations ofthe 
lassi�
ation of EEG signals will be introdu
ed in detail. Then, various featureextra
tion and 
lassi�
ation methods that have been employed in previous studies willbe introdu
ed. The 
hapter ends with an introdu
tion to MCS, with an emphasis ondi�erent 
ombiners.Chapter 3 will start with a detailed review of previous work. After that, the learningalgorithm that is used to train the ensemble 
lassi�ers will be introdu
ed. Also, thenewly proposed 
ombiners and the settings for the existing 
ombiners will be presented.Chapter 3 also 
ontains the des
ription of the employed set of base-level 
lassi�ers. Itwill 
on
lude with the details of the implementation.In Chapter 4, the results of the 
omparison of the di�erent methods will be presented.The methods will be 
ompared on four di�erent EEG 
lassi�
ation tasks and on simulateddata sets. After the methods and the implementation details will have been presented,the results on the simulated data sets will be introdu
ed. After that, the results on the2



1. Introdu
tionEEG data sets will be shown. Chapter 4 
on
ludes with a summary of the results.In Chapter 5 a summary of this thesis will be presented and 
on
lusions based on theresults will be drawn. It will also 
ontain an Outlook that identi�es further possibleimprovements.

3



2. FoundationsThis se
tion introdu
es the foundations that are ne
essary for the understanding of thisthesis. It will start with a brief introdu
tion to Pattern Re
ognition (PR), in
luding atreatment of the proper 
omparison of 
lassi�ers. Thereafter, the foundations of, theappli
ation of, and the methods for the 
lassi�
ation of Ele
troen
ephalography (EEG)signals will be introdu
ed. The last se
tion will introdu
e the 
ombination of 
lassi�ers.2.1. Pattern Re
ognitionThis se
tion 
ontains a short introdu
tion to the �eld of Pattern Re
ognition (PR). Amore extensive introdu
tion 
an, e.g., be found in Duda et al. (2000). PR is a sub-�eldof ma
hine learning, whi
h in turn is a sub-�eld of arti�
ial intelligen
e.Assume that someone asked you to build a system that separates hippos and gira�esbased on their height and weight. To ful�ll this task you 
olle
t a data set that 
ontainsthe weight and height for ea
h member of a set of hippos and gira�es. One approa
h toful�ll this task would be to look at the data set and de�ne a separating model based onwhat you have learned about the di�eren
es between the two 
lasses, hippos and gira�es.Supervised learning aims at transferring this learning pro
ess, whi
h is ne
essary tohypothesize a model of the di�eren
es, to a 
omputer. Given that there are di�eren
esbetween 
lasses, a supervised learning algorithm is an algorithm that hypothesizes amodel, based on a labeled data set, re�e
ting these di�eren
es and 
lassi�es a novelsample based on that model. The labeled data set 
ontains a number of samples forwhi
h the 
lass membership is given by an external sour
e. In our example, the 
lassesare hippos and gira�es. The model 
ould, for example, suggest that if an animal has aheight of less than 4 meters it is an hippo, otherwise it is a gira�e. An animal that wasnot in
luded in the data set 
an now be automati
ally 
lassi�ed using this model.A Pattern Re
ognition System (PRS) is a system that employs a supervised or un-supervised learning algorithm to infer a separating model, whi
h is then employed to
lassify novel samples. In the remainder of this se
tion I will explain the fun
tionality ofa PRS by des
ribing the 
omponents of that a PRS typi
ally 
onsists. These 
omponentsrepresent the solutions of the di�erent problems one has to solve when designing a PRS.For this thesis, I am 
on
erned only with those PRSs that employ a supervised learningapproa
h.2.1.1. ComponentsThe 
omponents of a PRS are usually sequentially pro
essed. I will introdu
e the 
om-ponents in their pro
essing order. 4



2. FoundationsInputSensing ComponentSegmentation ComponentFeature Extra
tion ComponentClassi�
ation ComponentPost Pro
essing ComponentDe
ision

Data StreamSampleFeatures Extra
ted from the SampleLabel
Figure 2.1.1.: Illustration of the data �ow between the typi
al 
omponents of a PRS.Sensing ComponentBe
ause a PRS works on a 
omputer, it is only able to pro
ess digital data. The taskof the �rst 
omponent, named sensing 
omponent, is to transform 
hosen aspe
ts of thereality into a format that is readable by a 
omputer.The sensing 
omponent should sense those aspe
ts of the reality that re�e
t the dif-feren
es between the 
lasses. Hen
e, the 
hoi
e of an appropriate sensing 
omponent is
ru
ial for the su

ess of a PRS.For our hippo and gira�e example, the sensing devi
e might be a 
amera. For otherdomains, a mi
rophone or Ele
troen
ephalography (EEG) ele
trodes might be used.Segmentation ComponentWhen using a mi
rophone as sensor for a spee
h re
ognition PRS, the 
omputer getsa 
onstant data stream as input. However, most supervised learning algorithms areonly able to handle dis
rete samples as input. Therefore, the 
onstant data stream hasto be segmented into samples. The de
ision how to segment the data results in thesegmentation 
omponent.Depending on the domain of the 
lassi�
ation problem the segmentation 
omponentmay be 
ru
ial to the su

ess of the PRS, or may be 
ompletely unne
essary. For aspee
h PRS the design of a good segmentation 
omponent is 
ru
ial, as opposed to ane-mail spam �lter, where the data is naturally segmented into e-mails. A set of multiple5



2. Foundations

Figure 2.1.2.: Illustration of the outputs of ea
h 
omponent. The sensing 
omponentsreturns a pi
ture from whi
h the segmentation 
omponent extra
ts ani-mals. In this 
ase the gira�e. The feature extra
tion 
omponent extra
tsthe height from the pi
ture of an animal and the 
lassi�
ation 
omponent
lassi�es animals based on their height.
6



2. FoundationsSegmentation A I like thisSegmentation B Il ik eth isTable 2.1.: Illustration of the importan
e of proper segmentationsamples is 
alled raw data set.De�nition 1. Let X ⊆ Kr be the set of unlabeled samples from multiple 
lasses, 
alledmeasurement spa
e, where K is a �eld. Let Y = {y1, . . . , yL} be the �nite set of possiblelabels representing the 
lasses. Furthermore, let M ⊆ X × Y be the set of samples thatare labeled 
orre
tly. Then a �nite subset D ⊆ M is 
alled data set and (x, y) ∈ D is
alled labeled sample. N = |D| denotes the number of samples in the data set D and ylthe lth label out of the L possible labels.Feature Extra
tion ComponentIn the introdu
tion of this se
tion it was assumed that the data set 
ontains height andweight as measure. This is true if one wants to build a PRS that works on data sets thatare made by zoologists. In this 
ase neither a sensing nor a segmentation 
omponent isneeded as sensing and segmentation is performed by humans.However, if one wants to build a PRS that enables a robot in the wilderness to distin-guish gira�es from hippos, the data set will more likely be a 
olle
tion of images. If the
amera resolution is 640 × 480, ea
h image is represented by a 3 · 640 · 480 = 921, 600dimensional ve
tor x. While it is possible to build a su

essful PRS on a raw data set,with high feature dimensions like this, the approa
h to transform the samples into a bet-ter dis
riminating and meaningful spa
e is more 
ommon. This pro
ess is 
alled featureextra
tion. The goal of the feature extra
tion 
omponent is to extra
t features that di�erlargely for samples from di�erent 
lasses and are very similar for samples from the same
lass.De�nition 2. A feature extra
tion fun
tion φ is a fun
tion that maps samples fromthe measurement spa
e X to a new measurement spa
e Xfeat. φθ,τ : X → Xfeat. θ areparameters that are learned from the data set D, and τ are parameters that have to be
hosen by the designer, often 
alled hyper-parameters. I 
all
Dfeat = {(xfeat, y) : (x, y) ∈ D ∧ xfeat = φθ,τ (x)}the feature data set.The feature extra
tion 
omponent 
an 
onsist of the 
omposite of arbitrary manyfeature extra
tion fun
tions φn ◦ φn−1 ◦ . . . φ1. Ea
h feature extra
tion fun
tion φi hasparameters τi and , where θi is learned using the data set transformed by φi−1. Withthat in mind I will just speak of the feature extra
tion fun
tion in the remainder

φθ,τ = φn ◦ φn−1 ◦ . . . φ1 (2.1.1)7



2. FoundationsThere are two approa
hes to obtain a feature extra
tion fun
tion. The �rst approa
h isthe in
orporation of prior knowledge about the underlying problem. It is, for example,known that on average gira�es are taller than hippos. Therefore, the height of an animalshould be a feature that enables a good distin
tion between gira�es and hippos. Theextra
tion of the height as feature also redu
es the number of feature dimensions from the
921600 pixels of the pi
ture to 1 height value. Therefore, it drasti
ally redu
es demandson memory and 
omputation time. This approa
h simpli�es the learning task for the PRSby delegating part of the learning to the designer. The designer spe
i�es and implementsthe, in this 
ase at least very 
omplex, feature extra
tion fun
tion. If this approa
h is
hosen, no parameters have to be learned from the data set; θ = ∅.The se
ond approa
h relies less on prior knowledge. It uses a so-
alled learning algo-rithm to indu
e the feature extra
tion fun
tion from the data set or in other words topopulate θ.De�nition 3. An algorithm Iφ?,τ

(D) = φθ,τ that takes as input an untrained featureextra
tion fun
tion φ?,τ (x) and a data set D and returns the trained feature extra
tionfun
tion φθ,τ (x) is 
alled a learning algorithmExample algorithms that fall into this 
ategory are: Prin
ipal Component Analysis(Duda et al., 2000, pp. 568), Independent Component Analysis (Duda et al., 2000, pp.570), and Common Spatial Patterns (CSP) (see Se
tion 2.2.3). These algorithms 
onsistof an untrained feature extra
tion fun
tion φ?,τ and the 
orresponding learning algo-rithm Iφ?,τ
. I will 
all su
h algorithms feature extra
tion methods in the remainder.When a learning algorithm is used to populate θ, the designer of the PRS still heavilyin�uen
es the hypothesized model by 
hoosing the feature extra
tion method and itshyper-parameters.Classi�
ation ComponentThe heart of ea
h PRS is the 
lassi�
ation 
omponent. The 
hoi
e of the 
lassi�
ation
omponent is 
ru
ial.De�nition 4. A trained 
lassi�er Ψθ,τ is a fun
tion that maps samples from the featurespa
e Xfeat to labels Ψθ,τ : Xfeat → Y .Analogous to the feature extra
tion 
omponent, there are two ways to build a 
lassi�er,one 
an de�ne a stati
 
lassi�er based on prior knowledge or use a learning algorithmto indu
e a 
lassi�er from a data set. In 
ontrast to the feature extra
tion method,no state-of-the-art general purpose PRS exists, to my knowledge, that does not employa learning algorithm for training its 
lassi�er. The 
lassi�
ation 
omponent takes thefeature data set as input.Note that a 
lassi�er 
ould also be de�ned as the feature extra
tion fun
tion for thatthe new measurement spa
e is the label set Y . This implies that θ is also populatedby the 
orresponding learning algorithm and τ are hyper-parameters, whi
h must be
hosen by the designer. The population of θ by a learning algorithm, whi
h leads to a
lassi�er, is also referred to as the learning algorithm IΨ indu
es a 
lassi�er Ψ. I will8



2. Foundations
all the 
ombination of an untrained 
lassi�er and its 
orresponding learning algorithm
lassi�
ation method.An example 
lassi�
ation method is the mean 
lassi�er. The learning algorithm of themean 
lassi�er 
al
ulates the mean for ea
h 
lass
myl =

1

|Dyl |
∑

(x,y)∈Dyl

xwhere Dyl = {(x, y) ∈ Dfeat : y = yl}. The trained mean 
lassi�er assigns a new sample
x to the 
lass to whose mean it has the smallest distan
e, with respe
t to some distan
emeasure d. Therefore, the dis
riminating model 
onsists of the mean of every 
lass andthe distan
e fun
tion d that is employed . The set of parameters learned from the data
onsists of the 
lass-wise means θ = {my1 , . . . ,myL} and the hyper-parameter re�e
tsthe 
hoi
e of the distan
e fun
tion τ = d. A new sample x ∈ Xfeat is 
lassi�ed a

ordingto the following formula

Ψθ,r(x) = arg min
yl∈Y

(d(myl , x))Note that the 
on
atenation of the 
lassi�er and the feature extra
tion fun
tion
Ψ ◦ φ : X → Y (2.1.2)also results in a 
lassi�er. Therefore, I will speak of a 
lassi�er Ψθ,τ for the 
on
atenationof the feature extra
tion and the 
lassi�
ation fun
tion in the remainder of this thesis.Furthermore, I will summarize the learning algorithm of the feature extra
tion methodand the learning algorithm of the 
lassi�
ation method as IΨ?,τ

(D). Remember that it isa short for
IΨ?,τ

(D) := IΨ?,τ
(φθ,τ (D)) = IΨ?,τ

(Iφ?,τ
(D)(D)) = Ψθ,τwhere Iφ?,τ

is the learning algorithm of the feature extra
tion fun
tion, IΨ?,τ
the learningalgorithm of the 
lassi�er, and φθ,τ (D) denotes that the raw data set is mapped to thefeature data set by applying φθ,τ to ea
h sample in D.Post Pro
essing ComponentThe post pro
essing 
omponent is de�ned as everything that is done with the 
lassi�
ationof a sample.Most PRS perform some a
tion that is dependent on the 
lassi�
ation de
ision. Forexample, an iris s
anner 
ould open a door if the 
lassi�er de
ided that the iris put infront of the sensors belongs to a person who has a

ess rights to the room.The post pro
essing 
omponent might also be able to add 
ontext to a 
lassi�
ation.If, for example, a letter re
ognition system is unsure if a pi
ture of a letter represents a
 or an o, but the same system 
lassi�ed the 
ontext of the letter with high 
ertaintyas �f?r�, the post pro
essing 
omponent may de
ide that, based on the 
ontext, o has amu
h higher a-priori likelihood and, hen
e, assign the sample to the 
lass o.Another fun
tion of the post pro
essing 
omponent 
an be the integration of multiple
lassi�ers working on multiple aspe
ts of the input to one de
ision. This will be presented9



2. Foundationsin more detail in Se
tion 2.3. But �rst, I explain how to get a valid measure of theperforman
e of a 
lassi�er.2.1.2. NotationThroughout this work I will use the following notation, originating from the previousse
tion. D will be the raw data set, 
ontaining samples (xi, yi), with 
ardinality N . Dis assumed to be a representative subset of the whole population M . Y = {y1, . . . , yL}des
ribes the set of labels with 
ardinality L, X denotes the measurement spa
e, and Ψa 
lassi�er indu
ed by the learning algorithm IΨ. yi refers to the label of the ith samplein the data set D, while yl refers to the lth out of the possible labels Y .2.1.3. Estimation of the Performan
e of a Classi�erLoss and RiskAfter 
reating a 
lassi�er, its performan
e is usually of interest. Questions related to theperforman
e are typi
ally: Is the performan
e of a 
lassi�er su�
ient for a given task?Is it performing better than another 
lassi�er? The performan
e of a 
lassi�er is usuallyquanti�ed with the help of a loss fun
tion.De�nition 5. A loss fun
tion L is a fun
tion that maps a labeled sample (x, y) ∈ Mand a 
lassi�er Ψ to a 
ost term. L(x, y,Ψ) ∈ R≥0The most basi
 and most often employed loss fun
tion is the zero-one loss fun
tion.De�nition 6. Let x, y,Ψ be as in De�nition 5. The zero-one loss fun
tion is then de�nedas
L01(x, y,Ψ) =

{

0 if, Ψ(x) = y

1 otherwiseThe zero-one loss fun
tion assigns, independently from the true label y, every mis-
lassi�
ation the 
ost 1. Corre
t 
lassi�
ations are assigned zero 
ost. Other loss fun
-tions are, for example, used if the 
ost of a mis
lassi�
ation depends on the true 
lass.A typi
al example for unequal mis
lassi�
ation 
osts are medi
al tests. In most 
asesthe 
onsequen
es are less severe if a medi
al test 
lassi�es a patient as si
k who is notsi
k 
ompared to the situation when the test 
lassi�es a patient as healthy who is si
k.Therefore, for a medi
al test mostly asymmetri
 loss fun
tions are used, whi
h assign themis
lassi�
ation of a si
k patient a high 
ost.The risk of a 
lassi�er is the expe
ted loss. It is the most 
ommon performan
e measurefor 
lassi�ers.De�nition 7. The risk of a 
lassi�er is de�ned as
R(Ψ, p) =

ˆ

x∈X,y∈Y

L(x, y,Ψ)p(x, y)dxdywhere L is a loss fun
tion and p(x, y) the joint probability mass fun
tion of X and Y .10



2. FoundationsWhen using the zero-one loss fun
tion, an equivalent measure for the risk is the a

u-ra
y.De�nition 8. Let R01(Ψ, p) be the risk 
al
ulated with L01 as loss fun
tion. Thena

(Ψ, p) = 1−R01(Ψ, p)is 
alled a

ura
y of 
lassi�er Ψ.Note that the a

ura
y represents the probability that a 
lassi�er Ψ predi
ts the true
lass, a

(Ψ, p) = P (Ψ = 
orre
t). If p(x, y) were known, the a

ura
y 
ould be 
al
u-lated dire
tly .Also, if p(x, y) were known, the 
lassi�
ation task would be
ome trivial. It 
an beshown that the Bayes 
lassi�erBayes(x) = argmax
yl∈Y

p(x|Y = yl)P (Y = yl)

p(x)is the 
lassi�er with the highest a

ura
y (Duda et al., 2000, pp. 24). No 
lassi�er isable to a
hieve a higher a

ura
y than Bayes.But when building a 
lassi�er, the joint probability mass fun
tion p(x, y) is rarelyknown. Only a �nite subset D of the whole population M is available. Hen
e, the designof other 
lassi�ers than Bayes is reasonable, and the a

ura
y 
an only be estimated onthe �nite data set D.Estimation MethodsThere are several methods for estimating the a

ura
y, whi
h I will introdu
e in theremainder of this se
tion. Independently of the method one 
hooses to estimate thea

ura
y, it is de�ned as follows.De�nition 9. Let D be a data set, the estimated a

ura
y of the 
lassi�er Ψ on thatdata set is a

es(Ψ,D) = 1− 1

N

∑

(x,y)∈D

L01(x, y,Ψ)Re
all that N = |D|.Note that one usually is not interested in the performan
e of a stati
 
lassi�er Ψ butin the performan
e of the 
lassi�er that is indu
ed by a learning algorithm IΨ from thedata set D. The most naive method to estimate the a

ura
y is to use the same data setfor estimating the a

ura
y as for indu
ing the 
lassi�er.De�nition 10. When estimating the a

ura
y on the same data set that was used forindu
ing the 
lassi�er, the estimated a

ura
y is 
alled training a

ura
y and 
al
ulatedas follows a

train(IΨ,D) = a

es(IΨ(D),D)) = 1− 1

N

∑

(x,y)∈D

L01(x, y, IΨ(D))

11



2. FoundationsThe training a

ura
y is not a good estimate of the a

ura
y. It is a biased estimate.The training a

ura
y is usually signi�
antly higher than the true a

ura
y be
ause thedata on that the a

ura
y is estimated is not independent from the data that was usedto indu
e the 
lassi�er.The general solution to that problem is to divide the data set D into two disjoint datasets, Dh and Dt. The indu
er IΨ employes Dt to indu
e the 
lassi�er Ψ. The a

ura
yof Ψ is then estimated on Dh. Sin
e one part of the data set is held out from training,this method is 
alled holdout method.De�nition 11. The a

ura
y estimated by the holdout method is de�ned asa

es(IΨ,D) = a

es(I(Dt),Dh) = 1− 1

N

∑

(x,y)∈Dh

L01(x, y, IΨ(Dt))where Dh = D/Dt.It is 
ommon to use 2
3 of the data set for the training set Dt and 1

3 for the holdoutset Dh. Assuming that the learning algorithm IΨ gets better with a bigger data set,the a

ura
y estimated by the holdout method, in opposition to the training a

ura
y,yields an underestimation of the a

ura
y (Kohavi, 1995). This problem is severe whenthe data set is small.To utilize the 
omplete data set for the estimation of the a

ura
y, a method 
alled
n-fold 
ross-validation is often employed. This method basi
ally repeats the holdoutmethod with di�erent holdout sets. The data set is separated into n disjun
tive subsets, ea
h 
ontaining N/n samples. For ea
h subset Di the learning algorithm is trainedwith the remainder of the data set D/Di, and the a

ura
y of the resulting 
lassi�er isestimated on Di. The a

ura
y estimated by n-fold 
ross-validation is the summed lossover the n folds divided by the number of samples N .De�nition 12. The a

ura
y estimated by the n-fold 
ross-validation method is de�nedas a


v(IΨ,D) = 1− 1

N

n
∑

i=1

∑

(x,y)∈Di

L01(x, y, IΨ(D/Di))where D = ∪i∈{1,..,n}Di and Di ∩Dj = ∅ if i 6= j.When estimating the a

ura
y using n-fold 
ross-validation, one has to de
ide howmany disjun
tive data sets to 
reate and how to 
reate them. Kohavi (1995) showedthat 10 data sets (folds) are a good trade-o� between bias and varian
e of the resultingestimator and that strati�
ation leads to a de
rease of both varian
e and bias of theestimated a

ura
y. Strati�
ation means that the folds Di 
ontain roughly the sameproportions of the 
lasses as the original data set D.When the data set D is imbalan
ed, i.e., D does not 
ontain equal proportions ofall 
lasses, a better measure of the performan
e of a 
lassi�er than the a

ura
y is theBalan
ed A

ura
y (BAC) (Brodersen et al., 2010).12



2. FoundationsDe�nition 13. The BAC is de�ned as the average per 
lass a

ura
yba
(Ψ, p) =
1

L

L
∑

l=1

a

(Ψ, p|Myl
(x, y))where Myl := {(x, y) ∈ M : y = yl}Analogous to the a

ura
y, the BAC 
an also be estimated using one of the introdu
edmethods.2.1.4. Comparison of Classi�ersIndependent of the method used for the estimation of the performan
e of a 
lassi�er,the performan
e measure depends on the data set. As long as D 6= M , it is a randomvariable that potentially 
hanges if a di�erent data set is drawn from M . Thus, methodsfrom the �eld of statisti
al inferen
es need to be applied to answer questions like, �doesa 
lassi�er perform better than 
han
e� or �does a 
lassi�er perform better than anotherone�.The general pro
edure used in statisti
al inferen
e is to formulate a hypothesis. Hy-potheses are expressed in so 
alled test statisti
s. Test statisti
s are 
ertain 
hara
teristi
sof the data. E.g., a test statisti
 is the estimated BAC of a 
lassi�er.To substantiate that the hypothesis is true, the 
ontrary of the hypothesis, 
alled nullhypothesis, is assumed, and the probability under the null hypothesis of obtaining teststatisti
s that are at least as extreme as those observed is 
al
ulated. This probability isoften 
alled p-value. If the p-value falls below a 
ertain threshold, whi
h is often 
alled

α, the null hypothesis is reje
ted, and the original hypothesis is believed to be true.When the hypothesis is a di�eren
e hypothesis, e.g., 
lassi�er A has a higher a

ura
ythan 
lassi�er B, the di�eren
e is 
alled statisti
ally signi�
ant at the 5% level, whi
h isoften simply referred to as signi�
ant if the 
orresponding p-value falls below 5%.2.1.4.1. Comparing Against Random GuessingWhen 
omparing a 
lassi�er Ψ against random guessing using the BAC as test statis-ti
, the null hypothesis is ba
(Ψ,p) = 0.5. Under the null hypothesis and independentsamples, the estimated a

ura
y a

es for ea
h 
lass is distributed as
1

Nyl

B(Nyl , 0.5)where Nyl is the number of samples in the data set D with label yl, and B(n, p) is thebinomial distribution with n trials and su

ess probability p per trial. Note that p isdi�erent from the probability mass fun
tion. The estimated BAC is distributed as
1

L

L
∑

l=1

1

Nyl

B(Nyl , 0.5)13



2. FoundationsThe Binomial distribution 
onverges to the normal distribution for large n, approximatelyin the range of n > 30. The data sets that are used for estimating the BAC usually 
ontainmore than 30 samples per 
lass. Therefore, the sum 
onverges to a normal distributionwith mean 0.5 and varian
evar( 1
L

∑ 1

Nyl

B(Nyi , 0.5)) =
1

L2

∑ var( 1

Nyl

B(Nyl , 0.5)) =
1

L2

∑ 1

N2
yl

var(B(Nyl , 0.5))

=
1

L2

∑ 1

N2
yl

1

4
Nyl =

1

L2

∑ 1

4NylLet b be the BAC a
hieved on D. The probability that the estimated BAC b or a higherBAC is a
hieved by a 
lassi�er that independently guesses is therefore:
P (ba
es (Ψ,D) > b|ba
(Ψ, p) = 0.5) =

1
ˆ

b

N (x; 0.5,
1

L2

∑ 1

4Nyl

)dx (2.1.3)where N(x;µ, σ2) is the likelihood of x under the univariate normal distribution withmean µ and varian
e σ2. If this probability is smaller than 5%, we say that Ψ performssigni�
antly better than random guessing.Comparing two Classi�ers on a Single Data SetFor 
omparing two 
lassi�ers, Ψ1 and Ψ2, Salzberg (1997) suggests a di�erent pro
edure.He proposes to use the following test statisti
s. The number of samples in the data setwhere Ψ1 predi
ts the 
orre
t 
lass and Ψ2 predi
ts the wrong 
lass.
s = |{(x, y) ∈ D : Ψ1(x) = y ∧Ψ2(x) 6= y}|Analogous to that, the number of samples in the data set where Ψ2 predi
ts the 
orre
t
lass and Ψ1 predi
ts the wrong 
lass.
f = |{(x, y) ∈ D : Ψ2(x) = y ∧Ψ1(x) 6= y}|The null hypothesis says that no 
lassi�er performs better and guesses are independent.Thus, E(s) = 0.5(s + f) = E(f), where E(s) denotes the expe
ted value of the randomvariable s. Let semp and femp be the values observed for a 
ertain data set. Furthermorelet semp be greater than femp. Then, under the null hypothesis, the probability that avalue for s that is at least as high as semp is observed is

P (s > semp|Ψ1 = Ψ2) =

semp+femp
∑

k=semp B(k; semp + femp, 0.5)where B(k;n, p) denotes the probability of k su

esses under the binomial distributionwith n trials and su

ess probability p. Thus, if this value falls below 5%, it is believedthat Ψ1 performs better than Ψ2. If the original hypothesis was �Ψ1 > Ψ2 or Ψ1 < Ψ2�,the p-value has to be multiplied by two to 
orre
t for the two 
omparisons.14



2. Foundations2.1.4.2. Comparing Multiple Classi�ers on Multiple Data SetsFor 
omparing multiple 
lassi�ers Ψ1, . . . ,ΨK on multiple data sets D1, . . . ,Dn Dem²ar(2006) proposes to use the Friedman test.The Friedman test 
omputes for every 
lassi�er Ψk and data set Di the rank, based onan arbitrary performan
e measure, 
ompared to the other 
lassi�ers. It is not importantif the best or the worst performing learning algorithms gets assigned rank 1 or rank K.I will assume that the best 
lassi�er gets assigned rank K in the remainder. Let rik bethe rank of the 
lassi�er Ψk on the data set Di. The Friedman test employs the meanrank over all data sets
Rk =

1

n

n
∑

i=1

rikper 
lassi�er as test statisti
s. The test statisti
s and distribution for the null hypothesisthat all averaged ranks Rk are equal 
an be found in Dem²ar (2006).After the hypothesis that there are no di�eren
es between the 
lassi�ers was falsi�ed, apost-ho
 pro
edure 
an be applied to test whi
h pairs of 
lassi�ers di�er. Under the nullhypothesis, no di�eren
e between the two learning algorithms Ψo and Ψm, the di�eren
eof the two ranks is mapped to a z-value by the following formula
z =

Ro −Rm
√

K(K+1)
6nThe z-value 
an be transformed to a p-value as follows

p =

z
ˆ

−z

N(x; 0, 1) dxWhen 
omparing a set of 
lassi�ers over a set of data sets, usually two typi
al questionare of interest. Whi
h 
lassi�er out of a set of 
lassi�ers T := {Ψ1, . . . ,ΨK} performsbetter than a base-line 
lassi�er Ψ, and whi
h 
lassi�er out of a set of 
lassi�ers performsbest.For 
omparing a set of 
lassi�ers against a base-line 
lassi�er a p-value for ea
h 
lassi�erfrom the set 
an be obtained by 
omparing the 
lassi�er against the base-line method,using the aforementioned method. But the threshold α has to be de
reased.Let H be the null hypothesis that there are no di�eren
es between any 
lassi�er fromthe set T and the base-line 
lassi�er, and let Hk be the null hypothesis that the 
lassi�er
Ψk is identi
al to the base-line 
lassi�er. Note that the null hypothesis H1, . . . ,HK areindependent. Thus, under the null hypothesis H, the expe
ted number of reje
ted nullhypothesis Hk is Kα. To 
orre
t for this in�ated α error, the α threshold for ea
hhypothesis Hi ∈ {H1, . . . ,Hk} is divided by K. This pro
edure is 
alled Bonferroni
orre
tion.

15



2. FoundationsStati
 Sha�er Pro
edureIf 
omparing all pairs of 
lassi�ers, it is also possible to use the Bonferroni 
orre
tion.However, the Bonferroni 
orre
tion assumes that ea
h 
omparison made is 
ompletelyindependent of the others. Be
ause this assumption is not met, the Bonferroni 
orre
tionis overly 
onservative.Gar
ía and Herrera (2008) 
ompared 
orre
tion s
hemes that exploit dependen
ies be-tween the hypothesis with regard to their suitability for the 
omparison of multiple
lassi�ers. They 
on
luded that the Bergmann-Hommel pro
edure performs best but isalso 
omputational 
omplex and hard to understand. Sha�er's Stati
 Pro
edure (SSP)has almost equivalent power but is mu
h simpler.When 
omparing all pairs out of K 
lassi�ers, there exists a total of K(K−1)
2 := Gdi�eren
e hypotheses. Ea
h di�eren
es hypothesis 
orresponds to a hypothesis Ψm 6= Ψo.For ea
h hypothesis the p-value for the 
orresponding null hypothesis 
an be obtained byemploying the post-ho
 Friedman test, introdu
ed in the previous se
tion. The �rst stepof the SSP is to sort the null hypothesis by their p-values. Let H1, . . . ,HG be the nullhypotheses sorted by their 
orresponding p-value. In general, the α value 
orrespondingto the ith hypothesis is 
orre
ted by the number of hypotheses that 
an be true giventhat (i− 1) hypotheses are false.Hen
e, H1 is reje
ted if p ≤ α/G. Note that ea
h null hypothesis 
orresponds tothe proposition that one pair of 
lassi�ers, Ψm and Ψo, performs the same Ψo = Ψm.If H1 is reje
ted, ∃m, o ∈ {1, . . . ,K} : Ψo 6= Ψm. Therefore, for all other 
lassi�er

∀k ∈ {1, . . . ,K}/{m, o}Ψk 6= Ψm ∨ Ψk 6= Ψo. Hen
e, if H1 is wrong, at least K − 1additional null hypothesis have to be wrong. Thus, the 
orre
tion term t2 for the se
ondhypothesis is t2 = G− (K − 1). The algorithm to 
al
ulate the 
orre
tion term for everystage and a more extensive des
ription of SSP 
an be found in Sha�er (1986).A �nal remarkIn this se
tion, for simpli
ity, I always assumed to 
ompare 
lassi�ers. In this thesis I willrather 
ompare learning algorithms. I will do so by estimating the BAC of the learningalgorithms on ea
h data set, using 10-fold strati�ed 
ross-validation. The introdu
es test
an then be applied on these estimates in the same way.2.2. Classi�
ation of Ele
troen
ephalographi
 SignalsThe 
lassi�
ation of Ele
troen
ephalography (EEG) signals is an appli
ation area, out ofmany, of Pattern Re
ognition (PR). In the remainder of this se
tion I will �rst introdu
ethe basi
s of EEG. After that, I will give an overview about why the 
lassi�
ation ofEEG is useful and what its appli
ations are. The last subse
tions will fo
us on the featureextra
tion and 
lassi�
ation methods that are usually employed to build EEG-PatternRe
ognition Systems (PRSs).
16



2. Foundations2.2.1. Ele
troen
ephalographyEEG is a neuroimaging method based on ele
tri
al �elds generated by neural a
tivity.The �eld potentials are measured by ele
trodes at di�erent lo
ations on the s
alp, at a
ertain sampling rate. Ea
h ele
trode provides a time series of ele
tri
al potentials.Classi�
ation of EEG signals aims at separating di�erent brain states. While restingstate 
lassi�
ation is also of interest, most EEG-PRSs try to separate signals that areindu
ed by 
ertain events. This signals are 
alled Event Related Potentials (ERP). Forexample, one of the data sets used in this thesis 
omes from an experiment where theparti
ipants heard a high- or a low-pit
hed tone. The potentials that were generated bythe pro
essing of the tone are the ERP. The remaining brain a
tivity is 
onsidered noise.The main task of a EEG-PRS is to separate the ERP from the noise.To generate the data sets that are needed for supervised learning, typi
ally for every to-be-separated 
lass multiple repetitions are re
orded. For example, multiple repetitions ofthe presentation of a high- and a low-pit
hed tone. In the EEG 
ontext these repetitionsare 
alled trials. The samples for the data sets are usually generated by 
utting a �xedsized time interval out of ea
h trial. Thus, ea
h element of the raw data set typi
ally isof the form
x ∈ RC·Twhere C is the number of 
hannels (ele
trodes) and T the number of time points thatare extra
ted. Be
ause there usually is a one to one relationship between experimentaltrials and samples in the data set, I will also 
all samples trials in the remainder of thisthesis.The ERP are typi
ally weaker than the ongoing brain a
tivity. Even worse, the EEGsignal is additionally disturbed by external noise sour
es (Lotte et al., 2007). The mostprominent noise sour
es are ele
tri
al �elds indu
ed by eye movements, mus
le a
tivity,and ele
tri
al devi
es / power jams. Typi
ally, the magnitude of those noise signals isof orders higher than the magnitude of the brain signal. Additionally, be
ause re
ordingEEG signals is 
omparatively time 
onsuming and the to-be-performed tasks are oftenmonotonous and, hen
e, exhausting, the data sets typi
ally 
ontain less than thousandtrials; often substantially less. One trial is usually around one se
onds long and sampledat 1000Hz. Thus, for one trial the dimensionality of the raw amplitude data is C ·

T = 60 · 1000 = 60, 000. Most EEG-PRSs redu
e the number of data dimensions byextra
ting features from the raw data. But still, it is often the 
ase that the numberof features is higher than the number of trials. This problem is often referred to as
urse-of-dimensionality.To summarize this: The three major 
hallenges when building an EEG-PRS are smalltraining data sets, high dimensionality, and a low signal to noise ratio. As we will seein Se
tion 2.2.3, resear
hers 
ame up with various methods to deal with these problems.I will �rst introdu
e the major appli
ations of the 
lassi�
ation of EEG signals in thefollowing se
tion.
17



2. Foundations

(a)

(b) (
)Figure 2.2.1.: (a) Pi
ture of a parti
ipant during an EEG Experiment. (b) EEG signalfrom 8 
hannels during 1 se
ond. (
) Example of a 64 
hannel ele
trode
ap montage (Brain Produ
ts, 2012).18



2. Foundations2.2.2. Appli
ationsThere are two types of major appli
ations of EEG 
lassi�
ation: Enabling dire
t brain
omputer 
ommuni
ation and the utilization of EEG 
lassi�
ation as an analysis methodin neuros
ien
e.Brain Computer Interfa
esA Brain Computer Interfa
e (BCI) is a PRS that enables the 
ommuni
ation betweena person and a 
omputer via brain signals. Most 
urrent BCI systems use EEG assensor be
ause, 
ompared to other neuroimaging methods, su
h as fun
tional magneti
resonan
e imaging (fMRI) and Magnetoen
ephalography (MEG), EEG is 
heap, has agood time resolution and is portable.The most prominent appli
ation of BCIs is the enabling of 
ommuni
ation for par-alyzed patients (Sellers et al., 2007, Hinterberger et al., 2007, Pfurts
heller et al., 2007,Blankertz et al., 2007). Another popular appli
ation of BCIs is the 
ontrol of arti�
iallimbs (Pfurts
heller et al., 2007). Both appli
ations are realized by distinguishing brainpatterns that 
an willfully be generated by the patients.Most 
urrent BCIs are only able to distinguish two 
lasses and work in a syn
hronousmode. Syn
hronous mode hereby refers to the fa
t that the 
lassi�
ation has to be trig-gered by external 
ues. A patient 
an not send 
ommands to the 
omputer spontaneously.These are the two main reasons why the information transfer rate of 
urrent BCI systemsis less than 0.5bit/s. However, for people who are not able to 
ommuni
ate at all eventhis small information transfer rate means a tremendous improvement of their situation.One major outstanding issue of BCI resear
h is that, while it was proven that mosthealthy subje
ts and also patients with only little residual mus
ular 
ontrol are ableto 
ontrol a BCI, no resear
h lab has yet reported the su

essful 
ontrol of BCI bya 
ompletely lo
ked-in patient (Kübler et al., 2007). In the 
ompletely lo
ked-in stateno mus
ular 
ontrol and, thus, no 
ommuni
ation is possible. The tragedy of that 
ir-
umstan
e is that the 
ompletely lo
ked-in patients would bene�t most of a BCI. It issimply the only 
han
e for them to 
ommuni
ate. All other patients are also able to
ommuni
ate with the help of their mus
les.This tragi
 situation might be one 
ause why re
ently the use of BCIs for healthysubje
ts has gained attention. It was, e.g., used as 
ontrolling devi
e for 
omputer games(Blankertz et al., 2010b), an autonomous 
ar (Autonomos Labs, 2011), and a pinballma
hine (Tangermann et al., 2009).BCIs 
an be subdivided into a
tive and passive BCIs (Zander and Kothe, 2011). A
tiveBCIs are 
hara
terized by the fa
t that the brain a
tivity that is 
lassi�ed is willfullygenerated by the user. The appli
ation examples above all belong to the group of a
tiveBCIs. In 
ontrast to that, passive BCIs aim at 
lassifying di�erent brain patterns thatare not willfully generated by the user. For example, a passive BCI was used as a toolin a neuros
ien
e study (Jensen et al., 2011) to introdu
e brain-state dependent stimuli.
19



2. FoundationsSingle-trial AnalysisThe 
lassi�
ation of EEG signals 
an be employed as so 
alled single-trial analysismethod. A 
lassi�er is trained on a parti
ular EEG data set, and the model that ishypothesized by the 
lassi�er is interpreted. This di�ers from the 
onventional analysisof EEG signals, whi
h redu
es the noise by averaging over trials and subje
ts. In 
ontrastto the 
onventional analysis te
hnique, single-trial analysis is able to dete
t di�eren
esthat are based on intera
tions between multiple variables (features) (van Gerven et al.,2009). Additionally, it a

ounts for the per-subje
t and the per-trial varian
e. In spiteof these advantages, there are relatively few publi
ations that apply single-trial analy-sis to EEG data (Parra et al., 2002, Blankertz et al., 2011, van Gerven et al., 2009). In
ontrast to that, the employment of PR methods for data analysis is widely spread inthe fMRI 
ommunity.2.2.3. Feature Extra
tion MethodsNotationIn the remainder of this 
hapter I will use the following notation. A data set 
onsistsof N trials. A trial from the raw data set 
onsists of an element Ei ∈ RC×T from theraw input spa
e and the 
orresponding label yi ∈ Y. Ea
h trial from the feature data set
onsists of a feature ve
tor xi ∈ X and the 
orresponding label yi. When the index isnot needed, it is omitted. X is 
alled the feature spa
e. The number of di�erent 
lassesis denoted by L. r denotes the dimensionality of the feature spa
e X.Raw Ele
troen
ephalography SignalsThe most straightforward feature extra
tion method for the 
lassi�
ation of EEG data isto employ the raw �eld potentials. The feature ve
tor x 
onsists of the 
on
atenation ofthe time series of all 
hannels x ∈ RC·T . Indeed, as Lotte et al. (2007) des
ribe, severalsu

essful BCIs used the raw �eld potentials as input for their 
lassi�
ation 
omponent.Spatio-temporal featuresTo redu
e the dimensionality of the feature ve
tor, in 
omparison to the feature extra
tionmethod that simply employs the raw amplitude data, Blankertz et al. (2011) suggest toaverage the time series from ea
h 
hannel in 
ertain intervals. Let I = {I1, . . . , IK} besets of time points of interest. Ik ∈ I is typi
ally an interval. For every 
hannel c themethod generates K features
xc(I) = [mean({E(c, t)}t∈I1 ), . . . ,mean({E(c, t)}t∈IK )]where E(c, t) refers to the data point in the cth 
hannel at time point t in trial E. The�nal feature ve
tor x is the 
on
atenation of the feature ve
tors xc from all 
hannels. Ingeneral, this methods leads to so 
alled Spatio Temporal Features (STF).
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2. FoundationsThis approa
h is, of 
ourse, not limited to the usage of the mean as aggregation method.Indeed, all feature extra
tion methods presented in the following 
an also by applied toa set of intervals.Bandpass FilterFor EEG signals several frequen
y bands were established in whi
h 
hara
teristi
 dom-inant brain rhythms 
an be found. The bands are referred to as α (8-12 Hz), β (12-30Hz), γ(30-80 Hz), δ(0-4 Hz) and θ(4-8 Hz) (Herrmann et al., 2004).A bandpass �lter 
an be used to extra
t the signal of these bands. It transforms asignal su
h that it only 
ontains frequen
y 
omponents of the spe
i�ed band. All otheros
illatory 
omponents are removed. For an extensive introdu
tion to bandpass �ltersrefer to Shenoi (2005).Bandpass �lters are often used as prepossessing step for su

essive feature extra
tionmethods. But they are also used as the only feature extra
tion method. There existseveral BCIs that employ a bandpass �lter as feature extra
tion method (Lotte et al.,2007).Log Band-powerAnother feature extra
tion method that is, for example, employed by Pfurts
heller and Neuper(2001) is the logarithm of the band power.Band-power hereby refers to the power of the signal in a given frequen
y band. Thepower of a time varying signal f(t) is de�ned as
lim

R→∞

R
2
ˆ

−R
2

f(t)2dtHen
e, it is the average squared mean deviation from zero.One method to estimate the band power is to �rst bandpass-�lter the data and thento 
al
ulate the power using the varian
e (Pfurts
heller and Neuper, 2001). This resultsin the following feature per 
hannel
xc = log(var(E(c)))where E(c) refers to all time points from 
hannel c.Common Spatial PatternsThe original Common Spatial Patterns (CSP) algorithm was introdu
ed for binary 
las-si�
ation tasks. The goal of CSP is to �nd a transformation matrix that transforms ea
htrial su
h that the varian
es of the resulting time series are optimal for dis
riminatingthe two 
lasses (Ramoser et al., 2000). Re
all that the varian
e of a bandpass-�lteredsignal is a good estimator of its power. Hen
e, CSP 
an be seen as a more advan
edmethod then the log band-power to extra
t power di�eren
es.21



2. FoundationsMore formally, CSP seeks W ∈ RC×C su
h that Z = WE has high varian
e in the �rstrows for trials from 
lass y1 and low varian
e for trials from 
lass y2. Analogous to that,the last rows of Z should 
ontain high varian
e for trials from 
lass y2 and low varian
efor trials from 
lass y1. This goal is ar
hived by the simultaneous diagonalization of two
ovarian
e matri
es (Fukunaga, 1990).The CSP algorithm assumes that ea
h 
hannel in ea
h trial has zero mean, mean(E(c)) =
0, ∀c ∈ {1, .., C}. The normalized spatial 
ovarian
e matrix of ea
h trial is then

Σ =
EET

trace(EET )
(2.2.1)For both 
lasses the mean of their per trial 
ovarian
e matri
es is 
al
ulated, resultingin 
ovarian
e matri
es Σy1 and Σy2 .The 
omposite 
ovarian
e matrix is obtained by

Σ
o = Σy1 +Σy2Be
ause Σ
o is non-singular and symmetri
, Σ
o 
an be de
omposed, by an eigenvaluede
omposition, into
Σ
o = QλQT (2.2.2)where λ is a diagonal matrix and 
ontains the eigenvalues andQ 
ontains the eigenve
tors.Based on that equation, the whitening transformation matrix for Σ
o 
an be 
al
ulated
P =

√
λ−1QTThe whitening transformation matrix ful�lls the following property

PΣ
oP T = IFukunaga (1990) showed that if Σy1 and Σy2 are transformed by P

Sy1 = PΣy1P
T

Sy2 = PΣy2P
T

Sy1 and Sy2 share the same eigenve
tors, and the sum of their 
orresponding eigenvaluesis one. More formally, if Sy1 is de
omposed to
Sy1 = Bλy1B

T

Sy2 is diagonalized by
Sy2 = Bλy2B

Tand λy1 + λy2 = I. What follows is that the eigenve
tor 
orresponding to the biggesteigenvalue in λy1 is the eigenve
tor that explains the most varian
e of the EEG trials
22



2. Foundationsfrom 
lass y1 and the least varian
e of the trials from 
lass y2. If B is sorted by itseigenvalues λy1 in des
ending order, a transformed trial of 
lass y1
Z = (BTP )TEhas high varian
e for the �rst rows and low varian
e for the last rows. The oppositeapplies for trials from 
lass y2. Hen
e, the transformation ful�lls the desired properties.The last step of the CSP learning algorithm is to sele
t rows from both ends of (BTP )T .Usually an equal number of rows is sele
ted from both sides of the matrix. So the �naltransformation matrix is

W =









































11 0 . . . . . . . . . . . . . . . . . . 0

0
. . . . . . ...... . . . 1k

. . . ...... . . . 0
. . . ...... . . . . . . . . . ...... . . . 0

. . . ...... . . . 11
. . . ...... . . . . . . 0

0 . . . . . . . . . . . . . . . . . . 0 1k









































(BTP )T

where the number of ones on ea
h sides of the diagonal is even and must be sele
tedas the hyper-parameter k. Note that (BTP )T are the model parameters θ, whi
h arelearned from the data.The logarithm of the varian
e of the resulting k time series is usually employed as fea-ture. CSP is 
urrently one of the most used feature extra
tion methods for the extra
tionof power di�eren
es.Permutation EntropyThe Permutation Entropy (PE) was introdu
ed by Bandt and Pompe (2002) as a 
om-plexity measure for time series. The overall idea is to redu
e a time series to an orderpattern between m neighbors. m is 
alled embedding dimension in the remainder.De�nition 14. Let {f(t)}t=1..T be a time series. The permutation distribution of em-bedding dimension m is then de�ned as
pm(π) =

|{t : 0 ≤ t ≤ T −m, (x(t+ 1), . . . , x(t+m)) has type π}|
T −m+ 1

(2.2.3)where π represents one permutation of the m! possible permutations.The value pm(π) represents the probability of the o

urren
e of the ordering that isrepresented by the permutation π. I 
larify the de�nition of the permutation distributionwith a simple example. 23



2. FoundationsExample 15. Assume that the embedding dimension m is 2, and the time series forthat we want to 
al
ulate the permutation distribution is
(1, 2, 20, 30, 2, 1)There are two possible orderings of two unequal elements x(t) and x(t+1). Either x(t) isgreater than x(t+1) or x(t+1) is greater than x(t) . The �rst ordering 
an be representedby the permutation 10 and the se
ond ordering by 01. In the example time series thereare three o

urren
es of x(t) < x(t+1) and two o

urren
es of x(t) > x(t+1). Therefore,the permutation distribution with embedding size 2 for that time series is
p2(10) = 3/5

p2(01) = 2/5The permutation distribution itself 
ould be used as feature. However, Bandt and Pompe(2002) suggest to aggregate it to the Permutation Entropy (PE).De�nition 16. The PE of embedding dimension m ≥ 2 is de�ned as the Shannonentropy of the permutation distribution of embedding dimension m,
H(m) = −

∑

pm(π) log p(π)Example 17. The permutation entropy of the permutation distribution from Example15 is
−(

3

5
log(

3

5
) +

2

5
log(

2

5
)) = 0.971When using the PE as feature extra
tion method for EEG 
lassi�
ation, the PE is
al
ulated separately for ea
h 
hannel. This results in a feature ve
tor of the form x ∈ RCfor ea
h trial. There is one hyper-parameter that has to be 
hosen by the designer, theembedding dimension m. Re
ently, Brandmaier (2012) des
ribed a heuristi
 for 
hoosingthe embedding dimension automati
ally.The Permutation Entropy was introdu
ed as a feature extra
tion method for BCIs(Ni
olaou and Georgiou, 2010). Furthermore, Brandmaier (2012) demonstrated that di-vergen
e measures based on the permutation distribution perform well in 
lustering EEGtrials.2.2.4. Classi�
ation MethodsLedoit's Regularized Linear Dis
riminant AnalysisLedoit's Regularized Linear Dis
riminant Analysis (LRLDA) is based on Linear Dis
rim-inant Analysis (LDA). The idea behind LDA is to adjust a normal distribution for ea
h
lass. A new trial is assigned to the 
lass for that the a-posteriori likelihood is the highest(von Oertzen, 2011).Assume that for every 
lass the 
lass 
onditional probability distribution Pl(X) =

P (X|Y = yl) is known and normal, i.e., Pl ∼ N (µl,Σl). Additionally, the a-priori like-lihoods for every 
lass P (Y = yl) are the same P (Y = y) = 1/L. Furthermore, the24



2. Foundationsvarian
es and 
ovarian
es are the same for ea
h 
lass Σl = Σ, ∀l ∈ {1, . . . , L}. Underthese assumptions, the 
lassi�er that 
lassi�es a new sample to the 
lass for that thea-posteriori likelihood is the highest is 
alled LDA.LDA(x) = ylwhere
l = arg

L
max
l=1

(N (x;µl,Σ)) (2.2.4)where N (x;µ,Σ) is the likelihood of x under the multivariate normal distribution withmean µ and varian
e σ. Equation 2.2.4 
an be simpli�ed to
arg

L
max
l=1

(N (x;µl,Σ)) = arg
L

max
l=1

(log(N (x;µl,Σ)))

= arg
L

max
l=1

(log((2π)−
r
2 |Σ|− 1

2 e−
1

2
(x−µl)

TΣ−1(x−µl)))

= arg
L

max
l=1

(−1

2
(x− µl)

TΣ−1(x− µl))Furthermore,
−1

2
(x− µl)

TΣ−1(x− µl) = xTΣ−1µl −
1

2
µT
l Σ

−1µl −
1

2
xTΣ−1xFor simpli
ity I will 
ontinue the treatment for the binary 
lassi�
ation task, with y1 = 1and y2 = 2. LDA(x) = 1

⇔ xTΣ−1µ1 −
1

2
µT
1Σ

−1µ1 −
1

2
xTΣ−1x ≥ xTΣ−1µ2 −

1

2
µT
2 Σ

−1µ2 −
1

2
xTΣ−1x

⇔ xTΣ−1µ1 −
1

2
µT
1 Σ

−1µ1 ≥ xTΣ−1µ2 −
1

2
µT
2 Σ

−1µ2

⇔ (Σ−1(µ1 − µ2))
Tx− 1

2
(µ1 + µ2)Σ

−1(µ1 − µ2)
T ≥ 0 (2.2.5)Equation 2.2.5 is of the form

wTx+ c ≥ 0 (2.2.6)with w = Σ−1(µ1−µ2) and c = −1
2(µ1+µ2)Σ

−1(µ1−µ2)
T . That means that the de
isionsurfa
e learned by LDA between two 
lasses is a hyperplane. If a 
lassi�er ful�lls thisproperty, it is 
alled linear 
lassi�er.In pra
ti
e the means µ1, . . . , µL and the 
ovarian
e matrix Σ−1 are usually not known.These values have to be estimated from the data set by the learning algorithm ILDA. Theestimation of the means is straightforward

µ̂l =
1

|Dl|
∑

(x,y)∈Di

x25



2. Foundations

Figure 2.2.2.: Illustration of the separating model that is learned by LDA. For ea
h
lass a multivariate normal distributions is estimated. A novel sample isassigned to the 
lass with the highest a-posteriori likelihood. The �guredisplays the a-posteriori likelihood for a sample to be in 
lass y1 or y2for di�erent values. The di�erent 
olors illustrate the regions in whi
h apoint is 
lassi�ed as 
lass y1 (red) or 
lass y2 (blue). The de
ision surfa
ebetween the two 
lasses is a hyperplane.
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2. FoundationswhereDl := {(x, y) ∈ D : y = yl}. LDA is known to be relatively robust to the violation ofthe assumption that the per-
lass 
ovarian
es matri
es are the same. Thus, the standardLDA learning algorithm estimates the 
ommon 
ovarian
e matrix by
Σ̂ =

1

2
ˆ(Σ1 + Σ̂2) (2.2.7)where Σ̂l is the empiri
al 
ovarian
e matrix of 
lass yl

Σ̂l =
1

|Dl|
∑

(x,y)∈Dl

(x− µ̂l)(x− µ̂l)
T (2.2.8)When the 
ovarian
e matrix is estimated separately for ea
h 
lass, the de
ision sur-fa
e be
omes quadrati
. Consequently, the 
orresponding 
lassi�
ation method is 
alledQuadrati
 Dis
riminant Analysis.Under the usual 
onditions in statisti
al analysis, the number of samples per 
lass |Dl|is large 
ompared to the dimensionality r of the feature spa
e, the empiri
al 
ovarian
ematrix is an unbiased estimate of the true 
ovarian
e matrix. But if |Dl| is not signi�-
antly larger than the dimensionality of the feature spa
e r, it is known that the empiri
al
ovarian
e is systemati
ally biased. Large Eigenvalues of Σ are estimated too large andsmall eigenvalues are estimated too small (Friedman, 1989). An approa
h to 
orre
t forthis systemati
 bias is to repla
e Σ̂l by

Σ̂∗
l = (1− γ)Σ̂l + γ

tr(Σ̂l)

r
I (2.2.9)where tr(A) refers to the tra
e of matrix A, I is the identity matrix and γ ∈ [0, 1] isa hyper-parameter. Equation 2.2.9 regularizes Σ̂l towards the multiple of the identitymatrix. Therefore, larger eigenvalues are de
reased and smaller eigenvalues are in
reased(Friedman, 1989); 
orre
ting for the systemati
 bias.When estimating the 
ovarian
e matrix a

ording to Equation 2.2.9, the resulting 
las-si�
ation method is 
alled Regularized Linear Dis
riminant Analysis (RLDA). An openquestion was how to 
hoose the hyper-parameter γ. Ledoit and Wolf (2004) presentedan analyti
 solution for 
hoosing the optimal γ. Their method estimates γ su
h that

||Σ̂l
∗ − Σl||2r is minimized, where ||A||r is de�ned as ||A||r =

√

tr(AAT )/r . ||A||r isequivalent to the Frobenius norm divided by r. Remember that r denotes the dimen-sionality of the feature spa
e X. A

ording to their results, the optimal γ is
γ∗ =

b2

d2
(2.2.10)where

d2 = ||Σ̂l −
tr(Σ̂l)

r
I||2rand

b2 = min





1

|Dl|2
∑

(x,y)∈Dl

||(x− µ̂l)(x− µ̂l)
T − Σ̂l||2r , d2




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2. Foundations
d2 des
ribes the deviation of the sample 
ovarian
e from the s
aled identity matrix. b2des
ribes the deviation of the per-trial 
ovarian
e matri
es (x− µ̂l)

T (x − µ̂l) from theirmean Σl. The minimum operator ensures that the shrinking parameter γ∗ stays below1. In the literature the resulting 
lassi�
ation method is also 
alled RLDA when estimat-ing γ a

ording to 2.2.10. To distinguish this method from the 
lassi
al RLDA method,for whi
h γ has to be 
hosen by the designer, I will 
all this method Ledoit's RegularizedLinear Dis
riminant Analysis (LRLDA).LRLDA is the 
lassi�
ation method that leading BCI groups use and advo
ate (Blankertz et al.,2011).Support Ve
tor Ma
hinesSupport Ve
tor Ma
hines (SVMs) were invented by Cortes and Vapnik (1995). My de-s
ription of SVMs is inspired by Ng (2011).Without loss of generality, Y = {−1, 1}. In analogy to Equation 2.2.6, I de�ne a linear
lassi�er
Ψlin(x;w, b) = {

1 if, wtx+ b ≥ 0

−1 otherwise (2.2.11)The basi
 form of SVMs assumes that the training data set D is linearly separable, i.e.,there exists a linear 
lassi�er that perfe
tly separates the two 
lasses
∃w, b : ∀(xi, yi) ∈ D

{

wtxi + b > 0 if yi = 1

wtxi + b < 0 if yi = −1Noti
e that this 
ondition is equivalent to
∃w, b : ∀(xi, yi) ∈ Dyi(w

txi + b) > 0 (2.2.12)In general, for a linearly separable data set there are many 
hoi
es for w and b thatsatisfy Equation 2.2.11. The idea behind SVMs is to 
hoose w and b su
h that thegeometri
 margin is maximized. The geometri
 margin is the smallest distan
e betweenthe hyperplane des
ribed by w and b and any point in the training set D. The motivationbehind that is that maximizing the margin should be a good strategy to maximize thea

ura
y as it de
reases the risk of a new point to be at the wrong side of the de
isionplane.What follows is a formalization of this idea. The geometri
 margin is de�ned as
γg(D;w, b) =

N
min
i=1

yi(w
Txi + b)

||w||Hen
e, the optimization problem of the SVM is: Find w, b, γ̂f su
h that the geometri
margin is maximized
arg max

γ̂f ,w,b

γ̂f
||w|| (2.2.13)subje
t to 
onstraints yi(w

Txi + b) ≥ γ̂f , ∀i ∈ {1, . . . , N}28



2. Foundations
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(b)Figure 2.2.3.: (a) Multiple de
ision planes that perfe
tly separate the data set. (b) Thede
ision plane that maximizes the geometri
 margin γg. The marked pointsare the support ve
tors. Adapted with permission from S
hilling (2012).Unfortunately, this optimization problem is hard to solve as γ̂f
||w|| is non-
onvex. Thus,the problem has to be transformed into an easier, equivalent optimization problem.The value γ̂f is often 
alled fun
tional margin. For given w and b it 
an be expressedas a fun
tion, whi
h additionally depends on the training data set D.

γf (D;w, b) =
N
min
i=1

yi(w
Txi + b)where γg = γf/||w||. Noti
e that

δ(wT x+ b) = δwTx+ δb, ∀δ ∈ R+Therefore,
∀ε ∈ R+/∞∃δ ∈ R+/∞ : γf (D; δw, δb) > εis true for every w, b for that Equation 2.2.12 holds. Furthermore, s
aling w, b like thatdoes not 
hange the 
lassi�
ation fun
tion 2.2.11 as it only depends on the sign. Thus,for every linear separating 
lassi�er an arbitrary fun
tional margin 
an be a
hieved bysimply s
aling w and b without 
hanging the geometri
 margin or the a
tual 
lassi�
ationfun
tion. Therefore, by setting γ̂f to 1 the spa
e in whi
h the 
lassi�ers are sear
hed isnot de
reased. Moreover,

argmin
w

1

||w|| = argmax
w

||w|| = argmax
w

1

2
||w||2Thus, the optimization problem 2.2.13 
an be rephrased as

argmax
w,b

1

2
||w||2 (2.2.14)subje
t to 
onstraints yi(w

txi + b) ≥ 1, ∀i ∈ {1, . . . , N} (2.2.15)This optimization problem 
an be solved using quadrati
 programming. Let w∗, b∗ theoptimal values for w and b. Ea
h sample (xi, yi) for that
yi(w

T
∗ xi + b∗) = 129



2. Foundationsis then 
alled support ve
tor. The values of w∗, b∗ only depend on these samples. Theysupport the de
ision plane.The assumption that the training data set is linearly separable makes this 
lassi�
ationmethod appli
able to only a small subset of all existing data sets. Cortes and Vapnik(1995) enhan
ed their method to make it appli
able to arbitrary data sets. For ea
hviolation of the original 
onstraints 2.2.15 a 
ost term is added to the obje
tive fun
tion2.2.14.
argmin

w,b

1

2
||w||2 + C

N
∑

i=1

ξisubje
t to 
onstraints yi(w
txi + b) ≥ 1− ξi, ∀i ∈ {1, . . . , N}

ξi ≥ 0, ∀i ∈ {1, . . . , N}where C ≥ 0 is a hyper-parameter. Ea
h trial xi that lies inside the margin gets assigned
ost ξi. Noti
e that if ξi > 1, xi is on the wrong side of the de
ision plane.In this se
tion I introdu
ed linear SVMs, whi
h indu
e linear 
lassi�ers. Linear SVMs
an be extended to nonlinear 
lassi�ers using the so 
alled kernel tri
k (Cortes and Vapnik,1995). SVMs have been su

essfully employed as 
lassi�
ation method in various BCIs(Lotte et al., 2007).k-Nearest NeighborsThe k-Nearest Neighbor (k-NN) 
lassi�
ation method is one of the most simple 
lassi�-
ation methods. It assigns a new trial x to the 
lass to that the simple majority of the
k-nearest training trials belong to.Let d(x, y) be a distan
e fun
tion de�ned over the feature spa
e X. For a novel trial
x let Qk(x) ⊆ D be the k-nearest neighbors of x in the training data set D, that is

Qk(x) = S ⊆ D : |S| = k ∧ ∀(xi, yi) ∈ S∄(xj , yj) ∈ D/S : d(xj , x) < d(xi, x)The k-nearest neighbor 
lassi�er assigns then x to the 
lass that gets the most voteskNN(x;D, k) = arg
L

max
l=1

∑

(xi,yi)∈Qk(x)

δ(yi, yl)where
δ(a, b) =

{

1 if, a = b

0 otherwise (2.2.16)k-NN has been used as a 
lassi�
ation method in multiple EEG 
lassi�
ation setups(Lotte et al., 2007).2.3. Combination of Classi�ersThe term 
ombination of 
lassi�ers refers to the pro
ess of 
ombining multiple 
lassi�ersfor the same problem to a new 
lassi�er, an ensemble 
lassi�er.30



2. FoundationsDe�nition 18. Let Ψ1, . . . ,ΨJ be 
lassi�ers for one parti
ular pattern re
ognition task.Let rθ,τ (Ψ1(x), . . . ,ΨJ(x),x) = Ψens be a rule that 
ombines the outputs of the 
lassi�ersto a new 
lassi�er Ψens. The 
lassi�ers Ψ1, . . . ,ΨJ are then 
alled base-level 
lassi�ers,the rule rθ,τ 
ombination rule, and the 
lassi�er Ψens ensemble 
lassi�er. Analogousto the feature extra
tion fun
tion, the 
ombination rule has parameters θ that haveto be learned by the 
orresponding learning algorithm and parameters τ that have tobe spe
i�ed by the designer. The 
ombination of learning algorithm and 
ombinationrule is 
alled 
ombiner. A Pattern Re
ognition System (PRS) that employes an ensemble
lassi�er is 
alled Multiple Classi�er System (MCS). The learning algorithms that indu
ethe base-level 
lassi�ers are 
alled base-level learners.I will start the following treatment of the 
ombination of 
lassi�ers with the introdu
-tion of a taxonomy. It will in
lude a 
ategorization of the di�erent approa
hes to builddi�erent base-level 
lassi�ers and a 
lassi�
ation of di�erent types of 
ombiners. Afterthat, I will present a sele
tion of 
ombiners for the 
ombination of labels. I will 
on
ludethis se
tion with a treatment why and under what 
onditions an ensemble 
lassi�er ismore a

urate than the most a

urate base-level 
lassi�er.2.3.1. TaxonomyWhen 
reating an ensemble 
lassi�er, one has to ful�ll two tasks: The 
reation of a

u-rate and diverse base-level 
lassi�ers and the appropriate 
ombination of the base-level
lassi�er.Kun
heva (2004, 
hapter 3) identi�es three approa
hes that are used to generate diversebase-level 
lassi�ers:1. The employment of di�erent 
lassi�
ation methods2. The employment of di�erent feature extra
tion methods3. The employment of di�erent subsets of the data set as input for the learning algo-rithmThese three methods 
an be arbitrarily 
ombined.Kun
heva (2004, 
hapter 3) 
lassi�es the di�erent 
ombiners based on two properties:The type of the input on that they operate and if they are trainable or nontrainable.She distinguishes between three types of base-level 
lassi�er outputs and, hen
e, 
om-biner inputs.
• Type 1 (The Abstra
t level): Ea
h base-level 
lassi�er returns a label for ea
hsample. There is no information about the 
ertainty of the 
lassi�
ation.
• Type 2 (The Rank level): The output of ea
h base-level 
lassi�er is an orderedsubset of Y . It is ordered by a-posteriori likelihood.
• Type 3 (The Measurement level). Every base-level 
lassi�er produ
es a L-dimensionalve
tor [s1, . . . , sL], where sl represents the likelihood that the sample x belongs to
lass yl. 31



2. Foundations

Combiner Combination level :Use di�erent 
ombiners
Ψ1 Ψ2 . . . ΨJ

Classi�er level :Use di�erent 
lassi�
a-tion methods
φ1 φ2 . . . φJ

Feature level :Use di�erent feature ex-tra
tion methodsxData set Data level :Use di�erent data sub-setsFigure 2.3.1.: Approa
hes to build ensemble 
lassi�ers. Adapted from Kun
heva (2004,p 105).
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2. FoundationsNontrainable 
ombiners 
ombine the output of the base-level 
lassi�ers using �xed rules.De�nition 19. A nontrainable 
ombiner 
onsist of a 
ombination rule 
omb that 
om-bines the outputs of the base-level 
lassi�ers. Ψens = rθ,τ (Ψ1(x), . . . ,ΨJ(x)). The 
om-bination rule is stati
 and independent of the data set. Hen
e, θ = ∅.Trainable 
ombiners, in 
ontrast, use learning algorithms to indu
e the 
ombinationrule from the data. The trainable 
ombiners are further distinguished in impli
it andexpli
it trainable 
ombiners. The learning algorithm of impli
it trainable 
ombinersindu
es one 
ombination rule for all samples, i. e., the 
ombination rule is independentof the to-be-
lassi�ed sample x. Expli
it trainable 
ombiners, in 
ontrast, indu
e a
ombination rule that 
an potentially be di�erent for every sample x.De�nition 20. A trainable 
ombiner 
onsists of a learning algorithm that indu
es a
ombination rule based on a data set Ir?,τ (D) = rθ,τ . If the 
ombination rule has thefollowing signature rθ,τ (Ψ1(x), . . . ,ΨJ(x)), hen
e, it does not dependent on x itself, the
ombiner is 
alled impli
it trainable. If the 
ombination rule dire
tly depends on x,
rθ,τ (Ψ1(x), . . . ,ΨJ(x),x), it is 
alled expli
it trainable.2.3.2. Abstra
t Level CombinersIn this se
tion I will review nontrainable and impli
it trainable 
ombiners that 
ombinethe outputs at the abstra
t level. This is 
alled 
ombination of labels in the remainderof this thesis.The situation is as follows: A variety of base-level learners IΨ1

(Dtrain), . . . , IΨJ
(Dtrain)have been trained on the data setDtrain and produ
ed base-level 
lassi�ers {Ψ1, . . . ,ΨJ} =:

B. The task of the 
ombiners is to build an ensemble 
lassi�er based on the base-level
lassi�ers. For that they may employ a separate data set D
omb, sampled independentlyfrom the same distribution as Dtrain.2.3.2.1. Majority VotingMajority Voting (MV) is perhaps the most simple 
ombiner. It is a nontrainable 
om-biner. Therefore, it does not 
onsume D
omb to generate the 
ombination rule. The
ombination rule is �xed and de�ned as follows.De�nition 21. The 
ombination rule of majority voting is de�ned asmv(Ψ1(x), . . . ,ΨJ(x)) = argmax
yl∈Y

J
∑

j=1

δ(Ψj(x), yl)where δ is de�ned as in Equation 2.2.16.MV assigns x to the 
lass yl for that most of the base-level 
lassi�ers Ψj voted. Tiesare resolved arbitrarily. Despite of its simpli
ity or maybe be
ause of its simpli
ity, MVis one of the most used 
ombiners.When 
ertain assumptions are made about the base-level 
lassi�ers, the a

ura
y ofthe ensemble 
lassi�er 
reated by the MV rule 
an be 
al
ulated.33



2. Foundationsp J = 7 J = 15 J = 51 J = 101 J = 301 J = 5000.45 0.3917 0.3465 0.2359 0.1562 0.0409 0.01240.55 0.6083 0.6535 0.7641 0.8438 0.9591 0.9876Table 2.2.: A

ura
y of the ensemble 
lassi�er built by MV for di�erent numbers of base-level 
lassi�ers, under the assumption of independen
e. p denotes the a

u-ra
y of the base-level 
lassi�ers.Theorem 22. Let the number of base-level 
lassi�ers J be odd and the a

ura
y ofevery base-level 
lassi�er be p. Furthermore, let the outputs of the base-level 
lassi�ersbe independent. That means that for ea
h subset {Ψ1, . . . ,ΨK} ⊆ B the joint probability
P (Ψ1 = y1, . . . ,ΨK = yK) equals ∏K

k=1 P (Ψk = yk). Then the a

ura
y of the ensemble
lassi�er built by employing MV as 
ombiner is
pmv = J

∑

o=J+1

2

(

J
o

)

po(1− p)J−oProof. The ensemble 
lassi�er built by MV 
lassi�es a sample x 
orre
tly if at least J+1
2base-level 
lassi�ers Ψj 
lassify x 
orre
tly. Hen
e, if we assume that the a

ura
y ofea
h base-level 
lassi�er is p, the a

ura
y of the ensemble 
lassi�er built by MV is as
laimed.The following results require the same assumptions as Theorem 22. Table 2.2 showshow the a

ura
y of the ensemble 
lassi�er built by MV 
hanges when the number ofbase-level 
lassi�er in
reases for p = 0.45 and p = 0.55. It 
an, furthermore, be shownthat

lim
J→∞

pmv = {

1 if, p > 0.5

0 if, p < 0.5Additionally, if p > 0.5 (p < 0.5), pmv is monotoni
ally in
reasing (de
reasing) as J ex-pands. This proof 
an also be extended to the 
ase where the a

ura
y of the base-level
lassi�ers are unequal. Indeed, the only ne
essary 
ondition is that they are symmet-ri
ally distributed with a mean above 0.5 (see Kun
heva, 2004, p 114 and referen
estherein) Hen
e, the intuition that an ensemble 
lassi�er boosts the a

ura
y if the base-level 
lassi�ers are a

urate and diverse is supported.2.3.2.2. Weighted Majority VotingExample 23. Assume that J = 3, L = 2, p1 = 0.4, p2 = 0.4, p3 = 0.65, and indepen-den
e as in Theorem 22, where pj refers to the a

ura
y of base-level 
lassi�er Ψj . Thea

ura
y of the ensemble 
lassi�er generated by MV is then
pmv = p1p2p3 + (1− p1)p2p3 + p1(1− p2)p3 + p1p2(1− p3)

= 0.4 · 0.4 · 0.65 + 0.6 · 0.4 · 0.65 + 0.4 · 0.6 · 0.65 + 0.4 · 0.4 · 0.35
= 0.472 34



2. FoundationsAs you may 
on�rm, this is smaller than the a

ura
y of the most a

urate base-level
lassi�er Ψ3.In this se
tion I will introdu
e a 
ombiner that in the situation of independent base-level
lassi�ers maximizes the ensemble a

ura
y. This 
ombiner is 
alled Weighted MajorityVoting (WMV). I will show that, in 
ontrast to MV, the ensemble 
lassi�er built byWMV leads to a more a

urate 
lassi�er than the most a

urate base-level 
lassi�erwhen applied to the previous exampleFirst, I will establish Weighted Voting (WV) in general, then, I will show how theoptimal weights are obtained by WMV.De�nition 24. A WV rule is of the following formwv(Ψ1(x), . . . ,ΨJ(x)) = argmax
yl∈Y

J
∑

j=1

wjδ(Ψj(x), yl)where w1, . . . , wJ ∈ R are weights for the 
orresponding base-level 
lassi�ers and δ isde�ned as in Equation 2.2.16.Example 25. Let the base-level 
lassi�ers be as in Example 23. Let the weights for theWV rule be w1 = −0.4055,w2 = −0.4055 and w3 = 0.6190. Then the a

ura
y of theensemble 
lassi�er build by WV is
pwv = (1− p1) · (1− p2) · (1− p3) + (1− p1) · (1− p2) · p3 + p1(1− p2)p3 + (1− p1)p2p3

= 0.672Proof. Noti
e that δ(Ψj(x), yl) is 1 for exa
tly one l ∈ {1, . . . , L} as every 
lassi�er pre-di
ts exa
tly one label be
ause in the example L = 2, δ(Ψj(x), y1) = 0 ⇔ δ(Ψj(x), y2) =
1. Hen
e, if δ(Ψj(x), y1) is known, δ(Ψj(x), y2) is also known. Thus, if a base-level
lassi�ers predi
ts the 
orre
t (wrong) 
lass, its weight in�uen
es only the sum of the
orre
t (wrong) 
lass. Let yc be the 
orre
t 
lass and yw be the wrong 
lass. An ensemble
lassi�er built by a WV rule makes the 
orre
t de
ision if

J
∑

j=1

wjδ(Ψj(x), yc) >

J
∑

j=1

wjδ(Ψj(x), yw)This is exa
tly the 
ase if the voting behavior is: 000 or 001 or 101 or 011. Where a1(0) at the jth pla
e means that the jth base-level 
lassi�er 
lassi�es a sample 
orre
tly(in
orre
tly).Until now, we have seen that WV 
an drasti
ally improve the ensemble a

ura
y
ompared to MV. The interesting question is how to 
hoose the weights.Theorem 26. Consider a set of J independent 
lassi�ers that are 
ombined using theweighted voting 
ombination rule. Furthermore the a-priori probabilities for all 
lasses35



2. Foundationsare the same. The a

ura
y of the resulting ensemble gets maximized by assigning ea
h
lassi�er Ψj the weight
wj = log

pj
1− pjProof. See (Kun
heva, 2004, pp. 124)When the WV rule is employed and the weights are set as in the above theorem, theresulting 
ombiner is 
alled Weighted Majority Voting (WMV). Shapley and Grofman(1984) even showed, for binary de
isions, that if the a-priori probabilities for both 
lassesare the same, under the independen
e assumption, WMV is the 
ombiner, out of allpossible 
ombiners, that maximizes the a

ura
y of the ensemble 
lassi�er. If the a-priori likelihoods are not the same, they have to be taken into a

ount for the de
isionfun
tion. This leads to the general form of WMV.wmv(Ψ1(x), . . . ,ΨJ(x)) = argmax

yl∈Y
[P (Y = yl) +

∑

logJj=1

pj
1− pj

δ(Ψj(x), yl))] (2.3.1)Note that pj for every 
lassi�er Ψj and P (Y = yl) have to be estimated using D
omb.2.3.2.3. Adaptive BoostingAdaptive Boosting (AB) is a boosting algorithm invented by Freund and S
hapire (1997).It is an appli
ation of their algorithm for the on-line allo
ation problem. A

ording toFreund and S
hapire (1997, p 120), boosting refers to the �general problem of produ
inga very a

urate predi
tion rule by 
ombining rough and moderately ina

urate rulesof thumb�. The original algorithm generates arbitrarily many base-level 
lassi�ers bytraining a weak learner on di�erent subsamples from the data set D.However, AB 
an also be applied to the situation in whi
h a prede�ned set of base-level 
lassi�ers has to be 
ombined, as des
ribed at the beginning of this se
tion. TheAB algorithm for that situation, as des
ribed by Rojas (2009), is shown as Algorithm2.1 and 
alled �xed Adaptive Boosting (fAB) in the remainder.fAB is also a WV 
ombiner. WMV and fAB only di�er in the way they 
omputethe weights for the base-level 
lassi�ers. While for WMV the weight of ea
h base-level
lassi�er Ψj only depends on the performan
e of itself, fAB also takes into a

ount theperforman
e of other base-level 
lassi�er in the set. This is done by iteratively addingbase-level 
lassi�er to the ensemble and using an importan
e for ea
h sample. Afteradding a base-level 
lassi�er Ψ to the ensemble, the importan
e of ea
h sample that
Ψ 
lassi�es wrong is in
reased and the importan
e of samples that Ψ 
lassi�es 
orre
tis de
reased. The next 
lassi�er that gets added to the set is the one with the lowesterror, in respe
t to the importan
e of the samples. Thus, while WMV is optimal if thebase-level 
lassi�ers are dependent, fAB potentially produ
es a more a

urate ensemble
lassi�er if the independen
e assumption is violated.
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2. FoundationsAlgorithm 2.1 Pseudo
ode for the learning algorithm of the fAB 
ombinerInput:
• data set D
omb = {(x1, y1), ..., (xN , yN )}

• base-level 
lassi�ers {Ψ1, . . . ,ΨJ}Pro
edureInitialize ∀i ∈ {1, . . . , N}W 1
i = 1, sel1 = ∅,for m = 1 to J do1. Sele
t the base 
lassi�er Ψj that was not already sele
ted in the iterations 1, . . . ,m−

1 with the lowest weighted error
sm = arg min

j={1,...,J}/selm
(

N
∑

i=1

L01(xi, yi,Ψj)W
m
i )where L01 is the zero-one loss fun
tionselm+1 = selm ∪ sm2. Cal
ulate the relative error of the sele
ted base-level 
lassi�ererrm =

∑N
i=1 L01(xi, yi,Ψsm)W

m
i

∑N
i=1 W

m
i

∈ [0, 1]3. Set the weight wsm for the sele
ted base-level 
lassi�er Ψsm to
wsm =

1

2
log

(

1− errmerrm )

∈ R4. Update the importan
e of the samples for the next step
Wm+1

i = Wm
i ·

{

ewsm if Ψsm(xi) 6= yi

e−wsm if Ψsm(xi) = yiendOutput: the 
ombination ruleab(Ψ1(x), . . . ,ΨJ(x)) = argmax
yl∈Y

J
∑

j=1

wjδ(Ψj(x), yl)
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2. Foundationspredi
ted 
lassHippo Gira�ea
tual 
lass Hippo 10 13Gira�e 8 5Table 2.3.: Example for a 
onfusion matrix. In this 
ase the 
orresponding 
lassi�er
lassi�es 10 of the 23 hippos 
orre
tly. From the 13 gira�es 5 are 
lassi�ed
orre
tly.2.3.2.4. Bayes CombinationUnder the assumption of 
onditional independen
e between the base-level 
lassi�ers, theprobability of having observed a sample of 
lass yl after having seen x is:
P (yl|x) =

P (Y = yl)
∏J

j=1 P (Ψj = Ψj(x)|Y = yl)

P (Ψ1 = Ψ1(x)∧, . . . ,∧ΨJ = ΨJ(x))
(2.3.2)The denominator is independent of the 
andidate 
lass yl, its purpose is only to s
ale

P (yl|x) su
h that it ful�lls the 
onditions of a probability measure. Hen
e, for 
lassi�
a-tion only the nominator is needed. Therefore, the support for 
lass yl issupyl(x) = P (Y = yl)

J
∏

j=1

P (Ψj = Ψj(x)|Y = yl) (2.3.3)It seems reasonable to assign a new sample to the 
lass with the highest support. Thisleads to Bayes Combination (BC).b
(Ψ1(x), . . . ,ΨJ(x)) = argmax
yl∈Y

(supyl) (2.3.4)Note that not all of the needed probabilities are known, but they 
an easily be estimatedemploying D
omb.The probabilities needed for BC 
an be estimated by the 
onfusion matrix.De�nition 27. Let D be a data set and Ψ a 
lassi�er. Ea
h entry 
fl,k(Ψ,D) of the
onfusion matrix CF(Ψ,D) is then de�ned as
fl,k(Ψ,D) = |{(x, y) ∈ D : y = yl ∧Ψ(x) = yk}|The entry 
fl,k 
orresponds to the number of the samples (x, y) in D with label yl thatwere labeled with the label yk by the 
lassi�er Ψ. For a perfe
t 
lassi�er all o� diagonalelements of the 
onfusion matrix are zero. An example for a 
onfusion matrix 
an beseen in Table 2.3.The 
onfusion matrix for all base-level 
lassi�ers has to estimated. I will 
all CFjthe 
onfusion matrix of base-level 
lassi�er Ψj , with entries 
fjl,k. Let ykj be the labelpredi
ted by base-level 
lassi�er Ψj , Ψj(x) = ykj ; ∀j ∈ {1, . . . , J}kj ∈ {1, . . . , L}. Let38



2. Foundations
Nl=|{(x, y) ∈ D : y = yl}| denote the number of samples (x, y) ∈ D with label yl.
Nl/N 
an then be used as an estimate for P (Y = yl) and 
fjl,kj/Nl as an estimate for
P (Ψj = Ψj(x)|Y = yl). Thus, the support for ea
h 
lass (see Equation 2.3.3) 
an beestimated as

ˆsupyl(x) = Nl

N

J
∏

j=1

(
fjl,kj/Nl) =
1

NJ−1
l N

J
∏

j=1


fjl,kjBe
ause N is independent of the 
andidate 
lass, this 
an be further simpli�ed to
1

NJ−1
l

J
∏

j=1


fjl,kjNote that if ∃j, kj : 
fjl,kj = 0, the support of the whole 
lass yl is zero. Be
ause theprobabilities are estimated and, hen
e, a probability that is estimated as 0 may not be0, this is an undesired behavior. Therefore, (Kun
heva, 2004, p 127) suggests a di�erentmethod to 
al
ulate the support, whi
h she adapted from the work of Titterington et al.(1981). The resulting estimator of the support is
ˆsup∗yl(x) = 



J
∏

j=1


fjl,kj + 1/J

Nl + 1





B (2.3.5)where B is a hyper-parameter.2.3.2.5. Sta
kingSta
king refers to the pro
edure of applying a 
lassi�
ation method to to the outputsof the base-level 
lassi�ers. The 
lassi�er that works on the output of the base-level
lassi�ers is often 
alled meta-
lassi�er. The de�nition of sta
king in
ludes that the dataset that is used for the indu
tion of the base-level 
lassi�ers has to be disjoint of thatused for the indu
tion of the meta-
lassi�er.In our 
ase the features for the 
lassi�
ation methods are the labels predi
ted by thebase-level 
lassi�ers. Every 
lassi�
ation method may be used for sta
king.2.3.2.6. Information Theoreti
 CombinerMeynet and Thiran (2010) proposed a 
ombiner based on the mutual information. Their
ombiner tries to exploit the fa
t that ensemble 
lassi�ers tend to perform well if thebase-level 
lassi�ers are diverse and a

urate. I will review this fa
t in more detail inSe
tion 2.3.3.The main 
ontribution of their work is a new s
ore that measures the a

ura
y anddiversity of a set of base-level 
lassi�ers on a data set simultaneously, 
alled informationtheoreti
 s
ore. But they also show how to to sele
t the best subset of base-level 
lassi�ersout of a given set employing this s
ore. I will start this se
tion by introdu
ing the39



2. Foundationsinformation theoreti
 s
ore. After that, I will present the 
ombiner that is based on thats
ore.The information theoreti
 s
ore is based on the mutual information. The mutualinformation is a 
entral 
on
ept in information theory.De�nition 28. The mutual information between two dis
rete random variables A,B isde�ned as
I(A;B) =

∑

a∈A

∑

b∈B

P (A = a ∧B = b)lb(P (A = a ∧B = b)

P (A = a)(B = b)

)where lb refers to the binary logarithm.The mutual information 
an also be 
al
ulated using any other logarithm instead.De�nition 29. The information theoreti
 a

ura
y of the base-level 
lassi�er {Ψ1, . . . ,ΨJ}on the data set D
omb is de�ned as the mean mutual information between the labels pre-di
ted by the base-level 
lassi�ers and the 
orre
t labelsITA(Ψ1, . . . ,ΨJ ;D
omb) = 1

J

J
∑

j=1

I(Lj ; Ŷ )where Lj is the random variable that represents the predi
tions of the base-level 
lassi�er
Ψj on the data set D
omb and Ŷ = {y1, . . . , yN} the random variable that represents thetrue labels of the samples in the data set D
omb.De�nition 30. The information theoreti
 diversity between the base-level 
lassi�ers
{Ψ1, . . . ,ΨJ} is de�ned asITD(Ψ1, . . . ,ΨJ ;D
omb) = (

J
2

)

∑J−1
i=1

∑J
j=i+1 I(Li;Lj)

(2.3.6)Note that ( J
2

) is the number of distin
t pairs that 
an be built out of J base entities.The information theoreti
 diversity is the inverse of the mean mutual information betweenall pairs of base-level 
lassi�ers.De�nition 31. The information theoreti
 s
ore of an ensemble of K 
lassi�ers is de�nedas ITS(Ψ1, . . . ,ΨJ ;D
omb) = (1 + ITA(Ψ1, . . . ,ΨJ ,D
omb))3ITD(Ψ1, . . . ,ΨJ ,D
omb)(2.3.7)Employing this s
ore, Meynet and Thiran (2010) propose to use the algorithm that isdisplayed in Algorithm 2.2 to sele
t a subset of base-level 
lassi�ers from a given set ofbase-level 
lassi�ers. I will 
all the resulting 
ombiner Information Theoreti
 Combina-tion (ITC). 40



2. Foundations
Algorithm 2.2 The learning algorithm of ITCInput:

• data set D
omb = (x1, y1), ..., (xN , yN )

• set of base-level 
lassi�ers {Ψ1, . . . ,ΨJ} := B

• odd size of the to be sele
ted subset KPro
edureInitialize k = 1, sel1 = ∅Sele
t the best individual 
lassi�er
Ψ1∗ = arg max

Li,i=1,...,J
I(Li, Ŷ )sel1 = Ψ1∗for k = 2 to (K − 1)/2 do1. Sele
t the two base-level 
lassi�ers Ψi, Ψk that maximize the information theoreti
s
ore

(Ψi,Ψk) = arg max
(Ψi,Ψk)∈B/selk−1×B/selk−1

(ITS(selk−1 ∪Ψi ∪Ψk;D
omb))2. and add them to the set of sele
ted 
lassi�ersselk = selk−1 ∪Ψi ∪ΨkendOutput: the dis
rimination fun
tionit(Ψ1(x), . . . ,ΨJ(x)) = mv(selK)where mv(Ψ1, . . . ,ΨK) refers to the majority voting rule as de�ned in De�nition 21.
41



2. Foundations2.3.2.7. Sele
t The BestThe Sele
t the Best (Sele
tBest) 
ombiner refers to the pro
edure of model sele
tion.Instead of fusing the de
ision from all base-level 
lassi�ers, the most a

urate base-level
lassi�er is sele
ted to make the de
isions.The learning algorithm for Sele
tBest outputs the 
lassi�er Ψj that has the highesta

ura
y on the set D
omb. sb(Ψ1(x), . . . ,ΨJ(x)) = Ψj(x)where ∀Ψ ∈ {Ψ1, . . . ,ΨJ}a

es(Ψj ,D
omb) ≤ a

es(Ψ,D
omb)Sele
tBest 
an also be interpreted as the WV 
ombiner for that all but the most a

u-rate base-level 
lassi�er get assigned zero weight. Unlike the other 
ombiners introdu
edin this se
tion, the sele
tion of the best 
lassi�er does not redu
e the risk for one par-ti
ular data set 
ompared to the best base-level 
lassi�er. But if applied to more thanone data set, it 
an de
rease the average risk tremendously by pi
king di�erent base-level
lassi�ers for di�erent data sets.2.3.3. Why and When do Multiple Classi�er Systems Perform Better?Why?In the last se
tion I reviewed a variety of 
ombiners for the 
reation of ensemble 
lassi�ers.I gave examples for whi
h the a

ura
y of the ensemble 
lassi�er was higher than thea

ura
y of any base-level 
lassi�er. These examples were theoreti
al in nature and didnot address the question why in pra
ti
e it is often possible to 
onstru
t an ensemble
lassi�er that is more a

urate than the most a

urate base-level 
lassi�er. Be
auseof that, I want to introdu
e three reasons why in pra
ti
e an ensemble 
lassi�er oftenoutperforms 
lassi�
ation methods that are based on a single 
lassi�er. These reasonswere originally introdu
ed by Dietteri
h (2000).1. Statisti
al: A learning algorithm 
an be viewed as sear
hing within a spa
e of
lassi�ers C for the best 
lassi�er Ψ∗. When the training data set D is to small,the learning algorithm may �nd many di�erent 
lassi�ers that all a
hieve the samea

ura
y on the training data set. By averaging these 
lassi�ers, the risk to 
hoosean inadequate 
lassi�er is redu
ed.2. Computational: Even when the statisti
al problem is absent, learning algorithmsthat perform some lo
al sear
h may get stu
k in lo
al optima. Furthermore, optimaltraining for two very important 
lassi�
ation methods that employ a lo
al sear
h,namely neural networks (Rojas, 1996) and de
ision trees (Quinlan, 1992), is shownto be NP-hard. An ensemble 
lassi�er 
onsisting of base-level 
lassi�ers that aregenerated by running the lo
al sear
h using di�erent starting points may be a better
lassi�er than any of the base-level 
lassi�ers.3. Representational: Assume that an algorithm that �nds the best 
lassi�er in C isavailable. In this 
ase the use of multiple 
lassi�er may still be bene�
ial as the42



2. Foundationsoptimal 
lassi�er Ψ* may lie outside of C. By 
ombining 
lassi�ers from within Cit may be possible to expand the spa
e of representable hypotheses.When?Of 
ourse, the performan
e of an ensemble 
lassi�er is not independent of the performan
eof its base-level 
lassi�ers. It is known that a ne
essary 
ondition for an in
rease of thea

ura
y of the ensemble 
lassi�er 
ompared to the most a

urate base-level 
lassi�er isthat the base-level 
lassi�ers are a

urate and diverse (Hansen and Salamon, 1990). Ana

urate 
lassi�er is a 
lassi�er that has an a

ura
y better than random guessing. Two
lassi�ers are diverse if they make errors on di�erent trials (Dietteri
h, 2000).Thus, before using a 
ombiner to fuse the de
isions of the base-level 
lassi�ers makessense, it has to be veri�ed that the base-level 
lassi�ers ful�ll this 
onditions. Thea

ura
y 
an be estimated using one of the methods introdu
ed in Se
tion 2.1.3. If abase-level 
lassi�er performs better than random guessing, 
an be tested using the testintrodu
ed in Se
tion 2.1.4.1.Besides the information theoreti
 diversity, de�ned in De�nition 30, various otherdiversity measures exist. Kun
heva (2004, 
hap. 10) 
ompared many diversity measurein terms of their relationship to the �nal ensemble a

ura
y. She found that for everydiversity measure the relationship between the measured diversity and the �nal ensemblea

ura
y is relatively weak. However, if the measured diversity was zero no improvementover the a

ura
y of most a

urate base-level 
lassi�er was possible. Be
ause the resultsare the same for every diversity measure, I will introdu
e her results in detail for onediversity measure.One of the most intuitive diversity measures is the disagreement measure.De�nition 32. The disagreement measure between two 
lassi�ers Ψi,Ψk is de�ned asDii,k = P (Ψi(x) = y ∧Ψj(x) 6= y) + P (Ψj(x) = y ∧Ψi(x) 6= y) (2.3.8)where (x, y) ∈ MFor a binary de
ision problem Dii,k is the probability that Ψi,Ψk disagree. For ar-bitrary de
ision problems Dii,k is the probability that one 
lassi�er predi
ts the 
orre
t
lass and the other 
lassi�er predi
ts a wrong 
lass . The extension to a set of 
lassi�ersis straightforward.De�nition 33. The disagreement measure Di for a set of J base-level 
lassi�ers is themean disagreement measure Dii,k between all ( J
2

) pairs, Ψi ,Ψk, of base-level 
lassi-�ers.The probabilities needed for the 
al
ulation of the disagreement measure have to beestimated from a data set.Kun
heva (2004, 
hap 10) showed for ensemble 
lassi�ers built by MV that the rela-tionship between the disagreement measure and the a

ura
y of the ensemble 
lassi�er43



2. Foundations
Classi�er Spa
e CGood Classi�ers

b
Ψ1 b

Ψ∗

b
Ψ2

b
Ψ3

(a) The ellipsoid represents the 
lassi�ers that per-form well on the data set.
Classi�er Spa
e Cb

Ψ1 b
Ψ∗

b
Ψ2

b
Ψ3

(b) The dashed lines representthe hypotheti
al traje
to-ries of the 
lassi�ers duringthe lo
al sear
h. Classi�er Spa
e Cb
Ψ1

b
Ψ∗

b
Ψ2

b
Ψ3

(
) Ψ∗ lies outside the spa
ein whi
h the 
lassi�ers aresear
hed.Figure 2.3.2.: Illustration of the (a) statisti
al, (b) 
omputational and (
) representa-tional reason why a an ensemble 
lassi�er often performs better than a
lassi�
ation method based on a single 
lassi�er. The 
lassi�ers Ψ1,Ψ2,Ψ3represent three 
lassi�ers that are indu
ed on the same data set for oneparti
ular PR problem. Ψ∗ is the optimal 
lassi�er. For all three illustra-tions, the 
ir
le represents the spa
e C in whi
h the 
lassi�ers are sear
hed.Adapted from Dietteri
h (2000).
44



2. Foundations

Figure 2.3.3.: Relationship between the disagreement measure and the ensemble a

ura
y
pmv. Ea
h dot represents one ensemble 
lassi�er that was build out of thethree base-level 
lassi�ers with a

ura
y 0.6. The x-axis des
ribes thedisagreement measure and the y-axis the a

ura
y improvement pmv − p.Copied from Kun
heva (2004, 
hap 10) and modi�ed for better qualitywith permission of the author.is relatively weak. She 
ompared the a

ura
y of the ensemble 
lassi�er pmv against thea

ura
y of the base-level 
lassi�ers theoreti
ally. She de�ned that the set of base-level
lassi�ers 
onsists of three 
lassi�ers that are 
orre
t on 18 out of 30 trials, leading toan a

ura
y of p = 0.6. With this 
onstraints a total of 563 di�erent distribution of the
orre
t votes to the trials is possible. Ea
h distribution leads to a di�erent ensemble
lassi�er, for whi
h the a

ura
y pmv and the disagreement measure 
an be 
al
ulated.The s
atterplot for the a

ura
y improvement pmv− p 
an be seen in Figure 2.3.3. Fromtwo ensemble 
lassi�ers that are based on equally a

urate but variably diverse base-level
lassi�ers the 
lassi�er that is based on base-level 
lassi�ers with a higher disagreementmeasure does not have to be the 
lassi�er with the higher a

ura
y. Indeed, the a

u-ra
y improvement pmv − p of all ensemble 
lassi�er based on base-level 
lassi�ers with adisagreement measure of Di = 0.4 span between −0.2 and 0.2, the reason being that thea

ura
y largely depends on the distribution of the votes of the base-level 
lassi�ers tothe trials (see Kun
heva, 2004, 
hap 10). However, her data show that the higher the di-versity, the higher is the expe
ted improvement. Furthermore, if Di = 0, no improvementover the most a

urate base-level 
lassi�er is possible.
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3. Combination of Classi�ers to In
reaseA

ura
yThe following list repeats the hypotheses from Chapter 1. Re
all that ORACLE returnsthe 
lassi�er from the set of base-level 
lassi�ers that a
hieves the highest mean a

ura
yover all data sets for one parti
ular Pattern Re
ognition (PR) task.1. The 
ombination of the di�erent feature extra
tion and 
lassi�
ation methods thatare employed for the 
lassi�
ation of Ele
troen
ephalography (EEG) signals im-proves the a

ura
y of the resulting 
lassi�er 
ompared to the best single 
lassi�eras estimated by ORACLE and results in a Pattern Re
ognition System (PRS) thatperforms well on a variety of EEG data sets.2. A 
ombination of the de
isions of the base-level 
lassi�ers leads to a more a
-
urate ensemble 
lassi�er than the sele
tion of the best 
lassi�er by Sele
t theBest (Sele
tBest)3. The employment of a Multiple Classi�er System (MCS) leads to a more a

urate
lassi�er than the Con
atenation (CONCAT) approa
h.Using the ba
kground knowledge presented in Chapter 2, I want to present additionalreasons for these hypotheses.1+2: In Se
tion 2.3.3, we have seen that a MCS is more a

urate than the best single
lassi�er if the base-level 
lassi�ers are diverse and a

urate. Thus, the �rst hypothesis
an only be true if the proposed set of base-level learners produ
e a

urate and diversebase-level 
lassi�ers. However, as we saw in the Se
tions 2.2.3 and 2.2.4 there existsa large variety of feature extra
tion and 
lassi�
ation methods that lead to a

urate
lassi�ers. Be
ause they all rely on di�erent 
hara
teristi
s of the EEG signals, there ishigh a 
han
e that they are diverse.3: The employment of CONCAT has the advantage that intera
tions between thedi�erent feature extra
tion methods 
an be taken into a

ount. However, through the
ombination of multiple feature extra
tion methods, the number of features per trial isvery high. Thus, I hypothesize that CONCAT will over�t the training data and not leadto a model that generalizes well. Contrary to that, for ea
h base-level learner in the MCSthe number of features per trial is 
omparatively small. The same is true for the 
ombiner.Thus, analogous to Ledoit's Regularized Linear Dis
riminant Analysis (LRLDA), a MCS
an be seen as regularization method (Dornhege et al., 2004). Furthermore, a MCSenables the employment of the best �tting 
lassi�
ation method per feature extra
tionmethod. 46



3. Combination of Classi�ers to In
rease A

ura
yThe rest of this 
hapter is organized as follows. First, I will review related work. Afterthat, I will present the methodologi
al details for the 
omparison. It will in
lude anintrodu
tion of new 
ombiners, whi
h I spe
i�
ally invented for the 
omparison. The
hapter will end with a des
ription of the implementation details.3.1. Review3.1.1. Combination of Feature Extra
tion MethodsDornhege et al. (2004) already found that a 
ombination of base-level 
lassi�ers based ondi�erent features performed better than CONCAT and ORACLE. CONCAT performedeven worse than ORACLE.Three feature extra
tion methods were employed, whi
h resulted in three base-level
lassi�ers. The three di�erent methods were a feature extra
tion method similar tothe method introdu
ed in Se
tion 2.2.3, Autoregressive models, and Common SpatialPatterns (CSP). As 
lassi�
ation method for the base-level 
lassi�ers, as well as forCONCAT, Regularized Linear Dis
riminant Analysis (RLDA) was used. The base-level
lassi�ers were 
ombined at the measurement level (see Se
tion 2.3.1). The outputs ofthe base-level 
lassi�ers were of the form
gj(x) = wt

jxj + cjwhere wj and cj are the parameters learned by one of the three RLDA learning algo-rithms, ea
h trained on the output of one of the three feature extra
tion methods xj ,
j ∈ {1, 2, 3}. The two 
ombination methods employed were sta
king with Linear Dis-
riminant Analysis (LDA) as meta 
lassi�er (see Se
tion 2.3.2.5), whi
h Dornhege et al.(2004) 
alled META and probabilisti
 voting, in this arti
le 
alled PROB. The ensemblede
ision for PROB was the average of the three RLDA instan
es

ΨPROB(x) = 1 ⇔
J
∑

j=1

gj(x) > 0for META it was
ΨMETA(x) = 1 ⇔ wTmetag(x) + cmeta > 0 (3.1.1)where g(x) = [g1(x), . . . gJ(x)]

T represent the outputs of the base-level 
lassi�ers and
wmeta, cmeta are the parameters that were learned by the meta 
lassi�er.Although META is the spe
ial 
ase of PROB in whi
h all weights wmeta and the bias
cmeta are learned to be zero, PROB led to a better mean a

ura
y than META. Their
omparison was based on ten subje
ts.Boostani et al. (2007) found similar results. By using a 
ombination of features ex-tra
tion methods, they were able to in
rease the a

ura
y 
ompared to ORACLE. Theydid not employ an ensemble 
lassi�er for the feature 
ombination but used a geneti
algorithm. They also investigated CONCAT as feature 
ombination method and aswell found it performed worse than ORACLE. As 
lassi�
ation methods they employed47



3. Combination of Classi�ers to In
rease A

ura
yAdaptive Boosting (AB),LDA, and Support Ve
tor Ma
hine (SVM) separately. Their
omparison was based on 5 subje
ts.Fatoure
hi et al. (2008) used a two-stage 
ombination of 
lassi�ers to build an asyn-
hronous Brain Computer Interfa
e (BCI) (see Se
tion 2.2.2). They extra
ted featuresfor three di�erent types of neurologi
al phenomena. For ea
h 
hannel and phenomenon aSVM was trained. The de
ision from all SVMs for one phenomenon was 
ombined usingMajority Voting (MV). In the se
ond stage the outputs of the three ensemble 
lassi�ers,one for ea
h phenomenon, was 
ombined by one out of �ve �xed 
ombination rules. Therule, as well as the features to use, and the parameters for the SVMs were simultaneouslyoptimized using a hybrid geneti
 algorithm. Their resulting BCI a
hieved a higher infor-mation transfer rate than any existing asyn
hronous BCI. Their 
omparison was basedon four subje
ts.3.1.2. Combination of Prede�ned Base-Level Classi�ersEnsemble 
lassi�ers are not limited to the 
ombination of di�erent feature types. Theymight be bene�
ial in all 
ases were a large set of heterogeneous features is 
ombined.Fazli et al. (2009) were able to build a subje
t independent BCI system employing anensemble 
lassi�er. The base 
lassi�
ation method was LDA. For ea
h session a LDAwas trained on CSP power features. A session hereby refers to one re
ording sessionfor one subje
t. A varying number of sessions per subje
t was re
orded. Before thetraining of LDA, the data was bandpass-�ltered in 9 di�erent frequen
y bands. This ledto a total of 9 ×#sessions base-level 
lassi�ers. The �nal 
lassi�
ation was done by aweighted sum of the 
ontinuous outputs of the LDA base-level 
lassi�ers, similar to METAdes
ribed above. But instead of LDA, Fazli et al. (2009) used quadrati
 regression with
l1 regularization to obtain wmeta and cmeta. Their ensemble 
lassi�er performed betterthan various baseline methods, in
luding ORACLE, and other ensemble 
lassi�ers. Their
omparison was based on four subje
ts.Rakotomamonjy and Guigue (2008) used a 
ombination of SVMs to build a BCI. Itwon one dis
ipline of the BCI Competition III (Blankertz et al., 2006). For featureextra
tion they bandpass-�ltered the data with 
ut-o� frequen
ies 0.1 and 10Hz andde
imated the signal to 14 samples per 
hannel. Ea
h of the 17 SVMs was trained ona partition of the data. They tried to 
hoose the partitions su
h that they were ashomogenous as possible. The �nal 
lassi�
ation was done by averaging the 
ontinuousoutputs of all SVMs, analogously to PROB. Their 
omparison was based on two subje
ts.3.1.3. Methods That Generate Base-Level Classi�ersEnsemble 
lassi�ers are not limited to the 
ombination of base-level 
lassi�ers that arede�ned by the designer. There are multiple methods that, besides a 
ombiner, alsoin
lude a te
hnique to 
reate multiple base-level 
lassi�ers from a data set.Sun et al. (2007) showed that AB, Bagging (Breiman, 1996), and random subspa
e(Bryll et al., 2003) are able to boost the a

ura
y 
ompared to a single 
lassi�er. They
ame to this 
on
lusion after evaluating these methods on nine subje
ts performing a48



3. Combination of Classi�ers to In
rease A

ura
ymotor imaginary task. The di�erent base-level 
lassi�er were generated by using powerspe
tral densities as features and the base-level 
lassi�er generating 
apabilities of the
ompared methods. They evaluated the three methods for SVM, k-Nearest Neighbor(k-NN), and C4.5 de
ision trees (Quinlan, 1992) as base 
lassi�
ation methods separately.Boostani and Moradi (2004) 
ompared AB with an one hidden layer neuron (Rojas,1996) as weak learner against LDA on three di�erent types of features, Hjorth parameters,band power and fra
tal dimension. No 
ombination of features was 
onsidered. Theybased their 
omparison on �ve subje
ts, performing a motor imaginary task. Their resultsshow that while the 
ombination of band power and LDA yielded the best mean a

ura
y(over all subje
ts) for two subje
ts the 
ombination of fra
tal dimension and AB led tothe best a

ura
y. They 
on
luded that �for ea
h individual, we have to �nd the best
ombination of feature and 
lassi�er or on some o

asions, a 
ombination of the featuresby evolutionary algorithms or a tree 
ombination of 
lassi�ers whi
h 
an lead to the bestresult.� (Boostani and Moradi, 2004, p 217)Sun (2007) employed an expli
it trainable 
ombiner, the so 
alled improved randomsubspa
e method, for the 
lassi�
ation of mental imagery data. The base-level 
lassi�erswere build by training a SVM with di�erent subspa
es of the feature spa
e. The �nal
lassi�
ation de
ision was
Ψirsp(x) = argmax

yl∈Y

J
∑

j=1

wj(x)δ(Ψj(x), yl) (3.1.2)where wj(x) is the fra
tion of 
orre
tly 
lassi�ed samples by Ψj of the k nearest neighbors,with respe
t to the Eu
lidean distan
e, of x. They showed that their method performsbetter than another similar ensemble method.Although it seems promising, to my knowledge nobody tried to use one of the multiple
lassi�er methods that are able to generate base-level 
lassi�ers on a 
ombination offeatures.3.2. Learning Algorithm for Ensemble Classi�ersIn this se
tion I will introdu
e the learning algorithm that I use to indu
e the di�erentensemble 
lassi�ers. Independently of the base-level 
lassi�ers and the 
ombiner, theensemble 
lassi�ers are indu
ed as follows: The designer spe
i�es a set of base-levellearners IΨ1
, . . . , IΨJ

. The 
lassi�
ation behavior of ea
h base-level learner is estimatedusing 10-fold strati�ed 
ross validation. The estimated behavior is fed to the 
ombiner
Ir. To 
larify this: Let D be the available data set. The data set is split into 10 partitions
{D1, . . . ,D10}. For ea
h partition and base-level learner a base-level 
lassi�er is indu
ed
Ψj,n = IΨj

(D/Dn). For ea
h base-level learner IΨj
the 
ombiner gets the predi
ted 
lassof ea
h trial (x, y) ∈ D by the 
lassi�er Ψj,n for that (x, y) /∈ Dn as input. Based onthis information every 
ombiner that I introdu
ed 
an estimate the ne
essary propertiesof the base-level 
lassi�ers. After the 
ombination method learned the 
ombination rule,the base-level learners indu
e the base-level 
lassi�ers based on the 
omplete data set D.The base-level 
lassi�ers are 
ombined using the 
ombination rule that was inferred in49



3. Combination of Classi�ers to In
rease A

ura
yAlgorithm 3.1 The employed training algorithm for indu
ing the ensemble 
lassi�ers.InputA set of base-level learners IΨ1
, . . . , IΨJAn untrained 
ombiner IrA data set DPro
edure1. Split D into 10 disjoint subsets Dn, n ∈ {1, . . . , 10} in respe
t to the strati�ed10-fold 
ross-validation s
hemea) For ea
h subset Dni. Train ea
h base-level learner on the remaining data set D/Dn. Ψj,n =

IΨj
(D/Dn)ii. Cal
ulate the predi
tion of ea
h base-level 
lassi�er Ψj,n for ea
h trial

(x, y) ∈ Dn, li,j =Ψj,n(x), where i is the index of (x, y) in D.b) Train the 
ombiner with the matrix L, with entries li,j . Ir(L). Remember theinferred 
ombination rule r.2. Train all base-level learners with the 
omplete data set D, Ψj = IΨj
(D)3. Create the ensemble 
lassi�er Ψens by 
ombining the base-level 
lassi�ers with therule r inferred in step 2 (b).OutputThe ensemble 
lassi�er Ψensthe previous step. This pro
edure is explained as pseudo 
ode in Algorithm 3.1. It 
anbe interpreted as a 
lassi�
ation method with the hyper-parameters IΨ1

, . . . , IΨJ
and Ir.3.3. CombinersBe
ause the 
ombination at the abstra
t level (see Se
tion 2.3.1) is the only level of
ombination that allows the usage of arbitrary 
lassi�
ation methods, I only in
lude
ombiners that 
ombine the base-level 
lassi�ers at the abstra
t level in the 
omparison.In previous studies, only sta
king with SVM as meta 
lassi�er (Fazli et al., 2009), MVand AB (Sun et al., 2007) have been used if the base-level 
lassi�er were 
ombined at theabstra
t level. I 
ompare all 
ombiners that have been introdu
ed in Se
tion 2.3.2. Inaddition to the existing 
ombiners, I invented several new 
ombiners, mostly extensionsof existing 
ombiners, for the 
omparison.This se
tion will 
ontinue with the introdu
tion of the 
ombiners that I invented.Furthermore, it will 
ontain the detailed settings for the existing 
ombiners. Assumethat the situation is as des
ribed at the beginning of Se
tion 2.3.2.50



3. Combination of Classi�ers to In
rease A

ura
y3.3.1. Signi�
an
e Majority VotingSuppose that the base-level 
lassi�ers 
onsist of 100 
lassi�ers with a

ura
y 50% andone 
lassi�er with a

ura
y 100%. The a

ura
y of the ensemble 
lassi�er built by MVwould hardly be over 50%. To make MV appli
able to situations in whi
h a majorityof the base-level 
lassi�ers do not perform better than random guessing, I extend itsu
h that only the votes of the base-level 
lassi�ers that have an estimated Balan
edA

ura
y (BAC) that is signi�
antly higher than 0.5 are in
luded in the de
ision.For ea
h base-level 
lassi�er, signi�
an
e against random guessing is tested using thetest introdu
ed in Se
tion 2.1.4.1. I 
all this extension signi�
an
e extension and theresulting 
ombiner Signi�gan
e Majority Voting (SMV). Note that 
ontrary to MV,SMV is a trainable 
ombiner. This extension 
an also be applied to Weighted MajorityVoting (WMV). I 
all the resulting 
ombiner Signi�gan
e Weighted Majority Voting(SWMV).3.3.2. Dependent Weighted Majority VotingWhile it was shown that WMV is the optimal 
ombiner when the base-level 
lassi�ers areindependent (see Se
tion 2.3.2.1), WMV is not the optimal 
ombiner if the independen
eassumption is violated .Theorem 34. Let Ψ1, . . . ,Ψ7 be base-level 
lassi�ers. Let Ψ1,Ψ6,Ψ7 be independent. Let
Ψ1 = Ψ2 . . . = Ψ5, i.e., ∀i, j ∈ {1, . . . , 5}∀x ∈ X∀yl ∈ Y P (Ψi(x) = yl|Ψj(x) = yl) = 1.In addition, a

(Ψ1, p) = 0.7 and a

(Ψ6, p) = a

(Ψ7, p) = 0.8. Then the a

ura
ya

(Ψwmv, p) of the ensemble 
lassi�er 
reated by WMV is 0.7.Proof. The weights as learned byWMV are w1 = w2 = . . . = w5 = 0.8473 and w6 = w7 =
1.3863. Be
ause of the equality of Ψ1 . . .Ψ5, the 
lass for whi
h Ψ1 votes gets assignedweight 4 · 0.8473 = 4.2365. The remaining two 
lassi�ers Ψ6 and Ψ7 share a total weightof 2.27726. Hen
e, be
ause 4.2365 > 2.27726, a

(Ψwmv, p) = a

(Ψ1, p) = 0.7Theorem 35. Let Ψ1, . . . ,Ψ7 be as in Theorem 34 but w1 = 0.8473, w2 = . . . = w5 = 0and w6 = w7 = 1.3863. Then a

(Ψwv, p) = 0.8320Proof. The ensemble 
lassi�er Ψwv makes the 
orre
t de
ision if Ψ1, or Ψ6 and Ψ7 makethe 
orre
t de
ision.

pwmv = 0.7 · 0.8 · 0.8 + 0.3 · 0.8 · 0.8 + 0.7 · 0.2 · 0.8 + 0.7 · 0.8 · 0.2 = 0.864The ensemble a

ura
y is in
reased by giving only one 
lassi�er out of the dependent
lassi�ers a non zero weight. This strategy is used by �xed Adaptive Boosting (fAB) to
orre
t for dependen
ies between base-level 
lassi�ers. A di�erent strategy is to de
reasethe weight of ea
h dependent base-level 
lassi�er. The same a

ura
y as in Theorem 35
an be obtained by dividing the weights w1 = . . . = w5 by 5. If the 
lassi�ers are reallyidenti
al, the two di�erent strategies lead to the same ensemble a

ura
y. However, we51
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rease A

ura
y
an only estimate the behavior of the base-level 
lassi�ers and, thus, redu
ing the weightfor every dependent base-level 
lassi�er may be a more robust strategy than assigningone base-level 
lassi�er a large weight and the rest a small weight.Of 
ourse, the question is how to generally 
orre
t the weights for dependen
ies andhow to treat the most 
ommon 
ase when 
lassi�ers are neither 
ompletely dependentnor independent. I propose the following strategy: To estimate the dependen
e of abase-level 
lassi�er to all other base-level 
lassi�ers the mutual information between the
lassi�er and the remaining base-level 
lassi�ers is estimated. The 
orre
ted weight forea
h base level 
lassi�er is then
wj = wmj(

J
∑

i=1,i6=j

I(Ψj,Ψi) + 1)−1 (3.3.1)where wmj is the weight obtained by the original WMV 
ombiner, I(Ψj,Ψi) the mutualinformation between two 
lassi�ers as in Se
tion 2.3.2.6. This 
orre
tion pro
edure ismotivated by the fa
t that the mutual information is zero for two independent 
lassi�ersand min(H(Ψj),H(Ψi)) for two identi
al 
lassi�ers, where H(Ψj) denotes the entropyof the 
lassi�er Ψj . I 
all this 
orre
tion of the weights dependen
y 
orre
tion andthe resulting 
ombiner Dependent Weighted Majority Voting (DWMV). It 
an, of 
ourse,also be 
ombined with the signi�
an
e extension. I 
all the resulting 
ombiner DependentSigni�
ant Weighted Majority Voting (DSWMV).Another possibility would be to use the normalized mutual information as estimate ofthe dependen
ies, whi
h leads the 
orre
tion s
heme
wj = wmj(

J
∑

i=1,i6=j

I(Ψj,Ψi)min(H(Ψj),H(Ψi)) + 1)−1and ensures that for two 
ompletely dependent 
lassi�er I(Ψj ,Ψi)min(H(Ψj), H(Ψi)) is one. This
orre
tion s
heme is not examined in this thesis.3.3.3. Harmoni
 Series Weighted VotingAnother 
ombiner that I invented for the 
omparison is the Harmoni
 Series WeightedVoting (HSWV) 
ombiner. It is also a Weighted Voting (WV) 
ombiner. The weight forea
h 
lassi�er is
wj =

1

rjwhere rj denotes the rank of the 
orresponding base-level 
lassi�er in 
omparison to theremaining base-level 
lassi�ers. The rank is 
al
ulated by sorting the base-level 
lassi�erswith respe
t to their BACs. Hen
e, the base-level 
lassi�er that gets assigned weight 1
2is the base-level 
lassi�er that produ
es the se
ond highest BAC on D
omb.As the HSWV 
ombiner does not take into a

ount dependen
ies between base-level
lassi�ers, the dependen
y extension is also applied to HSWV, leading to the DependentHarmoni
 Series Weighted Voting (DHSWV) 
ombiner.52



3. Combination of Classi�ers to In
rease A

ura
y3.3.4. Random Weighted VotingAs base-line method for the 
omparison I de�ne Random Weighted Voting (RWV), alsoa WV 
ombiner. The weight wj for ea
h base-level 
lassi�er Ψj is randomly pi
keda

ording to the uniform distribution over the interval (0, 1).3.3.5. Details for the Existing CombinersThe details for the existing 
ombiners are as follows. For Bayes Combination (BC)Equation 2.3.5 is used to estimate the support. I 
hoose B = 1 for the hyper-parameter
B. As meta 
lassi�ers for sta
king, I employ two di�erent 
lassi�
ation methods, LDAand LRLDA, resulting in the two 
ombiners, Sta
king with Linear Dis
riminant Analysis(STLDA) and Sta
king with Ledoit's Regularized Linear Dis
riminant Analysis (STLRLDA).For all 
ombiners that need an estimate of the a

ura
y, I use the BAC as estimate assome data sets are imbalan
ed. As 
lassi�
ation method for CONCAT I employ LRLDA.LRLDA gets as input the 
on
atenation of the feature ve
tors originating from all uniquefeature extra
tion methods. For Information Theoreti
 Combination (ITC) I set the size
K of the to be sele
ted subset to seven.3.4. Base-Level LearnersWhile the proposed ensemble learning algorithm a

epts arbitrary base-level learners asinput, I have to de�ne a set of base-level learners that is used for the 
omparison of thedi�erent 
ombiners. Remember that one goal of this thesis is to build a 
lassi�
ationmethod that works well on a variety of di�erent EEG data sets. I want to 
omparethe 
ombiners on heterogeneous data sets. If no base-level learner produ
es an a

uratebase-level 
lassi�er, a 
omparison of the di�erent 
ombiners is not possible. Be
ause ofthese reasons, the set of base-level learners has to be broad and has to 
apture the mostprominent 
hara
teristi
s of EEG signals. This implies that for any parti
ular EEG dataset it is very likely that some base-level learner lead to ina

urate base-level 
lassi�ers.As 
lassi�
ation methods only linear 
lassi�ers are employed, following the reasoningof Blankertz et al. (2010a, p 118) that in their experien
e �linear methods perform well,if an appropriate prepossessing of the data is performed�.Every method that I will introdu
e in the remainder of this se
tion is applied to datafrom the following seven frequen
y bands separately: α (8-12 Hz), β (12-30 Hz), γ(30-70Hz), δ(0-4 Hz), θ(4-8 Hz), 
on (1-45Hz) and rem (70+ Hz). This leads to a total of
#methods · 7 base-level learners.The CSP feature extra
tion method is used be
ause it is 
urrently the standard methodin BCI resear
h to quantify signal power 
hanges. The hyper-parameter k is set to three asadvised by Blankertz et al. (2008). The feature that is extra
ted of the signal transformedby the CSP patterns is the logarithm of the varian
e. As 
lassi�
ation method for thebase-level learners based on CSP, LRLDA is used.To quantify amplitude 
hanges a set of base-level learners based on Spatio TemporalFeatures (STF) (see Se
tion 2.2.3) is employed. Three di�erent approa
hes are used, Lo
al53
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Figure 3.4.1.: Illustration of the base-level learners.
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3. Combination of Classi�ers to In
rease A

ura
yAlgorithm 3.2 Learning algorithm of SVMOPTC,InputData set DSet of 
andidates for C, C
anPro
eduremaxba
 = 0maxC = 0for ea
h c ∈ C
an1. Estimate the BAC of the SVM instan
e with C = c using strati�ed 10-fold 
ross-validation; ba

v(SVMC=c,D), where SVMC=c denotes the learning algorithm ofSVM with the hyper-parameter C set to c.2. If ba

v(SVMC=c,D) > maxba
, maxba
 = ba

v(SVMC=c,D) and maxC = c.endOutputSVMc=maxC(D)Means (LM), Regional Means (RM) and Global Mean (GM). The means are 
al
ulatedon non-overlapping intervals of length 50ms for the LM approa
h. For the RM approa
h,the means are 
al
ulated on �ve non-overlapping equally sized intervals that span thewhole trial. For GM, the mean is 
al
ulated over the 
omplete trial.The Permutation Entropy (PE) is used as measure of 
omplexity. It is 
al
ulated for theembedding dimensions 3 (PE3), 4 (PE4) and 5 (PE5). For smaller embedding dimensionsthe PE would hardly 
ontain any information and for larger embedding dimensions thetypi
al number of time points per 
hannel and trial would not be su�
ient to get areasonable estimate of the PE.As 
lassi�
ation method for the base-level learners based on the PE and the STF alinear SVM is used. The hyper-parameter C is optimized using strati�ed 10-fold 
ross-validation and the BAC as performan
e measure. Candidates for C are 
hosen from
{10i : i ∈ {−5,−3,−1, 1, 3, 5, 7, 9, 11, 13, 15}}. The resulting 
lassi�
ation method will be
alled Support Ve
tor Ma
hine with Optimization of the C hyper-parameter (SVMOPTC)in the remainder. The learning algorithm for SVMOPTC is shown in Algorithm 3.2. Adi�erent possible approa
h is to in
lude every SVM as a di�erent base-level learner.However, pilot experiments suggested that base-level 
lassi�ers that only di�er in the
C hyper-parameter of their SVM are either 
ompletely dependent, or one base-level
lassi�er performs 
learly superior. Hen
e, the sele
tion of the best C hyper-parameterseems more appropriate.The overall number of base-level learners is

#frequen
ybands·(#CSPLDA +#STFSVM+#PESVM) = 7 · (1 + 3 + 3) = 49where #frequen
ybands is the number of frequen
y band on whi
h all feature extra
tionmethods are applied, #CSPLDA the number of feature extra
tion methods that are55



3. Combination of Classi�ers to In
rease A

ura
ybased on CSP, #STFSVM the number of feature extra
tion methods that are based onSTF and, and #PESVM the number of feature extra
tion methods that are based onPE.3.5. Details for CONCAT and ORACLEAs input for for CONCAT the 
on
atenation of the feature ve
tors obtained by the di�er-ent feature extra
tion methods from the base-level learners is employed. As 
lassi�
ationmethod for CONCAT I 
hoose LRLDA be
ause it is a very powerful and regularizedmethod. I 
ompare the 
lassi�
ation methods on �ve di�erent simulation s
enarios andon data sets originating from four di�erent EEG studies. ORACLE returns, for ea
hdata set, the 
lassi�er that a
hieves the highest mean BAC over all data sets from therespe
tive study/s
enario out of all base-level 
lassi�ers. The BAC is estimated usingstrati�ed 10-fold 
ross-validation.3.6. ImplementationThe generi
 learning algorithm for ensemble 
lassi�ers, the 
ombiners, as well as all themethods needed for the base-level learners are integrated into the multivariate toolboxof Fieldtrip (Oostenveld et al., 2011). Fieldtrip is an EEG analysis toolbox for Matlab(MathWorks, 2012). Fieldtrip's multivariate toolbox 
ontains algorithms from the �eldof PR for the analysis of EEG data.The integration of the 
ode into an existing analysis toolbox serves multiple purposes.It makes it easier for others to verify and reprodu
e the results. Furthermore, the learningalgorithm for ensemble 
lassi�ers 
an be easily used to implement and test new 
ombinersor base-level learners. Another advantage is that many of the algorithms implementedfor this work, e.g., the 
lassi�
ation and the feature extra
tion methods, 
an be easilyreused for 
ompletely di�erent proje
ts.Fieldtrip was 
hosen over other existing toolboxes su
h as BioSig (S
hlogl and Brunner,2008) and BCILAB, whi
h is in
luded in EEGLAB (Delorme and Makeig, 2004), be
auseit fo
uses more on single-trial analysis than on building BCIs, it is obje
t oriented (atleast the multivariate toolbox), and it is the major EEG analysis toolbox used at myinstitute.The design of the learning algorithm for ensemble 
lassi�ers is oriented at and reusessome of the 
ode from the ft_mv_gridsear
h 
lass of �eldtrip. Furthermore, for e�
ien
yreasons it is implemented su
h that it a

epts a set of 
ombiners and returns a set ofensemble 
lassi�ers.While the ensemble learning algorithm and the 
ombiners are implemented by me,some methods needed for the base-level learners do already exists in �eldtrip, namelyCSP and SVM. Also, the 
ross-validation pro
edure from �eldtrip is used.The leading paradigm for the implementation is the extensive employment of auto-mated testing to ensure the 
orre
tness of the implemented algorithms, leading to a totalof 68 test 
ases. 56



4. ResultsIn this se
tion I will present the results of an empiri
al 
omparison of the proposedmethods. Re
all that the questions I want to answer are:1. Does a 
ombination of base-level 
lassi�ers based on di�erent feature extra
tionand 
lassi�
ation methods improve the Balan
ed A

ura
y (BAC) in 
omparisonto the ORACLE?2. Does a 
ombination of base-level 
lassi�ers based on the di�erent feature extra
tionand 
lassi�
ation methods lead to a more a

urate 
lassi�er than Sele
t the Best(Sele
tBest) and Con
atenation (CONCAT)3. Whi
h of the 
ombiners produ
es the most a

urate ensemble 
lassi�er?4. Is the set of base-level learners that I de�ned su�
ient? Does it produ
e a

urateand diverse 
lassi�ers?5. Does the best method result in a 
lassi�
ation method that works well not only ona single but on a variety of Ele
troen
ephalography (EEG) data sets?This se
tion will start with an introdu
tion of the methods that are used to 
ompute theresults. It will 
ontinue with the presentation of the results of a simulation study. Afterthat, the results on the EEG data sets will be presented. I will use many abbreviationsthroughout this 
hapter. If you are reading this thesis on a 
omputer, you may 
li
k onthe abbreviation to get to the list of abbreviations (see Chapter 6). If you are reading thisthesis in paper form, the list of abbreviations is provided to you as separate spreadsheet.4.1. MethodsThe Balan
ed A

ura
y (BAC) (see De�nition 13) for ea
h method on ea
h data set isestimated using strati�ed 10-fold 
ross-validation (see De�nition 12). This results in a so
alled nested 
ross-validation pro
edure for the Multiple Classi�er System (MCS). Theouter 
ross-validation loop is used to estimate the a

ura
y of the ensemble 
lassi�ersand the inner 
ross-validation loop is part of the training of the ensemble 
lassi�ers(see Algorithm 3.1). Within the training of the ensemble 
lassi�ers there is even another
ross-validation loop as part of the training of Support Ve
tor Ma
hine with Optimizationof the C hyper-parameter (SVMOPTC).As aggregated performan
e measures, over the data sets, the mean of the BACs andthe ranks 
omputed by the Friedman test (see Se
tion 2.1.4.2) are presented.57



4. ResultsFor addressing the statisti
al signi�
an
e of the results, depending on the situation, twodi�erent tests are employed. The di�eren
es between the di�erent methods is translatedinto a p-value using the post-ho
 pro
edure on the test statisti
s 
al
ulated by the Fried-man test (see Se
tion 2.1.4.2). When 
omparing a set of 
ombiners against a base-linemethod, e.g., Sele
t the Best (Sele
tBest), Con
atenation (CONCAT) and ORACLE, theprobability threshold α is adjusted for multiple testing using the Bonferroni 
orre
tion.For the 
omparison of all pairs of 
ombiners, the 
riti
al value is adjusted stepwise usingthe Sha�er's Stati
 Pro
edure (SSP) (see Se
tion 2.1.4.2). When a method is testedagainst random guessing, the test introdu
ed in Se
tion 2.1.4.1 is used. When multiplemethods are 
ompared against random guessing on the same data set, the 
riti
al value
α is adjusted using the Bonferroni 
orre
tion.As 
hara
teristi
s of the set of base-level 
lassi�ers I report the average disagreementmeasure and the average number of base-level 
lassi�ers that a
hieve a BAC better thanrandom guessing. The BAC is estimated using 10-fold strati�ed 
ross-validation. If a
lassi�er performs better than random guessing, is tested using the test introdu
ed inSe
tion 2.1.4.1. I do not 
orre
t for multiple 
omparisons, be
ause I want to test forea
h 
lassi�er independently if it performs better than random guessing. Hen
e, if all49 base-level 
lassi�er guess randomly, this test will, on average, �nd 49 · 0.05 = 2.45
lassi�ers to perform better than random guessing.4.2. ImplementationAs with the algorithms introdu
ed in the last se
tion, I integrate the algorithms that areneeded to generate the results, e.g., the statisti
al tests, into the multivariate toolbox ofFieldtrip.Be
ause of the large amount of data sets and the amount of methods that are 
ompared,the total 
omputing time to generate the results for the real data set ex
eeds four years.Hen
e, a regular 
omputer would not be su�
ient to 
al
ulate the results in a reasonabletime. Therefore, I use a 180 
ore 
luster 
omputer to 
al
ulate the results on the real datasets, and employ a 30 
ore 
luster 
omputer to estimate the Balan
ed A

ura
ys (BACs)on the simulated data sets.I modify the 
ross-validation pro
edure of �eldtrip su
h that it a

epts learning al-gorithms that return a set of 
lassi�ers to be 
ompatible with the implementation ofthe learning algorithm for ensemble 
lassi�ers. Furthermore, be
ause parallelism on thedata set level is not su�
ient to get the results in a reasonable time, I modify the 
ross-validation pro
edure su
h that ea
h of the 10 folds 
an be pro
essed independently on aseparate ma
hine.4.3. SimulationBefore 
omparing the di�erent 
ombiners on real Ele
troen
ephalography (EEG) data sets,I 
ompare them on simulated data sets. Besides the 
omparison of di�erent 
ombiners ondata sets with known properties, the main goal of the simulation study is to redu
e the58



4. Resultsnumber of 
ombiners that have to be in
luded in the 
omparison on the real data sets.This is motivated by two fa
ts: First, when testing the di�eren
es between the 
ombinersand the base-line methods for signi�
an
e, the more 
ombiners are in
luded in the testthe less likely is it to �nd a signi�
ant e�e
t. Every additional 
ombiner in
reases therank di�eren
es required for a signi�
ant e�e
t. Se
ond, the redu
tion of the number of
ombiner redu
es the 
omputation time.For the simulation study, di�erent base-level 
lassi�ers are simulated for �ve di�erents
enarios. The s
enarios are inspired by situations that o

urred on real data sets.For every s
enario, 1000 data sets are simulated. Ea
h data set represents a binary
lassi�
ation problem and 
onsists of 1000 trials per 
lass.4.3.1. S
enariosBase S
enarioFor the base s
enario, 15 base-level 
lassi�ers are simulated. The Balan
ed A

ura
ys(BACs) of the base-level 
lassi�ers are equally distributed in the interval [0.55, 0.8].Hen
e, every base-level 
lassi�er is a

urate. After ensuring that the per-
lass a

ura
iesare the same, whi
h ensures that the BAC is equivalent to the a

ura
y, the 
lassi�eroutputs are shu�ed within the 
lass. This ensures high diversity between the 
lassi�ers.The base s
enario represents the situation when the base-level 
lassi�ers are indepen-dent and a

urate. It 
an be seen as the optimal s
enario. The remaining s
enariosare extensions of the base s
enario. They all 
ontain the base-level 
lassi�ers that weregenerated for the base s
enario.Noise S
enarioFor the noise s
enario, 45 
lassi�ers are added that arbitrarily predi
t 
lass one or two,with equal probability, independently of the true label. This s
enario evaluates the
apa
ity of the 
ombiners to deal with base-level 
lassi�ers that do not provide anyinformation about the true label. Be
ause I 
hose a broad set of base-level learners, it isvery likely that su
h 
lassi�ers are part of the base-level 
lassi�ers set.Doubles S
enarioFor the doubles s
enario, randomly one of the 15 
lassi�ers from the base s
enario ispi
ked and dupli
ated �ve times. Ea
h 
lassi�er has the same 
han
e to get pi
ked. Thispro
edure is repeated 9 times, resulting in 45 
lassi�ers. These 45 
lassi�er are simplyrepetitions of existing 
lassi�ers. This s
enario represents the 
ase when there are strongdependen
ies between the base-level 
lassi�ers.Constant S
enarioFor the 
onstant s
enario, 45 
lassi�ers that 
onstantly predi
t one 
lass are added.This s
enario represents the worst 
ase of dependent noise. It is motivated by pilot59



4. Resultsmethod base + noise + 
onstant + doubles + allSTLRLDA 93.77 93.68 93.67 93.67 93.41STLDA 93.67 93.40 93.67 93.67 93.40fAB 93.67 93.08 93.65 93.62 93.03DSWMV 93.72 93.69 93.72 92.70 92.66DWMV 93.72 93.58 93.72 92.70 92.49SWMV 93.80 93.78 93.8 86.79 86.79WMV 93.80 93.71 93.8 86.79 86.79BC 93.79 93.70 93.79 86.78 86.78HSWV 88.84 88.65 80.94 82.79 82.75SMV 92.17 90.26 92.17 83.50 83.65DHSWV 89.80 89.37 72.55 83.42 75.35Sele
tBest 77.87 77.87 77.87 77.87 77.87ORACLE 67.79 67.79 67.79 67.79 67.79RWV 88.44 72.05 50 83.84 57.56MV 92.17 75.25 50 83.50 55.84ITC 76.92 58.68 50 76.92 50.00Table 4.1.: Mean BAC, in per
ent, for ea
h method and s
enario, sorted by their BACson the all s
enario. The values printed in bold letters represent the bestmethod on the respe
tive s
enario. If in one 
olumn there is more than onevalue printed in bold, there was no signi�
ant di�eren
e between those meth-ods. For the all s
enario, missing 
olumn delimiters imply that no signi�
antdi�eren
e 
ould be observed between these methods. The gray rows mark the
ombiners that are proposed in this thesis.experiments, in whi
h base-level 
lassi�ers that only di�ered in the C hyper-parameterof their Support Ve
tor Ma
hine (SVM) were part of the base-level 
lassi�er set. It wasobserved that for some C values these base-level 
lassi�ers 
onstantly predi
t one 
lass.All S
enarioThe all s
enario 
ontains the base-level 
lassi�ers from the base s
enario and the base-level 
lassi�ers from all other s
enarios, resulting in a total of 150 base-level 
lassi�ers.The main motivation for this s
enario is to evaluate the performan
e of the di�erent
ombiners in the 
ase when all noise sour
es o

ur at the same time. This is believed tobe the most realisti
 s
enario.4.3.2. ResultsBy 
onstru
tion, the diversity between the base-level 
lassi�ers from the base s
enario ishigh. The average disagreement measure is 0.4390 with a standard deviation of 0.0132.All other s
enarios in
lude the set of base-level 
lassi�ers from the base s
enario. Hen
e,for ea
h s
enario, there exists a subset of a

urate and diverse base-level 
lassi�ers.60



4. Results
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4. ResultsThe results for all 
ombiners and s
enarios are summarized in Table 4.1. The ensemble
lassi�ers 
reated by almost every 
ombiner perform better than ORACLE on all s
e-narios. On the base s
enario the ensemble 
lassi�ers built by the best 
ombiners a
hievea mean BAC of 93.80%, while ORACLE a
hieves a mean BAC of 67.79%. Hen
e, the
ombination of the base-level 
lassi�ers is able to boost the mean BAC by more than26%.Not surprising, the ensemble 
lassi�er built by Sele
t the Best (Sele
tBest) results ina mean BAC of 77.87% on all s
enarios. Thus, the 
ombination of base-level 
lassi�ersprodu
es more a

urate ensemble 
lassi�ers than the sele
tion of the most a

urate base-level 
lassi�er.The ensemble 
lassi�ers build by Sta
king with Ledoit's Regularized Linear Dis
rimi-nant Analysis (STLRLDA), Sta
king with Linear Dis
riminant Analysis (STLDA), �xedAdaptive Boosting (fAB), Dependent Signi�
ant Weighted Majority Voting (DSWMV),Signi�gan
e Weighted Majority Voting (SWMV), Weighted Majority Voting (WMV),Bayes Combination (BC), and Signi�gan
e Majority Voting (SMV) perform, with amean BAC span of 92.17% to 93.77%, relatively similar on the base s
enario. I will 
allthis group of 
ombiners promising 
ombiners in the remainder of this work, be
ause theremaining 
ombiners produ
e tremendously less a

urate ensemble 
lassi�ers on the bases
enario.On the all s
enario there is one group that performs mu
h better than the rest ofthe 
ombiners. STLRLDA, STLDA, fAB, DSWMV, and Dependent Weighted MajorityVoting (DWMV) produ
e mean BACs that are higher than 94.48%, while the mean BACsa
hieved by the remaining 
ombiners are below 86.8%. I will 
all this group of 
ombinerswinning 
ombiners in the remainder of this work. Note that the winning 
ombiners area subset of the promising 
ombiners.Of 
ourse, the question is what is the reason for the big di�eren
es between the winning
ombiners and the rest of the 
ombiners. When 
omparing the learning algorithms of thewinning 
ombiners against the learning algorithms of the promising 
ombiners, one bigdi�eren
e be
omes apparent. The winning 
ombiners 
reate the 
ombination rule su
hthat it takes into a

ount dependen
ies between the base-level 
lassi�ers. Furthermore,there is empiri
al eviden
e that the proper handling of dependent 
lassi�ers leads to thefa
t that the winning 
ombiners perform best. On the noise and the 
onstant s
enariothe promising 
ombiners perform almost on the same level than on the base s
enario.Contrary to that, on the doubles s
enario only the winning 
ombiners yield a similar meanBAC 
ompared to the base s
enario. The mean BACs for the rest of the 
ombiners onthe doubles s
enario is 
onsiderably smaller than their mean BACs on the base s
enario.After having identi�ed the 
ombiners that produ
e the most a

urate ensemble 
lassi-�ers on the all s
enario, I will 
ontinue this se
tion with a detailed performan
e analysisfor every 
ombiner. Based on that analysis the 
ombiners that will be in
luded in the
omparison on the real EEG data sets are sele
ted.The sta
king 
ombiners STLRLDA and STLDA share the �rst rank on the all s
enariowith mean BACs of 93.41% and 93.4%. They perform signi�
antly better than all other
ombiners. Over all s
enarios the performan
e of these two 
ombiners is promising.STLRLDA performs better than STLDA on ea
h s
enario. Be
ause of that, from the62



4. Resultssta
king 
ombiners, only STLRLDA will be in
luded in the 
omparison on the real datasets, although per s
enario the di�eren
e is negligible.With a mean BAC of 93.03%, fAB a
hieves the se
ond rank for the �all s
enario� andalso performs well over all s
enarios. Therefore, fAB will be in
luded in the real data
omparison.The 
ombination methods from the Weighted Majority Voting (WMV) family alsoprodu
e promising results. For the base, the noise and the 
onstant s
enario at least one
ombiner from that family ranks �rst. For the all s
enario DSWMV (mean BAC 92.66%)and DWMV (mean BAC 92.49%) share the fourth pla
e. SWMV (mean BAC 86.79%)and WMV (mean BAC 86.79%) follow on the shared �fth pla
e. The appli
ation of thesigni�
an
e 
orre
tion, whi
h I introdu
ed in Se
tion 3.3.1, to WMV 
onstantly boostsBACs of the resulting ensemble 
lassi�ers. SWMV always performs better or equallywell than WMV. The same is true when 
omparing DSWMV and DWMV. But thedi�eren
es are very small. However, be
ause the signi�
an
e 
orre
tion led to a morea

urate ensemble 
lassi�er on every s
enario, WMV and DWMV will not be in
ludedin the �nal 
omparison.What follows is the evaluation of the dependen
y extension (see Se
tion 3.3.2). On thebase, noise and 
onstant s
enario SWMV performs signi�
antly better than DSWMV.So, it seems that in the 
ase when there are no dependen
ies between the base-level
lassi�ers the dependen
y extension a
tually worsens the performan
e of the resultingensemble 
lassi�er. However, the BAC di�eren
es are relatively small. In 
ontrast tothat, there is a relatively huge di�eren
e of 6% in favor of DSWMV on the doublesand all s
enario. This provides eviden
e that the dependen
y extension produ
es, infa
t, a better 
ombination rule than WMV if there are dependen
ies between the base-level 
lassi�ers. Therefore, DSWMV and SWMV will both be in
luded in the real data
omparison. DSWMV performs signi�
antly worse than three other methods, that takeinto a

ount dependen
ies between the base-level 
lassi�ers, namely fAB and the twosta
king 
ombinersBC is part of the promising 
ombiners. When there are no dependen
ies between the
lassi�ers, BC is one of the best 
ombiners. It a
hieves the shared �rst pla
e on the baseand the 
onstant s
enario and the shared se
ond pla
e on the noise s
enario. However, asfor all the other promising but not winning 
ombiners, the BAC of the resulting ensemble
lassi�er drops signi�
antly on the doubles s
enario, leading to a mean BAC of 86.78%on the all s
enario. This is not surprising as BC does not take into a

ount dependen
iesbetween base-level 
lassi�ers.The two harmoni
 series 
ombiners, Harmoni
 Series Weighted Voting (HSWV) andDependent Harmoni
 Series Weighted Voting (DHSWV), are not part of the promis-ing 
ombiners. The resulting ensemble 
lassi�ers perform signi�
antly worse than thepromising 
ombiners, but still signi�
antly better than the base-line methods Sele
tBestand ORACLE. HSWV a
hieves a mean BAC of 82.75% and DHSWV a
hieves a meanBAC of 75.25% on the all s
enario. DHSWV performs better than HSWV on the noise,base, and doubles s
enario. HSWV performs better than DHSWV on the 
onstant andall s
enario. The reason for that seems to be that DHSWV is disturbed by the 
on-stant 
lassi�ers. Be
ause of this un
lear relationship both methods will nevertheless be63



4. Resultsin
luded in the 
omparison on the real data.The simpleMajority Voting (MV) 
ombiner produ
es a promising mean BAC of 92.17%on the base s
enario. For all other s
enarios, it is, not surprisingly, heavily disturbedby the noisy and depended base-level 
lassi�ers; leading to a mean BAC of 55.84% onthe all s
enario. The extension to the SMV 
ombiner performs better than MV on alls
enarios. With the ex
eption of the doubles and the all s
enario, it performed similar tothe promising 
ombiners. Hen
e, only SMV will be in
luded in the 
omparison on realdata sets.Information Theoreti
 Combination (ITC) always performs worse or equally bad thanRandom Weighted Voting (RWV). The mean BAC of the ensemble 
lassi�er built byITC on the all s
enario is 50%. Be
ause of that, ITC will not be in
luded in the �nal
omparison. ITC 
hooses bad base-level 
lassi�er subsets. They 
onsist of the base-level
lassi�er with the highest BAC and 6 base-level 
lassi�ers that perform 
omparativelybad. The reason for that seems to be that the information theoreti
 s
ore is dominatedby the information theoreti
 diversity.4.4. Ele
troen
ephalography Data SetsIn this se
tion, I will present the results on Ele
troen
ephalography (EEG) data sets.In addition to the main questions spe
i�ed at the beginning of this 
hapter, I will ad-dress what feature extra
tion and 
lassi�
ation methods are employed for 
lassi�
ation.Furthermore, to a

ess the potential of my methods, I will 
ompare the 
lassi�
ationa

ura
ies of my methods to the a

ura
ies that were a
hieved by other resear
hers onsimilar data sets.I will start this se
tion by introdu
ing the di�erent studies from whi
h the data setsoriginate. After that, I will present the results separately for ea
h study. The emphasisduring this part is to �nd out if the proposed set of base-level learners is su�
ient for afair 
omparison of the methods and if the employment of ensemble 
lassi�ers produ
esmore a

urate 
lassi�ers than the base-line methods Sele
t the Best (Sele
tBest), ORA-CLE, and Con
atenation (CONCAT). Following this part, I will 
ompare the di�erent
ombiners on data sets originating from various studies to �nd out if there is a superior
ombiner. After that, I will apply the most promising methods on a data set on that nosu

essful 
lassi�
ation has been a
hieved yet.4.4.1. Des
ription of the StudiesAttentionThe 
lassi�
ation task for the data sets originating from the Attention study is to 
lassifyif the parti
ipant attends to the left or the right half of a 
omputer s
reen, while looking ata �xation 
ross. The original results of this study, as well as a more extensive des
riptionof the experimental design, 
an be found in Sander et al. (2012).The parti
ipants of the study originate from three groups, 22 
hildren (µage = 11.9,
σage = 0.52, range 10 − 13 years), 12 young adults (µage = 24.19, σage = 1.57, range64



4. Results

Figure 4.4.1.: Sequen
e of s
reens for one trial of the Attention study. Adapted withpermission from Sander et al. (2012).
20− 26 years), and 22 older adults (µage = 73.3, σage = 1.54, range 70− 75 years).During the experiment, the parti
ipants were seated 
omfortably in an ele
tromagneti-
ally and a
ousti
ally shielded room. They were shown a s
reen that displayed a �xation
ross and a set of 
olored squares for 100ms. A 
ue, whi
h was permanently shown from-500ms until 0ms relative to the presentation of the s
reen, indi
ated to whi
h half of thes
reen the parti
ipants should attend. The parti
ipants were instru
ted to only shift theirattention but to keep their visual fo
us on the �xation 
ross. After a retention intervalof 1000ms, they were shown a s
reen that potentially di�ered in the half to whi
h theywere asked to attend to.Their task was to respond if the s
reen di�ered from the s
reen they had seen before.The response time was limited to a maximum of 5000ms. Ea
h parti
ipant 
ompleted360 trials. Between the trials there was a 1500ms break, in whi
h a �xation 
ross wasshown.For the 
omparison, the task of the 
lassi�er is to predi
t if a parti
ipant attends to theleft or the right half of the s
reen, based on the EEG signals from 0 to 1000ms relativeto the onset of the presentation of the to be memorized s
reen. Only those trials for thatthe response of the parti
ipants is 
orre
t are in
luded in the analysis.The EEG signals were re
orded using 61 Ag/Ag-Cl ele
trodes. Ele
trode impedan
ewas below 5kΩ before the re
ording. The sampling rate was 1000hz. During the re
ord-ing, a 0.1−250Hz band-pass �lter was applied and ele
trodes were referen
ed to the rightmastoid ele
trode, but the left mastoid ele
trode was also re
orded.For prepro
essing the EEG signals were re-referen
ed to the mathemati
ally linkedmastoids and high-pass �ltered with 0.5Hz. Trials that in
luded eye movement or ex-
essive mus
le a
tivity were removed. On the remaining data independent 
omponentanalysis was used to proje
t the residual noise sour
es out of the data (Jung et al., 2000).This was done by visually inspe
ting the 
omponents and reje
ting those 
omponents thatrepresented noise sour
es.
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4. ResultsMotor ImaginaryThe 
lassi�
ation task for data sets originating from the Motor Imaginary study is todis
riminate between a right and left index �nger button press. Data from 36 parti
ipantsare analyzed. The data sets were re
orded by Zander et al. (2011). In their paper a moreextensive des
ription of the experimental paradigm 
an be found.During ea
h trial, the parti
ipants were shown a �L� or an �R� for 700ms followed bya pause of 300ms. The presentation of �L� or �R� indi
ated that they should press theleft (L) or right (R) CTRL-key as qui
kly and a

urately as possible with their left (L)or right index �nger (R). Between the trials there was a 1000ms break.The EEG signals were re
orded using 32 Ag/Ag-Cl ele
trodes. The sampling ratewas 1000hz. During the re
ording, the EEG signals were �ltered using a 0.1-1000Hzband-pass �lter.As input for the base-level learners, I extra
t the EEG signals from -500ms up to 200msrelative to the button press. A previous approa
h to only extra
t the EEG signals from-500 to -200ms relative to the button press did not lead to a

urate base-level 
lassi�ers.Auditory OddballThe 
lassi�
ation task for data sets originating from the Auditory Oddball study is to
lassify if a parti
ipant listens to a rare or a 
ommon tone.The data sets originate from a pilot study employed at the Max Plan
k Institutefor Human Development. Data sets for six subje
ts were re
orded. The experimentimplemented the auditory oddball paradigm (see Squires et al., 1975).During the experiment, the parti
ipants were standing still. The room in that they werestanding was neither ele
tromagneti
ally nor a
ousti
ally shielded. The parti
ipants werepresented high- and low-pit
hed tones with varying timely gaps. The high-pit
hed tonewas presented in 80% (
ommon) of the 
ases and the low-pit
hed tone in the remaining20% (rare) of the 
ases. The task of the parti
ipants was to 
ount how many times therare tone o

urred. The tones were played for 50ms. The frequen
y of the 
ommon tonewas 1000Hz and 800Hz for the rare tone. The gap between two 
onse
utive tones wasvaried between 1200 and 1500ms.The EEG signals were re
orded using 60 Ag/Ag-Cl ele
trodes. The sampling rate was1000hz. During the re
ording, ele
trodes were referen
ed to the right mastoid ele
trode,but the left mastoid ele
trode was also re
orded. Furthermore, a 0.1− 250Hz band-pass�lter was applied.As input for the base-level learners I extra
t, analogously to Be
kmann (2010), theEEG data from 0ms to 512ms relative to the onset of the auditory stimuli.For prepro
essing the EEG signals were re-referen
ed to the mathemati
ally linkedmastoids and high-pass �ltered with 0.5Hz.MemoryThe 
lassi�
ation task for the data sets originating from the memory study is to 
lassify ifthe parti
ipant is able to memorize an obje
t based on EEG data from the memorization66



4. Resultsphase. That is, the 
lassi�er should predi
t if a person will be able to remember somethingat the time they is trying to memorize it.For this task a data set for one subje
t was re
orded by me and my 
olleagues.The paradigm des
ribed by Brehmer et al. (2004) was used. The parti
ipant wasseated 
omfortably in an a
ousti
ally as well as ele
tromagneti
ally shielded room. Theparti
ipant was presented a set of lo
ation-word pairs. The task of him was to rememberthe pairs. The parti
ipant was trained to ful�ll this task by employing the method oflo
i (see Bower, 1970).The experiment 
onsisted of 36 blo
ks. Ea
h blo
k was separated in an en
oding anda re
all phase. During the en
oding phase, lo
ation 
ues were presented visually on amonitor and the to-be-re
alled words were presented aurally over headphones. For ea
hlo
ation-word pair, �rst the lo
ation 
ue was shown for 500ms. This was followed by thepresentation of the word. After that, followed a break, in whi
h the parti
ipant shouldmemorize the lo
ation-word pair. Then, the next lo
ation 
ue followed immediately. Forea
h blo
k 16 lo
ation-word pairs had to be remembered. In every blo
k ea
h lo
ationwas part of exa
tly one pair.After all 16 lo
ation-word pairs had been shown, the parti
ipant 
ould start the re
allphase at his own will. In the re
all phase ea
h lo
ation 
ue was presented for 5000ms.During the presentation of the lo
ation, the parti
ipant had to type in the �rst threeletters of the memorized word. After su

essive 6 Blo
ks, the subje
ts was allowed topause for several minutes.If a word o

urred in one blo
k, it was guaranteed not to o

ur in the following blo
k.A total of 16 lo
ations and 413 highly imaginable words were used as stimuli. The timebetween the presentation of two su

essive lo
ations was 2300ms. In prior sessions it wasadjusted su
h that the parti
ipant 
ould remember approximately 10 out of 16 pairs.For the 
lassi�
ation one trial 
onsists of the EEG signals from the beginning of thelo
ation presentation until the beginning of the next lo
ation presentation. The to-be-separated 
lasses are �the person will remember the pair� and �the person will notremember the pair�.The EEG signals were re
orded using 60 Ag/Ag-Cl ele
trodes. Ele
trode impedan
ewas below 2kΩ before the re
ording. The sampling rate was 5000Hz. A 0.1 − 1000Hz
(a) (b)Figure 4.4.2.: Sequen
e of s
reens for the (a) en
oding and the (b) re
all.67



4. Resultsband-pass �lter was applied. During the re
ording, ele
trodes were referen
ed to theright mastoid ele
trode, but the left mastoid ele
trode was also re
orded.For prepro
essing the EEG data was re-referen
ed to the mathemati
ally linked mas-toids and down-sampled to 500Hz. Trials that in
luded eye movement or ex
essive mus
lea
tivity were removed.4.4.2. ResultsA short notational remark. Most measures employed are per data set measures. I willoften report means of that measures. The number between the bra
kets after the numberfor the mean denotes the 
orresponding standard deviation.AttentionOne subje
t had to be ex
luded from the analysis. The training of the Ledoit's RegularizedLinear Dis
riminant Analysis (LRLDA) 
lassi�er that was used for CONCAT neededmore main memory than was request-able on the 
omputing 
luster (see Se
tion 4.2).From the 49 base-level 
lassi�ers on average 16.64(6.24) a
hieve an a

ura
y better thanrandom guessing. The average disagreement measure between the base-level 
lassi�ersthat performed better than random guessing is 0.436(0.0249). Hen
e, the proposed setof base-level learners produ
es a set of diverse and a

urate base-level 
lassi�ers on theAttention data sets. Thus, an appropriate 
ombination of the base-level 
lassi�ers isexpe
ted to result in an ensemble 
lassi�er that is more a

urate than ORACLE.In fa
t, the ensemble 
lassi�er built by the best 
ombiner a
hieves a mean BAC of66% and a mean rank of 7.43, while ORACLE a
hieves a mean BAC of 61.83% and amean rank of 4.28. Furthermore, all 
ombiners generate ensemble 
lassi�ers that aremore a

urate than ORACLE. With the ex
eption of �xed Adaptive Boosting (fAB) andSigni�gan
e Majority Voting (SMV), the rank di�eren
es between all 
ombiners andORACLE are signi�
ant.On top of that, all 
ombiners, with the ex
eption of fAB and SMV, produ
e more a
-
urate ensemble 
lassi�ers than Sele
tBest (mean BAC 64.28% rank 5.24) and CONCAT(mean BAC 64.25% rank 5.68). The ranks of the top three performing 
ombiners,DSWMV, DHSWV and DHSWV, all proposed in this thesis, are signi�
antly larger thanthe ranks of Sele
tBest. Testing the di�eren
es between the 
ombiners and CONCATfor signi�
an
e reveals that only the rank di�eren
e between DSWMV and CONCAT issigni�
ant.There were two previous studies that su

essfully 
lassi�ed spatial attention basedan neuroimaging data. Kelly et al. (2005) a
hieved a mean a

ura
y of 73%. Be
auseboth 
lasses were of equal size this measure is equivalent to the BAC. While their meanBAC is 7% higher than the BAC for my best 
lassi�
ation method, a dire
t 
ompar-ison seems at least questionable as the subje
ts that parti
ipated in their study 
ould
on
entrate on the attention task, while in the study from whi
h the data sets I usedoriginate from, the parti
ipants also had to 
on
entrate on the memory task. Hen
e,it is reasonable to assume that the 
lassi�
ation task for my data sets is more di�
ult.68



4. Resultsmethod Balan
ed A

ura
y (BAC) rankDSWMV 66 7.43HSWV 65.89 7.13DHSWV 65.84 7.05BC 65.33 6.51SWMV 65.33 6.64STLRLDA 65.21 6.41CONCAT 64.25 5.68Sele
tBest 64.28 5.25SMV 64.06 4.97fAB 63.91 4.66ORACLE 61.83 4.28Table 4.2.: Mean BACs, in per
ent, and ranks, for all methods, over all data sets orig-inating from the Attention study. The methods are ordered by their meanranks. The gray rows mark the 
ombiners that are proposed in this thesis.van Gerven and Jensen (2009) even 
lassi�ed four di�erent dire
tions of 
overt spatialattention at a reasonable 
lassi�
ation rate using Magnetoen
ephalography (MEG) forsignal a
quisition. Be
ause they used, instead of EEG, MEG as signal a
quisition methoda dire
t 
omparison seems inappropriate.Another interesting question is: What base-level 
lassi�ers are used for the 
lassi�-
ation? To address this question I 
al
ulate the mean weights over all folds from allsubje
ts as learned by the best method Dependent Signi�
ant Weighted Majority Vot-ing (DSWMV). For ea
h data set Di and ea
h fold f a weight ve
tor wi,f is learned,whi
h 
onsists of a weight wi,f (j) for ea
h base-level 
lassi�er. There are n = 55 data setsand 10 folds per data set. Ea
h entry wµ(j) of the mean ve
tor is 
al
ulated as follows
wµ(j) =

1

10n

n
∑

i=1

10
∑

f=1

wi,f (j)Analogous to that, the entries of the standard deviation ve
tor wσ are 
al
ulated as
w(j)σ =

√

√

√

√

1

10n − 1

n
∑

i=1

10
∑

f=1

(w(j)i,f − w(j)µ)2The mean ve
tor wµ and the standard deviation ve
tor wσ of all weights are displayedin Figure 4.4.3. The models that 
orrespond to the 10 largest entries in the mean ve
tor
wµ 
an be seen in Table 4.3. While one needs to be 
areful when 
omparing the meanweights of the di�erent base-level learners, espe
ially be
ause the standard deviation is
omparatively high, it is interesting that from the ten base-level learners 
orrespondingto the largest weights, nine are based on Common Spatial Patterns (CSP) or Lo
al Means(LM) features. Espe
ially when taking into a

ount that previous 
lassi�
ation of spatial69



4. Results

Figure 4.4.3.: Means wµ and standard deviations wσ of the weights for ea
h base-levellearner as learned by DSWMV over all folds from all data sets from theAttention study. The table that translates #base-level learner to the 
or-responding base-level learner 
an be found in Appendix A.1.
base-level 
lassi�er weight
γ + CSP + LRLDA 0.2943rem + CSP + LRLDA 0.2901
β + CSP + LRLDA 0.2532

θ + LM + SVMOPTC 0.2523
δ +LM SVMOPTC 0.2495

δ + RM + SVMOPTC 0.2149
on + CSP + LRLDA 0.1814
on +LM + SVMOPTC 0.1791
α +CSP + LRLDA 0.1652
θ +CSP + LRLDA 0.1529Table 4.3.: Ten largest entries of the mean ve
tor wµ and the 
orresponding base-levellearners.
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4. Resultsattention (Kelly et al., 2005, van Gerven and Jensen, 2009) was solely based on α powerfeatures, this an interesting �nding.
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4. ResultsMotor ImaginaryFrom the 49 base-level 
lassi�ers on average 15.78(3.66) a
hieve an a

ura
y better thanrandom guessing. The average disagreement measure between the base-level 
lassi�ersthat performed better than random guessing is 0.4294(0.0201). Hen
e, the proposedset of base-level learners produ
es a set of diverse and a

urate base-level 
lassi�ers onthe Motor Imaginary data sets. Thus, an appropriate 
ombination of these base level
lassi�ers should result in an ensemble 
lassi�er that is more a

urate than ORACLE.Analogously to the Attention data sets, all 
ombiner produ
e ensemble 
lassi�ers thathave higher mean BACs than ORACLE. The most a

urate ensemble 
lassi�er is 
reatedby STLRLDA and a
hieve a mean BAC of 76.45%, while the 
lassi�er sele
ted by ORA-CLE a
hieves a mean BAC of 68.88%. With the ex
eption of SMV, the rank di�eren
esbetween the ensemble 
lassi�ers and ORACLE are signi�
ant.Also, with the ex
eption of SMV, all 
ombiners build ensemble 
lassi�ers that performbetter than the ensemble 
lassi�er built by Sele
tBest (mean BAC 72.65%). Ex
ludingHarmoni
 Series Weighted Voting (HSWV) and Dependent Harmoni
 Series WeightedVoting (DHSWV), the rank di�eren
es between all ensemble 
lassi�ers and Sele
tBest aresigni�
ant. However, the high di�eren
e between Sele
tBest and HSWV, and Sele
tBestand DHSWV, both in mean BAC and rank, suggest that with a larger set of data setsthe di�eren
es 
ould be found to be signi�
ant.In 
ontrast to the Attention data sets, CONCAT 
learly outperforms all other methodson the Motor Imaginary data sets. With 87.91% its mean BAC is 11.46% higher than themean BAC of the ensemble 
lassi�er built by the best 
ombiner STLRLDA. Furthermore,its mean rank is 11, that means that CONCAT is the method that produ
es the mosta

urate 
lassi�er on every single data set. This very pregnant di�eren
e between theAttention and the Motor Imaginary data sets will be further investigated in the followingse
tions.It is known that motor imaginary 
an be 
lassi�ed robustly. Indeed, it is one of themain paradigms in Brain Computer Interfa
e (BCI) resear
h. There exist 
lassi�
ationresults for exa
tly the same data sets as were used for this study. While Zander et al.(2011) do not report exa
t values, their �gure suggest that CONCAT performs betterthan most of the 
lassi�
ation methods they tried, and at a similar level than their best
lassi�
ation method.Analogously to the Attention data sets, I also want to examine what features areemployed for the 
lassi�
ation. As CONCAT 
learly is the most a

urate method, Iinterpret the 
lassi�er built by CONCAT. To do that the weight ve
tors w learned byLRLDA are examined. Note that CONCAT learns a weight for ea
h feature, 
ontrary toDSWMV that learns a weight for ea
h base-level 
lassi�er. The larger the deviation ofa weight w(k) from 0, the higher is the 
ontribution of the 
orresponding feature to the
lassi�
ation s
ore wTx+ c (see Equation 2.2.6).In 
ontrast to the mean weights presented in Se
tion 4.4.2, for ea
h data set Di outof the n = 36 data set only one weight ve
tor wi is obtained by applying the learningalgorithm of CONCAT to the 
omplete data set. Hen
e, ea
h entry of the mean ve
tor
wµ is 
al
ulated as 72



4. Resultsmethod BAC rankCONCAT 87.91 11STLRLDA 76.45 8.25fAB 76.18 8.01DSWMV 75.87 7.33BC 75.37 6.47SWMV 75.42 6.42HSWV 74.28 5.07DHSWV 74.32 5.03Sele
tBest 72.65 3.43SMV 72.09 2.97ORACLE 68.88 2.01Table 4.4.: Mean BACs, in per
ent, and ranks, for all methods, over all data sets orig-inating from the Motor Imaginary study.The methods are ordered by theirmean ranks. The gray rows mark the 
ombiners that are proposed in thisthesis.
wµ(k) =

1

n

n
∑

i=1

wi(k)Analogous to that, ea
h entry of the standard deviation ve
tor wσ is 
al
ulated as
wσ(k) =

√

√

√

√

1

n− 1

n
∑

i=1

(wi(k)− wµ(k))2In Figure 4.4.3 wµ and wσ are plotted for all features.There are eight a

umulations of highly deviating weights: S1 = {wµ(k) : k ∈
{1, . . . , 42}}, S2 = {wµ(k) : k ∈ {139, . . . , 778}}, S3 = {wµ(k) : k ∈ {875, . . . , 1514}},
S4 = {wµ(k) : k ∈ {1611, . . . , 2250}}, S5 = {wµ(k) : k ∈ {2347, . . . , 2986}}, S6 =
{wµ(k) : k ∈ {3083, . . . , 3722}}, S7 = {wµ(k) : k ∈ {3819, . . . , 4458}}, and S8 = {wµ(k) :
k ∈ {4555, . . . , 5194}}. These a

umulations are interrupted by a

umulations of almostzero weights. The �rst set of highly deviating weights, S1, 
orresponds to the CSP fea-tures 
al
ulated on all frequen
y bands. The next group S2 
orresponds to the SpatioTemporal Features (STF), LM, Regional Means (RM), and Global Mean (GM), 
al
u-lated on the 
on (1-45 Hz) frequen
y band. The following peaks S3, . . . , S8 
orrespondto the STF 
al
ulated on the δ, θ, α, β, γ and rem (70+ Hz) frequen
y bands in thatorder. For all features based on the Permutation Entropy (PE) the LRLDA algorithm
onsistently learned very low weights. Thus, their in�uen
e on the 
lassi�
ation s
ore isnegligible.For weights with a large mean the varian
e is also relatively high. For weights witha small mean the varian
e is also relatively small. This implies that, the same types offeatures have been employed for every subje
t.73



4. Results

Figure 4.4.4.: Means wµ and standard deviations wσ of the weights for ea
h feature aslearned by CONCAT over all data sets from the Motor Imaginary study.Auditory OddballFrom the 49 base-level 
lassi�ers on average 6.67(1.5055) a
hieve an a

ura
y better thanrandom guessing. The average disagreement measure between the base-level 
lassi�ersthat perform better than random guessing is 0.1831(0.0201). This means that only veryfew base-level learners produ
e a

urate 
lassi�ers. Furthermore, these 
lassi�ers are notvery diverse. Hen
e, a 
ombination of base-level 
lassi�ers may be able to improve theperforman
e, but independently of the employed 
ombiner drasti
 improvements are notto be expe
ted. The reason for this la
king diversity seems to be that for most subje
tsonly the 
lassi�ers based on STF were more a

urate than random guessing.Considering the previous examination it is not surprising that no 
ombiner is able tosigni�
antly improve the performan
e. Indeed, from the 
ombiners, only Bayes Com-bination (BC) (mean BAC 70.21) performs a little better than ORACLE (mean BAC69.71). Also, no improvement over Sele
tBest (mean BAC 69.28) is observable.What is very interesting is that the CONCAT 
ombination is still able to boost thea

ura
y signi�
antly. CONCAT produ
es a mean BAC of 74.86% and an average rankof 9.83 in 
omparison to a mean BAC of 69.71% and a mean rank of 8.17 for ORACLE.The 
lassi�
ation of the Event Related Potentials (ERP) eli
ited by a rare target stimuliis one of the most popular approa
hes for building BCIs. Thus, it is not surprising thata su

essful 
lassi�
ation is possible. The same data sets are used for the analysis asemployed by Be
kmann (2010). His best method a
hieved a mean BAC of 83%. Heestimated the BAC using the holdout method. Hen
e, it is questionable if a dire
t
omparison of the results is appropriate. However, it seems like his spe
ialized methodperforms even better than CONCAT.Analogously to the previous studies, I also want to examine what features have been74



4. Resultsmethod BAC rankCONCAT 74.86 9.83BC 70.21 9ORACLE 69.71 8.17STLRLDA 69.49 8.33Sele
tBest 69.28 7.67fAB 68.98 7.83SMV 64.2 4.33SWMV 63.35 4.33HSWV 61.43 3.08DSWMV 58.49 1.66DHSWV 53.59 1.7Table 4.5.: Mean BACs, in per
ent, and ranks for all methods over all data sets origi-nating from the Auditory Oddball study. The methods are ordered by theirmean ranks. The gray rows mark the 
ombiners that are proposed in thisthesis.used for the 
lassi�
ation. As CONCAT 
learly was the best 
lassi�
ation method,I interpret it. I 
al
ulate the mean ve
tor wµ and the standard deviation ve
tor wσanalogously to the approa
h that was used for the Motor Imaginary study. The entriesof the mean and the standard deviation ve
tor are displayed in Figure 4.4.5. As theweights are basi
ally the same as for the Motor Imaginary data sets, please refer to theinterpretation presented there.Intermediate Summary and Open QuestionsFor the Motor Imaginary and the Attention study, the proposed set of base-level learnerswas 
learly su�
ient and produ
ed a

urate and diverse base-level 
lassi�ers. For theAuditory Oddball data sets that was not the 
ase. It is un
lear whether this is anelementary property of the data sets or if the set of base-level learners was not su�
ient.It was shown that if the base-level 
lassi�ers are diverse and a

urate, the 
ombinationof base-level 
lassi�ers 
learly outperforms ORACLE. Furthermore, a fusion of the base-level 
lassi�er de
isions led to more a

urate ensemble 
lassi�ers than the sele
tion of thebest base-level 
lassi�er by Sele
tBest.However, while the 
ombination of base-level 
lassi�ers performed better than CONCATon the Attention data sets, on the Motor Imaginary data sets CONCAT 
learly outper-formed the ensemble 
lassi�ers. When taking into a

ount that the Attention data sets
onsist of r = 5194 features and on average N = 608.17(19.95) trials, so the mean num-ber of features per trial is r
N ≈ 8.54, this is a surprising result. The original LinearDis
riminant Analysis (LDA) algorithm fails if r

N > 1 be
ause the estimated 
ovarian
ematrix is non-invertible. Of 
ourse, the estimator of the 
ovarian
e matrix used for thetraining of LRLDA was built su
h that it produ
es a reasonable estimate if r
N > 1, but I75



4. Results

Figure 4.4.5.: Means wµ and standard deviations wσ of the weights for ea
h feature aslearned by CONCAT over all data sets from the Auditory Oddball study.did not expe
t it to work that well if the relationship is as extreme. Also, this is in
on-sistent with the �ndings of Dornhege et al. (2004) and Boostani et al. (2007). They bothfound that CONCAT performs worse than ORACLE. However, none of them employedthe very advan
ed LRLDA 
lassi�
ation method, spe
i�
ally tailored for the situationwhen the number of trials is small 
ompared to the number of features.As result of sear
hing for di�eren
es between the Attention and the Motor Imaginarydata sets, I found that the two groups of data sets mainly di�er in the number of featuresper trial r
N . While the mean number of features per trial is 8.54 for the Motor Imaginarydata sets, it is 12222/260.89 = 46.85 for the Attention data sets. This may very well bethe reason why the ensemble 
lassi�ers perform better than CONCAT on the Attentiondata sets.To 
on�rm this relationship, I rerun the analysis for the Motor Imaginary data setsand modify the set base-level learners su
h that the total number of features in
reases to72394, resulting in an average feature per trial ratio of 72394/608.17 = 119.0358. This isdone by in
luding three new base-level learners to the set. As features the raw amplitudeEEG signals from the 
on (1-45 Hz), α, and β band are extra
ted separately.It is not possible to employ LRLDA as 
lassi�
ation method for CONCAT on themodi�ed set of base-level learners. Re
all that the learning algorithm of LRLDA esti-mates the per-
lass 
ovarian
e matrix of the features. Hen
e, if the number of featuresis r = 72394, it will have to estimate r(r+1)

2 ≈ 2.6205 · 109 values. Taking into a

ountthat Matlab allo
ates 8 Byte main memory for every entry, this results in a memory
onsumption of 2.0964 · 1010Byte = 20.964GB. The maximum request-able amount ofmain memory on the 
omputing 
luster is smaller than 17GB. Hen
e, it is impossible toexe
ute the learning algorithm of the LRLDA on the available hardware. Therefore, Iused Support Ve
tor Ma
hine with Optimization of the C hyper-parameter (SVMOPTC)76



4. Resultsas 
lassi�
ation method for CONCAT.The se
ond open question is, whi
h out of the 
ombiners leads to the most a

urateensemble 
lassi�er. This question will be answered in Se
tion 4.4.2.Modi�ed Motor ImaginaryThree subje
ts had to be ex
luded from the analysis be
ause the time needed for 
al-
ulation of the results for ea
h fold ex
eeded the maximum available 
omputing time oftwo days. The reason for that was that the SVMOPTC learning algorithm took severalhours for the high dimensional feature ve
tors based on the raw EEG amplitude data.To get a result for these subje
ts, I employ Support Ve
tor Ma
hine (SVM) as 
lassi�-
ation method instead. The C parameter is 
hosen a

ording to the standard routineof Fieldtrip if no C hyper-parameter is spe
i�ed. By reading Appendix A.2, it 
an be
on�rmed that the results of these subje
ts do not vary substantially from the resultspresented here.As expe
ted, CONCAT 
ompletely fails on the very high dimensional features. Witha mean BAC of 60.32% and a mean rank of 1.03 it performs signi�
antly worse thanevery 
ombiner. Further analysis reveals that it performs worse than every 
ombiner onall data sets. The mean BAC a
hieved by the best 
ombiner STLRLDA is 77.05. Thisis tremendously lower than the mean BAC a
hieved by CONCAT on the original set ofbase-level learners (87.91%).Furthermore, all 
ombiners perform better than ORACLE (mean BAC 68.83%). Withthe ex
eption of SMV, the di�eren
es between them and ORACLE are signi�
ant.
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4. Resultsmethod BAC rankSTLRLDA 77.05 9.79fAB 76.28 8.70DSWMV 76.10 8.64BC 75.26 7.30SWMV 75.09 6.67HSWV 74.83 6.45DHSWV 74.71 6.42Sele
tBest 73.04 4.47SMV 71.87 3.64ORACLE 68.83 2.89CONCAT 60.32 1.03Table 4.6.: Mean BACs, in per
ent, and ranks for all methods over all data sets originat-ing from the Modi�ed Motor Imaginary study. The methods are ordered bytheir mean ranks. The gray rows mark the 
ombiners that are proposed inthis thesis.Comparison of the CombinersThe 
omparison of the 
ombination methods is based on the results of the Attention datasets and on the results of the set of modi�ed base-level learners on the Motor Imaginarydata sets, introdu
ed in the previous se
tion. For the original set of base-level learnerson the Motor Imaginary data sets and the Auditory Oddball data sets, it is apparentthat CONCAT performs best.The best 
ombiner DSWMV yields a mean BAC of 69.78%. With the ex
eption ofSMV, all 
ombiners perform better than Sele
tBest (mean BAC 67.56%). The rankdi�eren
es are signi�
ant for all 
ombiners but fAB.Overall the 
ombiners perform very similar. With the ex
eption of SMV, the meanBAC varies only between 68.55% for fAB and 69.78% for DSWMV. The rank di�eren
esare higher but also not very big. Comparing all 
ombiners, ex
luding Sele
tBest, againstea
h other reveals the following pi
ture: While DSWMV performs best, the di�eren
esbetween it and STLRLDA, HSWV and BC are not signi�
ant. However, when lookingat the data, espe
ially at the ranks, it seems like DSWMV and STLRLDA are the best
ombiners.The extension DSWMV of Signi�gan
e Weighted Majority Voting (SWMV) performssigni�
antly better than SWMV (mean BAC 68.99%, p < 0.01). DSWMV, also, performssigni�
antly better than fAB (p < 0.01), indi
ating that the strategy that was 
hosento 
orre
t the weights for dependen
ies (see Equation 3.3.1), whi
h led to DSWMV, issuperior to the strategy fAB uses. The extension DHSWV performs worse than theoriginal HSWV algorithm (p = 0.8790).
78



4. ResultsBAC rankDSWMV 69.78 6.30STLRLDA 69.65 6.13HSWV 69.06 5.33BC 69.20 5.29DHSWV 69.21 5.27SWMV 68.99 5.17fAB 68.55 4.69Sele
tBest 67.56 3.67SMV 66.99 3.16Table 4.7.: Mean BACs, in per
ent, and ranks for all 
ombiners over all data sets originat-ing from the Modi�ed Motor Imaginary study and the Attention study. Themethods are ordered by their mean ranks. The gray rows mark the 
ombinersthat are proposed in this thesis.MemorySin
e the 
lassi�
ation of a su

essful memorization has not yet been a
hieved, the pur-pose of this data set is not to 
ompare the di�erent methods but rather to use the mostpowerful methods to try the su

essful 
lassi�
ation.From the 49 base-level 
lassi�ers 8 a
hieve a BAC better than random guessing. Thedisagreement measure between those base-level 
lassi�ers is 0.3.The number of features is 15582 and the number of trials 557. Hen
e, the number offeatures per trial is 27.97. Be
ause this value lies between 8.54 and 46.85, it is un
lear ifCONCAT or one of the 
ombiners should be 
hosen. But be
ause of the large numbersof features, as 
lassi�
ation method for CONCAT SVMOPTC has to be used. Be
auseof that, I propose that the ensemble 
lassi�ers will be the superior methods and 
hooseto in
lude only them in the signi�
an
e test against random guessing.In Table 4.8 you 
an see the mean a

ura
ies for the �ve most promising 
ombiners,as identi�ed in the previous se
tion. The 
ombiner out of these 
ombiners that yields tothe highest BAC is BC (58.04%). With the ex
eption of STLRLDA and DHSWV, theBACs a
hieved by these 
ombiners are signi�
antly better than the expe
ted BAC by
ombiner BACBC 58.04HSWV 57.3DSWMV 55.31STLRLDA 53.52DHSWV 53.34Table 4.8.: BACs, in per
ent, for the most promising 
ombiners on the memory data set.The gray rows mark the 
ombiners that are proposed in this thesis.79



4. Resultsbase-level learner BACrem + CSP + LRLDA 59.81
β + CSP + LRLDA 58.43
on + CSP + LRLDA 56.92
θ+ CSP + LRLDA 55.91
γ + CSP + LRLDA 55.73
δ+ CSP + LRLDA 55.12
α + CSP + LRLDA 54.33
θ+ LM + SVMOPTC 54.25Table 4.9.: The ten most a

urate base-level learners for the memory data set ordered bytheir 
orresponding BAC.random guessing. The BAC of CONCAT is also estimated. With 48.40 it is in the areaof random guessing.Sin
e the interpretation of an ensemble 
lassi�er built by BC is not straightforward,I report the base-level 
lassi�ers that performed better than 
han
e instead. The BACsfor the ten more a

urate base-level learners 
an be seen in Table 4.9. All nine base-levellearners that are based on CSP features are in
luded in the set of the ten base-levellearners that produ
e the most a

urate base-level 
lassi�ers.With 59.81% ORACLE performs better than any ensemble 
lassi�er. It is importantto note that, in 
ontrast to the other data sets, only one data set is available from thememory study. Thus, when pi
king the best single 
lassi�er after having evaluated thea

ura
ies the statisti
al advantage of ensemble 
lassi�ers vanishes (see Se
tion 2.3.3).Furthermore, 
omparing the best base-level 
lassi�er against the best 
ombiners is abiased 
omparison. There are 49 base-level 
lassi�ers and only �ve 
ombiners. Hen
e,there is a statisti
al advantage for the base-level 
lassi�ers. A fair 
omparison is the
omparison against Sele
tBest. Sele
tBest produ
es an ensemble 
lassi�er with a BACof 56.57%.4.5. SummaryWith the ex
eption of the Auditory Oddball data sets, the proposed set of base-levellearners produ
ed a

urate and diverse base-level 
lassi�ers. It was, thus, suited for afair 
omparison of the several methods.The 
ombination of base-level 
lassi�ers based on di�erent feature and 
lassi�
a-tion methods produ
ed signi�
antly more a

urate 
lassi�ers than ORACLE. Also, thetrue 
ombination of base-level 
lassi�ers produ
ed ensemble 
lassi�ers that had higherBalan
ed A

ura
ys (BACs) than the ensemble 
lassi�ers 
reated by Sele
t the Best(Sele
tBest).The 
omparison against Con
atenation (CONCAT) revealed that CONCAT produ
esmore a

urate 
lassi�ers when the number of features per trial is relatively low and thatthe ensemble 
lassi�ers generate more a

urate 
lassi�ers when the number of features80



4. Resultsper trial is relatively high. When the number of features per trials was smaller than8.54, the 
lassi�er built by CONCAT was more a

urate than the 
lassi�er indu
ed byany 
ombiner. When the number of features per trial was larger than 30, the ensemble
lassi�ers were more a

urate than CONCAT.Out of the 
ombiners DSWMV, whi
h was proposed in this thesis, produ
ed the mosta

urate ensemble 
lassi�ers on the Ele
troen
ephalography (EEG) data sets. The BACdi�eren
es between it and the remaining 
ombiners was, with the ex
eption of Sta
kingwith Ledoit's Regularized Linear Dis
riminant Analysis (STLRLDA), Harmoni
 SeriesWeighted Voting (HSWV), and Bayes Combination (BC) signi�
ant .On the simulation data sets STLRLDA indu
ed the most a

urate 
lassi�er, whileDependent Signi�
ant Weighted Majority Voting (DSWMV) followed on the 3rd rank. Itis interesting that �xed Adaptive Boosting (fAB), whi
h was the se
ond best 
ombiner inthe simulation study, was the se
ond worst 
ombiner on the EEG data sets. In the otherdire
tion HSWV performed relatively bad on the simulation data sets but a
hieved theshared �rst rank on the real data sets.For all presented data sets, one of the 
ompared 
lassi�
ation methods was able to infera separating model. Furthermore, the best 
ombiners 
ould be employed to su

essfully
lassify if a person memorizes something based on the EEG signals during the en
odingphase. This is the �rst proof of 
on
ept for this 
lassi�
ation task.
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5. Summary, Con
lusion and Outlook5.1. Summary and Con
lusionThe main hypothesis of this thesis was (see Chapter 3) that the 
ombination of thedi�erent feature extra
tion (see Se
tion 2.2.3) and 
lassi�
ation methods (see Se
tion2.2.4) that are employed for the 
lassi�
ation of Ele
troen
ephalography (EEG) signalsleads to a more a

urate 
lassi�er than the best 
lassi�er based on only one 
ombination offeature extra
tion and 
lassi�er method, estimated by the ORACLE 
lassi�er. ORACLEreturned the 
lassi�er that a
hieved the best mean a

ura
y after having evaluated a set of
lassi�ers on all data sets from one Pattern Re
ognition (PR) task. A further propositionwas that this results in a 
lassi�
ation method that a
hieves good 
lassi�
ation a

ura
ieson a variety of EEG data sets resulting in a very powerful EEG single-trial analysistool. Furthermore, it was proposed that the 
ombination of the 
lassi�
ation and featureextra
tion methods through a Multiple Classi�er System (MCS) (see Se
tion 2.3) leadsto a more a

urate 
lassi�er than the employment of a single 
lassi�
ation method onthe 
on
atenation of the outputs of all feature extra
tion methods. The latter approa
hwas 
alled Con
atenation (CONCAT) throughout this thesis. The last hypothesis wasthat a 
ombination of the 
lassi�ers leads to a more a

urate ensemble 
lassi�er than thesele
tion of the best 
lassi�er, by Sele
t the Best (Sele
tBest) (see Se
tion 2.3.2.7).To examine this hypotheses, the aforementioned methods were 
ompared on a numberof data sets originating from four di�erent EEG studies. To examine if an ensemble
lassi�er is superior, a set of base-level 
lassi�ers was de�ned. The set was 
hosen to
onsist of base-level 
lassi�ers that extra
t di�erent 
hara
teristi
s of the EEG signals (seeSe
tion 3.4). Multiple di�erent 
ombiners were employed to generate multiple ensemble
lassi�ers based on the de�ned set of base-level 
lassi�ers. In addition to well known
ombiners, new 
ombiners were introdu
ed, implemented, and evaluated (see Se
tion3.3). Be
ause the 
ombiners used the same set of base-level 
lassi�ers to build theensemble 
lassi�er, no further analysis was required to determine whi
h 
ombiner resultsin the most a

urate ensemble 
lassi�er.The 
ombination of base-level 
lassi�ers, for example, by Sta
king with Ledoit's Reg-ularized Linear Dis
riminant Analysis (STLRLDA) and Dependent Signi�
ant WeightedMajority Voting (DSWMV), boosted the Balan
ed A

ura
y (BAC) 
ompared to ORA-CLE by up to 7.57% (see Chapter 4). Furthermore, the 
ombination of the base-level
lassi�ers by DSWMV led to an in
rease of the mean BAC of 2.22% 
ompared to thesele
tion of the most a

urate base-level 
lassi�er by Sele
tBest. When 
omparing theMCSs against CONCAT, the pi
ture is not as 
lear. The MCSs had an 
lear advantagewhen the number of features per trial was larger than 30. Contrary to that, CONCATperformed substantially better than any MCS if the number of features per trial was82



5. Summary, Con
lusion and Outlooksmaller than 9.The results suggest (see Se
tion 4.4.2) that, out of the employed 
ombiners (see Se
-tion 3.3), Dependent Signi�
ant Weighted Majority Voting (DSWMV) and Sta
king withLedoit's Regularized Linear Dis
riminant Analysis (STLRLDA), from whi
h DSWMVwas proposed in this thesis, are the best 
ombiners for heterogeneous 
lassi�ers. It isworth noting that, DSWMV produ
ed signi�
antly more a

urate ensemble 
lassi�ersthan the two famous and powerful 
ombiners Adaptive Boosting (AB) and WeightedMajority Voting (WMV).In 
ombination with the the proposed set of base-level learners, the best 
ombiners andCONCAT 
an be used as a very powerful single-trial analysis tool. It was shown thatthese methods are able to infer a separating model (
lassi�er) for a variety of di�erentEEG data sets. Also, it was shown how to interpret these models (see Chapter 4). ThePattern Re
ognition Systems (PRSs) presented in this thesis are the �rst PRSs that havebeen shown to be able to infer separating models on more than one type of EEG datasets.The 
lassi�
ation task for the memory data set was to 
lassify if the parti
ipant willremember a lo
ation-word pair based on the EEG signals during the en
oding (see Se
tion4.4.1 ). The best 
ombiners were employed to 
reate ensemble 
lassi�ers that a
hievea BAC of 58.04% on the memory data set, whi
h is signi�
antly better than the BACexpe
ted by random guessing (see Se
tion 4.4.2). This represents the �rst proof of 
on
eptthat it is possible to 
lassify if somebody will remember something at the time they istrying to memorize it.Overall, the results imply that the general dire
tion in EEG 
lassi�
ation resear
hshould be 
hanged from ��nding the best single 
lassi�
ation method� to ��nding thebest 
ombination of 
lassi�
ation methods�.5.2. OutlookAnother very popular approa
h to deal with high dimensional feature ve
tors is to per-form feature sele
tion before the data set is fed to the 
lassi�
ation method. It wouldbe interesting to 
ompare the performan
e of a PRS that employs feature sele
tion, e.g.,Boostani et al. (2007), against the MCS built by the best 
ombiners on the data setswith a number of features per trial of greater than 30. The employment of a MCS mayalso be a better strategy when features are 
ombined that originate from the same fea-ture extra
tion method but are extra
ted on di�erent time intervals. This pro
edure isvery often employed as feature extra
tion method for Brain Computer Interfa
es (BCIs).In this 
ase, for ea
h interval a separate base-level 
lassi�er 
ould be indu
ed. Indeed,the employment of MCS 
ould be superior in any 
ase where the feature spa
e is large
ompared to the numbers of trials.My results suggest that the regularization performed by MCSs is bene�
ial 
omparedto the regularization performed by Ledoit's Regularized Linear Dis
riminant Analysis(LRLDA) if the number of features per trial is above 30. A further investigation whenand under what 
ir
umstan
es whi
h regularization is appropriate 
ould be informative.83



5. Summary, Con
lusion and OutlookAnother interesting question is if it is possible to further in
rease the a

ura
y by in-
luding more base-level learners. There are various popular feature extra
tion methodsthat have not been employed in this thesis, su
h as Autoregressive models (Dornhege et al.,2004), Power Spe
tral Densities, Adaptive Autoregressive Parameters (Lotte et al., 2007,and referen
es within), Common Sparse Spe
tral Spatial Pattern (Dornhege et al., 2006),and Regularized Common Spatial Patterns (Lotte and Guan, 2011).What might also have great potential is the 
ombination of the a-posteriori likelihoods,as used by Dornhege et al. (2004) (see Se
tion 3.1.1), with the DSWMV 
ombiner. Inthat way not only the a

ura
ies of the base-level 
lassi�er are 
onsidered, but also the a-posteriori likelihood for ea
h 
lass. Another very interesting approa
h is the employmentof a trainable 
ombiner, as introdu
ed by Sun (2007) (see Se
tion 3.1.3). It should byexamined if the resulting ensemble 
lassi�ers gets more a

urate, when the normalizedmutual information is used as estimate for the dependen
y between two base-level 
las-si�ers, instead of the mutual information. Motivated by the fa
t that DSWMV was thebest 
ombiner, it should de�nitely be examined if popular methods that automati
allygenerate the base-level 
lassi�ers, su
h as AB, Bagging and Random Subspa
e, 
an beimproved by employing DSWMV as 
ombiner.The �nding that it is possible to 
lassify if a person will remember something at thetime the person is trying to memorize it has de�nitely to be further investigated. Ifthe a

ura
y of su
h a 
lassi�er 
ould be in
reased, a 
heap and mobile EEG system
ould be
ome a revolutionary tool for the study and pra
ti
e of learning. For example, adevi
e 
ould be worn by students to alert them when they have su

essfully memorizedan equation.It is un
lear if the proposed PRSs 
an be used as BCIs be
ause the real-time 
apabilitieswere not tested. Thus, it is worthwhile to examine if the proposed PRSs 
an be used asBCIs and provide a higher information transfer rate than the existing BCIs.
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6. List of AbbreviationsAB Adaptive Boosting , see Se
tion 2.3.2.3BAC Balan
ed A

ura
y , see De�nition 13BC Bayes Combination, see Se
tion 2.3.2.4BCI Brain Computer Interfa
e, see Se
tion 2.2.2CONCAT Con
atenation, see 
hapter 3CSP Common Spatial Patterns, see Se
tion 2.2.3DHSWV Dependent Harmoni
 Series Weighted Voting , see Se
tion 3.3.3DSWMV Dependent Signi�
ant Weighted Majority Voting , see Se
tion 3.3.2DWMV Dependent Weighted Majority Voting , see Se
tion 3.3.2EEG Ele
troen
ephalography , see Se
tion 2.2.1ERP Event Related Potentials, see Se
tion 2.2.1fAB �xed Adaptive Boosting , see Se
tion 2.3.2.3GM Global Mean, see Se
tion 3.4HSWV Harmoni
 Series Weighted Voting , see Se
tion 3.3.3ITC Information Theoreti
 Combination, see Se
tion 2.3.2.6k-NN k-Nearest Neighbor , see Se
tion 2.2.4LDA Linear Dis
riminant Analysis, see Se
tion 2.2.4LM Lo
al Means, see Se
tion 3.4LRLDA Ledoit's Regularized Linear Dis
riminant Analysis, see Se
tion 2.2.4MCS Multiple Classi�er System, see Se
tion 2.3MV Majority Voting , see Se
tion 2.3.2.1PE Permutation Entropy , see Se
tion 2.2.3PR Pattern Re
ognition, see Se
tion 2.1 85



6. List of AbbreviationsPRS Pattern Re
ognition System, see Se
tion 2.1RLDA Regularized Linear Dis
riminant Analysis, see Se
tion 2.2.4RM Regional Means, see Se
tion 3.4RWV Random Weighted Voting , see Se
tion 3.3.4Sele
tBest Sele
t the Best , see Se
tion 2.3.2.7SSP Sha�er's Stati
 Pro
edure, see Se
tion 2.1.4.2STF Spatio Temporal Features, see Se
tion 2.2.3STLDA Sta
king with Linear Dis
riminant Analysis, see Se
tion 3.3.5STLRLDA Sta
king with Ledoit's Regularized Linear Dis
riminant Analysis, see Se
tion3.3.5SVMOPTC Support Ve
tor Ma
hine with Optimization of the C hyper-parameter , seeSe
tion 3.4SMV Signi�gan
e Majority Voting , see Se
tion 3.3.1SVM Support Ve
tor Ma
hine, see Se
tion 2.2.4SWMV Signi�gan
e Weighted Majority Voting , see Se
tion 3.3.1WMV Weighted Majority Voting , see Se
tion 2.3.2.2WV Weighted Voting , see Se
tion 2.3.2.2

86



BibliographyAutonomos Labs. Braindriver - a mind 
ontrolled 
ar, feb 2011. URL http://autonomos.inf.fu-berlin.de/subproje
ts/braindriver. "[A

essed Feb. 6, 2012℄".C. Bandt and B. Pompe. Permutation entropy: A natural 
omplexity measure for timeseries. Physi
al Review Letters, 88:174102, apr 2002. doi: 10.1103/PhysRevLett.88.174102.M. Be
kmann. Klassi�kation von elektroenzephalographis
hen daten in oddball- undgedä
htnisdaten. Master's thesis, Free University Berlin, Berlin, 2010.B. Blankertz, K.-R. Muller, D. Krusienski, G. S
halk, J. Wolpaw, A. S
hlogl,G. Pfurts
heller, J. Millan, M. S
hroder, and N. Birbaumer. The b
i 
ompetitioniii: validating alternative approa
hes to a
tual b
i problems. Neural Systems andRehabilitation Engineering, IEEE Transa
tions on, 14(2):153�159, jun 2006. doi:10.1109/TNSRE.2006.875642.B. Blankertz, G. Dornhege, M. Krauledat, V. Kunzmann, F. Los
h, G. Curio, and K.-R. Müller. The berlin brain-
omputer interfa
e: Ma
hine learning-based dete
tion ofuser spe
i�
 brain states. In G. Dornhege, J. d. R. Millán, T. Hinterberger, D. J.M
Farland, and K.-R. Müller, editors, Toward Brain-Computer Interfa
ing, 
hapter 5,pages 85�102. The MIT Press, London, 2007.B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller. Optimizing spatial�lters for robust eeg single-trial analysis. Signal Pro
essing Magazine, IEEE, 25(1):41�56, 2008. doi: 10.1109/MSP.2008.4408441.B. Blankertz, M. Tangermann, C. Vidaurre, T. Di
khaus, C. Sannelli, F. Popes
u, S. Fa-zli, M. Danó
zy, G. Curio, and K.-R. Müller. Dete
ting mental states by ma
hine learn-ing te
hniques: The berlin brain-
omputer interfa
e. In B. Graimann, G. Pfurts
heller,and B. Allison, editors, Brain-Computer Interfa
es, The Frontiers Colle
tion, pages113�135. Springer, Berlin Heidelberg, 2010a. doi: 10.1007/978-3-642-02091-9_7.B. Blankertz, M. Tangermann, C. Vidaurre, S. Fazli, C. Sannelli, S. Haufe, C. Maeder,L. E. Ramsey, I. Sturm, G. Curio, and K. R. Mueller. The berlin brain-
omputerinterfa
e: Non-medi
al uses of b
i te
hnology. Frontiers in Neuros
ien
e, 4(00198),2010b. doi: 10.3389/fnins.2010.00198.B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K.-R. Müller. Single-trial analysis and
lassi�
ation of erp 
omponents - a tutorial. NeuroImage, 56(2):814 � 825, 2011. doi:10.1016/j.neuroimage.2010.06.048. 87

http://autonomos.inf.fu-berlin.de/subprojects/braindriver
http://autonomos.inf.fu-berlin.de/subprojects/braindriver


BibliographyR. Boostani and M. H. Moradi. A new approa
h in the b
i resear
h based on fra
taldimension as feature and adaboost as 
lassi�er. Journal of Neural Engineering, 1(4):212�217, 2004. doi: 10.1088/1741-2560/1/4/004.R. Boostani, B. Graimann, M. Moradi, and G. Pfurts
heller. A 
omparison approa
htoward �nding the best feature and 
lassi�er in 
ue-based b
i. Medi
al and Biologi
alEngineering and Computing, 45:403�412, 2007. doi: 10.1007/s11517-007-0169-y.G. H. Bower. Analysis of a mnemoni
 devi
e: Modern psy
hology un
overs the powerful
omponents of an an
ient system for improving memory. Ameri
an S
ientist, 58(5):496�510, 1970. URL http://www.jstor.org/stable/27829239.Brain Produ
ts, 2012. URL http://www.brainprodu
ts.
om/downloads.php?kid=4."[A

essed Apr. 13, 2012℄".A. M. Brandmaier. Permutation Distribution Clustering and Stru
tural Equation ModelTrees. Dissertation, Saarland University, Saarbrü
ken, 2012. URL http://s
idok.sulb.uni-saarland.de/volltexte/2012/4545.Y. Brehmer, V. Müller, T. von Oertzen, and U. Lindenberger. Episodi
 memory in 
hild-hood and old age: The role of 
orti
al 
oheren
e. In A. Me
klinger, H. Zimmer, andU. Lindenberger, editors, Bound in memory. Insights from behavioral and neuropsy-
hologi
al studies, Beri
hte aus der Psy
hologie, pages 69�91. Shaker Verlag, Aa
hen,2004.L. Breiman. Bagging predi
tors. Ma
hine Learning, 24:123�140, 1996. doi: 10.1007/BF00058655.K. Brodersen, C. S. Ong, K. Stephan, and J. Buhmann. The balan
ed a

ura
y andits posterior distribution. In Pattern Re
ognition (ICPR), 2010 20th InternationalConferen
e on, pages 3121�3124, aug 2010. doi: 10.1109/ICPR.2010.764.R. Bryll, R. Gutierrez-Osuna, and F. Quek. Attribute bagging: improving a

ura
yof 
lassi�er ensembles by using random feature subsets. Pattern Re
ognition, 36(6):1291�1302, 2003. doi: 10.1016/S0031-3203(02)00121-8.C. Cortes and V. Vapnik. Support-ve
tor networks. Ma
hine Learning, 20:273�297, sep1995. doi: 10.1023/A:1022627411411.A. Delorme and S. Makeig. Eeglab: an open sour
e toolbox for analysis of single-trial eegdynami
s in
luding independent 
omponent analysis. Journal of neuros
ien
e methods,134(1):9�21, 2004. doi: 10.1016/j.jneumeth.2003.10.009.J. Dem²ar. Statisti
al 
omparisons of 
lassi�ers over multiple data sets. Journal of Ma-
hine Learning Resear
h, 7:1�30, 2006. URL http://jmlr.
sail.mit.edu/papers/volume7/demsar06a/demsar06a.pdf.
88

http://www.jstor.org/stable/27829239
http://www.brainproducts.com/downloads.php?kid=4
http://scidok.sulb.uni-saarland.de/volltexte/2012/4545
http://scidok.sulb.uni-saarland.de/volltexte/2012/4545
http://jmlr.csail.mit.edu/papers/volume7/demsar06a/demsar06a.pdf
http://jmlr.csail.mit.edu/papers/volume7/demsar06a/demsar06a.pdf


BibliographyT. Dietteri
h. Ensemble methods in ma
hine learning. In Multiple Classi�er Systems,volume 1857 of Le
ture Notes in Computer S
ien
e, pages 1�15. Springer, Berlin Hei-delberg, 2000. doi: 10.1007/3-540-45014-9_1.G. Dornhege, B. Blankertz, G. Curio, and K.-R. Muller. Boosting bit rates in noninva-sive eeg single-trial 
lassi�
ations by feature 
ombination and multi
lass paradigms.Biomedi
al Engineering, IEEE Transa
tions on, 51(6):993�1002, jun 2004. doi:10.1109/TBME.2004.827088.G. Dornhege, B. Blankertz, M. Krauledat, F. Los
h, G. Curio, and K.-R. Müller. Opti-mizing spatio-temporal �lters for improving brain-
omputer interfa
ing. In Y. Weiss,B. S
hölkopf, and J. Platt, editors, Advan
es in Neural Information Pro
essing Systems18, pages 315�322. MIT Press, Cambridge, 2006.R. O. Duda, P. E. Hart, and D. G. Stor
k. Pattern Classi�
ation. Wiley-Bla
kwell, NewYork, 2 edition, nov 2000.M. Fatoure
hi, R. K. Ward, and G. E. Bir
h. A self-pa
ed brain-
omputer interfa
esystem with a low false positive rate. Journal of Neural Engineering, 5(1):9, 2008. doi:10.1088/1741-2560/5/1/002.S. Fazli, F. Popes
u, M. Danó
zy, B. Blankertz, K.-R. Müller, and C. Grozea. Subje
t-independent mental state 
lassi�
ation in single trials. Neural Networks, 22(9-23):1305�1312, 2009. doi: 10.1016/j.neunet.2009.06.003.Y. Freund and R. E. S
hapire. A de
ision-theoreti
 generalization of on-line learning andan appli
ation to boosting. Journal of Computer and System S
ien
es, 55(1):119�139,1997. doi: 10.1006/j
ss.1997.1504.J. H. Friedman. Regularized dis
riminant analysis. Journal of the Ameri
an Statisti
alAsso
iation, 84(405):165�175, 1989. URL http://www.jstor.org/stable/2289860.K. Fukunaga. Introdu
tion to statisti
al pattern re
ognition. A
ademi
 Press, San Diego,2 edition, 1990.S. Gar
ía and F. Herrera. An extension on "statisti
al 
omparisons of 
lassi�ers overmultiple data sets" for all pairwise 
omparisons. Journal of Ma
hine Learning Resear
h,9:2677�2694, 2008. URL http://jmlr.
sail.mit.edu/papers/volume9/gar
ia08a/gar
ia08a.pdf.L. Hansen and P. Salamon. Neural network ensembles. Pattern Analysis and Ma
hineIntelligen
e, IEEE Transa
tions on, 12(10):993 �1001, o
t 1990. doi: 10.1109/34.58871.C. S. Herrmann, M. Griguts
h, and N. A. Bus
h. Eeg os
illations and wavelet analysis. InT. C. Handy, editor, Event-related Potentials : A Methods Handbook. The MIT Press,Cambridge, o
t 2004.
89

http://www.jstor.org/stable/2289860
http://jmlr.csail.mit.edu/papers/volume9/garcia08a/garcia08a.pdf
http://jmlr.csail.mit.edu/papers/volume9/garcia08a/garcia08a.pdf


BibliographyT. Hinterberger, F. Nijboer, A. Kübler, T. Matuz, A. Furdea, U. Mo
hty, M. Jordan,T. N. Lal, N. J. Hill, J. Mellinger, M. Bens
h, M. Tangermann, G. Widman, C. E.Eigler, W. Rosenstiel, B. S
hölkopf, and N. Birbaumer. Brain-
omputer interfa
esfor 
ommuni
ation in paralysis: A 
lini
al experimental approa
h. In G. Dornhege,J. d. R. Millán, T. Hinterberger, D. J. M
Farland, and K.-R. Müller, editors, TowardBrain-Computer Interfa
ing, 
hapter 3, pages 43�64. The MIT Press, London, 2007.O. Jensen, A. Bahramisharif, R. Oostenveld, S. Klanke, A. Hadjipapas, Y. O. Okazaki,and M. A. J. van Gerven. Using brain-
omputer interfa
es and brain-state dependentstimulation as tools in 
ognitive neuros
ien
e. Frontiers in Psy
hology, 2(00100), 2011.doi: 10.3389/fpsyg.2011.00100.T.-P. Jung, S. Makeig, C. Humphries, T.-W. Lee, M. J. M
Keown, V. Iragui, and T. J.Sejnowski. Removing ele
troen
ephalographi
 artifa
ts by blind sour
e separation.Psy
hophysiology, 37(2):163�178, 2000. doi: 10.1111/1469-8986.3720163.S. Kelly, E. Lalor, R. Reilly, and J. Foxe. Independent brain 
omputer interfa
e 
ontrolusing visual spatial attention-dependent modulations of parieto-o

ipital alpha. InNeural Engineering, 2005. Conferen
e Pro
eedings. 2nd International IEEE EMBSConferen
e on, pages 667�670, mar 2005. doi: 10.1109/CNE.2005.1419713.R. Kohavi. A study of 
ross-validation and bootstrap for a

ura
y estimation and modelsele
tion. In Pro
eedings of the 14th international joint 
onferen
e on Arti�
ial intel-ligen
e, volume 2, pages 1137�1143. Morgan Kaufmann Publishers In
., 1995. URLhttp://roboti
s.stanford.edu/~ronnyk/a

Est.pdf.A. Kübler, F. Nijboer, and N. Birbaumer. Brain-
omputer interfa
es for 
ommuni
ationand motor 
ontrol - perspe
tives on 
lini
al appli
ation. In G. Dornhege, J. d. R.Millán, T. Hinterberger, D. J. M
Farland, and K.-R. Müller, editors, Toward Brain-Computer Interfa
ing, 
hapter 22, pages 373�392. The MIT Press, London, 2007.L. I. Kun
heva. Combining Pattern Classi�ers: Methods and Algorithms. Wiley-Bla
kwell, Hoboken, 2004.O. Ledoit and M. Wolf. A well-
onditioned estimator for large-dimensional 
ovari-an
e matri
es. Journal of Multivariate Analysis, 88(2):365�411, 2004. doi: 10.1016/S0047-259X(03)00096-4.F. Lotte and C. Guan. Regularizing 
ommon spatial patterns to improve b
i designs:Uni�ed theory and new algorithms. Biomedi
al Engineering, IEEE Transa
tions on,58(2):355�362, feb 2011. doi: 10.1109/TBME.2010.2082539.F. Lotte, M. Congedo, A. Lé
uyer, F. Lamar
he, and B. Arnaldi. A review of 
lassi�
ationalgorithms for eeg-based brain-
omputer interfa
es. Journal of Neural Engineering, 4(2):R1�R13, 2007. doi: 10.1088/1741-2560/4/2/R01.MathWorks. Matlab, 2012. URL http://www.mathworks.
om/produ
ts/matlab/. "[A
-
essed Mar. 5, 2012℄". 90

http://robotics.stanford.edu/~ronnyk/accEst.pdf
http://www.mathworks.com/products/matlab/


BibliographyJ. Meynet and J.-P. Thiran. Information theoreti
 
ombination of pattern 
lassi�ers.Pattern Re
ognition, 43(10):3412�3421, 2010. doi: 10.1016/j.pat
og.2010.04.013.A. Ng. Support ve
tor ma
hines. Le
ture, 2011. URL http://
s229.stanford.edu/notes/
s229-notes3.pdf.N. Ni
olaou and J. Georgiou. Permutation entropy: A new feature for brain-
omputerinterfa
es. In Biomedi
al Cir
uits and Systems Conferen
e (BioCAS), 2010 IEEE,pages 49�52, nov 2010. doi: 10.1109/BIOCAS.2010.5709568.R. Oostenveld, P. Fries, E. Maris, and J.-M. S
ho�elen. Fieldtrip: Open sour
e softwarefor advan
ed analysis of meg, eeg, and invasive ele
trophysiologi
al data. Computa-tional Intelligen
e and Neuros
ien
e, 2011, 2011. doi: 10.1155/2011/156869.L. Parra, C. Alvino, A. Tang, B. Pearlmutter, N. Yeung, A. Osman, and P. Sajda. Linearspatial integration for single-trial dete
tion in en
ephalography. NeuroImage, 17(1):223�230, 2002. doi: 10.1006/nimg.2002.1212.G. Pfurts
heller and C. Neuper. Motor imagery and dire
t brain-
omputer 
ommuni
a-tion. Pro
eedings of the IEEE, 89(7):1123�1134, jul 2001. doi: 10.1109/5.939829.G. Pfurts
heller, G. R. Müller-Putz, A. S
hlögl, B. Graimann, R. S
herer, R. Leeb,C. Brunner, C. Keinrath, G. Townsend, C. Vidaurre, M. Naeem, F. Y. Lee, S. Wries-negger, D. Zimmermann, E. Hö�er, and C. Neuper. Graz-brain-
omputer interfa
e:State of resear
h. In G. Dornhege, J. d. R. Millán, T. Hinterberger, D. J. M
Far-land, and K.-R. Müller, editors, Toward Brain-Computer Interfa
ing, 
hapter 4, pages65�84. The MIT Press, London, 2007.J. R. Quinlan. C4.5: Programs for Ma
hine Learning. Morgan Kaufmann Publishers,In
., San Mateo, 1 edition, de
 1992.A. Rakotomamonjy and V. Guigue. B
i 
ompetition iii: Dataset ii- ensemble of svmsfor b
i p300 speller. Biomedi
al Engineering, IEEE Transa
tions on, 55(3):1147�1154,mar 2008. doi: 10.1109/TBME.2008.915728.H. Ramoser, J. Muller-Gerking, and G. Pfurts
heller. Optimal spatial �ltering of singletrial eeg during imagined hand movement. Rehabilitation Engineering, IEEE Trans-a
tions on, 8(4):441�446, de
 2000. doi: 10.1109/86.895946.R. Rojas. Neural Networks: A Systemati
 Introdu
tion. Springer, Berlin, 1996.R. Rojas. Adaboost and the super bowl of 
lassi�ers a tutorial introdu
tion to adap-tive boosting, 2009. URL http://www.inf.fu-berlin.de/inst/ag-ki/rojas_home/do
uments/tutorials/adaboost4.pdf.S. Salzberg. On 
omparing 
lassi�ers: Pitfalls to avoid and a re
ommended ap-proa
h. Data Mining and Knowledge Dis
overy, 1:317�328, 1997. doi: 10.1023/A:1009752403260. 91

http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://www.inf.fu-berlin.de/inst/ag-ki/rojas_home/documents/tutorials/adaboost4.pdf
http://www.inf.fu-berlin.de/inst/ag-ki/rojas_home/documents/tutorials/adaboost4.pdf


BibliographyM. C. Sander, M. Werkle-Bergner, and U. Lindenberger. Amplitude modulations andinter-trial phase stability of alpha-os
illations di�erentially re�e
t working memory
onstraints a
ross the lifespan. NeuroImage, 59(1):646�654, 2012. doi: 10.1016/j.neuroimage.2011.06.092.F. S
hilling. Entwurf eines verteilten systems für die klassi�kation multivariater zeitreihenim psy
hophysiologis
hen kontext. Diplomarbeit, Freie Universität Berlin, Berlin, feb2012.A. S
hlogl and C. Brunner. Biosig: A free and open sour
e software library for b
iresear
h. Computer, 41(10):44�50, o
t 2008. doi: 10.1109/MC.2008.407.E. W. Sellers, D. J. Krusienski, D. J. M
Farland, and J. R. Wolpaw. Noninvasive brain-
omputer interfa
es at the wadsworth 
enter. In G. Dornhege, J. d. R. Millán, T. Hin-terberger, D. J. M
Farland, and K.-R. Müller, editors, Toward Brain-Computer Inter-fa
ing, 
hapter 2, pages 31�42. The MIT Press, London, 2007.J. P. Sha�er. Modi�ed sequentially reje
tive multiple test pro
edures. Journal of theAmeri
an Statisti
al Asso
iation, 81(395):826�831, 1986. URL http://www.jstor.org/stable/2289016.L. Shapley and B. Grofman. Optimizing group judgmental a

ura
y in the presen
e ofinterdependen
ies. Publi
 Choi
e, 43:329�343, 1984. doi: 10.1007/BF00118940.B. A. Shenoi. Introdu
tion to Digital Signal Pro
essing and Filter Design. Wiley-Bla
kwell, Hoboken, 1 edition, nov 2005.N. K. Squires, K. C. Squires, and S. A. Hillyard. Two varieties of long-laten
y positivewaves evoked by unpredi
table auditory stimuli in man. Ele
troen
ephalography andClini
al Neurophysiology, 38(4):387�401, 1975. doi: 10.1016/0013-4694(75)90263-1.S. Sun. An improved random subspa
e method and its appli
ation to eeg signal 
las-si�
ation. In M. Haindl, J. Kittler, and F. Roli, editors, Multiple Classi�er Systems,volume 4472 of Le
ture Notes in Computer S
ien
e, pages 103�112. Springer, BerlinHeidelberg, 2007. doi: 10.1007/978-3-540-72523-7_11.S. Sun, C. Zhang, and D. Zhang. An experimental evaluation of ensemble methods foreeg signal 
lassi�
ation. Pattern Re
ognition Letters, 28(15):2157�2163, 2007. doi:10.1016/j.patre
.2007.06.018.M. W. Tangermann, M. Krauledat, K. Grzeska, M. Sagebaum, B. Blankertz, C. Vidaurre,and K.-R. Müller. Playing pinball with non-invasive b
i. In D. Koller, D. S
huurmans,Y. Bengio, and L. Bottou, editors, Advan
es in Neural Information Pro
essing Systems21, pages 1641�1648. 2009.D. M. Titterington, G. D. Murray, L. S. Murray, D. J. Spiegelhalter, A. M. Skene,J. D. F. Habbema, and G. J. Gelpke. Comparison of dis
rimination te
hniques applied92

http://www.jstor.org/stable/2289016
http://www.jstor.org/stable/2289016


Bibliographyto a 
omplex data set of head injured patients. Journal of the Royal Statisti
al So
i-ety. Series A (General), 144(2):145�175, 1981. URL http://www.jstor.org/stable/2981918.M. van Gerven and O. Jensen. Attention modulations of posterior alpha as a 
ontrol signalfor two-dimensional brain-
omputer interfa
es. Journal of Neuros
ien
e Methods, 179(1):78�84, 2009. doi: 10.1016/j.jneumeth.2009.01.016.M. van Gerven, C. Hesse, O. Jensen, and T. Heskes. Interpreting single trial datausing groupwise regularisation. NeuroImage, 46(3):665�676, 2009. doi: 10.1016/j.neuroimage.2009.02.041.T. von Oertzen. Linear dis
riminant analysis. Le
ture, 2011. URL https://
ollab.it
.virginia.edu/a

ess/
ontent/group/0df0ea94-0905-4978-93ba-6d504f23f2ee/slides/Ma
hineLearning%20Classifier%20V.pdf.T. O. Zander and C. Kothe. Towards passive brain-
omputer interfa
es: applying brain-
omputer interfa
e te
hnology to human-ma
hine systems in general. Journal of NeuralEngineering, 8(2):025005, 2011. doi: 10.1088/1741-2560/8/2/025005.T. O. Zander, K. Ihme, M. Gärtner, and M. Rötting. A publi
 data hub for ben
hmarking
ommon brain-
omputer interfa
e algorithms. Journal of Neural Engineering, 8(2):025021, 2011. doi: 10.1088/1741-2560/8/2/025021.

93

http://www.jstor.org/stable/2981918
http://www.jstor.org/stable/2981918
https://collab.itc.virginia.edu/access/content/group/0df0ea94-0905-4978-93ba-6d504f23f2ee/slides/MachineLearning%20Classifier%20V.pdf
https://collab.itc.virginia.edu/access/content/group/0df0ea94-0905-4978-93ba-6d504f23f2ee/slides/MachineLearning%20Classifier%20V.pdf
https://collab.itc.virginia.edu/access/content/group/0df0ea94-0905-4978-93ba-6d504f23f2ee/slides/MachineLearning%20Classifier%20V.pdf


A. Result Se
tion Appendi
esA.1. Complete List of Base-Level Learnersnumber base-level learner1 
on + CSP + LRLDA2 δ + CSP + LRLDA3 θ +CSP + LRLDA4 α +CSP + LRLDA5 β +CSP + LRLDA6 γ +CSP + LRLDA7 rem +CSP + LRLDA8 
on + PE3 + SVMOPTC9 
on + PE4 + SVMOPTC10 
on + PE5 + SVMOPTC11 
on + LM + SVMOPTC12 
on + RM + SVMOPTC13 
on + GM + SVMOPTC14 δ + PE3 + SVMOPTC15 δ + PE4 + SVMOPTC16 δ + PE5 + SVMOPTC17 δ + LM + SVMOPTC18 δ + RM + SVMOPTC19 δ + GM + SVMOPTC20 θ + PE3 + SVMOPTC21 θ + PE4 + SVMOPTC22 θ + PE5 + SVMOPTC23 θ + LM + SVMOPTC24 θ + RM + SVMOPTC25 θ + GM + SVMOPTC

number base-level learner26 α + PE3 + SVMOPTC27 α + PE4 + SVMOPTC28 α + PE5 + SVMOPTC29 α + LM + SVMOPTC30 α + RM + SVMOPTC31 α + GM + SVMOPTC32 β + PE3 + SVMOPTC33 β + PE4 + SVMOPTC34 β + PE5 + SVMOPTC35 β + LM + SVMOPTC36 β + RM + SVMOPTC37 β + GM + SVMOPTC38 γ + PE3 + SVMOPTC39 γ + PE4 + SVMOPTC40 γ + PE5 + SVMOPTC41 γ + LM + SVMOPTC42 γ + RM + SVMOPTC43 γ + GM + SVMOPTC44 rem + PE3 + SVMOPTC45 rem + PE4 + SVMOPTC46 rem + PE5 + SVMOPTC47 rem + LM + SVMOPTC48 rem + RM + SVMOPTC49 rem + GM + SVMOPTC
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A. Result Se
tion Appendi
esA.2. Results: Left out Subje
ts From the Modi�ed MotorImaginary Data Setsmethod mean rankSTLRLDA 71.72 9.33DSWMV 70.91 8.83AB 71.53 8BC 70.87 8SWMV 70.54 6.83DHSWV 69.64 5.67ORACLE 69.14 5.33Sele
tBest 68.30 5MV 69.64 5HSWV 69.09 3CONCAT 55.35 1
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