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Abstract

Electroencephalographic recordings ( EEG) were used to assess age-associated differences in nonlinear brain dynamics during
both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed
nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an indicator of cortical
reactivity. During rest, both nonlinear coupling and spectral alpha power decreased with age, whereas dimensional complexity
increased. In contrast, when attending to the deviant stimulus, nonlinear coupling increased with age, and complexity decreased.
Correlational analyses showed that nonlinear measures assessed during auditory oddball performance were reliably related to an
independently assessed measure of perceptual speed. We conclude that cortical dynamics during rest and stimulus processing
undergo substantial reorganization from childhood to old age, and propose that lifespan age differences in nonlinear dynamics
during stimulus processing reflect lifespan changes in the functional organization of neuronal cell assemblies.

Introduction

As noted by Hebb (1949, p. xiv), ‘the problem of
understanding behavior is the problem of understanding
the total action of the nervous system, and vice versa’.
One issue of critical importance in this context is to
understand how brain dynamics change across the life-
span. Behavioral and physiological evidence suggests
that interactions between maturation and learning from
childhood to adulthood lead to increasing cortical dif-
ferentiation and integration (Nelson & Luciana, 2001)
and that senescent changes from adulthood to old age
result in dedifferentiation and reduced cortical special-
ization of neural cell assemblies (Baltes & Lindenberger,
1997; Li, Lindenberger & Sikstrom, 2001; Park, Polk,
Park, Minear, Savage & Smith, 2004; Park, Carp, Heb-
rank, Park & Polk, 2010; Park & Reuter-Lorenz, 2009;
Reuter-Lorenz & Park, 2010). Despite these general
claims, surprisingly little is known about lifespan changes
in cortical complexity and coupling dynamics. In two
earlier articles, we reported lifespan differences in elec-
trophysiological correlates of auditory attention, either
by focusing on event-related brain potentials (ERPs;
Miiller, Brehmer, von Oertzen, Li & Lindenberger, 2008),
or by spectral analyses of evoked power, whole power,
and phase synchronization (Miiller, Gruber, Klimesch &
Lindenberger, 2009). Both sets of analyses suggested that
cortical activity during auditory attention undergoes
profound reorganization from childhood to early adult-

hood, and from early adulthood to old age. The present
article builds on this earlier work by examining lifespan
differences in nonlinear brain dynamics during rest and
auditory oddball performance.

The human brain is a complex system that shows
temporally coherent activity in the absence of an explicit
task (Deco, Jirsa, Robinson, Breakspear & Friston, 2008;
Deco, Jirsa, MclIntosh, Sporns & Kotter, 2009; Ghosh,
Rho, Mclntosh, Kotter & Jirsa, 2008). This so-called
‘resting state’ activity and the underlying coupling
dynamics relating to it can be captured at different scale
levels (from a single cortical area to multiple cortical
areas and whole brain dynamics) and frequencies using
both neuroimaging techniques (fMRI and PET) and
EEG and MEG recordings (Biswal, Yetkin, Haughton &
Hyde, 1995; Damoiseaux, Rombouts, Barkhof, Schel-
tens, Stam, Smith & Beckmann, 2006; Deco et al., 2009;
Greicius, Krasnow, Reiss & Menon, 2003; Miiller, Bir-
baumer, Preissl, Braun, Mayer-Kress & Lang, 2003a;
Miiller, PreiB3]l, Lutzenberger & Birbaumer, 2003b; Ven-
ables, Bernat & Sponheim, 2009). Whereas neuroimaging
studies have shown synchronous hemodynamic activity at
low frequency (ultraslow fluctuations: mostly < 0.1 Hz),
EEG and MEG studies have shown synchronized
electro- or magnetophysiological activity at much higher
frequencies (1-100 Hz). Computational studies (e.g.
Deco et al., 2008; Ghosh et al., 2008) suggest that large-
scale resting state networks are associated with coherent
fluctuations that span a wide range of timescales,
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including the timescales captured by imaging and
EEG/MEG studies. Computational work also suggests
that intrinsic noise and time delays via propagation along
connecting fibers contribute to the dynamics of resting
state networks (Deco et al., 2008; Ghosh et al., 2008).
Therefore, methods and models derived from nonlinear
dynamics, such as coupled nonlinear oscillators (Ghosh
et al., 2008; Deco et al., 2008), are suitable tools for
describing these networks.

Over the past three decades, a number of measures for
describing dynamic systems have been introduced
(Grassberger & Procaccia, 1983; Eckmann & Ruelle,
1985; Wolf, Swift, Swinney & Vastano, 1985; Ellner,
1988; Briggs, 1990). A common step in attaining such
measures consists of reconstructing the phase space by
embedding an observable according to Takens’ embed-
ding theorem (1981). This theorem proves that the
complexity of a dynamic system can be determined by
examining the time series of a single observable. The
temporal sequence of this observable (like the EEG) thus
contains information on all unobserved degrees of free-
dom. This information can then, in principle, be recov-
ered by reconstructing the phase space from the time
series observed in an appropriate manner (Elbert, Ray,
Kowalik, Skinner, Graf, and Birbaumer, 1994; Van-
denhouten, 1998). One possible way of reconstructing the
phase space of a time series is to make use of time-delay
embedding (Pritchard & Duke, 1992; Stam, 2005).
Embedding of a time series x,(x;, X5, X3, ..., Xy) is carried
out by creating a set of vectors X; such that
X (i) = [Xi,Xise, Xis2e, Xitde, - Xig (m—1)c)» Where T is the
time delay in the number of samples and m is the
embedding dimension. This embedding procedure allows
the evolution of the system to be represented by pro-
jecting the vectors X; onto a trajectory in a multidi-
mensional space, often called the phase space or state
space. The trajectory or subspace upon which the system
converges is called attractor, which can be described
mathematically by its dimension (van Drongelen, 2007).

If we assume that each cortical network has its own
characteristic temporal dynamics as expressed in the
EEG trace, then the dimension of the time series can be
interpreted as an estimate of the number of indepen-
dently activated cell assemblies (Birbaumer, Flor, Lut-
zenberger & Elbert, 1995; Elbert et al., 1994;
Lutzenberger, Preissl & Pulvermuller, 1995), which cor-
respond to the cortical complexity of a given mental,
motor, or sensory activity. Interacting neurons in the
brain dynamically self-organize into coherently oscillat-
ing structures that are generated and activated by input
from external or internal sources (Mayer-Kress, 1998).
Based on a simulation study, Lutzenberger et al. (1995)
noted that dimensional complexity increases with the
number of independently active generators of spontane-
ous electro-cortical activity. Whether these independent
generators are related to the number of independently
active cell assemblies in the Hebbian sense as described
by Elbert et al. (1994) remains unclear. According to
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Ashby’s (1958) Law of Requisite Variety, the variety in
the control system must be equal to or larger than the
variety of the perturbations to maintain stability. This
suggests that a greater degree of complexity in brain
activity is needed to keep the system within stable activity
boundaries.

Anokhin, Miiller, Lindenberger Heath, and Myers
(2006) found in a recent study that individual differences
in the complexity of resting electrocortical dynamics are
largely determined by genetic factors. With regard to
developmental changes in the brain’s dynamic complex-
ity, there is evidence for increasing complexity from
childhood to old age (up to 60 years; Anokhin, Birbau-
mer, Lutzenberger, Nikolaev & Vogel, 1996; Anokhin,
Lutzenberger, Nikolaev & Birbaumer, 2000). In terms of
changes in complexity with respect to aging, both
increases and reductions in complexity have been
reported (for review, see Vaillancourt & Newell, 2002).
Pierce, Kelly, Watson, Replogle, King and Pribram
(2000) used recrudescence rate and algorithmic com-
plexity measures to show significantly higher levels of
EEG complexity in older adults than in younger ones at
rest with eyes both closed and open as well as in a sus-
tained attention task. In other work applying factor
analysis to EEG data, Pierce, Watson, King, Kelly and
Pribram (2003) showed that EEG recordings of older
adults yielded significantly more factors than those of
younger adults, indicating a greater degree of complexity
in the spatial distribution of EEG activity in older than
in younger adults. Furthermore, there are also indica-
tions that the quantification of EEG complexity and
nonlinear coupling may aid the early diagnosis of
dementia (Czigler, Csikos, Hidasi, Gaal, Csibri, Kiss,
Salacz & Molnar, 2008; Jelles, van Birgelen, Slaets,
Hekster, Jonkman & Stam, 1999; Jeong, 2004).

Dynamic complexity variations have also been
observed during task performance using pointwise mea-
sures, reflecting the specific requirements of stimulus
processing. Rapp, Bashore, Martinerie, Albano, Zimm-
erman and Mees (1989) found reduced complexity (D2)
in response to the target stimulus compared with the
nontarget stimulus during the auditory oddball task.
Molnar, Skinner, Csepe, Winkler and Karmos (1995)
also reported reductions in dimensional complexity
(PD2i, pointwise correlation dimension) in response to
the target stimulus in the auditory oddball task relative
to baseline, with a stronger reduction in complexity
observed for attended stimuli than for ignored stimuli.
These findings provide evidence that stimulus processing
is associated with a reduction in dynamic complexity.
This could be related to a reduction in the system’s
degrees of freedom due to decision-making or other
types of cognitive demand during stimulus processing.

Another important dimension of complex systems is
their coupling dynamics. Each subsystem has its own
dynamics, and the complex behavior of the whole system
reflects, in part, the coupling mechanisms among
the subsystems. According to Hebb’s theory of cell
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assemblies, the exchange of information between cell
assemblies is much smaller than the information flow
within each assembly (cf. Buzsaki, 2006; Hebb, 1949;
Watts, 2003). This differentiation in the information flow
assumes that different coupling dynamics exist between
different neural units. These dynamics and their changes
over the lifespan can be assessed by both linear and
nonlinear measures. Using phase synchronization mea-
sures (Phase Locking Index and Phase Coherence), we
recently reported that cortical synchronization increased
from childhood to old age (Miiller et al., 2009). In the
present study, we use two nonlinear coupling measures,
the Pointwise Transinformation Index (PTI) and the
Pointwise Conditional Coupling Divergence (PCCD) as
well as a complexity measure (Pointwise Dimension,
PD?2) to examine how coupling dynamics and complexity
change over the lifespan. PTI is derived from Shannon’s
information concept (Shannon & Weaver, 1949) and
measures the mean quantity of information in a system
contained within the other system (Vandenhouten, 1998).
As such, it predicts and distinguishes one system’s
behavior from that of another and can reflect the non-
linear coupling dynamics between the systems. PCCD
provides a quantification of dissipative coupling dynam-
ics by observing a system’s trajectories over a common
phase space, thus indicating how long the two trajectories
of the two different systems remain in neighborhood, that
is, are dynamically coupled. While some evidence of
increasing complexity with age exists, developmental as-
pects of nonlinear coupling have not been investigated at
all. Furthermore, there is no information about the way in
which dynamic complexity and nonlinear coupling dur-
ing stimulus processing differ by age.

Here, we present data from younger children, older
children, younger adults, and older adults obtained at rest
and during an auditory oddball task under an attended
(i.e. oddball-counting) condition. We expected differences
in mean complexity and coupling as a function of age
group, at least up to early adulthood. Dimensional com-
plexity, which reflects the complexity of the signal and is
related to the number of independently activated cell
assemblies, was expected to increase with age during rest,
accompanied by an age-related increase in the its reduc-
tion from rest to task. These expectations are based on the
assumption that the complexity of brain dynamics may
indicate either of two age-graded changes: (a) a process of
increasing cortical differentiation and integration from
childhood to adulthood (cf. McIntosh, Kovacevic, Lippe,
Garrett, Grady & Jirsa, 2010); and (b) the disaggregation
of functional units due to senescent changes from early to
late adulthood (cf. Pierce et al., 2000, 2003). Furthermore,
functional complexity reduction during task performance
may reflect the efficiency with which the system’s degrees
of freedom are reduced during stimulus processing. We
also expected that nonlinear coupling reflecting infor-
mation exchange within and between cell assemblies
would increase with age, especially during active stimulus
processing. In addition, we examined the association
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between nonlinear measures and behavioral performance
on cognitive tests assessing perceptual speed to aid the
functional interpretation of dynamic complexity and
nonlinear coupling. Given that individual differences on
measures of perceptual speed can be interpreted as mea-
sures of processing efficiency, we expected perceptual
speed scores to be positively related to coupling measures
and negatively related to the complexity measure both
computed during task condition.

Method
Participants

All participants were volunteers recruited via announce-
ments at schools in the Saarland (Gymnasium — the top-
tier German high school) and at the Saarland University.
The older adults were senior students at Saarland Uni-
versity, participated in other continuing education pro-
grams, or both. All participants were paid 7.50 Euro per
hour to take part in the study. They were all right-handed,
had no reported history of head injuries or neurological
disorders, and were not on medication. Of the partici-
pating individuals, five younger children, one older child,
and one older adult were excluded from the data analysis
due to their having reported numbers of odd stimuli in
attended conditions (see below) that deviated from the
correct number by more than three digits in either direc-
tion. One younger adult was excluded from the data
analysis because of a technical problem in the rest condi-
tion. The effective sample thus consisted of 24 younger
children (YC, mean age = 9.9, SD = 0.6, age range = 9.0—
10.8 years, 13 females), 28 older children (OC, mean
age = 12.0, SD = 0.6, age range = 11.0-12.8 years, 14
females), 30 younger adults (YA, mean age = 22.6,
SD = 1.6, age range = 18.8-25.1 years, 14 females), and
28 older adults (OA, mean age = 67.8, SD = 3.0, age
range = 63.9-74.5 years, 14 females). Participants of all
ages including children were able to sustain their attention
for the entire duration of the experiment.

Psychological and audiological assessment

Psychological and auditory assessments were carried out
on the day before the EEG session. The cognitive battery
of the Berlin Aging Study (BASE; Baltes & Mayer, 1999)
was used for psychological assessment. Three tests from
this battery, namely Digit Symbol Substitution (DSS),
Digit Letter Substitution (DLS) and Identical Pictures
(IP), all of which comprise marker tests of perceptual
speed, were selected for correlational analysis of rela-
tionships with electrophysiological data. The materials
and procedural details of this cognitive battery have been
described elsewhere (Lindenberger, Mayr & Kliegl,
1993).

The Wechsler (1955) version of the DSS test was used.
The participants were presented with a coding key which
paired nine numbers (1 through 9) with nine symbols



together with a row of randomly ordered numbers with
empty boxes below them. Participants had to enter as
many symbols as possible into the empty boxes based on
the digit-symbol associations specified in the coding key
within 90 s. The number of symbols correctly entered
into the boxes represented the outcome measure.

The DLS test closely resembles the DSS but uses let-
ters instead of symbols. The test consists of a total of 21
sheets, each of which contained six digits with a question
mark underneath. Moving from left to right, subjects
were asked to name the letters corresponding to the
digits. The test lasted for 3 minutes, with scores collected
after each minute. The score used here was the total
number of correct responses after 3 min.

In the IP test, a total of 32 items was presented. For
each item, a target figure was presented at the top of the
screen together with five response alternatives at the
bottom. Participants were asked to touch the correct
alternative (i.e. the identical one) at the bottom of the
screen as quickly as possible. The subjects were both
given instructions and allowed to complete three practice
rounds before the actual test phases began. Testing fin-
ished automatically after 80 s. The score refers to the
number of correct responses.

The standard Hughson-Westlake technique for mea-
suring the pure-tone detection threshold (0.25-8.0 kHz,
bilaterally) was used for auditory assessment (Carhart &
Jerger, 1959). The threshold values for left and right sites
were averaged and a two-way repeated measures ANOVA
with a between-subjects factor Age and a within-subject
factor Frequency (4 x 8) was carried out. Fischer’s LSD
test was used for post-hoc testing of age-group differ-
ences. Statistical analysis revealed a significant main
effect for the factors Age, F(3, 107) = 47.0, p <.0001,
N> = 0.57, and Frequency, F(7, 749) = 18.1, p < .0001,
N> = 0.15, as well as a significant Age by Frequency
interaction, F(21, 749) = 30.1, p < .0001, n?= 0.46.
Fischer’s LSD post-hoc tests revealed significant differ-
ences between OA and other age groups (all p < .0001).
Auditory thresholds were highest in OA and generally
lowest in YA. Thresholds were particularly elevated at
high frequencies for OA. Age differences were least pro-
nounced in the frequency range of stimuli used for the
oddball task (800-1000 Hz).

Procedure

The EEG measurement began with a 3-minute relaxation
phase (1.5 minutes with eyes closed and 1.5 minutes with
eyes open). Instructions for the resting states were given
on the computer display and were presented as follows:
‘A cross will be shown in the middle of the screen for a
minute and a half. Please focus on the cross and relax’
(for the eyes-open condition) and ‘Keep your eyes closed
for a minute and a half and relax’ (for the eyes-closed
condition). The rest phases were then followed by the
auditory oddball task. During the recording, the subjects
sat in a chair in a relaxed position in an electrically
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shielded room. During the oddball task, which was
carried out with eyes closed, the participants heard two
different types of tone pips: a 1000 Hz tone played fre-
quently to form the standard stimulus and an 800 Hz
tone played only intermittently to form the deviant
stimulus. The standard and deviant stimuli were pre-
sented binaurally (with a probability of 0.8 and 0.2 for
the standard and deviant stimuli, respectively) through
headphones (Sony DJ MDR-V300) at 70 dB SPL for a
duration of 70 ms (including a 10 ms rise and fall peri-
od). The stimuli were generated using the Audacity 1.2.4
software. The inter-stimulus interval ranged between
1200 and 1500 ms. Two different experimental conditions
were used: passive listening (unattended) and active
counting (attended). For the first condition, the subjects
were simply asked to listen to the tone pips without any
response, whereas, for the second condition, the subjects
were asked to listen to the stimuli and count the number
of deviant tones. They were then asked to report back the
number of tones counted once the session was complete.
Each experimental condition contained 152 standard
tones and 38 deviant tones presented in a pseudo-ran-
dom order fixed for all participants. The conditions were
always presented in the same order, with the passive
listening condition followed by the active counting
condition in order to facilitate the interpretation of
between-person differences.

EEG recordings and analyses

The electroencephalogram (EEG) was recorded from 58
Ag/AgCl electrodes using an elastic cap (Electrocap
International) with a sampling rate of 500 Hz in a fre-
quency band ranging between 0.5 and 100 Hz. The left
mastoid was used as a reference and the right mastoid
was recorded as an active channel. The data were also
re-referenced off-line to an average of the left and right
mastoids for further analysis. The electrodes were placed
according to the international 10-10 system. For data
analyses using nonlinear algorithms, only 21 electrode
locations from the 10-20 system were used to avoid
volume conduction effects between electrode sites located
close together. The vertical and horizontal electrooculo-
gram (EOG) was recorded for control of eye blinks and
eye movements. Signals were digitally filtered oft-line
(Butterworth zero phase filters 0.5-50 Hz, slope 12 dB/
octave; notch filter 50 Hz). The EEG recordings were
corrected for eye movements using the Gratton and
Coles algorithm (Gratton, Coles & Donchin, 1983), and
blink artifacts were rejected based on a gradient criterion
(i.e. based on a maximally allowed voltage step of
50 V), and a difference criterion (i.e. based on a maxi-
mally allowed absolute difference between two values in
the segment of 200 uV). The EEG was segmented based
on division in equal sized non-overlapping segments of
1024 ms length (512 data points) for the rest interval.
During the task, the segmentation was linked to the
stimulus-onset, where the segments also contained 512
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data points of the post-stimulus interval. All measures
were thus calculated for 30 artifact-free 1024 ms EEG
segments chosen randomly after artifact rejection and
then averaged across the trials. The data were also aver-
aged across subjects within the age groups (grand aver-
ages) for representation purposes.

Nonlinear measures

The pointwise correlation dimension (PD2) and the two
coupling measures — pointwise transinformation (PTI)
and pointwise conditional coupling divergence (PCCD) —
were calculated using the Dataplore software package
(Datan Software and Analysis GmbH, Teltow, Ger-
many). All of the pointwise measures used are well suited
to examine non-stationary time series and can also be
applied to EEG and other biological signals (Van-
denhouten, 1998; Elbert et al., 1994).

Pointwise Dimension (PD2)

The software package uses Skinner’s (Skinner, Molnar,
Vybiral & Mitra, 1992; Skinner, Pratt & Vybiral, 1993)
algorithm to determine PD2, which is computed using
the following formula: PD2(i) = logC(r,i)/log(r), with
the pointwise correlation integral calculated based on:

1 N-—1
Cti =gy 3 06— [u-5)

J=0sj#i

where r denotes the radius of a phase-space neighbor-
hood around x; ¥; und %; are the phase space coordinates
with delay 7; N is the length of the signal, and 0 is the
Heavyside function, obtained by:

0(x) — {‘1) j}i ;00 )

The PD2 value refers to the dimension of an attractor
of the reconstructed time series, thereby yielding a
measure of the system’s dynamic complexity. The EEG
time series were reconstructed with a maximum embed-
ding dimension of 16 and a time delay of 2 ms.

Pointwise Transinformation (PTI)

PTI is a measure of nonlinear coupling between two time
series that is derived from Shannon’s information con-
cept (Shannon & Weaver, 1949). It is calculated on the
basis of the probability density of the observables in the
multidimensional phase space (Lambertz, Vandenho-
uten, Grebe & Langhorst, 2000; Vandenhouten, 1998):

P ()

P]Y ’C,}’,i = logui
(e P;(r) P(r)

3)

The phase-space densities were assessed using point
frequencies P;(r) that were each determined within a
sphere of radius r around the points x; of the trajectory

© 2012 Blackwell Publishing Ltd.

reconstructed in the phase space. In simplified terms,
the PTI for the i-th time point, lag t, und radius r
shows the probability of being able to observe the value
of the observable y of the second system based on the
value & of the first system after time t. Thus, the
transinformation measures the mean information
quantity of a variable § that is contained in the other
variable y (Vandenhouten, 1998). As phase-space den-
sities are only determined based on empirical point
frequencies, PTI can also take on negative values. PTI
variations indicate the degree of dynamic coupling
between systems, with more positive values corre-
sponding to stronger coupling.

Pointwise Conditional Coupling Divergence (PCCD)

PCCD is also a measure of nonlinear coupling and
provides a quantitative expression of dissipative coupling
dynamics (Vandenhouten, 1998; Lambertz et al., 2000).
It is based on the assumption that two points (&;, ;) and
(&, %)) in coupled systems that are close to each other
within the common phase space remain close together
after a short time interval t, = let,. The PCCD is thus
defined as an expectation value for the conditional
probability that a point in a common phase space is still
in a neighborhood with radius r of the reference trajec-
tory after / time steps (Vandenhouten, 1998). PCCD can
be calculated according to the formula (Lambertz et al.,
2000; Vandenhouten, 1998):

PCCD(r, 1,i)
N-1
E) 0(r = || (xo37) = G, ) [N O(r = || (ejers vjr) = igr, i)
00— ) — @)
k=0

)

where x;, y; and x;, y; are the coordinates of the two
trajectories in phase space, and 0 is the Heaviside func-
tion. In contrast to PTI, PCCD is normalized to values
between 0 and 1.

Spectral alpha power

In addition to nonlinear measures, we also determined
the spectral power in the alpha frequency band
(8-12 Hz), primarily as a treatment to validate the
manipulation of the eyes-closed vs. eyes-open condition.
Spectral alpha power related to the differences between
the eyes-open and eyes-closed conditions is also an
indicator of reactivity and brain activation (Klimesch,
1999). Alpha power was determined separately for each
trial and for each electrode location using fast Fourier
transformation (FFT) with Hanning temporal windows
and then averaged over trials within experimental con-
ditions (eyes closed vs. eyes open). Power values were
normalized using a logarithmic transformation.



EEG data reduction and statistical analyses

All of the measures described above were calculated
separately for each trial and then averaged across trials.
Complexity and nonlinear coupling values obtained
during the rest conditions were also averaged over all of
the values determined in the sequence. These averages
were calculated separately for each electrode or electrode
pair and then used for statistical analyses comparing the
eyes-closed and eyes-open conditions across ages. We
subtracted rest complexity and coupling values from
corresponding task values for each time step in order to
obtain task-related changes. The resulting difference
values were presented as time diagrams for each electrode
or electrode pair averaged across participants in the
different age groups. For statistical analyses, the differ-
ence values for each participant were averaged around
the peaks, which were determined in the grand averages
as maximum values separately for each age group.
Twenty-one electrode locations of the 10-20 electrode
system (Fpl, Fpz, Fp2, F7, F3, Fz, ..., Pz, P4, P§, Ol,
Oz, 02) were used for the statistical analysis of the
complexity measure (PD2). Nonlinear coupling measures
were first determined for 76 different electrode pairs,
which were then collapsed into seven different topologi-
cal components: AP (anterior to posterior), PA (poster-
ior to anterior), LR (left to right = right to left), WL
(within left), WR (within right), FzO (Fz to all other
electrode locations), and PzO (Pz to all other electrode
locations). In the time domain, the difference values were
averaged separately for each age group around the three
peaks determined based on the grand averages. The first
two peaks were averaged across the time interval of
40 ms around the peak and the third peak was averaged
across the time interval of 60 ms around the peak.

Surrogate data test

The purpose of the surrogate data procedure is to test
whether we can refute the null hypothesis that a Gauss-
ian (linear) process has generated the data, thereby
providing indirect evidence in favor of the alternative
assumption that the data originate from a chaotic system
(Theiler, Eubank, Longtin, Galdrikian & Farmer, 1992).
The procedure consisted of: (a) computing the amplitude
and phase spectrum of a real signal using a Fourier
transformation; (b) data shuffling, whereby the phase
values of the original spectrum are used in random order
and the sorted values of the surrogate sequence are
replaced with the corresponding sorted values of the
reference sequence; and (c) reverse Fourier transforma-
tion back to the time domain. In this way, the real and
the surrogate data (RD and SD) retain the same power
spectrum but a different time course. According to the
null hypothesis, the RD and the SD are identical in the
sense that both can be described by a linear stochastic
model, i.e. the two time series will not differ reliably. The
null hypothesis is thus rejected if there are significant
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differences between the correlation dimensions of the
RD and the SD. The surrogate data test was applied for
the eyes-closed resting state.

Statistical analyses

At first, we compared the complexity of real data (RD)
with the complexity of the corresponding surrogate data
(SD) using a three-way repeated measures ANOVA with
a between-subjects factor Age (four age groups: YC, OC,
YA, and OA) and two within-subject factors Data (RD
vs. SD) and Electrodes (21 electrode locations) to decide
whether the analyzed EEG signals were generated from a
chaotic system. This analysis was performed for the eyes-
closed rest condition. Thereafter, both the nonlinear
measures and the spectral alpha power were analyzed for
age-related differences during the resting state, compar-
ing the eyes-closed with the eyes-open condition. A
three-way repeated measures ANOVA with a between-
subjects factor Age and two within-subject factors Eyes
(closed vs. open) and Electrodes was used for both the
spectral alpha power and the complexity measure, which
were each determined separately for each electrode
location. The nonlinear coupling measures were tested
using a three-way repeated measures ANOVA with a
between-subjects factor Age and two within-subject
factors Eyes and Topological Components = TC (seven
components: AP, PA, LR, WL, WR, FzO, and PzO). In
order to test the task-related changes across the lifespan,
the obtained difference values of the nonlinear measures
(see above) were subjected to a three-way repeated
measures ANOVA Age x Peaks x Electrodes for dynamic
complexity and to a three-way repeated measures
ANOVA Age x Peaks x Topological Components for
nonlinear coupling measures (PTI and PCCD). The
Peaks factor always varied on the three levels, indicating
the presence of three different peaks for these measures
during the time sequence or trial. Greenhouse-Geisser
epsilons were used in all ANOVAs for non-sphericity
correction when necessary. Fischer’s LSD test was
employed for post-hoc testing of age-group differences.
To assess correlations between cognitive performance
and electrophysiological data, Pearson product correla-
tions were computed separately for each age group
between the performance (raw scores) in the three per-
ceptual speed tasks (DSS, DLS, and IP) and the non-
linear EEG measures during the task condition. To this
end, the three performance measures were z-transformed
and combined by averaging to the one integrative mea-
sure of perceptual speed for each age group separately.

Results
Surrogate data testing

PD2 values of real and surrogate data were subjected to a
three-way repeated measures ANOVA (Age x Data X
Electrodes), which revealed a significant main effect for
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the Data factor: F(1,106) = 31.8, p < .0001, n* = 0.23,
with significantly higher PD2 values for surrogate data
compared with real data. The Data factor showed a
significant level of interaction with the Electrodes factor,
F(20, 2120)=11.6, p <.0001, m*>=0.10, but not
with the Age factor, F(3, 106) = 1.8, p = .15, n* = 0.05.
The interaction Age by Data by Electrodes was signifi-
cant, F(60, 2120) = 2.0, p < .05, n* = 0.05, indicating
age differences regarding data (real vs. surrogate) and
electrodes. The results thus showed that the null
hypothesis, that is, that the data are generated by a
Gaussian (linear) process, can be rejected and that the
EEG time series of the participants can be assumed to be
nonlinear in all age groups.

Lifespan differences in EEG dynamics during rest

Age-related changes for nonlinear coupling (PTI and
PCCD) and complexity (PD2) measures during the

(a) PTI

—_
(=)}
-~

eyes-closed and eyes-open rest conditions are displayed
in Figure 1. It can be seen that: (a) nonlinear coupling
(PTI and PCCD) in all age groups was higher when the
subjects’ eyes were closed than when they were open,
whereas the reverse pattern was found for complexity;
(b) PTI and PCCD decreased with age whereas PD2
increased with age, both for the eyes-closed and eyes-
open conditions. These effects of age group were sta-
tistically reliable (see Table 1). The post-hoc Fischer’s
LSD test for PTI-values showed significantly lower
coupling in older adults than in children and younger
adults (OA < YA < OC,YC; all ps <.0001). With regard
to PCCD, nonlinear coupling was significantly lower in
adults than in children and also lower in older adults
compared with younger adults (all ps < .01). There was
also a significant Age-by-Eyes interaction with regard to
the PTI measure, indicating a stronger decrease in
coupling with an increase in age in the eyes-open than
in the eyes-closed condition. In clear contrast to the

PCCD PD2

PTI values
PCCD values

PD2 values

Evyc Ooc dvya Hoa

Figure 1 Lifespan differences in nonlinear coupling and complexity during rest. (a). Grand average brain maps of nonlinear
coupling (PTI and PCCD) and dimensional complexity (PD2) for eyes closed (EC) and open (EO) by age group; (YC) younger
children, (OC) older children, (YA) younger adults, and (OA) older adults. All brain maps use the same scaling across ages. Nonlinear
coupling decreases and dimensional complexity increases with age. (b). Mean values and standard error bars are displayed for
corresponding measures in bar charts for the four age groups and eyes-closed (EC) and eyes-open (EO) conditions.
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Table 1 ANOVA results (F- and p-values) for nonlinear measures (PTI, PCCD and PD2) and alpha spectral power during rest

conditions with eyes closed and open

Age-related effects and interactions

Age x Eyes Age x TC (df = 18,636) Age x Eyes x TC (df = 18,636)
Measures Age (df = 3,106) (df = 3,106) Age x Electrodes (df = 60,2120) Age x Eyes x Electrodes (df = 60,2120)
PTI 114 (p < .0001, 0> =0.24) 3.0 (p < .05, 0.9 (ns) 0.5 (ns)
YC,0C,YA > OA n% =0.079)
PCCD 229 (p <.0001, n> =0.39) 1.1 (ns) 1.2 (ns) 0.7 (ns)
YC,0C > YA > OA
PD2 29.4 (p < .0001, n? = 0.45) 1.8 (ns) 2.5 (p < .001, n> = 0.066) 2.0 (p < .034, n* =0.052)
YC,0C < YA < OA
Spectral 29.9 (p < .0001, n> =046) 7.8 (p < .0001, 3.6 (p < .0001, n> = 0.093) 1.3 (ns)
alpha power ~ OC,YC > YA > OA n? =0.18)

Note: ns = not significant; TC = Topological Components.

coupling measures, the complexity measure (PD2)
showed a significant increase in dimensional complexity
with age (see Table 1). Post-hoc tests showed that
complexity was significantly higher in adults than in
children and also higher in older adults than in younger
adults (all ps < .01). In addition, there were reliable Age
by Electrodes and Age by Eyes by Electrodes interac-
tions, indicating different topological distributions of
the complexity measure at different ages, and stronger
differences in topological distributions with age in the
eyes-open than in the eyes-closed condition.

Spectral alpha power changes with age for the eyes-
closed and eyes-open conditions are shown in Figure 2.
A strong alpha depression was observed for the
eyes-open compared with the eyes-closed condition.
Also, spectral alpha power decreased with age for both
conditions. The frequency diagrams for these two
conditions at the Oz electrode and the corresponding
power distributions at the peak frequency are also
displayed in Figure 2. It can be seen that: (a) alpha
power was generally higher in the eyes-closed than in
the eyes-open condition; (b) alpha power decreased
with age for both the eyes-closed and eyes-open
conditions; and (c) the alpha frequency was lower in
older adults, showing a peak at 9 Hz compared to
children and younger adults, whose peak was at 10 Hz.
Statistical analyses revealed significant age differences
with respect to spectral alpha power, with children
showing higher values than adults and younger adults
higher values than older ones as indicated by post-hoc
Fischer’s LSD test (all ps < .002). The spectral alpha
power was always lower for the eyes-open condition
than for the eyes-closed condition, F(1, 106) = 341.1,
p < .0001, n? = 0.76. There was also a significant Age
by Eyes interaction, with the greatest reduction in al-
pha power (eyes-open compared to eyes-closed) ob-
served in younger adults and the smallest reduction of
alpha power observed in older adults. In addition, a
significant Age by Electrodes interaction could be
observed, indicating stronger age differences at
parieto-occipital regions (see Table 1 and Figure 2 for
details).
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Figure 2 Lifespan differences in spectral power during the
rest period. (a). Bar charts with mean values and standard error
bars for alpha power for the eyes-closed (EC) and eyes-open
(EO) conditions for the four age groups (YC, OC, YA, and OA).
(b). Grand average frequency diagrams of spectral power at the
Oz electrode for EC (blue curve) and EO (red curve) and cor-
responding brain maps for spectral power at the frequency
peaks by age group. Note that the brain maps use the same
scaling. Spectral power at the peak decreases with advancing
age both in EC and EO conditions.
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Figure 3 Lifespan differences in PTI during the task. Grand average stimulus-locked time diagrams of PTI difference values (task
condlition — rest condition) at the 76 electrode pairs for deviant stimuli under the attended condition by age group (YC, OC, YA, and
OA). Brain maps with the PTI connections at the three peaks are also shown. The strength of connections is indicated by color. A
strong increase in PTI with age, especially during the third peak, can be observed.

Lifespan differences in EEG dynamics during the oddball
task

We determined complexity and coupling measures for
standard and deviant stimuli during the passive listening
(unattended) and active counting (attended) conditions.
Age differences were most pronounced for deviant
stimuli in the attended condition. Therefore, only results
from this condition are considered here. We computed
differences between measures obtained in the task and
rest conditions (both with eyes closed) for statistical
analyses and visualization. Grand averages of PTI dif-
ferences (task condition — rest condition with eyes
closed) across trials and participants stratified by age
group are shown in Figure 3, which includes time

© 2012 Blackwell Publishing Ltd.

diagrams for 76 electrode pairs and corresponding brain
maps during three time intervals. Three positive PTI
peaks during the time intervals of 100, 180 and 330 ms
can also be seen. The last peak was delayed by about
40 ms in older adults.

The PTI difference values were aggregated into seven
different topological component scores and averaged
around the three peaks (see the Methods section for
details). These averages were then subjected to a three-
way repeated measures ANOVA (Age x Topological
Components x Peaks), which revealed a significant main
effect for the Age factor, with significant differences
being obtained between children and adults determined
by Fischer’s LSD post-hoc tests (OA, YA > YC, OC, all
p < .01). The significant main effects of Topological
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Figure 4 Lifespan differences in PCCD during the task. Grand average stimulus-locked time diagrams of PCCD difference
values (task condition — rest condition) at the 76 electrode pairs for deviant stimuli under the attended condition by age group (YC,
OC, YA, and OA). Brain maps with the PCCD connections at the three peaks are also shown. The strength of the connections is
indicated by color. A strong increase in PCCD with age, especially during the third peak, can be also observed.

Components, F(6, 636) = 35.2, p <.0001, n? = 0.25,
and Peaks, F(2, 212) = 71.8, p < .0001, > = 0.40, indi-
cated higher nonlinear coupling for the LR (left-right)
component and for the third coupling peak (in the time
interval around 330 ms). As demonstrated by the sig-
nificant interactions Age by Topological Components,
Age by Peaks and Age by Topological Components by
Peaks, age differences were more marked at the topo-
logical components LR (left-right), WL (within left) and
WR (within right), as well as being more marked for the
third peak than for the other two peaks, again for the
latter three topological components.

The grand averages of PCCD difference values across
trials and participants in the four age groups are shown
in Figure 4. As in the case of PTI, three positive PCCD

© 2012 Blackwell Publishing Ltd.

peaks (at least for younger and older adults) during the
time intervals of 100, 180 and 330 ms can be seen, al-
though the dynamics of this coupling differ somewhat
from those found for PTI. For example, the third peak
decreases very slowly and remains noticeable until the
end of the trial. The last peak for older adults was once
again delayed by about 30-40 ms.

The PCCD difference values (in analogy to PTI) were
combined in seven different topological components and
averaged around the three peaks. A three-way repeated
measures ANOVA (Age x Topological Components X
Peaks) revealed a significant main effect for the Age
factor, with significant differences between children and
older adults only (OA > YC, OC, all p < .05). Younger
adults showed only marginally significant increased
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Table 2 ANOVA results (F- and p-values) for non-linear measures (PTl, PCCD and PD2) during task condition

Measures Age-related effects and interactions
Coupling Age (df = 3,106) Age x Peaks (df = 6,212) Age x TC (df = 18,636) Age x Peaks x TC (df = 36,1272)

PTI 7.4 (p < .0001, n° = 0.17) 4.7 (p < .0001, n* =0.12) 2.8 (p <.001, n* =0.072) 2.6 (p < .0001, n> = 0.069)
YC,0C < YA,OA

PCCD 33 (p<.05,1n =0.24) 2.2 (p < .05, n% = 0.060) 1.8 (ns) 1.8 (p < .01, n? = 0.049)
YC,0C< OA

Complexity Age (df = 3,106) Age x Peaks (df = 6,212) Age x Eld (df = 18,636) Age x Peaks x Eld (df = 120,4240)

PD2 1.6 (ns) 2.4 (p <.05,m% =0.063) 1.2 (ns) 1.2 (ns)

Note: ns = not significant; TC = Topological Components.

PCCD compared to younger children, Mean Diff. =
0.014, Crit. Diff. = 0.015, p = .069. The significant main
effects of Topological Components, F(6, 636) = 14.0,
p <.0001, n2 =0.12, and Peaks, F(2, 212) =429,
p <.0001, > =0.29, indicated higher nonlinear cou-
pling for the LR (left-right) component and for the third
coupling peak (in the time interval around 330 ms). As
shown by the significant interactions Age by Topological
Components, Age by Peaks and Age by Topological
Components by Peaks (see Table 2), age differences were
more marked at the topological components LR (left-
right), WL (within left), WR (within right) and FzO (Fz
to all other electrodes), as well as being more marked for
the third peak, especially for these four topological
components.

Dimensional complexity as measured by PD2 is dis-
played in Figure 5. We calculated difference values be-
tween the task and rest conditions with eyes closed for
each of the 21 electrode locations. Complexity reduction
related to stimulus processing at all three peaks was most
pronounced at frontal and parietal sites. Statistical
analyses showed significant main effects for Peaks and
Electrodes, indicating a stronger reduction in complexity
for the third peak and for the frontal and parietal elec-
trode locations. The main effect of Age was not statisti-
cally reliable. However, there was a significant Age by
Peaks interaction, showing more marked age-related
differences for the third peak. Separate two-way repeated
measures ANOVA (Age x Electrodes) for PD2-values at
the third peak showed a significant main effect for the
Age factor, F(3, 106) = 2.7, p < .05, n*> = 0.071, with a
significantly greater reduction in complexity in younger
adults than younger children as indicated by the post-hoc
Fischer’s LSD test, Mean Diff. = 0.20, Crit. Diff. = 0.14,
p <.0l. We also observed a tendency for differences
between younger children and older adults, Mean
Diff. = 0.13, Crit. Diff. =0.14, p = .090, and older
children and younger adults, Mean Diff. = 0.12, Crit.
Diff. = 0.14, p = .075.

Correlations between nonlinear measures and
independently assessed measures of perceptual speed

To assess the functional status of the nonlinear measures
obtained during the task, we correlated them with scores
of the three independently assessed measures of percep-
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tual speed: Digit Letter Substitution (DLS), Digit Sym-
bol Substitution (DSS), and Identical Pictures (IP).
These three measures were z-transformed and combined
by averaging to one overall measure of perceptual speed
separately for each age group. In the case of nonlinear
measures, we used difference values between the task and
rest conditions from the third peak only, as it was the
most pronounced and also showed the most marked age-
related effects. We expected perceptual speed scores to be
positively related to coupling measures and negatively
related to the complexity measure. Correlations were
reliable for adults but not for children, with the exception
of a significant correlation in OC for the PD2 measure at
F7 electrode, r = —0.41, p =.028, indicating that a
stronger decrease in dynamic complexity is related to a
higher score for perceptual speed. Although only one
correlation coefficient was significantly different from 0,
the other correlation coefficients, with the exception of
one electrode, were negative. The sign test showed a
highly significant tendency for a negative relationship
(p <.0001). The highest correlations were observed for
the PTI measure, particularly in older adults (see Table 3
for details). Younger adults showed reliable positive
correlations between the perceptual speed score and
three PTI components on the anterior-posterior axis: AP,
PA, and PzO. In the case of the PCCD measure, there
were some correlations in younger adults, again con-
cerning the anterior-posterior axis, i.e. AP and PzO,
whereas correlations in older adults were related to
connections within the left (WL), and between left and
right hemispheres (LR). Due to the fact that all corre-
lations in both adult groups were positive, the sign test
showed a correspondingly highly significant tendency
(p = .0078) for the positive relationship in these cases.
Apart from the correlation in OC reported above, the
correlations between perceptual speed and PD2 were
only reliable in older adults at the two parieto-occipital
electrodes, Pz: r=-0.39, p=.042, O2: r=-045,
p = .016. Again, the sign test showed a highly significant
tendency (p < .0001) for the negative relationship
between PD2 and perceptual speed scores. These signif-
icant negative correlations indicate that, among older
adults, higher perceptual speed is related to a more
marked reduction in complexity during the third peak of
target stimulus processing. We need to emphasize that
the reported associations between brain dynamics and
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Figure 5 Lifespan differences in PD2 during the task. Grand average stimulus-locked time diagrams of PD2 difference values (task
condition — rest condition) at the 21 electrodes for deviant stimuli under the attended condition by age group (YC, OC, YA, and OA).
Brain maps with topological distribution of PD2 values at the three peaks are shown. A strong PD2 or complexity reduction with age,

especially during the third peak, can be observed.

perceptual speed performance were observed for a few
electrodes only, and that alpha levels were not corrected
for multiple comparisons. Hence, the observed correla-
tions may be accidental and need to be replicated in
independent samples. Note, however, that the signs of the
correlations followed a clear pattern.

Discussion

We examined age-group differences in nonlinear brain
dynamics during rest and auditory oddball perfor-
mance. The main findings are that: (a) the assumption
that the empirically observed EEG time series are gen-
erated by a nonlinear dynamic system and are nonlinear
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in all age groups is tenable; (b) nonlinear coupling
measures and alpha power both decrease during rest
with eyes open compared to rest with eyes closed;
complexity, by contrast, increases; (c) dimensional
complexity in the rest conditions increases from child-
hood to old age, whereas nonlinear coupling decreases;
these changes in dynamic complexity and nonlinear
coupling were accompanied by a decrease in alpha
power with age; and (d) the increase in nonlinear cou-
pling during auditory oddball performance is accom-
panied by complexity reduction, again with pronounced
differences observed as a function of age group. Age-
group differences also varied by rest condition, pro-
cessing stage, and electrode site or topological coupling
component.
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Table 3 Correlation coefficients for non-linear coupling
measures (PTl and PCCD) with an integrative measure of per-
ceptual speed during the oddball task condition in younger and
older adults

Younger adults Older adults

Components PTI PCCD PTI PCCD
AP 0.40" 0.36" 0.34 0.21
PA 0.37" 0.26 0.31 0.20
LR 0.33 0.33 0.54™" 0.39"
WL 0.27 0.34 0.53™" 0.39"
WR 0.25 0.21 0.40" 0.26
FzO 0.35 0.29 0.45" 0.31
PzO 0.37" 0.36" 0.44" 0.25

Note: " p < .05; " p < .01. AP = anterior to posterior, PA = posterior to ante-
rior, LR = left to right (or right to left), WL = within left, WR = within right,
FzO = Fz to all other electrode locations, and PzO = Pz to all other electrode
locations.

An increase in complexity in resting conditions with
eyes open compared with eyes closed has been previ-
ously observed in other studies in adults (Mayer-Kress
& Layne, 1987; Miiller et al., 2003a; Rapp et al., 1989;
Stam, Tavy, Jelles, Achtereekte, Slaets & Keunen,
1994). Here, we showed that these complexity changes
also occur in children and older adults, and that they
are more pronounced in adults than in children. Fur-
thermore, in all age groups, the increase in dynamic
complexity was also accompanied by a decrease in
nonlinear coupling and spectral alpha power. De-
creases in nonlinear coupling in the eyes-open com-
pared to the eyes-closed condition had never been
investigated before and thus represent a new finding,
indicating that a loss in dynamic coupling occurs
through opening the eyes. These results are difficult to
explain by volume conduction as an artificial coupling
source, as this mechanism would have preferentially
enhanced coupling between closer electrode sites (Nu-
nez & Srinivasan, 2006). However, many of the cou-
plings observed here involve electrode pairs 6-8 cm
apart or further. Most importantly, it is difficult to
imagine how volume conductance effects would differ
by task condition.

Decreases in spectral alpha power (also called alpha
depression) during rest with eyes open compared to rest
with eyes closed are a well-known phenomenon (see
Klimesch, 1999, for a review). Alpha reactivity increases
from childhood to early adulthood (Klimesch, 1999;
Somsen, van’t Klooster, van der Molen, van Leeuwen &
Licht, 1997), and decreases thereafter (Duffy, Albert,
McAnulty & Garvey, 1984; Shaw, 2003). In our study, we
observed a significant Age by Eyes interaction, indicat-
ing age-related differences in alpha reactivity, which was
highest in younger adults and lowest in younger children
and older adults. Normally, alpha depression in the eyes-
open condition is associated with brain activation caused
by increased external stimulation through the opening of
the eyes or visual input (Klimesch, 1999). Thus, increases
in complexity and decreases in coupling are related to
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increased levels of brain activation that also differ with
age, as shown by the Age by Eyes interaction.

According to previous research, increases in com-
plexity are associated with an increasing number of
simultaneously active cell assemblies (Elbert ez al., 1994;
Lutzenberger et al., 1995), and a decrease in the coupling
signals loss in neural connections between some parts of
the system. It thus seems that some larger cell assemblies
active in the eyes-closed condition disintegrate when the
eyes are opened into a higher number of cell assemblies
(higher complexity). At the same time, some connections
between neural elements are lost (lower coupling). As
expected, these dynamic effects appear to increase with
age.

As shown in computational studies (Deco et al., 2008,
2009; Ghosh et al., 2008), the intrinsic noise given by the
variance of the stochastic fluctuations is a driving
property of larger scale resting state networks. This noise
effect also includes stochastic resonance emerging from
optimal levels of noise, which is essential for the
expression of spatiotemporal synchronization patterns.
Li, von Oertzen and Lindenberger (2006) suggested that
brain aging is associated with higher internal noise and
reduced peak stochastic resonance. This could be a rea-
son for the increasing complexity of EEG time series and
reduced nonlinear coupling during resting state with
increasing age. Recently, it was found (MclIntosh ez al.,
2010) that brain noise or variability of the signal
increases with maturation and also with aging. Authors
suggested that brain noise is generated by the deter-
ministic and random components of the brain networks,
and that its changes represent the enhancement of
functional network potential — the brain’s dynamic rep-
ertoire. Whether these changes in older adults are more
determined by the deterministic or random (stochastic)
components of the brain networks remains to be seen.

We also found a strong increase in nonlinear coupling
and a decrease in dimensional complexity during task
performance relative to the resting condition. These
changes were most pronounced in the time interval of
330-370 ms, when stimulus processing presumably
demanded the most resources. As mentioned above,
complexity reduction during stimulus processing was
also found in other studies using pointwise complexity
measures (Molnar et al., 1995; Rapp et al., 1989). To our
knowledge, the combination of complexity reduction
with strong nonlinear coupling has been observed here
for the first time. In principle, the fact that an increase in
synchronization or coupling occurs during stimulus
processing is, in itself, not really new (Singer, Engel,
Kreiter, Munk, Neuenschwander & Roelfsema, 1997,
Varela, Lachaux, Rodriguez & Martinerie, 2001), and is
also consistent with the results of an earlier analysis with
phase synchronization and/or phase coherence measures
(Miiller et al., 2009). However, in this study, we were able
to show that the reduction in complexity and the increase
in nonlinear coupling have a similar time course, perhaps
reflecting the same set of neural mechanisms during



stimulus processing. Complexity reduction during stim-
ulus processing could be due to a loss in the number of
degrees of freedom and may therefore be related to
decision-making (Anokhin, 1974). The loss of degrees of
freedom in the system is apparently related to a decrease
in the number of cell assemblies involved in stimulus
processing. At the same time, we observed a clear
increase in nonlinear coupling, indicating stronger con-
nections or higher levels of information exchange within
and between cell assemblies. This could possibly reflect
the fusion of initially independent cell assemblies into
larger such assemblies and to a corresponding reduction
in the total number of cell assemblies.

Furthermore, we were able to show that EEG com-
plexity and nonlinear couplings undergo profound
changes from childhood to adulthood and old age, with
strong increases in nonlinear coupling and complexity
reduction related to stimulus processing. The most pro-
nounced age differences were found in nonlinear cou-
pling, especially as measured by PTI as an index of the
information content of nonlinear coupling dynamics.
Interestingly, this measure also showed the most promi-
nent correlation with a behavioral marker of perceptual
speed. The corresponding correlations were reliably
positive in adult age groups but not in children. In our
previous study (Miiller ez al., 2009), we found significant
positive correlations between perceptual speed in youn-
ger adults as measured by IP (Identical Pictures) and two
synchronization measures, namely the Phase Locking
Index (PLI) and Evoked Power (EP); the same correla-
tions were, however, negative in older adults. In this
study, the correlations with PTI (and also with PCCD)
were positive in the both groups. The positive correlation
of the two nonlinear coupling measures, PTI and PCCD,
with perceptual speed indicates that higher nonlinear
coupling to the stimulus during auditory oddball per-
formance was related to faster performance on separately
assessed measures of perceptual speed. Thus, in contrast
to linear coupling (phase synchronization; cf. Miiller ez
al., 2009), the relation between nonlinear coupling and
cognitive performance remained positive throughout the
entire adult lifespan. Given that all of the correlations
were positive in sign, and that most of them were sta-
tistically reliable, we are confident that the observed
associations between brain dynamics and behavioral
performance were not accidental. Furthermore, this
positive relationship was also confirmed by the sign test.
We also note that PTI and PCCD have been introduced
into the literature only recently. Both measures are in-
tended to capture mutual interaction of subsystems
evolving in multidimensional phase space. The PTI de-
scribes the dependencies of the trajectories reconstructed
in the phase space, and the PCCD quantifies dissipative
coupling dynamics (Vandenhouten, 1998). This study is
among the first to explore the associations of these two
measures to behavior. Clearly, the qualitative and
quantitative properties of these measures, including their
convergent and divergent validity, await further scrutiny.
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Future research is needed to elaborate the theoretical
significance of the results obtained (see also Deco et al.,
2008), especially in relation to age-graded changes in
brain dynamics across the lifespan (e.g. Mcintosh et al.,
2010).

In our previous study (Miiller et al., 2009), we suggested
that the inverse relations between age trends in phase
synchronization and spectral power may indicate a life-
span shift from rate coding in children to temporal coding
in adults. Whereas the cognitive system in children may
prevalently use a rate code, where the rate of nerve im-
pulses over time codes for sensory and motor events
(Stein, Gossen & Jones, 2005), the cognitive systems of
adults may be more likely to use ‘temporal coding’, which
requires the exact timing of neural spikes (Hestrin &
Galarreta, 2005; Mehta, Lee & Wilson, 2002). Synaptic
plasticity or Hebbian learning plays a crucial role in
information processing and involves synaptic changes
ranging from short-term plasticity or short-term poten-
tiation (STP), indicating changes that occur in millisec-
onds up to minutes, to long-term plasticity or long-term
potentiation (LTP), which occur within a timescale of
hours or longer (Abbott & Regehr, 2004). Synaptic con-
nections are altered by temporal spatial firing patterns of
pre-synaptic neurons (Abbott & Regehr, 2004; Destexhe
& Marder, 2004). In other words, firing strength is
dependent on temporal tuning between pre-synaptic and
post-synaptic neurons, suggesting that temporal coding
can involve different synaptic signal transmission mech-
anisms. Increased reductions in complexity and more
marked increases in nonlinear coupling in adults than in
children during stimulus processing, which presumably
indicate more flexible changes in the number of active cell
assemblies and the strength of connections between neu-
ral elements, are in line with our hypothesis that there is a
lifespan shift with regard to coding, moving from rate
coding in children to temporal coding in adults, as the rate
code is less flexible than the temporal code.

In sum, the present study shows that cortical dynamics
undergo profound changes from childhood to adulthood
and old age. We suggest that the changes observed in the
resting states and during task performance reflect basic
mechanisms relating to the organization of the cell
assemblies and their functional reorganization across the
lifespan. More research is needed to understand the ways
in which maturational changes in the brain’s dynamic
complexity and coupling are shaped by neurochemical,
neuroanatomic, and neurofunctional mechanisms, and to
judge the extent to which changes in nonlinear dynamics
are related to changes in cognitive processes. In addition,
it seems worth exploring whether the methods and
findings reported here may inform the development of
diagnostic techniques for dementia and other neurolog-
ical abnormalities (Czigler et al., 2008; Jelles et al., 1999;
Jeong, 2004; Miiller, Lutzenberger, Pulvermiiller, Mohr
& Birbaumer, 2001).

Finally, some limitations of the present study need to
be acknowledged. First, due to the comparatively small
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sample size, the present analyses may have failed to
identify some group differences in nonlinear dynamics
that do in fact exist. Second, only two different age
groups of children participated in this study. Future re-
search will be needed to examine age differences at earlier
and also later periods of childhood as well as in very old
age, and to trace the development of nonlinear dynamics
longitudinally across extended periods of the human
lifespan.
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