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Abstract and Keywords

This chapter analyzes how valuable the assumption of 
systematic environment imbalance is for performing rough-
and-ready intuitive estimates, which people regularly do when 
inferring the quantitative value of an object (e.g., its 
frequency, size, value, or quality). The chapter outlines how 
systematic environment imbalance can be quantified using the 
framework of power laws. It investigates to what extent 
power-law characteristics and other statistical properties of 
real-world environments can be allies of two simple estimation 
heuristics, QuickEst and the mapping heuristic. The analyses, 
which involve comparing the estimation performances of the 
heuristics relative to more complex strategies, demonstrate 
that QuickEst could be particularly suited for deriving rough-
and-ready estimates in skewed distributions with highly 
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dispersed cue validities, whereas the mapping heuristic might 
be most suited when the cues have similar validities.

Keywords:   power law, estimation, statistical properties, QuickEst heuristic,
mapping heuristic, skewness

Both organism and environment will have to be seen as 
systems, each with properties of its own, yet both hewn 
from basically the same block.

Egon Brunswik

Much of the world is in a state of predictable imbalance. This 
is a notion that is commonly attributed to the Italian economist 
Vilfredo Pareto, who was a professor of political economy at 
the University of Lausanne in Switzerland in the 1890s. He 
first introduced what is now known as the Pareto law of 
income distribution in his Cours d’Économie Politique (Pareto,
1897) where he described the finding that income and wealth 
distributions exhibit a common and specific pattern of 
imbalance across times and countries. In qualitative terms, the 
predictable imbalance in income and wealth distributions is 
that a relatively small share of the population holds a 
relatively large share of the wealth.

For an illustration, let us turn to the exclusive circle of the 
global rich. Each year, Forbes magazine publishes its famous 
annual ranking of the wealthiest people around the globe. The 
2008 listing included a total of 1,125 billionaires, among them 
not only the “usual suspects” such as Bill Gates and Warren 
Buffett, but also newcomers such as Mark Zuckerberg, 
founder of the social networking site Facebook, and at age 23 
years possibly the youngest self-made billionaire ever (Kroll,
2008). Even in this highly selective group of the world’s super-
rich, the distribution of wealth is highly unbalanced. One 
measure of this imbalance is the share of the collective net 
worth of these wealthiest people that goes to the top 1% of 
them. In 2008, the 11 richest billionaires’ collective fortune 
amounted to as much as that of the 357 “poorest” billionaires.

(p.380)  One consequence of this predictable imbalance is that 
if somebody were to estimate the net worth of a billionaire, 
say, Donald Trump, a good starting point would be to assume 
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that the fortune in question is modest. Why? Because most 
billion-dollar fortunes in this skewed world of incomes and 
wealth are small.

The goal of this chapter is to analyze how valuable the 
assumption of systematic environment imbalance is for 
performing rough estimates. By such estimates, we mean the 
routine assessment of quantities (e.g., frequencies, sizes, 
amounts) in which people regularly engage when they infer 
the quantitative value of an object (such as its frequency, size, 
value, or quality). To this end, we first outline how systematic 
environment imbalance can be described using the framework 
of power laws. Then, we investigate to what extent power-law 
characteristics as well as other statistical properties of real-
world environments can be allies of simple heuristics in 
performing rough-and-ready estimates, thereby leading to 
ecological rationality. For this purpose we will introduce two 
heuristics: The first, QuickEst, uses simple building blocks for 
ordered cue search and stopping and is particularly suited for 
skewed environments. The second, the mapping model or 
mapping heuristic, is built on the simplifying decision 
mechanism of tallying and can be applied to a broader range 
of distributions.

The Ubiquity of Power-Law Regularities

The Pareto law belongs to the family of power laws. A power-
law distribution of the sizes of objects (on some dimension) 
implies a specific relationship between the rank of an object 
and its size. Let us illustrate this relationship with a graph 
(adopting Levy & Solomon’s, 1997, approach to analyze 
power-law distribution of wealth). Suppose one takes all the 
billionaires in the Forbes 2008 (Kroll, 2008) listing, ranks them 
by their wealth, and then plots the billionaires’ wealth against 
their rankings. Figure 15-1a shows the resulting J-shaped 
distribution (where the “J” is rotated clockwise by 90 degrees), 
which reveals that a great many billionaires have “small” 
fortunes, and only very few have resources much greater than 
those small fortunes. This picture becomes even more 
interesting if it is redrawn with logarithmic horizontal and 
vertical axes. As Figure 15-1b shows, the resulting rank–size 

distribution (Brakman, Garretsen, Van Marrewijk, & van den 
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Figure 15-1:  The world’s 1,125 
billionaires in 2008 rank ordered by 
fortune. (a) Absolute data. (b) Same data 
but with the logarithmic values (base 10) 
of ranks and fortune. The solid line 
corresponds to the least-square fit and 
has a slope of −.78. The approximate 
straight-line form implies that the 
distribution follows a power law (see also 
Levy & Solomon, 1997). Data from the
Forbes magazine 2008 survey (Kroll,
2008).

Berg, 1999) on a log–log scale is quite close to a straight line.1

This inverse linear (p.381)

(p.382)

relationship 
between the 
log of the 
magnitude of a 
billionaire’s 
fortune and the 
person’s 
logarithmic 
rank suggests 
that the wealth 
distribution in 
the Forbes list 
follows a 
power-law 
distribution 
(Levy & 
Solomon,
1997).
Perhaps the 
most well-
known 
instance of a 
power-law 
distribution in 
the social 
sciences is
Zipf’s law. In 
his book
Human 

Behavior and 

the Principle 

of Least 

Effort, George 
Kingsley Zipf 
(1949) 
observed that 
rank–size 
distributions 
in domains as diverse as city sizes and word frequencies can 

Figure 15-1:  The world’s 1,125 
billionaires in 2008 rank ordered by 
fortune. (a) Absolute data. (b) Same data 
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corresponds to the least-square fit and 
has a slope of −.78. The approximate 
straight-line form implies that the 
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2008).
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be described by a straight line in a log–log plot, whose slope q

equals −1. In the context of city sizes, this slope means that 
the population of a city is inversely proportional to its rank: 
Consequently, the second-ranked city in a country has half the 
population of the biggest city, the third-ranked city one-third 
that population, and so on. The rank–city size distributions for 
cities within one country appear to fit Zipf’s law remarkably 
well.2 In terms of a probability distribution, this means that 
the probability that the size of a city (or any other object) is 
greater than some S is proportional to 1/S: P(Size 〉 S)

S
q, with q ≈ −1 (Gabaix, 1999).

Power-law distributions occur in an extraordinarily diverse 
range of domains, for instance, the sizes of earthquakes, firms, 
meteorites hitting the earth, moon craters, solar flares, and 
computer files; the intensity of wars; the frequency of use of 
words in any human language or of occurrence of personal 
names in most cultures; the numbers of papers that scientists 
write, of citations received by papers, of hits received by 
websites, of telephone calls made; the sales of books and 
music recordings; the number of species (p.383)  in biological 
taxa; and the likelihood that a record in memory will be 
needed (see Bak, 1997; Buchanan, 1997; Krugman, 1996; 
Lehman, Jackson, & Lautrup, 2006; Newman, 2005; 
Schroeder, 1991).

Although Pareto’s notion of “predictable imbalance” originally 
referred to income distributions, we use it here to describe the 
phenomenon of pronounced environmental skewness that is 
characteristic of power-law distributions: Few objects take on 
very large values (e.g., frequency, intensity, size) and most 
take on medium to small values. In high-energy physics, for 
instance, about half of all papers receive two or fewer 
citations, and the top 4.3% of papers produces 50% of all 
citations, whereas the bottom 50% of papers yields just 2.1% 
of all citations (Lehman et al., 2006). Income inequality is not 
just a phenomenon found in the exclusive circle of billionaires 
but also among street gangs. In one analysis of a Chicago 
street gang, the Black Disciples, the top 120 men—
representing just 2.2% of the gang membership—took home 
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well more than half the money the gang accrued (Levitt & 
Dubner, 2005, p. 103). Environment imbalance is also 
ubiquitous in consumer markets. Take, for example, the 
success of Hollywood movies measured in terms of their box 
office gross. According to Anderson (2006), an estimated 
13,000 feature films are shown in film festivals each year in 
the United States alone. They can be arranged into three 
groups. The first includes the 100 movies with the highest 
revenue, the ones that knocked out audiences. The second 
group of movies, those of rank 101 to 500, make low but not 
quite zero revenues, and the sorry remainder, rank 501 to 
13,000, have no box office gross (mostly because they did not 
even garner mainstream commercial distribution). Anderson 
referred to such a distribution as “the Long Tail” (adapting the 
notion of long-tailed distributions from statistics), and he saw 
them everywhere in markets.

The question that concerns us here is this: Given that 
predictable imbalance is such a ubiquitous environmental 
structure, could it be that particular human cognitive 
strategies have evolved or been learned to exploit it?

QuickEst: A Fast and Frugal Estimation 
Heuristic in a World Full of Power-Law 
Regularities

Enrico Fermi, the world-renowned physicist and one of the 
leaders of the team of physicists on the Manhattan Project that 
eventually led to the development of the atomic bomb, had a 
talent for quick but reliable estimates of quantities. Legend 
has it that in the Alamogordo Desert in the state of New 
Mexico, while banks of spectrograph and ionization chambers 
waited to be triggered into action to assimilate the complex 
signals of the first atomic explosion, (p.384)  Fermi was 
awaiting the same detonation from a few thousand yards 
away. As he sheltered behind a low blast-wall, he tore up 
sheets of paper into little pieces, which he tossed into the air 
when he saw the flash. After the shock wave passed, he paced 
off the distance traveled by the paper shreds, performed a 
quick back-of-the-envelope calculation, and arrived at an 
approximately accurate figure for the explosive yield of the 
bomb (Logan, 1996). For Fermi, one of the most important 
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skills a physicist ought to have is the ability to quickly derive 
estimates of diverse quantities. He was so convinced of its 
importance that he used to challenge his students with 
problems requiring such estimates—the fabled canonical 
Fermi problem was the question: “How many piano tuners are 
there in Chicago?”

Being able to make a rough estimate quickly is important not 
only for solving odd Fermi problems. There is ample 
opportunity and need for people to rely on quick and easy 
estimates while navigating through daily life (e.g., how long 
will it take to get through this checkout line?). How do people 
arrive at quick quantitative estimates? For instance, how do 
they swiftly estimate the population size of Chicago—a likely 
first step toward an estimate of the number of piano tuners in 
Chicago? Previously, we have argued that cognitive estimation 
strategies, specifically, the QuickEst heuristic, may have 
evolved to exploit the predictable imbalance of real-world 
domains so as to reduce the computational effort and 
informational demands needed to come up with competitively 
accurate estimates (Hertwig, Hoffrage, & Martignon, 1999). In 
this chapter, we analyze the ecological rationality of this 
heuristic in more precise terms: First, we quantify the degree 
of imbalance across a total of 20 real-world domains using the 
parameter q, the slope of the straight line fitting the log–log 
rank–size distribution. Second, we analyze to what extent this 
degree of imbalance and other statistical properties of those 
environments hinder or foster the accuracy of the QuickEst 
heuristic. Before we turn to this analysis, we describe 
QuickEst in more detail.

The QuickEst heuristic is a model of quantitative inferences 

from memory (Gigerenzer & Goldstein, 1996; Gigerenzer, 
Hoffrage, & Goldstein, 2008), that is, inferences based on cue 
information retrieved from memory. It estimates quantities, 
such as the size of Chicago or the number of medals that 
Russia won at the most recent Olympic summer games. In 
general, it estimates the value of an item a, an element of a set 
of N alternatives (e.g., objects, people, events), on a 
quantitative criterion dimension (e.g., size, age, frequency). 
The heuristic’s estimates are based on M binary cues (1, 2, …,
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i, …, M), where the cue values are coded such that 0 and 1 
tend to indicate lower and higher criterion values, 
respectively. As an illustration, consider the reasoning of a job 
candidate who is subjected to a brainteaser interview by a 
company recruiter. (p.385)  One task in the interview is to 
quickly estimate the net worth of, say, Donald Trump. To infer 
an answer the candidate may rely on cues such as: “Did the 
person make the fortune in the computer industry?”

To operate, QuickEst needs a set of cues put into an 
appropriate order. This order is based on the following 
measure: For any binary cue i, one can calculate the average 
size si 

– of those objects that do not have the property that cue
i represents. For instance, one can calculate the average net 
worth of all billionaires who are not entrepreneurs in the 
computer industry. The QuickEst heuristic assumes that cues 
are ranked according to the sizes of the values s –, with the 
smallest value first.

In addition to the search rule, QuickEst also includes stopping 
and decision rules. The complete steps that the heuristic takes 
to estimate the criterion for object a are as follows:

Step 1: Search rule. Search through cues in the order of the 
sizes of the value s –, starting with the smallest value.

Step 2: Stopping rule. If the object a has the value 0 on the 
current cue (indicating a low value on the criterion), stop 
searching and proceed to step 3. Otherwise (if the object 
has cue value 1 or the value is unknown), go back to step 1 
and look up the cue with the next smallest si 

–. If no cue is 
left, put the object into the catchall category.3

Step 3: Decision rule. Estimate the size of the object as the
si 

– of the cue i that stopped search, or of the size of the 
catchall category (see Hertwig et al., 1999, p. 225). 
Estimates are finally rounded to the nearest spontaneous 
number.4

QuickEst’s structure maps onto the predictable imbalance of 
many real-world J-shaped environments (as in Figure 15-1). 
First, its asymmetric stopping rule—stop when a cue value of 
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zero is found for the object—limits search most strongly in 
environments in which zero (or absent) cue values are 
plentiful (cf. chapter 10). Second, by also first looking up the 
“small” cues—those cues (p.386)  i whose absence is 
associated with small criterion values s –—QuickEst has an in-
built bias to estimate any given object as relatively small. This 
is appropriate in the many J-shaped environments in which 
most objects have small values on the criterion, and only a few 
objects have (very) large values. Finally, QuickEst’s cue order 
also enables it to estimate small objects (with predominantly 
zero values on the cues) by looking up only one or a few 
(known) cues before providing an estimate—making it fast and 
frugal.

How Accurate Is QuickEst?

Can such a simple and fast estimation strategy nonetheless 
arrive at competitively accurate inferences? We compared 
QuickEst to two other estimation strategies, namely, multiple 

regression and an estimation tree that we designed (see 
Hertwig et al., 1999, for a detailed description of the 
estimation tree). Briefly characterized, multiple regression is a 
computationally powerful competitor insofar as it calculates 
weights that minimize least-squares error, and consequently it 
reflects the correlations between cues and criterion and the 
covariance between cues. The estimation tree arrives at 
estimates by collapsing objects, say cities, with the same cue 
profile (i.e., the same cue value on each of the available cues) 
into one class (for more on tree-based procedures, see 
Breiman, Friedman, Olshen, & Stone, 1993). The estimated 
size for each city equals the average size of all cities in that 
class (the estimate for a city with a unique cue profile is just 
its actual size). When the tree encounters a new, previously 
unseen city whose cue profile matches that of one or more 
previously seen cities, its estimated size is the average size of 
those cities. If a new city has an entirely new cue profile, then 
this profile is matched to the profile most similar to it. The 
estimation tree is an exemplar-based model that keeps track of 
all exemplars presented during learning as well as their cue 
values and sizes. As long as the test set and training set are 
identical, this algorithm is optimal. Yet, when the training set 
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is large, it requires vast memory resources (for the pros and 
cons of exemplar-based models, see Nosofsky, Palmeri, & 
McKinley, 1994).

All three strategies were tested in the environment of 82 
German cities with more than 100,000 residents (excluding 
Berlin). The task was to predict the cities’ number of 
residents. This demographic target criterion follows a power 
law, thus exhibiting the property of predictable imbalance 
(remember that city size distributions were one of the classic 
domains in which Zipf, 1949, observed his law). To examine 
the strategies’ robustness, that is, their ability to predict new 
data (here, cities), Hertwig et al. (1999) distinguished between 
two sets of objects: the training set and the test set. The 
strategies learned their parameters (e.g., si 

– or beta weights) 
on (p.387)  the basis of the training set. The test set, in turn, 
provided the test bed for the strategies’ robustness. The 
training samples consisted of 10%, 20%, …, 90%, and 100% of 
the 82 cities, comprising their population sizes and their 
values on eight cues indicative of population size. The test set 
encompassed the complete environment of 82 cities. That is, 
the test set included all cities in the respective training set, 
thereby providing an even harder test for QuickEst, because 
parameter-fitting models like multiple regression are likely to 
do relatively better when tested on objects they were fitted to.

In the environment of German cities, QuickEst, on average, 
considered only 2.3 cues per estimate as opposed to 7.3 cues 
used by multiple regression and 7.1 (out of 8) used by the 
estimation tree. Despite relying on only about a third of the 
cues used by the other strategies, QuickEst nonetheless 
exceeded the performance of multiple regression and the 
estimation tree when the strategies had to rely on quite 
limited knowledge, with training sets ranging between 10% 
and 40%. The 10% training set exemplified the most 
pronounced scarcity of information. Faced with such dire 
conditions, QuickEst’s estimates in the test set were off by an 
average of about 132,000 inhabitants, about half the size of 
the average German city in the constructed environment. 
Multiple regression and the estimation tree, in contrast, erred 
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on average by about 303,000 and 153,000 inhabitants, 
respectively.

When 50% or more of the cities were first learned by the 
strategies, multiple regression began to outperform QuickEst. 
The edge in performance, however, was small. To illustrate, 
when all cities were known, the estimation errors of multiple 
regression and QuickEst were 93,000 and 103,000 
respectively, whereas the estimation tree did considerably 
better (65,000).5 Based on these results, Hertwig et al. (1999) 
concluded that QuickEst is a psychologically plausible 
estimation heuristic, achieving a high level of performance 
under the realistic circumstances of limited learning and cue 
use.

How Robust Is QuickEst’s Performance Across 
Diverse Environments?

Although QuickEst competitively predicted demographic 
quantities, we did not know how well its competitiveness 
would generalize to other environments—in particular, to 
environments that exhibit (p.388)  different degrees of 
predictable imbalance. Our first goal in this chapter is to 
investigate this issue. To this end, we test QuickEst, multiple 
regression, and the estimation tree with a collection of 20 
different real-world environments. As previously, we take from 
each environment increasingly larger portions from which the 
strategies can learn. This emphasis on learning reflects the 
typical situation of human decision making, an issue to which 
we return shortly. Again, the training sets consist of 10%, 
20%, …, 90%, and 100% of each environment. To arrive at 
psychologically plausible sets of limited object knowledge, we 
also assume that the probability that an object belongs to the 
training set is proportional to its size (thus capturing the fact 
that people are more likely to know about larger objects than 
smaller ones). The predictive accuracy of the strategies is 
tested on the complete environment (i.e., the test set; as in 
Hertwig et al., 1999, the training set is a subset of the test 
set). To obtain reliable results, 1,000 random samples are 
drawn for 9 of the 10 sizes of the training set (in the 100% set, 
training set equals test set, and thus sampling error is of no 
concern).
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For the environments, we make use of the collection of real-
world data sets that Czerlinski, Gigerenzer, and Goldstein 
(1999) compiled to test the performance of fast and frugal 
choice strategies. This collection includes such disparate 
domains as the number of car accidents on a stretch of 
highway, the homelessness rate in U.S. cities, and the dropout 
rates of Chicago public high schools. The environments ranged 
in size from 11 objects (ozone levels in San Francisco 
measured on 11 occasions) to 395 objects (fertility of 395 fish), 
and included 3 to 18 cues. All cues were binary or were made 
binary by dichotomizing them at the median. One particularly 
attractive aspect of this collection of environments is that 
Czerlinski et al. did not select them to match any specific 
distribution of the criterion, with many of these environments 
taken from textbook examples of the application of multiple 
regression. On average, these environments were not as 
skewed as, for instance, the myriad real-world environments 
from which Zipf (1949) derived his eponymous law. The 
median q in this set of environments is −0.54, and thus 
substantially smaller in magnitude than the q ≈ −1 that Zipf 
observed (see also Newman, 2005, who found a median 
exponent of −2.25 in his broad set of distributions of 
quantities measured in physical, biological, technological, and 
social systems).

How Frugal Are the Strategies?
QuickEst is designed to make estimates quickly, using few 
cues. This ability became manifest in the present simulations. 
Figure 15-2 shows the number of cues that QuickEst 
considered as a function (p.389)
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Figure 15-2:  The frugality of the 
strategies as a function of size of training 
set, averaged across 20 environments. 
Frugality is measured as the number of 
cue values looked up to make an 
estimate.

of the size of 
the training 
set. Across all 
environments, 
7.7 cues, on 
average, are 
available. 
QuickEst 
considers, on 
average, only 
two cues (i.e., 
26%) per 
estimate—a 
figure that 
remains 
relatively 
stable across 
various sizes of 
training set 
size. In 
contrast, 
multiple 
regression 
(which here uses only those cues whose beta weights are 
significantly different from zero) and the estimation tree use more 
and more cues with increasing training sets. Across all training set 
sizes, they use an average of 5.1 (67%) and 5.9 (77%) of all 
available cues, respectively.

How Robust Are the Strategies?
What price does QuickEst pay for betting on J-shaped 
environment structures, and for considering substantially 
fewer cues than its competitor strategies? The first benchmark 
we use to answer this question is robustness. Robustness 
describes the strategies’ ability to generalize from small 
training sets to the test set. We first calculate the strategies’ 
absolute errors (i.e., absolute deviation between actual and 
estimated size) separately for each environment and training 
set. Then, we define each strategy’s performance in the 100% 
training set as the strategy’s maximum performance and 
express the absolute errors observed in all other training sets 
as a percentage of this maximum-performance benchmark 
(e.g., if a strategy makes errors of 60,000 with the 100% 
training set and 90,000 with the 40% training set, then for the 

Figure 15-2:  The frugality of the 
strategies as a function of size of training 
set, averaged across 20 environments. 
Frugality is measured as the number of 
cue values looked up to make an 
estimate.
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latter it would have (p.390)  a normalized error of 150%). 
Finally, we average these normalized estimation errors (which 
must by definition be above 100%) across all environments, 
separately for each strategy and each training set size.

Based on this mean, we can define robustness as the 
resistance to relative decline in performance as training sets 
become smaller. Figure 15-3 shows the normalized estimation 
error (averaged across the 20 environments). QuickEst proves 
to be a robust strategy. When only 40% of the environments’ 
objects are learned, QuickEst still performs about as well as 
when all objects are known. Moreover, when QuickEst is 
required to rely on a very thin slice of the environments, as 
exemplified by the 10% training set, its error is only about 1.5 
times the magnitude of its maximum-performance error. 
Multiple regression and the estimation tree, in contrast, are 
less robust. When 50% of the objects are known, for example, 
their respective errors are about 1.5 and 3 times the 
magnitude of their maximum-performance error. Their relative 
lack of robustness becomes most pronounced under extreme 
scarcity of information. In the 10% training set, their error is 
more than 2 times (multiple regression) and 6 times 
(estimation tree) the size of their maximum-performance 
errors.

In generalizing to unknown territory, QuickEst thus suffers 
less than do some computationally and informationally more 
expensive
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Figure 15-3:  The estimation error 
(standardized within each strategy) as a 
function of size of training set, averaged 
across 20 environments. For each 
strategy, we standardized its accuracy by 
expressing its error per training set 
relative to its estimation error made in 
the 100% training set (i.e., the error of 
each strategy under complete knowledge 
was assumed to be 100%).

(p.391)

strategies. The 
ability to 
generalize to 
new data 
appears to be a 
key property of 
efficient 
human 
decision 
making. In 
most real-
world 
environments 
people cannot 
help but act on 
the basis of 
scarce 
knowledge.6 In 
fact, scarcity of 
knowledge is a 
crucial human 
condition, as is 
suggested by, 
for instance, 
Landauer’s 
(1986) analysis of how much information is accumulated in a single 
human’s memory over the course of a normal lifetime. Basing his 
calculations on various bold assumptions (e.g., about the rate at 
which people can take in information), he estimated that the 
“functional learned memory content” is “around a billion bits for a 
mature person” (p. 491). In comparison, an institutional memory of 
human knowledge such as the Library of Congress with 17 million 
books is estimated to contain about 136 terabytes—about 1,088 
trillion bits, more than one million times the estimated magnitude 
of human memory (Lyman & Varian, 2003). Although Landauer’s 
figure is an audacious (if scientifically informed) estimate, it 
supports the notion that most of human decision making occurs 
under conditions of scarcity of information and knowledge. Upon 
these terms, frugality and robustness appear to be key properties 
of competitive cognitive strategies.

How Accurate Are the Strategies?
Although the previous analysis demonstrates QuickEst’s 
robustness, measured in terms of how little its performance 

Figure 15-3:  The estimation error 
(standardized within each strategy) as a 
function of size of training set, averaged 
across 20 environments. For each 
strategy, we standardized its accuracy by 
expressing its error per training set 
relative to its estimation error made in 
the 100% training set (i.e., the error of 
each strategy under complete knowledge 
was assumed to be 100%).



How Estimation Can Benefit From an Imbalanced 
World

Page 16 of 36

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: Max-
Planck Society; date: 22 February 2017

Figure 15-4:  The estimation error 
(standardized with respect to QuickEst’s 
performance) as a function of size of 
training set, measured across 20 
environments. For each strategy, we 
standardized its accuracy by expressing 
its error per training set relative to 
QuickEst’s estimation error made in the 
100% training set (i.e., QuickEst’s error 
under complete knowledge was assigned 
to be 100%).

deteriorates with smaller and smaller training sets, it says 
nothing about the heuristic’s accuracy relative to its 
competitors. In fact, if we equate needing less information 
with involving less effort, the well-known effort–accuracy 
tradeoff (Payne, Bettman, & Johnson, 1993) would predict that 
this decreased effort goes along with decreased accuracy. So 
does QuickEst’s robustness come at the price of lower 
accuracy compared to its more effortful competitors? To test 
for this possibility, we next compare QuickEst’s estimation 
accuracy with that of its rivals. To this end, we now treat 
QuickEst’s maximum performance (with the 100% training 
set) as the benchmark and express its own performance and 
that of its competitors relative to this benchmark set at 100%. 
Figure 15-4 shows the (p.392)

strategies’
relative 

estimation 

error as a 
function of the 
training set 
size (the line 
for QuickEst 
being the same 
as in Figure
15-3).
Several 
results are 
noteworthy: 
QuickEst’s 
performance 
under scarcity 
of knowledge 
is not inferior 
to that of its 
competitors. 
On the 
contrary, it is 
here that 
QuickEst 
outperforms 
the other strategies. In the 10% training set, for instance, 

Figure 15-4:  The estimation error 
(standardized with respect to QuickEst’s 
performance) as a function of size of 
training set, measured across 20 
environments. For each strategy, we 
standardized its accuracy by expressing 
its error per training set relative to 
QuickEst’s estimation error made in the 
100% training set (i.e., QuickEst’s error 
under complete knowledge was assigned 
to be 100%).
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QuickEst’s error amounts to 1.45 times the size of the error it 
produced with the 100% training set. In contrast, errors with 
multiple regression and the estimation tree in the 10% 
training set are 1.6 and 1.7 times higher than for the 100% 
training set, respectively. Moreover, as long as the training set 
encompasses less than 50% of the environment, QuickEst 
either outperforms its competitors or matches their 
performance. Only when the training set is 50% and larger 
does QuickEst fall behind. In fact, under the circumstances of 
complete knowledge (100% training set), QuickEst is clearly 
behind multiple regression and the estimation tree: The 
magnitude of their error is about 0.7 and 0.4 times the size of 
QuickEst’s error, respectively.

In sum, QuickEst outperforms multiple regression and the 
estimation tree when knowledge is scarce. In the 
psychologically (p.393)  less plausible situation of abundant 
knowledge (i.e., 50% or more of the environments’ objects are 
known) QuickEst, however, clearly falls behind the 
performance of its competitors. All these results are based on 
the strategies’ performance averaged across 20 quite different 
environments. Now, we turn to our next question: Which 
statistical properties of the environments predict differences 
in performance between QuickEst and the other strategies?

Which Environment Properties Determine 
QuickEst’s Performance?

We focus on three important properties of environments: 
variability, skewness, and object-to-cue ratio (see chapter 4 for 
a discussion of the first two). Variability refers to how greatly 
the objects in an environment vary from the mean value of 
that set of data. We quantify this property by calculating each 
environment’s coefficient of variation (CV):

which is the ratio of the standard deviation (SD) of the set of 
object criterion values to its mean value.

The next property, skewness, captures how asymmetric or 
imbalanced a distribution is, for instance, how much of a “tail” 
it has to one side or the other. Skewness can be measured in 
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terms of the parameter q, estimated with the following method 
(Levy & Solomon, 1997): We sort and rank the objects in each 
environment according to their criterion values, and fit a 
straight line to each rank–size distribution (plotted on log–log 
axes). We then use the slope q of this fitted regression line as 
an estimate of the environment’s skewness.

The final property in our analysis is the object-to-cue ratio 
(i.e., the ratio between the number of objects and number of 
cues in an environment), which has been found to be 
important in the analysis of inferential heuristics such as take-
the-best (see Czerlinski et al., 1999; Hogarth & Karelaia,
2005a). To assess the relationship between the statistical 
properties of the environments and the differences in the 
strategies’ performance, we first describe the results 
regarding skewness for two environments in detail, before 
considering all 20 environments.

Two Distinct Environments: U.S. Fuel Consumption and Oxygen in 
Dairy Waste
Does an environment that exhibits predictable imbalance, or 
skew, such that few objects have large criterion values and 
most (p.394)  objects take on small to medium values, foster 
the performance of QuickEst? And, vice versa, does a more 
balanced, that is, less skewed environment impair QuickEst’s 
performance? The most imbalanced environment in our set of 
20 is the oxygen environment (q = −1.69; with a fit of the 
regression line of R 2 = .98). Here, the task is to predict the 
amount of oxygen absorbed by dairy wastes from cues such as 
the oxygen required by aerobic micro-organisms to decompose 
organic matter. The fuel consumption environment, in 
contrast, is relatively balanced, with a q parameter that is 
about eight times smaller (q = −0.2; R 2 = .87). Here, the task 
is to predict the average motor fuel consumption per person 
for each of the 48 contiguous U.S. states from cues such as 
state fuel tax and per capita income. The environments’ 
markedly different degree of imbalance is illustrated in Figure
15-5. The rank–size distributions (in logarithmic scales) yield 
the characteristic negative-sloping linear relationship, thus 
suggesting that the power law provides a good model for both 
environments.
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Figure 15-5:  Log–log scale plot of the 
distribution of dairy wastes rank ordered 
by their amount of oxygen absorbed 
(oxygen), and the distribution of 48 U.S. 
states rank ordered by their average 
motor fuel consumption (fuel 
consumption). Each plot also shows the 
regression line fitted to the data.

Is the difference in environmental skewness predictive of the 
strategies’ performance? Figure 15-6 shows the strategies’ 
relative error as a function of the training set and the two 
environments. Figure 15-6a plots the results for the highly 
skewed oxygen environment. QuickEst’s performance is 
strongly competitive: Across all training set sizes, QuickEst 
consistently outperforms multiple

(p.395)  

Figure 15-5:  Log–log scale plot of the 
distribution of dairy wastes rank ordered 
by their amount of oxygen absorbed 
(oxygen), and the distribution of 48 U.S. 
states rank ordered by their average 
motor fuel consumption (fuel 
consumption). Each plot also shows the 
regression line fitted to the data.
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Figure 15-6:  The strategies’ relative 
estimation error as a function of size of 
training set in the (a) oxygen and (b) fuel 
consumption environments. For each 
strategy, we standardized its accuracy by 
expressing its error per training set 
relative to QuickEst’s estimation error 
made in the 100% training set (i.e., 
QuickEst’s error under complete 
knowledge was assumed to be 100%).

(p.396)

regression. In 
addition, the 
estimation tree 
can only 
outperform 
QuickEst (and 
by a small 
margin) when 
it learns about 
70% or more of 
the objects in 
the 
environment. 
Finally, under 
the 
psychologically 
unlikely 
circumstance 
of complete 
knowledge 
(100% training 
set), 
QuickEst’s 
performance is 
only six 
percentage 
points below 
the estimation 
tree’s 
performance. 
The picture 
looks strikingly 
different in the 
far less 
imbalanced 
fuel 
consumption 
environment 
(Figure 15-6b). Except for the 10% training set, multiple regression 
and the estimation tree consistently outperform QuickEst. This 
contrast between the two environments suggests that QuickEst’s 
performance, relative to that of its competitors, hinges on 
environmental skewness. We shall now see to what extent this 
observation generalizes across all environments.

Figure 15-6:  The strategies’ relative 
estimation error as a function of size of 
training set in the (a) oxygen and (b) fuel 
consumption environments. For each 
strategy, we standardized its accuracy by 
expressing its error per training set 
relative to QuickEst’s estimation error 
made in the 100% training set (i.e., 
QuickEst’s error under complete 
knowledge was assumed to be 100%).
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Can Environmental Skewness and Variability Explain QuickEst’s 
Failures and Successes?

The environmental parameter q is a measure of the amount of 
skewness in the criterion distribution: The smaller q is, the 
flatter the distribution, and vice versa. In our set of 20 
environments, skewness varies widely, ranging from −0.02 to 
−1.69, with a median of −0.54. Does greater skewness in the 
criterion distribution contribute to better QuickEst 
performance, relative to its competitors?

Figure 15-7 shows that QuickEst’s performance indeed 
depends on the environments’ skewness: Its advantage over 
multiple regression (measured in terms of QuickEst’s relative 
error minus multiple regression’s relative error) is most 
pronounced in environments with large (negative) q. 
Relatedly, multiple regression tends to outperform QuickEst in 
environments with small q. The correlation between the 
difference in the strategies’ errors and the magnitude of q is .
86. For illustration, the largest magnitudes of q and hence 
greatest skewness occur in the oxygen (q = −1.69), 
biodiversity (q = −1.6), and mammals’ sleep environments (q
= −1.14). It is in these environments that the largest 
advantage of QuickEst over multiple regression can also be 
observed. In contrast, the largest advantages of multiple 
regression over QuickEst coincide with q values that are an 
order of magnitude smaller than those observed in the most 
skewed environments (obesity environment: q = −0.08; body 
fat environment: q = −0.02). This pattern also generalizes to 
the comparison of QuickEst and the estimation tree (not 
shown): Here, the correlation between the difference in the 
strategies’ relative errors and q amounts to .8.

Environmental skewness implies variability in the criterion 
distribution, but variability does not necessarily imply 
skewness. Therefore, variability, independent of skewness, 
may be predictive of QuickEst’s performance. In our set of 
environments, the coefficient (p.397)



How Estimation Can Benefit From an Imbalanced 
World

Page 22 of 36

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: Max-
Planck Society; date: 22 February 2017

Figure 15-7:  QuickEst’s performance 
relative to multiple regression (in terms 
of the relative estimation error for 
QuickEst minus that for multiple 
regression; see Figure 15-4), plotted 
against skewness parameter q (the slope 
of the straight line fitted into the rank-
size distributions of the current collection 
of environments) for the 20 
environments. Negative values on the y-
axis indicate an advantage of QuickEst 
over multiple regression; positive values 
indicate a disadvantage.

of variation 
varies widely, 
ranging from 
the oxygen 
environment, 
in which the 
standard 
deviation is 
twice as large 
as the mean 
(CV = 2), to 
the body fat 
environment, 
in which the 
standard 
deviation is a 
tiny fraction of 
the mean (CV 
= 0.019). We 
found that 
QuickEst has a 
clear 
advantage over 
multiple 
regression in 
environments 
with high 
variance (with 
advantage again measured in terms of the difference between 
QuickEst’s relative error and that of multiple regression). Across all 
environments, the correlation between the difference in the two 
strategies’ relative errors and the CV is .87 (for the comparison 
with the estimation tree the correlation amounts to .8). In the 
current collection of environments, however, CV does not explain 
more regarding QuickEst’s performance than does environmental 
skewness. This is not too surprising given that across 
environments, the Pearson correlation between parameter q and 
the coefficient of variation is −.96.

Is the Ratio of Objects to Cues Indicative of QuickEst’s 
Performance?
When multiple regression is used as a strategy to model 
choice between two objects, it typically estimates first the 
criterion value (e.g., salary) separately for each object and 
then compares the objects. (p.398)  Thus used, estimation is a 

Figure 15-7:  QuickEst’s performance 
relative to multiple regression (in terms 
of the relative estimation error for 
QuickEst minus that for multiple 
regression; see Figure 15-4), plotted 
against skewness parameter q (the slope 
of the straight line fitted into the rank-
size distributions of the current collection 
of environments) for the 20 
environments. Negative values on the y-
axis indicate an advantage of QuickEst 
over multiple regression; positive values 
indicate a disadvantage.
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precursor to choices. In the context of choices, in turn, it has 
been shown that multiple regression can be outperformed by 
simpler strategies (with unit weights) when the ratio between 
objects and cues becomes too small (Dawes, 1979; Einhorn & 
Hogarth, 1975; Schmidt, 1971; see also chapter 3). A 
statistician’s rule of thumb is that unit weights will outperform 
regression weights if the latter are based on fewer than 10 
objects per cue. The reason is that multiple regression is likely 
to grossly overfit the data when there are too few objects for 
the number of cues (see also Czerlinski et al., 1999).

Is the object-to-cue ratio also indicative of performance in the 
present context in which the task is to estimate the 
quantitative value of an individual object? Across the 20 
environments, there is no substantial correlation (.08) 
between the object-to-cue ratio and the difference in relative 
errors between multiple regression and QuickEst. The 
correlation, however, increases (to .42) if one excludes the fish 
fertility environment, in which the object-to-cue ratio is 
extreme with 395 objects and three cues. This higher 
correlation suggests that QuickEst (like unit-weight decision 
heuristics) tends to have an advantage over multiple 
regression when there are fewer objects per cue.7 Yet, 
compared with the impact of skewness and variance, the 
object-to-cue ratio is a mediocre predictor of QuickEst’s 
performance.

In sum, we examined several properties of ecological 
structures and found one that proved outstanding in its ability 
to predict QuickEst’s performance (see also von Helversen & 
Rieskamp, 2008): The more skewed (and in the set we 
evaluated, the more variable) an environment, the better 
QuickEst performs in relation to its competitors. The 
correlation between the skewness q and the performance of 
QuickEst relative to that of multiple regression was .86; the 
correlation for QuickEst relative to the estimation tree was .8.

How Can People Tell When to Use QuickEst?

A heuristic is not good or bad, not rational or irrational, in 
itself, but only relative to an environment. Heuristics can 
exploit regularities in the world, yielding ecological rationality. 
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QuickEst wagers that the criterion dimension is distributed 
such that few objects are very large, and most objects are 
relatively small (Hertwig et al., 1999). If QuickEst’s wager on 
the environment structure matches the actual structure of the 
environment, it can perform (p.399)  well. If QuickEst 
mismatches the environment structure, it will have to foot the 
bill for its bet.

Looking at the characteristics of particular environments in 
which the different estimation strategies excel, we found that 
QuickEst outperforms—even under conditions of abundant 
knowledge—multiple regression and estimation trees in 
environments with pronounced skewness and variability: The 
more skewed and variable the criterion value distribution in 
an environment, the better QuickEst’s performance was 
relative to its competitors.

Given their fit to particular environment structures, using fast 
and frugal heuristics successfully means using them in the 
proper domains. But how can people tell what is a proper 
domain for a particular strategy, and what is improper? We 
suggest that the task of strategy selection may not be as 
taxing as it is often conceived. Let us distinguish between two 
kinds of “proper” environments. One is the class of 
environments in which people can muster little to medium 
knowledge. As the current simulations and those involving 
other fast and frugal strategies (Gigerenzer, Czerlinski, & 
Martignon, 1999) have shown time and again, the more limited 
the knowledge about an environment is, the more competitive 
simple strategies are. Their simplicity renders the heuristics 
robust and successful relative to more complex information-
demanding strategies—even if the heuristics’ match to the 
environment is not perfect.

A second class of “proper” environments is one in which users 
of, for instance, QuickEst can intuit that the structure of the 
environment maps onto the structure of the heuristic. To be 
able to do so, however, does not mean that people need to fit a 
power-law model to their knowledge, thus estimating the 
skewness of the environment. There are simple shortcuts 
instead that can gauge skewness. For instance, in 
environments with a very pronounced level of predictable 



How Estimation Can Benefit From an Imbalanced 
World

Page 25 of 36

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All 
Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a 
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: Max-
Planck Society; date: 22 February 2017

imbalance, most objects one knows will have criterion values 
below the average (see the example of above-average drivers 
in chapter 4). Thus we propose that a mean value that 
substantially exceeds the median value may trigger the use of 
QuickEst. For instance, if a decision maker applied QuickEst 
in only those environments in which the mean value is, say, at 
least 50% greater than the magnitude of the median value, 
then in the current collection of 20 environments (and 
averaged across all training sets), QuickEst would be 
employed in four environments. In all of those QuickEst 
outperforms multiple regression, whereas multiple regression 
outperforms QuickEst in 13 of the remaining 16 environments. 
Thus, the ratio mean-to-median is a good proxy for the relative 
performance of the two strategies. This is consistent with our 
previous analysis, according to which skewness and the 
coefficient of variation proved to be good predictors of 
QuickEst’s relative (p.400)  performance—the ratio of mean-
to-median correlates highly with both environmental 
properties (−.81 and .92, respectively).

On the basis of these two classes of “proper” environments, 
one can also deduce a class of environments that is 
“improper” for simple heuristics. It encompasses those 
environments in which people possess much knowledge and in 
which the structure of the heuristic mismatches that of the 
environment (e.g., for QuickEst this would mean that there is 
little skew in the distribution of criterion values). But the 
chance of erroneously applying a fast and frugal strategy like 
QuickEst in such improper environments may be slim, because 
having abundant knowledge should make it more likely that 
people have a sense of the environment’s structure. However, 
do people always rely on QuickEst if the environment is 
skewed? And what strategies are used in environments that 
are not skewed? Next, we introduce another tool of the 
adaptive toolbox, the mapping heuristic (von Helversen & 
Rieskamp, 2008), which can be successfully employed in 
environments with different types of structure.
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The Mapping Heuristic: A Tallying Approach to 
Estimation

Like QuickEst, the mapping heuristic is a simple strategy for 
making quantitative estimations from multiple cues, and it, 
too, relies on binary cue information.8 The estimation process 
is split into a categorization phase and an estimation phase. 
First, an object is categorized by counting all the positive cue 
values it has. Then, the mapping heuristic estimates the 
object’s size to be the typical (median) size of all previously 
seen objects in its category, that is, with the same number of 
positive cues. This estimation strategy implies that all cues are 
treated as being equally important. Thus, in contrast to 
QuickEst, which considers cues sequentially, the mapping 
heuristic takes a tallying approach. It includes all relevant 
cues but weights each cue the same, ignoring the different 
predictive values of the cues. The two heuristics represent 
different approaches to simplifying the estimation process—
ordered and limited cue search (see chapter 10) versus equal-
weight tallying of all cues. How do the two approaches 
compare in terms of their performance in different 
environments?

To test when QuickEst and the mapping heuristic perform well 
and how much their performance depends on the structure of 
the environment (in terms of the distribution of the criterion), 
von (p.401)  Helversen and Rieskamp (2008) conducted a 
simulation study. Two types of environment were used, one 
with a skewed criterion (based on a power function y = bx

a, 
with a = −1, b = 100) and one involving a uniformly 
distributed criterion (based on a linear function, y = bx + c, 
with b = −2 and c = 102). For each distribution, several 
instances of the corresponding environments were generated, 
systematically varying the average correlation of the cues with 
the criterion and the number of positive cue values. Each 
environment consisted of 50 objects and five binary cues.

In addition to evaluating QuickEst and the mapping heuristic, 
the simulations also compared the estimation performance of 
multiple linear regression and an exemplar-based model 
(Juslin, Olsson, & Olsson, 2003) similar to the estimation tree. 
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The accuracy of the models was determined by using a split-
half cross-validation procedure, with each data set split 100 
times in two halves. The models were fitted to the first half, 
the training set, to determine the values of the models’ 
parameters. With these parameters the models made 
predictions for the second half of the data, the test set. The 
accuracy of these predictions was evaluated by determining 
the root mean square deviation (RMSD) between them and the 
actual criterion values, averaged separately across all skewed 
and uniform environments.

As expected, the more complex models, multiple linear 
regression and the exemplar model, achieved a better fit than 
the simpler QuickEst and the mapping heuristic on the 
training sets in both types of environments (Table 15-1). 
However, when generalizing to predictions in the test set, both 
heuristics outperformed the complex models. Von Helversen 
and Rieskamp found that, consistent with the results of the 
simulations reported earlier in this chapter, QuickEst 
predicted best in the skewed environments, whereas
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Table 15-1: Average Model Accuracy (RMSD) for Different Environment Structures (as Criterion Distributions)

Model Environment

Skewed Uniform

Training set Test set Training set Test set

M SD M SD M SD M SD

QuickEst 14.8 1.7 14.9 1.1 24.8 3.5 28.3 3.5

Mapping 14.3 3.5 15.3 1.6 21.6 5.1 25.9 6.4

Regression 14.0 2.4 16.5 1.2 20.9 4.7 27.7 6.3

Exemplar 12.0 3.5 15.8 1.7 17.5 4.9 27.2 6.2
Note. Lower values denote better performance.
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(p.402)  the mapping heuristic predicted best when the criterion 
was uniformly distributed. In addition, the mapping heuristic 
performed better than the regression model in both types of 
environments and thus was less dependent on the distribution of 
the criterion than QuickEst.

Which Strategy to Select From the Adaptive 
Toolbox?

When should people use QuickEst or the mapping heuristic? 
Which heuristic people apply should depend on the 
characteristics of the environment they are facing. This 
suggests that QuickEst should be chosen in skewed criterion 
distributions and the mapping heuristic should be recruited in 
uniform or less skewed distributions. In addition, we would 
like to introduce a second environmental structure that could 
influence the choice between QuickEst and the mapping 
heuristic: the dispersion of the cues. For inference strategies, 
it has been shown that a lexicographic heuristic like take-the-
best, for instance, performs especially well when the cues 
have diverse validities and when the intercorrelations between 
the cues are high. In contrast, in situations with equally valid 
cues and low intercorrelation, a tallying heuristic that 
integrates the information of all available cues performs well 
(Dieckmann & Rieskamp, 2007; Hogarth & Karelaia, 2007; 
Martignon & Hoffrage, 2002; see also chapters 3, 8, and 13). 
Analogously, the cognitive processes that take place when 
people make estimations may depend on environmental 
features similar to those used in the selection of take-the-best 
or tallying. Thus, QuickEst could be particularly suited for 
skewed distributions with highly dispersed cue validities, 
whereas the mapping heuristic might be most suited when the 
cues have similar validities.

Do People Use Heuristics for Estimation?

Given these predictions about when each estimation strategy 
should be used to achieve ecological rationality, we can next 
ask whether people actually do use QuickEst and the mapping 
heuristic in particular appropriate environments. First, three 
recent experiments have looked at how well QuickEst 
describes the memory-based estimates that people make (as 
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opposed to inferences from givens9). Woike, Hertwig, and 
Hoffrage (2009) asked people to (p.403)  estimate the 
population sizes of all 54 countries in Africa and, in addition, 
probed their knowledge of numerous cues and cue values 
indicative of population size (e.g., membership in the 
Organization of the Petroleum Exporting Countries, location in 
the Sahel zone, etc.). People’s actual estimates of the 
countries’ population sizes were then compared to predictions 
from three distinct strategies, made using each individual’s 
often very limited cue knowledge. The strategies were 
QuickEst, multiple regression, and Probex, an exemplar-based 
strategy that has been found to successfully model people’s 
estimates of quantities such as city sizes (Juslin & Persson,
2002). The psychological models, QuickEst and Probex, both 
predicted people’s estimates better than the statistical model, 
multiple regression. More specifically, QuickEst better 
predicted actual estimates of about three-fourths of the 
participants, whereas Probex proved to be the better model 
for the remaining quarter. In their second study using the 
same methodology, Woike et al. (2009) asked participants to 
estimate either African countries’ population size (a J-shaped 
distribution) or their respective rate of illiteracy (a uniform 
distribution). In addition, participants indicated their 
knowledge of six cues related to either population size or 
illiteracy rate. As expected, QuickEst fared better than Probex 
in capturing people’s estimates in the J-shaped environment, 
whereas Probex scored better in the uniform environment.

In another experiment asking participants to estimate city 
population sizes, Hausmann, Läge, Pohl, and Bröder (2007, 
Experiment 1) found no correlation between how long people 
took to arrive at an estimate of the size of a city and its 
estimated size. They took this to be evidence against the use 
of QuickEst, which they conjectured would predict a positive 
correlation because the heuristic’s cue search should stop 
earlier for smaller than for larger cities. The correlation 
between size of cities and response time, however, is likely to 
be moderated by at least one factor, the retrieval speed of cue 
values. In fact, using a set of 20 German cities, Gaissmaier 
(2008) analyzed the retrieval speed of cue values as a function 
of city size. He found that the larger a city, the faster the 
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retrieval of its cue values (regardless of whether the cues 
indicated absence or presence of a property), and that it takes 
longer to retrieve the absence of a property (e.g., has no 
airport) for a small city than to (p.404)  retrieve the presence 
of a property (e.g., has an airport) for a large city. These links 
between retrieval speed of cue values and size of objects can 
be understood within Anderson’s ACT-R framework (Adaptive 
Control of Thought–Rational—see Anderson & Lebiere, 1998; 
Hertwig, Herzog, Schooler, & Reimer, 2008; see also chapter
6). Based on these observations, one can predict that the time 
one saves from the heuristic’s frugality for small cities may be 
consumed by the longer retrieval times of small cities’ cue 
values, relative to those for large cities. Counterintuitively—
but consistent with the data of Hausmann et al.—QuickEst 
may therefore take equally long to arrive at estimates for 
small and large cities.

Two other experiments looked at how well the mapping 
heuristic predicted people’s estimates (von Helversen & 
Rieskamp, 2008). These experiments involved inferences from 
givens rather than from memory, and participants used the 
given cues to make estimates in a task with either a skewed or 
a uniform criterion distribution. The mapping heuristic’s 
prediction ability was then compared with two other 
estimation strategies: multiple regression and an exemplar-
based model similar to Probex (Juslin et al., 2003). In both 
criterion distributions, von Helversen and Rieskamp found 
that the mapping heuristic, on average, predicted the 
estimates as well as or better than its two competitor models. 
Thus, the experimental evidence so far indicates that in both 
situations of inference from memory and inference from 
givens, simple fast and frugal mechanisms—whether QuickEst 
or the mapping heuristic—are often better at accounting for 
the estimates that people make than are more complex 
strategies.

How Does Predictable Environment Imbalance 
Emerge?

We used Pareto’s notion of “predictable imbalance” to refer to 
the ubiquitous phenomenon of environmental skewness 
characteristic of power-law distributions: In many domains, 
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few objects take on very large values (e.g., in frequency, 
intensity, size) and most take on medium to small values. What 
is the origin of such distributions? This is a hotly debated 
question, and the explanations of how such power-law 
distributions might arise in natural and man-made systems 
range from domain-general explanations such as “self-
organized criticality” (e.g., Bak, 1997) to domain-specific 
explanations such as models of urban growth (e.g., Simon, 
1955b) or the reasons for the rarity of large fierce animals 
(Colinvaux, 1978; see Newman, 2005, for a review of various 
explanations). In what follows, we briefly describe these two 
domain-specific accounts of predictable imbalance.

(p.405) Simon’s (1955b) model of urban growth aims to 
explain why rank–size distributions of city populations are 
often but not always nicely approximated by a straight line 
with a slope q = −1 (for examples see Brakman et al., 1999). It 
is assumed that new migrants to and from cities of particular 
regions arrive during each time period, and with a probability 
π they will form a new city, and with a probability of 1–π they 
will settle in a city that already exists (for an exposition of 
Simon’s model, see Krugman, 1996). The probability with 
which any given city attracts new residents is proportional to 
its size. If so, this model will generate a power law, with 
exponent q = −1/(1–π), as long as π is very close to 0. In other 
words, if new migrants almost always join existing cities, then
q will converge toward −1. This elegant explanation of Zipf’s 
law for city-size distribution has, however, a number of 
drawbacks that various authors have pointed out (e.g., 
Krugman, 1996; Brakman et al., 1999).

In his book Why Big Fierce Animals Are Rare, the ecologist 
Paul Colinvaux (1978) concluded that body mass and 
metabolic demands of large animals set limits to their 
frequency. Indeed, as Carbone and Gittleman (2002) have 
shown, the relationship between the number of carnivores per 
10,000 kg of prey and carnivore body mass itself follows a 
power function, with an exponent of −1. For illustration, 
10,000 kg of prey biomass cannot even support in perpetuity 
one polar bear whose average body mass amounts to 310 kg, 
whereas it supports 146 Channel Island foxes, which have an 
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average mass of about 2 kg. An adult male killer whale, with a 
daily caloric demand of 287,331 calories, must guzzle down 
five male or seven female sea otters per day, thus a single pod 
of killer whales (composed of one male and four females) could 
ingest over 8,500 sea otters per year (Williams, Estes, Doak, & 
Springer, 2004). Clearly, high caloric demands require a large 
intake of prey, and the question of why big fierce animals are 
rare comes down to whether these animals can find as much 
food as they need to survive.

Both domain-specific and domain-general scientific 
explanations have been proposed for ubiquitous types of 
statistical distributions, whether they be, for instance, power-
law or Gaussian distributions. Assuming the human mind 
contains an adaptive toolbox of simple cognitive strategies 
(Gigerenzer, Czerlinski, et al., 1999), one unexplored issue is 
whether people have intuitive theories about the emergence of 
specific distributions—for example, “there need to be many, 
many more small animals than big animals, because any big 
one preys on many small ones”—and to what extent such 
theories play a role in triggering cognitive strategies that bet 
on specific types of distributions.

(p.406) Conclusion

Power-law distributions face us from all sides. Chater and 
Brown (1999) pointed out their ubiquity in environmental 
features that we perceive. Based on this, they argued that 
many psychological laws governing perception and action 
across domains and species (e.g., Weber’s law, Stevens’s law) 
reflect accommodation of the perceptuo-motor system to the 
skewed world. The same type of relationship to J-shaped 
environments has also been argued for the structure of 
memory (Anderson & Schooler; 1991; Schooler & Hertwig,
2005; see also chapter 6). Similarly, we take as a starting 
point the observation that power-law regularities hold across a 
wide range of physical, social, and economic contexts. 
Assuming not only that the perceptuo-motor and memory 
systems are built to represent the statistical structure of 
imbalanced environments (Anderson, 1990; Shepard, 1994/
2001) but also that the cognitive system has been similarly 
constructed, we have proposed QuickEst, a fast and frugal 
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heuristic for making estimations. Its architecture exploits the 
world’s frequent predictable imbalance. In the study of mental 
tools (including heuristics) as well as mental structures 
(including perception and memory) we begin to discern that 
the mind looks very much matched to key structures of the 
world.

Notes:
(1.) Of course, this line is by defi nition downward sloping 
(because the rank variable represents a transformation of the
fortune vari able that entails a negative correlation between 
the two variables). The fact that one observes a straight line, 
however, is not trivial because there is no tautology causing 
the data to automatically follow a straight line. As Newman 
(2005) pointed out, few real-world distributions follow a power 
law over their entire range. This is particularly true for 
smaller values of the variable being measured or for very large 
values. In the distribution of city sizes, for instance, the 
political capitals, say Paris or London, are much larger than 
the line drawn through the respective distribution of cities 
would lead one to expect—they are “essentially different 
creatures from the rest of the urban sample” (Krugman, 
1996). In Figure 15-1b, the 30 richest billionaires’ wealth 
deviates from the fi tted straight line: Their wealth is less 
large than theoretically expected.

(2.) Zipf’s law and the Pareto distribution differ in several 
respects (see Newman, 2005). Pareto was interested in the 
distribution of income and asked how many people have an 
income greater than x. The Pareto law is given in terms of the 
cumulative distribution function; that is, the number of events 
larger than x is an inverse power of x: P(X 〉 x) ∝ x-k. In 
contrast, Zipf’s law usually refers to the size y of an 
occurrence of an event (e.g., the size of a city or the frequency 
of use of a word). Another difference is the way the 
distributions were plotted: Whereas Zipf made his plots with 
rank on the horizontal axis and size on the vertical axis, Pareto 
did it the other way round.

(3.) When the heuristic is initially set up, only as many cues (of 
all those available) will be used in the cue order as are 
necessary to estimate the criterion of four-fifths of the objects 
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in the training set. The remaining one-fifth of the objects will 
be put in the catchall category.

(4.) By building in spontaneous numbers, the heuristic models 
the observation that when asked for quantitative estimates 
(e.g., the number of windmills in Germany), people provide 
relatively coarse-grained estimates (e.g., 30,000, i.e., 3 × 104, 
rather than 27,634). Albers (2001) defined spontaneous 
numbers as numbers of the form a × 10i, where a ∈ {1, 1.5, 2, 
3, 5, 7} and i is a natural number.

(5.) In fact, when the training set (100%) equals the 
generalization set, the estimation tree achieves the optimal 
performance. Specifically, the optimal solution is to memorize 
all cue profiles and collapse cities with the same profile into 
the same size category. In statistics, this optimal solution is 
known as true regression. Under the circumstances of 
complete knowledge, the estimation tree is tantamount to true 
regression.

(6.) There are different definitions of scarcity of information. 
In the present analysis, we define scarcity in terms of the 
number of objects on which a strategy is trained compared to 
the total number of objects in an environment (on which the 
strategy can be tested). Martignon and Hoffrage (1999, 2002) 
defined information scarcity in terms of the ratio of the 
number of binary cues to the number of objects in an 
environment.

(7.) The number of objects per cue is a poor predictor of 
QuickEst’s performance in relation to that of the estimation 
tree (regardless of whether the fish fertility environment is 
included in the analysis).

(8.) We are grateful to Bettina von Helversen and Jörg 
Rieskamp for their valuable input on the following sections.

(9.) Inferences from givens (i.e., using displayed information) 
are an unsuitable test-bed for memory-based heuristics like 
QuickEst. Inferences from givens do not invoke the costs 
associated with search in memory—including cognitive effort, 
time, and opportunity costs—which are likely to be key 
triggers for the use of QuickEst and other heuristics (e.g., 
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Bröder & Schiffer, 2003b; see also chapter 9). Hausmann and 
colleagues (2007; Experiment 2) and von Helversen and 
Rieskamp (2008) tested QuickEst in the unsuitable context of 
inferences from givens.
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