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A widespread network involving cortical and subcortical brain structures forms the neural substrate of
human spatial navigation. Most studies investigating plasticity of this network have focused on the hippo-
campus. Here, we investigate age differences in cortical thickness changes evoked by four months of spatial
navigation training in 91 men aged 20-30 or 60-70 years. Cortical thickness was automatically measured be-

fore, immediately after, and four months after termination of training. Younger as well as older navigators

evidenced large improvements in navigation performance that were partly maintained after termination of
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Cortical thickness training. Importantly, training-related cortical thickening in left precuneus and paracentral lobule were ob-
Plasticity served in young navigators only. Thus, spatial navigation training appears to affect cortical brain structure
Spatial navigation of young adults, but there is reduced potential for experience-dependent cortical alterations in old age.
Aging © 2011 Elsevier Inc. All rights reserved.
Introduction that continuously update the individual's position in space via firing of

Successful navigation draws on deriving spatial information from
multiple sensory cues, creating and maintaining accurate spatial rep-
resentations in short- and long-term memory, as well as using and
manipulating these representations to guide behavior (Wolbers and
Hegarty, 2010). Consequently, a widespread network of brain struc-
tures is involved in spatial navigation. The hippocampus, caudate nu-
cleus, parahippocampal gyrus, posterior cingulate gyrus, cuneus,
precuneus, parietal lobe, and prefrontal cortex constitute neural un-
derpinnings of human spatial navigation (Aguirre et al., 1996; Gron
et al., 2000; Moffat et al., 2006; O'Keefe and Nadel, 1978).

The hippocampus and the parahippocampal gyrus play central
roles in allocentric (i.e., world centered) spatial processing, whereas
the parietal cortex and the caudate nucleus support egocentric (i.e.,
body centered) representations of locations (Becker and Burgess,
2001; laria et al., 2003; Maguire et al., 1998). Allocentric representa-
tions are mainly generated by so-called place cells in the hippocampus
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networks of cells responsive to spatial location (Ekstrom et al., 2003;
O'Keefe and Burgess, 1996). Egocentric representations are thought
to be based on neurons in the medial parietal area (precuneus) that
encode the distance and directions of environmental landmarks,
whereas the posterior parietal cortex may be involved in translating
egocentric into allocentric information and vice versa (Burgess et al.,
2001). Structural and functional individual differences in the hippo-
campus and caudate nucleus also co-vary with between-person differ-
ences in navigational strategy. For example, Bohbot et al. (2007) found
that allocentric learners have significantly more gray matter in the
hippocampus and less gray matter in caudate nucleus relative to ego-
centric learners. Lerch et al. (2011) have shown that mice trained on a
spatial variant of a maze that requires allocentric strategies show
growth restricted to the hippocampus, whereas mice trained on a
cued version of the maze that facilitates egocentric strategies show
growth in the striatum. Thus, navigational learning may induce struc-
tural brain changes in a use-dependent way.

Spatial navigation performance is highly vulnerable to aging. Older
rats are generally impaired in navigation performance compared to
younger rats (Barnes, 1979; Begega et al., 2001; Ingram, 1988; McLay
et al,, 1999), and younger adults outperform their older counterparts
in spatial navigation tasks (Driscoll et al., 2005; Lovdén et al., 2005b;
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Mahmood et al., 2009; Moffat et al., 2001; Newman and Kaszniak, 2000;
Wilkniss et al., 1997). Functional imaging studies have shown that older
adults exhibit reduced hippocampal activation during navigation tasks
compared to younger adults (Antanova et al, 2009; Moffat et al.,
2006), which is consistent with findings suggesting that older adults
rely more on egocentric processes (Lovdén et al, 2005a; Rodgers
et al,, in press). In line with these patterns, older adults report avoiding
unfamiliar routes and places (Burns, 1999), which may lead to a less
engaged lifestyle that in turn further affects cognitive performance in
old age (Hertzog et al., 2009; Lovdén et al., 2005a).

With some exceptions (Bohbot et al., 2011; laria et al., 2003;
Moffat et al., 2006, 2007), investigations into the plasticity of spatial
navigation performance and its underlying neural substrates have
predominantly focused on the hippocampus. This is probably due to
the prominent role of the hippocampus in models of spatial memory
(e.g., Bird and Burgess, 2008; Hartley et al., 2007; Moffat et al., 2006)
and because the hippocampus is a highly plastic brain region (e.g.,
Kempermann et al., 2002; van Praag et al., 2000). For example,
Maguire et al. (2000, 2006) reported cross-sectional data demonstrating
larger posterior and smaller anterior hippocampal volumes of London
taxi drivers compared to controls. We have reported that prolonged spa-
tial navigation training can protect hippocampal integrity against age-
related decline (Lovdén et al, in press). In that study, younger and
older men navigated in a virtual environment while walking on a tread-
mill for 50 min every other day over a four-month period. Younger and
older participants displayed stable hippocampal volumes both during
training as well as four months after termination of training, whereas
participants in a walking-only control group showed rates of decrease
in hippocampal volume that approximated longitudinal observations of
normal age-related decline (e.g., Raz et al., 2005).

Although this focus on the plasticity of the hippocampus and its
involvement in spatial navigation performance is warranted, findings
on cortical involvement in navigation and on age differences therein
(Ghaem et al.,, 1997; Maguire et al., 1998; Moffat et al., 2007; Wolbers
et al, 2007) should not be overlooked. Also, reports of experience-
dependent alterations in gray matter structure of cortical brain regions
(Draganski et al., 2004; Ilg et al., 2008) underscore the importance of ex-
amining cortical correlates of experience-dependent changes in spatial
navigation performance. Here, we extend the analyses reported by Lov-
dén and colleagues, which focused on manually segmented hippocampal
volumes (Lovdén et al., in press; see also Lovdén et al., 2011), by investi-
gating whether spatial navigation training evokes changes in cortical
thickness. We present results from the same longitudinal study with
4 months of spatial navigation training administered to younger and
older men. Cortical reconstruction and volumetric segmentation of MR
images, collected before, immediately after, and four months after termi-
nation of training, was performed with the FreeSurfer image analysis
suite (http://surfer.nmr.mgh.harvard.edu/). We hypothesized that spa-
tial navigation training, which requires both allocentric and egocentric
processing, induces regional changes in cortical thickness of brain areas
supporting spatial navigation. Given that animal models point to decre-
ments in the capacity for adaptive cortical changes with advancing age
(Gruntzendler et al., 2002; Mizhari and Katz, 2003; Trachtenberg et al.,
2002; Wagner et al, 2000), we further predicted that navigation-
induced cortical thickening would be less pronounced in older than in
younger adults.

Methods
Participants

In total, 118 volunteering men were recruited through newspaper
advertisements, word-of-mouth recommendation, and flyers circulated
in Berlin, Germany. Participants were all right-handed, had normal or
corrected-to-normal vision, reported no history of cardiovascular disease
(except treated hypertension), neurological or psychiatric conditions,

problems hindering gait or balance, or drug/alcohol abuse. They also
reported no use of anti-seizure or antidepressant drugs. Twelve partici-
pants were excluded due to brain pathology (e.g., infarcts, large white-
matter lesions) and six other participants were excluded due to imaging
artifacts (e.g., movement). Nine participants dropped out during the
study after pretest due to lack of motivation, health, or other personal
issues.

Thus, the effective sample consisted of 44 younger participants aged
20-30years (M=26.0; SD=2.8) and 47 older participants aged
60-70 years (M= 65.0; SD=2.8). After completion of pretest, partici-
pants were matched on Digit Symbol performance (Wechsler, 1981)
and age within each age group, and then randomly assigned to either
a navigation group (Nyoung = 23; Noia = 23) or a walk-time-yoked con-
trol group (Nyoung = 21; noia = 24). The unequal effective sample sizes
reflect unequal dropout after pretest. Table 1 summarizes descriptive
findings for all participants and the time between pretest and posttests.

Participants were paid 1150 Euro for completion of the whole
study. The ethical review board of the Otto-von-Guericke University
of Magdeburg approved the imaging part of the study, and the ethical
review board of the Max Planck Institute for Human Development,
Berlin approved the behavioral part of the study. Written informed
consent was obtained prior to the investigation.

Study design

A detailed description of the study design has been reported else-
where (see Lovdén et al,, in press, 2011). In short, participants in the
navigation group performed a navigation task in a virtual environ-
ment of a zoo while walking on a treadmill at their own preferred
speed. Participants in the control group walked the exact same
amount of time on a treadmill but without the navigation task. After
pretest and before posttest 1, participants completed 42 training ses-
sions. Each training session lasted 50 min. Pretest was completed im-
mediately before and posttest 1 immediately after the training period.
The time elapsing between pretest and posttest 1 was on average
118 days. After a mean of additional 121 days without training, partici-
pants completed posttest 2.

Spatial navigation training

Participants in the navigation group were asked to navigate through
a virtual zoo via pressing one of two buttons (to navigate left or right;
see Fig. 1). In each trial, participants had to find 14 animals that were
successively shown in the right corner of the screen. After having
found all 14 animals as fast as possible, participants had to find the
exit of the zoo. Feedback about performance was provided after each
trial. There were always 4 trials in the same zoo, in which participants
had to find the same animals, but in a different order. Afterwards, par-
ticipants were presented with a new zoo with different animals and
street layout and had to orient themselves anew. The subsequent train-
ing session started at the exact final position of the previous session. The
complex layout of the virtual zoos prevented participants from being
able to walk through one zoo in only one session. In sum, we con-
structed 20 different training zoos. All participants were presented
with the zoos in the same order. Depending on their performance,
they completed different numbers of zoos in the course of 42 training
sessions. At the beginning of training, participants were instructed to
choose their own preferred speed, which was then kept constant over
the training period. Training groups did not differ significantly in their
mean walking speed (ts<.81).

At pretest, posttest 1, and posttest 2, navigation performance of all
participants was assessed with a task similar to that used in the naviga-
tion training. At all three main measurement points, magnetic reso-
nance images (MRI) were also obtained.
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Table 1
Sample descriptives as a function of age and training group.
Measure Younger (20-30 years) Older (60-70 years)
Navigators Walkers Navigator Walkers
M SD M SD M SD M SD
Age (years) 25.1 2.8 27.0 2.5 65.3 2.8 64.6 29
DS 57.2 111 57.5 121 42.0 6.8 37.8 9.8
Vocabulary 30.0 2.7 30.5 3.2 322 1.8 31.6 2.1
Raven's matrices 9.5 4.2 103 3.2 4.5 23 4.4 3.0
Navigation performance 209 6.1 219 4.6 7.6 29 8.8 2.7
Days between pretest and posttest 1 118 4.6 117 4.6 115 5.0 118 5.4
Days between posttest 1 and posttest 2 121 6.2 123 6.4 122 2.8 120 7.1

Note. The Digit-Symbol Substitution Test (DS) is a perceptual speed measure from Wechsler (1981). The vocabulary test asked participants to identify real words among four
nonwords (Lehrl et al., 1991). The eighteen odd-numbered items from set II of the Raven's advanced progressive matrices were administered in computerized form. Navigation
performance denotes the number of animals found within 50 min in the virtual zoo at pretest.

MRI acquisition

High-resolution T;-weighted images were acquired on a 3 Tesla Mag-
netom Trio tomograph (Siemens, Erlangen, Germany), with an 8-channel
phased-array head coil. We used an MPRAGE sequence (TE=5.12 ms,
TR =2600 ms, TI= 1100 ms, flip angle =7°, bandwidth = 140 Hz/pixel,
matrix = 320 x 320 x 240, isometric voxel size = 0.8 mm>).

MRI image processing / reconstruction

Cortical reconstruction and volumetric segmentation was per-
formed with the FreeSurfer image analysis suite (http://surfer.nmr.
mgh.harvard.edu/). The technical details of these procedures have
been described thoroughly elsewhere (Dale et al., 1999; Fischl et al.,
20044, 2004b; Han et al., 2006; Jovicich et al., 2006; Segonne et al.,
2004). Briefly, this program uses intensity and continuity information
from MR volumes to reconstruct and measure cortical thickness, and
provides valid measures at submillimeter resolution (Fischl and Dale,
2000; Kuperberg et al., 2003; Rosas et al., 2002; Salat et al., 2004). As-
sessments of test - retest reliability of FreeSurfer have revealed high
intra-class correlations of .994 for MPRAGE sequences (Wonderlick
et al.,, 2009) and high consistency of absolute within-subject mea-
sures of cortical thickness assessed in intervals of minutes to weeks
with variations of only <.05 mm (Wang et al., 2008).

FreeSurfer protocol

All reconstructed data were visually checked for segmentation accu-
racy at each time point. No manual interventions with the MRI data
were performed.

We used the longitudinal processing scheme implemented in
FreeSurfer to incorporate the subject-wise correlation of longitudinal
data into the processing stream. All three time points were first pro-
cessed with the cross-sectional stream. Then, a base template was
created from all three time points, which operates as an initial esti-
mate for the segmentation and surface reconstruction. The three
measurement time points were then registered to this template to
ensure non-biased analysis with regard to the three time points.
This work flow significantly reduces the variability of results across
time points and thus increases the robustness and sensitivity of the
overall longitudinal analysis, thereby also improving the likelihood
to detect subtle changes (Han et al., 2006).

We then computed thickness difference maps by subtracting the
longitudinally processed time point 1 image from the longitudinally
processed time point 2 image and time point 3 image, respectively.
The two resulting difference maps for each individual were then
resampled, mapped onto a common surface, and smoothed with a
10 mm FWHM isotropic Gaussian kernel.

Statistical analyses

Navigation performance was analyzed with a mixed 3-way analy-
sis of variance (ANOVA) with training group (navigators, controls),
age group (young, old), and time (pretest, posttest 1, posttest 2) as
factors. The alpha level for all analyses conducted in SPSS was set to
p=.05.

The cortical thickness difference maps (posttest 1-pretest; post-
test 2-pretest) were first analyzed with a vertex-wise general linear
model (GLM: one-sample t-test) to assess regional changes in cortical
thickness separately in all four groups (young navigators, young con-
trols, old navigators, old controls). We applied a statistical threshold
of p<.05, corrected for multiple comparisons by means of False Dis-
covery Rate (FDR), with a cluster extent threshold of 150 vertices.
To ascertain that any lack of effects in the old groups did not arise
from a combination of sub-threshold increases in the old navigation
group and decreases in the old control group, we additionally applied
a more lenient and thus explorative threshold to probe for cortical
thickness changes in the elderly group (p<.001, uncorrected), with
again a cluster extent threshold of 150 vertices to only report trust-
worthy clusters of considerable size. Significant clusters were then
treated as regions of interest (ROIs), traced in tksurfer and exported
to SPSS. To determine whether changes were selective for the naviga-
tors, differences in cortical thickness between time points were com-
pared across training groups using independent t-tests. Finally, ROI
data from all three time points were analyzed with a mixed 3-way
ANOVA, with training group, age group, and time as factors, to directly
compare navigation to control groups and test for age differences in
training-related thickness effects. To trace the source of interactions,
the ROI data for younger and older adults were also analyzed separately
with mixed 2-way ANOVAs, using training group and time as factors.

To investigate brain-behavior associations, we computed correla-
tions between improvements in navigation performance (posttest
1-pretest) and changes in the extracted ROIs, using the Pearson's cor-
relation coefficient (p<.05). We also computed correlations between
improvements in navigation performance (i.e., posttest 1-pretest)
and the vertex-wise whole-brain changes (posttest 1-pretest) in cor-
tical thickness to probe for whether other possible regions of change
were correlated with behavioral improvement. Specifically, we used
the behavioral improvement in navigation performance as a predictor
in the vertex-wise GLM (one-sample t-test) analysis of the cortical
thickness difference maps of the navigation groups (p<.05, FDR)
implemented in FreeSurfer. In addition, we performed correlational
analyses between cortical thickness at pretest and spatial navigation
performance at pretest, posttest 1, and the change in performance
from pretest to posttest 1, using the Qdec application in FreeSurfer
(p<.05, FDR). This was done to test for possible cross-sectional differ-
ences in cortical thickness that could potentially be related to spatial
navigation performance.
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Fig. 1. Experimental task. Participants in the navigation group had to navigate through a virtual zoo via pressing one of two buttons on a railing in front of them (A). In each trial,
participants had to find 14 animals that were successively shown in the right corner of the screen. After having found all 14 animals as fast as possible, participants had to find the
exit of the zoo. There were always 4 trials in the same zoo, in which participants had to find the same animals, but in a different order. Afterwards, participants were presented with
a new zoo with different animals and street layout and had to orient themselves anew in the complex layout of another virtual zoo (B).

Results
Behavioral results

As reported elsewhere (Lovdén, et al., in press), analyses of naviga-
tion performance (see Fig. 2) revealed significant main effects of training
group, F(1,87)=36.57, p<.05, partial eta-squared (nf)) =.30, age group,
F(1,87)=173.07, p<.05, n§=.66, and time, linear F(1,87)=102,89,
p<.05, (3 =.54, and quadratic F(1,87) =64,78, p<.05, 12 =.43. These
main effects were qualified by linear, F(1,87) =40.18, p<.05, 13 = .32,
and quadratic, F(1,87) = 55.41, p<.05, 3 = .39, time x training group in-
teractions. Navigators gained more in performance than controls.
Training-related performance gains were partly maintained 4 months

after termination of training but, as shown by the significant quadratic
time x training group interaction, they were reduced in magnitude. In
addition, the linear time x age group interaction was significant,
F(1,87) =4.16, p<.05, n3 = .05, reflecting slightly greater changes over
time for older compared to younger adults. However, the linear age
group x training group x time interaction did not approach significance
(p>.05), indicating similar performance gains from navigation training
in both age groups (Fig. 2).

Cortical thickness changes

We found significant regional increases in cortical thickness be-
tween pretest and posttest 1 for young navigators in left precuneus
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Fig. 2. Behavioral performance improvement. Mean (4 SE) navigation performance
(number of targets found within 50 min of navigation) of young and old navigation
and control groups before and after training.

(Talairach coordinates at peak vertex: —7, —48, 50; Brodmann Area
(BA) 7), left superior parietal lobule (peak vertex at —32, —47, 59;
BA 7) and left paracentral lobule (peak vertex at: —5, —32, 58; BA
5; p<.05, corrected using FDR). No statistically reliable thickening or
thinning was observed in any other brain region. There were no sig-
nificant changes in cortical thickness in young controls or in either
older group. At the more lenient uncorrected threshold of p<.001,
there were again no cortical thickness changes in old navigators or
young controls, but one significant cluster of decrease in old controls
in right middle frontal gyrus (peak vertex at: 40, 30, 16; BA 46; see
Fig. 4).

To further investigate the increases in young navigators, we
extracted the mean changes in the three ROIs and compared the cor-
tical thickening in young navigators to young controls. Young naviga-
tors exhibited a significantly greater thickness difference in left
precuneus, t(42) =3.43, p<.05, Cohen's d = 1.06, and left paracentral
lobule, t(42)=3.12, p<.05, d=.96, between pretest and posttest 1
than young controls (see upper half of Fig. 5). This difference in cortical
thickness between young navigators and young controls was no longer
reliable at posttest 2 (precuneus: t(42)=.54, ns; paracentral lobule:
t(42) = —.11, ns). The cortical thickening in left superior parietal lobule
between pretest and posttest 1 was not significantly greater in young
navigators than in young controls, t(42) =1.42, p=.16, and hence is
not discussed further. The other two clusters that survived the compar-
ison to the control group are depicted in Fig. 3.

Fig. 3. Cortical thickness changes. Significant regional increases in cortical thickness be-
tween pretest and posttest 1 in young navigators in left precuneus (—8; —47, 50; BA7)
and left paracentral lobule (—6, —37, 66; BA 5; FDR p<.05).
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Fig. 4. Cortical thinning. Significant regional decrease in cortical thickness in old con-
trols in right middle frontal gyrus (40, 30, 16; BA46) at p<.001, uncorrected, with a
cluster extent threshold of 150 vertices.

In older adults, navigators and controls did not show significant
differences in their cortical thickness over time, neither in precuneus
(posttest 1-pretest: t(45)= —1.64, ns; posttest 2—pretest: t(45)=
—.69, ns) nor in paracentral lobule (posttest 1-pretest: t(45)=
—.11, ns; posttest 2—pretest: t(45) = —.27, ns; see Fig. 5).

A mixed 3-way ANOVA, with training group, age group, and time as
factors on the extracted ROI data confirmed this pattern with a signifi-
cant quadratic time x training group interaction for left precuneus,
F(1,87)=10.24, p<.05, n2=.10, and a significant quadratic time x
training group x age group interaction in paracentral lobule, F(1,87) =
4.02, p<.05, n§:.04. Separate analyses for younger and older adults
showed significant quadratic time x training group interactions in the
young, in both left precuneus, F(1,42) =17.54, p<.05, ng:.30, and
left paracentral lobule, F(1,42) = 11.46, p<.05, n2 =21, but not in the
old age group, F(1,45)=1.74, ns, for precuneus and F(1,45)=.07, ns,
for paracentral lobule.

To further investigate the decrease in the old control group,
detected at the more lenient threshold of p<.001, we extracted the
mean changes in the significant cluster in right middle frontal gyrus
and compared the cortical thinning in old controls to changes in
this region in old navigators. Old controls exhibited significantly larg-
er decrease in cortical thickness in right middle frontal gyrus between
pretest and posttest 1 than old navigators (t(45) = —2.19, p<.05,d =
—.65). This difference was no longer reliable at posttest 2 (t(45) =
—.62, p=.54). In young adults, navigators and controls did not
show any significant differences in cortical thickness in this region
(ts<1, ns).

Again, the mixed 3-way ANOVA, with training, age group, and
time as factors on the cluster in the right middle frontal gyrus verified
this pattern and revealed a significant quadratic time x training group
interaction, F(1,87) =4.10, p<.05, nﬁ =.04, that was detectable in old
adults only (F(1,45) =9.04, p<.05, 13 =.17). Accordingly, there were
significant linear (F(1, 87)=5.80, p<.05, 1n2=.06) and quadratic
(F(1,87)=5.88, p<.05, n2=.06) time x age group interactions, and
a trend for a significant quadratic time x group x age group interac-
tion, F(1,87) =3.92, p=.05, 13 =.04.

In summary, we found training-related cortical thickening in left
precuneus and paracentral lobule in young but not in old navigators.
In the old control group, a trend toward cortical thinning in right mid-
dle frontal gyrus was observed that was nonexistent in the old navi-
gation group (see Table 2).
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Fig. 5. Differences in cortical thickness between young and old navigators and controls over time. Young navigators exhibited a significantly greater thickness difference in left pre-
cuneus and left paracentral lobule between pretest and posttest 1 than young controls (upper half of figure). This difference in cortical thickness between young navigators and
young controls was no longer reliable at posttest 2. In older adults (lower half of figure), navigators and controls did not show significant differences in cortical thickness over
time, neither in precuneus nor in paracentral lobule. In left precuneus, there was a trend for thickness decrease in older controls, but not in older navigators.

Correlations between brain structure changes and behavior

We did not find any significant correlations between changes in
navigation performance and changes in precuneus or paracentral lob-
ule ROIs (p>.05) or any significant relation between changes in nav-
igation performance and vertex-wise whole-brain cortical thickness
as computed in FreeSurfer. We also tested for correlations between
pretest vertex-wise cortical thickness and behavioral performance
at pretest, pretest cortical thickness and behavioral improvement in
posttest 1, and pretest cortical thickness and performance at posttest
1. Again, no correlation was statistically reliable, even at more lenient
thresholds.

Discussion

This study investigated whether human spatial navigation train-
ing is associated with changes in cortical thickness. Younger as well
as older navigators exhibited large improvements in navigation per-
formance after four months of training, and these improvements
were partly maintained four months after termination of training.
As expected, older adults generally showed lower performance than
younger adults. Younger adults displayed training-related increases
in thickness in left precuneus and paracentral lobule. No significant

Table 2
Significant cortical thickness changes in young navigators and old controls between
pretest and posttest 1.

Anatomical area Hemisphere Talairach p value Nav > controls
coordinates p<.05
X y z
Increases in young navigation group
Paracentral L —5 —32 58 FDRp<.05 t(42)=3.12
lobule
Precuneus L —7 —48 50 FDR p<.05 t(42)=3.43
Superior parietal L —32 —47 59 FDRp<.05 ns
lobule
Decreases in old control group
Middle frontal R 40 30 16 p<.001, t(45)=—2.19
gyrus uncorr

training-related increases in cortical thickness were observed for
older adults. A trend toward decrease in thickness in right middle
frontal gyrus was observed in the older control group but, importantly,
not in the older navigation group.

The cortical thickening of left precuneus and paracentral lobule in
young navigators may constitute a structural neural signature of in-
creased functional usage of this region. Indeed, precuneus and para-
central lobule belong to the parietal cortex and are part of the
neural network underlying spatially guided behavior (Colby, 1999;
Colby and Goldberg, 1999; Malouin et al., 2003; Selemon and
Goldman-Rakic, 1988). The parietal cortex may integrate the percep-
tion of immediate space and the spatial orientation of the individual
with more distant spatial representations, allowing navigators to rep-
resent the route to a goal (Calton and Taube, 2009). Single-neuron re-
cordings revealed that the parietal cortex, in interaction with the
hippocampus, plays a critical role in the selection of the most appro-
priate route between two points (Nitz, 2009). As suggested by Becker
and Burgess (2001), the posterior-medial parietal cortex may act in
concert with lateral parietal areas in elaborating and translating infor-
mation about egocentric and allocentric spatial relations, as well as
performing higher-order processes such as voluntary shifting of at-
tention and abstract mental imagery (Cavanna and Trimble, 2006).
Positron Emission Tomography (PET) has delineated two functional
networks engaged during mental simulations of routes: (a) a non-
specific memory network, including the posterior and middle parts
of the hippocampal regions, the dorsolateral prefrontal cortex, and
the posterior cingulum, and (b) a specific mental navigation network
involving the left precuneus, insula, and medial part of the hippocam-
pal regions (Ghaem et al., 1997). It appears that the precuneus plays a
central role in a wide spectrum of highly integrated tasks, including
visuo-spatial imagery, episodic memory retrieval, and self-referential
operations (Cavanna and Trimble, 2006; Margulies et al., 2009), all of
which were potentially involved in the present navigation task and
thus could have contributed to the training-related volume increase ob-
served in the young.

Taken together, precuneus and paracentral lobule participate in the
neural network underlying the complex process of spatial navigation. It
is plausible that the increased demand on these regions posed by the
enduring spatial navigation training triggered the system to structurally
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adjust to the required functional output in young adulthood. However,
given that changes in structure did not correlate with behavioral im-
provements, it remains unclear whether cortical thickening critically
contributed to increased performance. It is possible that we did not
have the required power to detect associations between changes (cf.
Bonate, 2000; Hertzog et al., 2006). Furthermore, our sample exhibited
relatively restricted individual differences in change, thereby further re-
ducing the chances to detect a reliable link between changes in behavior
and changes in brain structure. The absence of a behavioral correlate to
the changes in cortical thickness underscores the need to investigate
the functional relevance of structural changes more closely (Wolbers
and Hegarty, 2010).

Itis currently not known which neurobiological mechanisms under-
lie experience-induced increases in human cortical thickness. Possible
candidate processes are changes in size of the neuropil or glia, variations
in connectivity depending on dendritic and axonal arborization or
synaptogenesis, or changes in vascularization (Kempermann et al.,
2002; Kronenberg et al., 2006; Roth et al., 2010; Trachtenberg et al.,
2002). In the future, other additional imaging methods, such as PET,
MR-spectroscopy or Arterial Spin Labeling, may be combined with cor-
tical thickness assessment to delineate the biological substrates of gray
matter volume changes.

The effects of navigation training on brain structure were strongly
influenced by adult age: Cortical thickening was restricted to the
younger navigation group. This finding seems to contradict some pre-
vious reports that paint a more optimistic picture of cortical plasticity
in old age (Boyke et al., 2008; Engvig et al., 2010). However, the infre-
quent findings suggesting neuroplasticity of cortical regions in old
age should not be overstated; our results serve as a reminder of the
well-known age-related decrements in human brain structure (e.g.,
Jernigan et al., 2001; Raz et al., 2005; Salat et al., 2004). Arguably,
these age-related decreases would first need to be attenuated and
then reversed in order to pave the way for experience-driven in-
creases in brain structure. This was the pattern found for hippocam-
pal volume in Lovdén et al. (in press). Specifically, in that study the
older control groups displayed volume losses approximating previous
longitudinal findings of age-related decline in hippocampal volume
(Raz et al., 2005), whereas older navigators exhibited stable hippo-
campal volumes that were maintained four months after termination
of training. Despite the fact that the whole-brain analyses of cortical
thickness reported here did not reveal significant decreases for the
older groups at the conservative threshold of FDR p<.05, there were
trends for thickness decreases in left precuneus for older controls
but not for older navigators (see lower left panel in Fig. 5). Obviously,
this pattern is consistent with that reported for hippocampal volume
in the study by Lovdén et al. (in press).

Moreover, at the more liberal and thus rather explorative thresh-
old level of p<.001, a similar pattern was observed for right middle
frontal gyrus, indicating an age-related cortical thinning in the older
control group. Again, this decrease was nonexistent in the old naviga-
tion group. The lateral prefrontal cortex, including the middle frontal
gyrus, is known to be activated during spatial working memory tasks
(Nagel et al., 2009) and in higher-order cognitive control tasks (Miller
and Cohen, 2001; Taren et al., 2011). Given that older adults per-
formed less well than younger adults in the spatial navigation task,
it is conceivable that the training posed higher demands on working
memory and cognitive control in the older adults. This higher de-
mand may have resulted in structural adaptation of the middle fron-
tal gyrus for older adults. The stable frontal cortical thickness in old
navigators may therefore reflect attenuated age-related deterioration
of gray matter—a deterioration that was visible in the old control
group (cf. Lévdén et al., in press).

It should be noted that only men were investigated in this study.
This was done to reduce inter-individual differences in navigation
strategies (Driscoll et al., 2005; Gron et al., 2000; Sandstrom et al.,
1998). However, the assumption that men tend to use on average

more allocentric strategies than women (Lovdén et al., 2007) does
not hold unequivocally for older persons, who may predominantly
rely on egocentric strategies irrespective of sex (Rodgers et al., in
press). Hence, it is important to corroborate the findings from the
present study with an investigation of possible structural alterations
from navigation training in both younger and older women, and
with an assessment of navigational strategies in younger and older
participants (Gramann et al., 2010).

To conclude, this study shows that performance in a complex spa-
tial navigation task can be substantially improved in younger as well
as in older adults, which may have implications for the mobility of
older people in their daily lives. Spatial navigation training had a sus-
tainable effect on cortical brain structure of younger adults. Therefore,
we were able to extend evidence on experience-driven plasticity in the
adult brain (Bengtsson et al., 2005; Cannonieri et al., 2007; Draganski et
al., 2004, 2006; Gaser and Schlaug, 2003; Granert et al., 2011; Ilg et al,
2008; Maguire et al., 2006; Miinte et al., 2002; Taubert et al., 2010). Fi-
nally, our findings confirm the proposition that normal aging reduces
the potential for experience-dependent structural alterations in cortical
areas (Gruntzendler et al., 2002; Lovdén et al., 2010; Mizhari and Katz,
2003; Trachtenberg et al., 2002; Wagner et al., 2000).
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