In K. Binmore & S. Okasha (Eds.), Evelution and rationalitv: Decisions, co-
operation and strategic behaviour (pp. 84-109). Cambridge, United Kingdom:
Cambridge University Press. © 2012

CHAPTER §

Are rational actor models “rational”

outside small worlds?
Henry Brighton and Gerd Gigerenzer



CHAPTER §

Avre rational actor models “rational”
outside small worlds?

Henry Brighton and Gerd Gigerenzer

5.1 INTRODUCTION

Given a formally well-defined rask, a rational actor model defines a
rationally justified, optimal response. Rational actor models are desirable
goals in the behavioral, cognitive, and social sciences, but in this chapter
we use the distinciion between small and large worlds to question the
cachet associated with the terms “rational” and “optimal.” Ideally suited
to the analysis of small world problems, both concepts can be counter-
productive in the analysis of large world problems. In small worlds, the
relevant problem characteristics are certain and uncontroversial in their
formalization. For example, a tin can manufacturer seeking to minimize
the tin used to package 12 ounces of soup might use solid geometry to
determine an optimal can design. In this small world the manufacturer
is safe in claiming that no other can design uses less tin. Large worlds are
characterized by inherent uncertainty and ignorance, properties which
undermine the validity and existence of optimal responses. An aircraft
manufacturer designing a flight control system, for instance, faces a large
world problem due to the complexity and uncertainty of the operating
conditions, Rational actor models may rest on rigorous formal founda-
tions, but they can also signify the questionable use of small world meth-
ods to understand large world problems.

With similar concerns, Savage introduced the distinction berween
small and grand worlds when assessing the limits of Bayesian decision
theory (Savage 1954). Savage’s decision theory for small worlds — those
where an agent has access to a decision matrix defining states of the
world, consequences, and actions — shows that the agent will maximize
subjective expected urility, providing their preferences satisfy Savage's
axioms. Savage saw the problem of casting large world problems, those
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involving uncertainty and ignorance, in these terms as “utrerly ridicu-
lous” (p. 16). Consequently, we will use the term “Savage’s problem”
to refer to obstacles and potential dangers in using analytic methods
geared for small worlds to theorize, and make statements about, large
worlds. Specifically, we consider Savage's problem in the context of
inductive inference, where a decision maker is required to generalize
from observations and infer statistical properties of the environment.
For example, an organism foraging for food may infer regularities in
the distribution of food items from observations of previous food items.
What distinguishes small from large worlds in inductive inference?
Moreover, how significant is Savage's problem to the study of inductive
inference, where rational actors and optimal responses play a particu-
larly influential role?

We will examine these questions by first setting out the relationship
between inductive inference, uncertainty, and error, using statistical learn-
ing theory. Within this setting we consider barriers to the identification
of optimal responses. The ubiquity of these barriers in the study of real-
world problems places a question mark over the range of applicability of
rational actor models, and highlights the need for alternative approaches
to studying how they function. We then use the study of simple heuristics
to illustrate an approach based on algorithmic modeling and competi-
tive model testing, reflecting a relatively recent movement in staristics and
pattern recognition (Breiman 2001). Well-informed theorists know that
good models hinge on insightful abstraction, and the assumptions made
in order to formalize a model will be breached. These are basic facts about
models in general. Using the distinction berween small and large worlds,
our goal is to understand the limits of a specific class of model, rational
actor models, which often discharge uncertainty in order to arrive at an
optimal solution.

5.2 UNCERTAINTY IN INDUCTIVE INFERENCE

All organisms face uncertainty. For instance, look closely at any aspect
of cognition and it will likely involve the process of inductive inference,
the problem of identifying systematic patterns in observations. Everyday
examples include inferring the properties of a visual scene, inferring the
intentions of a speaker from a single utterance, or deciding if it is quicker
to take the bus, bicycle, or train. Because an infinite number of explana-
tions will always be compatible with a finite series of observations, each of
these problems involves uncertainty. Two key questions guide the study
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of inductive inference in humans and other animals. First, how, in mech-
anistic terms, do organisms arrive at inductive inferences? Second, what
is the relationship between the behavior we observe in organisms, and the
optimal behavior, as defined by a rational actor model? We will begin by
addressing the second question, and start by taking an idealized perspec-
tive on uncertainty, where we adopt the the perspective of an omniscient
observer with full knowledge of the task at hand. Relative to this omnis-
cient observer, our first task is to categorize the various forms of uncer-
tainty agents face when making inductive inferences. This will require
making the inductive inference problem more precise.

5.2.1 Learning from examples

Consider an agent interacting with a series of partners in some game-
theoretic setting, Prior to interacting with a new partner, it would be use-
ful if the agent could accurately categorize this partner as, for example, a
likely cooperator or defector. This inference could be based on perceivable
features of the partner in question, such as their age, personality, or social
status. Supervised learning from labeled examples is the study of algo-
rithms which learn predictive models by generalizing from past observa-
tions (Bishop 2006; Hastie et al. 2001). In our game-theoretic example,
past observations refer to previously encountered partners, along with a
label categorizing their observed behavior. A predictive model accurarely
categorizes new partners when only the feature values, such as those men-
tioned above, are known.

Supervised-learning problems are formalized by first defining an inpur
space X of feature vectors used by the agent to encode observations, and
an output space ¥ specifying the structure of the labels being predicted.
Observarions are drawn from the product space Z= X'x ¥. Categorization
tasks are those where Yis a set of category labels. Regression tasks are
those where ¥ is some range of numeric values. An environment which is
unknown to the agent determines the underlying functional relationship
between inputs and outputs, and is given by a joint probability distribution
U(x,y). Given a mulriser of » labeled observations §={(x,y )}, €Z",
the agent uses a learning algorithm to select a hypothesis which repre-
sents an informed guess at which systematic pattern best explains the
functional relationship between inputs and outputs, not just between the
observed examples, but in general.

Hypotheses describe what is systematic in the observations, and allow
the agent to make predictions about novel objects, the problem of guessing
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¥ given only x. The hypothesis space H defines the set of hypotheses the
agent can select from, and plays a critical role in its ability w generalize
accurately from experience. The learning algorithm is also critical because
it determines which hypothesis is selected for a given series of observa-
tions. A learning algorithm, L, implements a mapping,

L:|Jzr —H, (5.1)

rzl

from multisets of observations to hypotheses. It will prove useful to
view the hypothesis space as a model f(x), indexed by the parameters 6.
Selecting a hypothesis is the process of estimating the parameters 8 from
observations.

5.2.2 Ervor-inducing risk and uncertainty

An omniscient observer has full knowledge of the environment, which is
assumed to be fully specified by the data-generating distribution pi(x,y).
A hypothesis induced by an agent can also be seen as a joint probabil-
ity distribution over the observations,' and denoted @(z). The discrep-
ancy between these two distributions, [ and o, will be defined as their
Kullback-Leibler divergence, given by

D(ul o)=Y u(z) log, (u(z)/ ofz)). (5.2)
T ¥

The Kullback-Leibler divergence is perhaps best understood from a cod-
ing perspective, where a probability distribution over the observarion space
implies an optimal coding scheme which assigns a code of length log;(1/p)
bits to an observarion occurring with probability p. The greater the prob-
ability of the observation, the shorter its code. The Kullback-Leibler diver-
gence measures the number of additional bits required to code events
governed by @ when using the code for it (Cover and Thomas 1991). When
the distributions are identical, D(it|lo) = 0. We will use this measure of
divergence to arrive at an abstract categorization of three basic forms of
discrepancy, referred to as stochasticity, underspecification, and misspeci-
fication. These discrepancies can exist independently, and their potential
combinations are depicted in Figure 5.1. Both the organism and the theor-
ist actempting to understand the organism face these uncertainties.

! Here we assume that the agent learns a generative model from the observations, one which mod-

els both Pe(ylx) and Prix) (see Bishop 2006, for further discussion),
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Stochasticity Underspecification

Misspecification

Figure 5.1. Possible combinations of the three basic forms of discrepancy: stochasticiry,
underspecification, and misspecification. The discrepancies are independent of
cach other, and all combinations are possible. Point A corresponds to the problem
of predicring the outcomes of a fair die. Point B corresponds to the problem of
predicring the relative frequency of red and black balls in an urn, Point C corresponds
to the problem of predicting the toss of a loaded dic which always falls on 4, usinga
misspecified hypothesis space which allows predicting only 1 or 6.

Stochasticity

Consider an agent with certain knowledge of y, such that H = {g} and
D(ullo)=0. This agent will make error-free predictions if outputs are
always a deterministic function of the inputs. If the predictive distribu-
tion Pr(yjx) is stochastic, such that for at least one input x, the output
is nonunique, then error will result. Stochasticity is the most basic form
of discrepancy between agent and environment. It arises due to external
randomness and cannot be eliminated through further observation, or by
designing the organism differendy. For example, even though an agent
knows that a die is fair, it will make errors when predicting rolls of the die
(Figure 5.1, point A). In short, even when granted full causal knowledge
of the process governing observations — such as knowledge of physical
probabilities (Giere 1999), propensities (Popper 1959), or a priori prob-
abilities (Knight 1921) — the agent will still make errors when predicting
events under conditions of stochasticity.

Underspecification

Discrepancies due to underspecification exist when the number of obser-
vations underdetermines the choice of hypothesis, and is too small to reli-
ably converge on the best model " in some |H| > 1, where
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Ar one extreme, in the complete absence of observations, the agent
faces what Knight (1921) refers to as uncertainty. For Knight, an agent
may know that an urn contains red and black balls (knowledge coded
implicitly in the hypothesis space) but the probability of choosing a black
ball from the urn is uncertain if no other informarion is available (Figure
5.1, point B). As the number of observations increases from zero, the agent
moves from an uncertainty situation to a risk situation, and can begin
measuring what Knight terms statistical probabilities. Underspecification,
in Knightian terms, will therefore include situations of both risk and
uncertainey.

Misspecification

Discrepancies due to misspecification result from the agent’s inability to
model the data-generating distribution exactly, such that D{ullov) > 0.
Misspecification can occur in the absence of stochasticity and underspeci-
fication. To take a simple example, an agent entertaining two hypotheses,
H = {“die always falls on 17, “die always falls on 6"}, will make errors
when predicting a loaded die which always falls on 4 (Figure 5.1, point
C). Such errors are unrelated to stochasticity and underspecification.

Nonstationarity

So far we have implicitly assumed that the probabilicy distribution on the
observation space — which determines what we observe — is the same as the
distriburion which determines the accuracy of our inferences. Situations
involving nonstationarity are those where these two distributions differ.
We will assume that nonstationary problems represent a special case of
misspecification, since any temporal dependency on the distribution gen-
erating observations, p,(x,y), and the distribution which determines the
accuracy of predictions, ii,(x,)), can be reformalized by considering a sin-
gle distribution, p,(x,y), parameterized by time ¢. The class of nonstation-
ary problems nevertheless includes forms of discrepancy worthy of study
in their own right, and poses problems of grear practical significance (e.g.
Quifionero-Candela er al. 2009; Hand 2006).

The generating distribution p(x,y) when rewritten Pr(y|x)Pr(x) highlights
two broad categories of nonstationarity. First, covariate shift occurs when
Pr(x) changes (Shimodaira 2000). Second, what we term predicrive shift
occurs when Pr(y|x) changes. Figure 5.2 illustrates how the two forms of
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Stochasticity B _ Underspecification
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Figure 5.2. Nonstationarity as a form of misspecification. Covariate shift refers
to a change in the probabilicy distribution over inputs. Predictive shift refers o a
change in conditional probability of the outputs given the inputs. These two forms of
nonstationarity can occur independently. Point A, discussed in the main text, refers to
an example of sample selection bias, where partners in a game-theoretic setting may be
of similar age. Point B is an example of predictive shift, also discussed in the main rext,
where porential partners may change their strategy.

nonstationarity can exist independently and always represent a form of mis-
specification. An example of covariate shift is sample selection bias, which
occurs when a potentially unknown process probabilistically rejects obser-
vations (Heckman 1979). For example, in our game-theoretical setting, the
partners an agent experiences may be restricted to be those of a similar age
(Figure 5.2, point A). Here, the predictive distribution remains constant but
our observations of it will be skewed. Predictive shift could occur if poten-
tial partners became aware of an agent’s decision process, and adjusted their
behavior to exploir it. Here, the funcrional relationship berween observable
features and outcomes may change (Figure 5.2, point B).

5.2.3 Further uncertainties

These basic uncertainty categories refer to discrepancies between an
environment, experienced through a series of observations, and abstract
properties of the hypothesis space. A full categorization of real-world
uncertainties is infeasible and unbounded, and some basis for separat-
ing exogenous from endogenous uncertainty is always necessary. For
example, all biological systems operating at temperatures above 0 kelvin
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must be robust to the uncertainties arising from thermal noise, but we
will abstract from this problem even though it imposes significant con-
straints on functional design (Wagner 2005). Perhaps the most significant
source of error-inducing discrepancy to be sidestepped in the coming dis-
cussion will be the costs associated with errors. In particular, we assume
that the prices paid for incorrect predictions are given by standard loss
functions, such as zero—one loss for classification problems, and squared
difference for regression problems. Organisms in natural environments
must contend with events incurring potentially very different costs, such
as the devastating consequences of the highly improbable (Taleb 2009;
Bookstaber and Langsam 1985).

In addition to the basic uncertainty categories defined above, one must
also consider uncertainty surrounding the algorithm L used to select
hypotheses. What we will term compurational uncertainty arises from
both fundamental and idiosyncratic barriers which constrain the process-
ing of observations. Such constraints introduce error-inducing discrepan-
cies, just like the basic categories discussed above. Misspecification, for
example, arises because finite observations will tend to undermine the
selection of the most predictive hypothesis, In the same way, resource
restrictions on L can limit the ability of the organism to arrive at a pre-
dictive model. Constraints on L range from primitive considerations of
computability and intractability, to additional, organism-specific bio-
logical and computational resource limitations. The former apply to all
computational agents (Hopcroft and Ullman 1979; Papadimitriou 1995).
The precise nature of the latter will depend on the agent, and include
constraints such as limitations on working memory. Unlike many sources
of uncertainty, computational uncertainty poses a fundamental problem
for all agenes in all contexts, with the only exception being omnipotent,
and therefore fictitious, agents.

5.3 FROM ERROR TO OPTIMALITY

An omniscient observer knows the true state of nature. A rational actor
achieves the best possible response relative to a set of assumptions about
the true state of nature. Consequently, our degree of faith in a rational
actor model should be in proportion to our knowledge of the problem.
When facing large worlds, we should question both the validity of our
models, and our use of the terms “rational” and “optimal.” These issues
focus the remainder of discussion onto the following question: Under
conditions of stochasticity, underspecification, and misspecification,
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what does it mean for an organism to be rational, and respond optimally?
Answering this question will first require taking a closer look at the rela-
tionship between the organism, the environment, and error.

5.3.1 Analyzing and categorizing error

Relative to the generating distribution g, the hypothesis flx) chosen by
the agent after observing a sample of observations S is likely to incur
some degree of error. To simplify matters, we will focus on the prob-
lem of regression where error is commonly defined as the squared diffe-
rence between the true and predicted value. The lowest achievable error
is incurred by the function g(x), defined as the conditional expecration
Elylx] = [yp(y[x)dy of the predictive distribution Pr(y|x). Relative to the
generating distribution, the total error incurred by f{x) is referred to as
the expected loss,

expected loss = I{f{x}-g[x}]zp[ﬂdx +J{g{x}uy!zﬂ{y,x}dx dy. (5.4)

Notice that the first term of this expression is dependent on the chosen
hypothesis, fix), but the second term is not, and therefore it cannot be
reduced, whatever our choice of f{x). This second term expresses the error
incurred by the agent when always selecting flx) = g(x). This part of the
error corresponds directly to error arising from stochasticity, which is
commonly referred to as irreducible error or noise.

Controllable Components qf errar
The first term of Equation 5.4 measures that part of the error we can
reduce through the appropriate design of the agent, since it depends on
the policy for selecting flx) from observations. Adopting a frequentist
perspective, and imagining thar the tape of experience were replayed sev-
eral times, we will use a standard technique in statistical learning theory
for decomposing the controllable error into two components, referred
to as bias and variance (O’Sullivan 1986; Geman et al. 1992; Bishop
2006; Hastie et al. 2001). For each replay of the tape of experience, a
potentially different sample §={(x,,)};, will be observed, where S is
a multiset of r observations sampled from u(y,x). Now, replaying the tape
of experience £ times yields £ of these multisets, given by the ensemble
S={8", &, ..., 58},

Rather than the error incurred by the agent after observing a specific
sample, we would like to know about its mean error, relative to the ensemble
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of hypotheses selected by the agent’s learning algorithm for each mem-
ber of . For a given x, the expectation of the first term of Equation 5.4

for an ensemble of samples of size kis E; [{ flx)- g{x}}z]. Integrating
over x, this expectation is the sum of two terms, the first of which is bias,

(bias)? = [{E[ f(0)] - g0} plx)es G:3)

which is the squared difference between mean prediction made by the
functions induced from the ensemble, and the true function g{x), over all
inputs. The second term is the variance, given by

vasiance = [ Eg[ { £ -E[ f@]}’ [pxidx, (5.6)

which is the squared difference berween the mean prediction of the
ensemble, and the predictions of the individual funcrions induced for
cach member of the ensemble. Collecting the terms for bias, variance,
and irreducible error, the expected loss given by Equation 5.4 can be sum-
marized as

Total error = (bias)? + variance + irreducible error. (5.7}

By decomposing the error in this way, we have a more precise under-
standing of the effects of misspecification, underspecification, and sto-
chasticity. The bias and variance incurred by the algorithm will always
be a function of the sample size, r, and the properties of the generating
distribution. In general, variance decreases as a function of r, the size of
the observed sample. Variance occurs when changes to the sample lead
to changes in the error of the induced hypothesis. Limiting variance
requires reducing the sensitivity of the learning algorithm to the effects
of resampling. Generally speaking, bias occurs due to an inability of the
algorithm’s hypothesis space to model the generating distribution.

The biasivariance dilemma

Keeping in mind that the generating distribution is unknown to the
agent, considerations of bias and variance highlight a fundamental prob-
lem in inductive inference known as the bias/variance dilemma. At
one extreme, the agent’s learning algorithm could express a wild guess
by ignoring the observations altogether, by always selecting the same
hypothesis. This approach guarantees zero variance, burt can lead to high
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bias unless the guess turns out ro be correct, or close to correct. At thg
other extreme, the agent’s learning algorithm could hedge its bets, let the
observations speak for themselves, and select a hypothesis from a highly
flexible model space capable of approximating any function. This policy
could in principle guarantee zero bias, but usually ar the expense of high
variance since the flexibility of the hypothesis space is likely to lead to
an oversensitivity to the vagaries of particular samples. The bias/variance
dilemma arises because methods for minimizing variance rend to increase
bias, and methods for minimizing bias tend to increase variance. The two
need to be balanced, a process which should be guided by knowledge of
the rask ar hand.

5.3.2 The relationship between bias, variance, and optimality

Whar is the optimal response to the bias/variance dilemma? Zero vari-
ance and zero bias will be achieved by a learning algorithm which always
induces the same hypothesis, the conditional expectation of the pre-
dictive distribution g(x). Recall, though, that we are interested in cases
where the generating distribution is not known with certainty. Taking
a Bayesian perspective, the assumptions made about the generating dis-
tribution, which are required to generalize from data in any way, are
coded in the structure of the hypothesis space and the prior. Optimality
is always defined relative to these assumptions. If we knew the generaring
distribution, then the hypothesis space should contain a single hypoth-
esis, g(x). If we knew the functional form of the generating distribution
was, for example, linear, then the inference problem reduces to estimaring
the parameters of the linear model. Optimality is not about the presence
or absence of error, but the degree of error relative to a set of assumprions.
The optimal algorithm incurs bias and variance, like any other algorithm.
The label "oprimal” simply marks out a particular algorithm as incurring
the least error among all algorithms sharing the same hypothesis space
and prior.

5.4 FROM SMALL WORLDS TO LARGE WORLDS

What is a small world problem? The most restrictive definition of a small
world problem is one where the optimal response is certain, and lincon-
troversial. For problems of inductive inference, optimal responses are
usually framed in terms of Bayesian statistics. These optimality results
rely on two conditions being met. First, the structure and properties of
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the problem are known a priori, such that the appropriate hypothesis
space and prior are known with certainty, rather than inferred from
observations. Second, the structure of the hypothesis space and prior
permit calculation of the posterior probabilicy using exact methods.
The first condition settles any dispute over the external validity of the
model — the degree to which the properties of the model martch those of
the system being modeled. The second condition settles any dispute over
the internal validity of the model — the degree to which the inferences
made using the model are rationally justified, assuming that the model
is correct, and has external validity. Obviously, very few problems of
interest to the cognitive, behavioral, and social sciences can be said to
satisfy the first condition. Similarly, many problems, when formalized
in these terms, require use of inexact, approximate Bayesian methods.
However, this definition of a small world guarantees that statements
of rationality and optimality provide exactly what they advertise. This
guarantee is possible because all relevant aspects of the problem, and
solution, are certain. In practice, though, rational actor models are not
absolute statements but statements about optimality relative to some set
of assumptions.

The notion of a large world becomes relevant as soon as the structure
and properties of the problem are inferred from observations, and issues
of misspecification, underspecification, nonstationarity, and all the other
categories of uncertainty we discussed begin to impact on the external
validity of the model. In addition, issues of analytic tractability impact-
ing on the process of determining the posterior distribution can also
introduce uncertainty. Thus, even in cases where we can guarantee an
appropriate formalization of the problem, the analytic and computational
demands of performing rational calculation also need to be considered,
as they can lead to additional error. Now, all good theorists know thar
“a map is not the territory” (Korzybski 1958, p. 750) and all models are
“wrong.” Given this, why question the objective of rational actor models?
After all, if your underlying assumptions are openly stated, then everyone
is free to assess the implications of your model as they see fit. Our point is
thar increasing uncertainty and ignorance should at some point lead us to
question the notions of rationality and optimality. When factors known
to compromise the internal and external validity of the model are at play,
declarations of rationality and optimality become less and less meaning-
ful. Next, we show that the use of rational actor models and optimality
results in the analysis of large world problems is a choice, not a necessity
(Brighton and Olsson 2009).
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s.4.1 Distinguishing relative from absolute function

In developing a rational actor model one is attempting to answer the ques-
tion of how to make optimal inferences, predictions, given assumprions
about the properties of the task at hand. When these properties are uncer-
tain, how else can functioning be assessed? We will contrast the pursuit of
rational actor models with an alternative. Borrowing the terminology of
Breiman (2001), rational actor models rely on data modeling, an approach
used routinely in statistics where one assumes an underlying statistical
model, and then uses observations to estimate the model parameters. We
will adopt an approach referred to by Breiman as algorithmic modeling,
where the underlying statistical model is treated as unknown (or non-
existent), and the estimated predictive accuracies of alternative statistical
models, or learning algorithms, are then compared in an attempt to learn
about the problem. These two approaches are both mute on the problem
of assessing the rationality of organisms. To illustrate their use in exam-
ining the ability of organisms to function in uncertain environments we
will use two fictional modelers, named Jones and Smith.

Modeler Jones follows a methodology known as the rational analysis
of cognition, an influential approach inspired by optimality modeling in
biology (Anderson 1991; Oaksford and Chater 1998, 2007). A rational
analysis typically proceeds by inferring from observations of the rask
environment an appropriate observation space, hypothesis space, and
prior over the hypothesis space. These components define a probabilistic
model of the task environment. Jones then derives an optimal response
function which specifies the inferences thar a rational, usually Bayesian
observer would make in response to further observations of the environ-
ment. The rationality of the agent in question is then assessed by com-
paring its behavioral responses with those of the rational model. If the
rational model provides a close fit to the agent’s responses, Jones argues
that the agent makes optimal inferences.

Modeler Smith is interested in exactly the same problem, begins by
observing the task environment, and also proposes an appropriate obser-
vation space. Crucially though, Smith refrains from making an inference
about an optimal response, an inference which requires postulating an
hypothesis space and generating distribution. Instead, Smith estimartes
the predictive accuracy of potentially several statistical models relative to
pbservations of the environment. Predictive accuracy is often measured
using cross-validation, a technique we illustrate below (see Rissanen
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1986, for an alternative relativistic approach which stresses compression
rather than prediction). This comparison informs the question of which
mechanistic design features prove functional, rather than optimal, in the
task environment. The ability of each mechanism to describe the agent’s
behavior is an additional question, guided by functional analysis, bur
assessed by experimentation (Brighton and Gigerenzer 2011). In contrast
to the approach of Jones, Smith refrains from making an inference about
the generating distribution, conducts a competitive test of rival process-
level theories instead of seeking a single rational actor model, and there-
fore sees success as something always relative to alternative models, rather
than being defined by the benchmark of a single rational actor model.

5.4.2 Relative functioning in large worlds

What insights can Smith’s relativist approach offer? As an illustration,
consider the problem of how a retail marketing executive might distin-
guish between active and inactive customers based on their purchasing
history. Current thinking on how to best address this problem centers on
stochastic customer-base-analysis models, such as the fairly sophisticated
Pareto/negative binomial distribution model. Following modeler Jones’
approach, this model defines rationally justified inferences abourt custom-
ers, given an assumed underlying probability distribution. In the spirit
of modeler Smith’s approach, Wiibben and Wangenheim (2008) com-
pared the performance of several models, including the Pareto/negative
binomial distribution model, and found that the best-performing model
was a simple hiatus rule which predicts inactivity if a customer has not
made a purchase in the preceding nine months (and for one problem, six
months). To take another example, consider the problem of searching lir-
erature databases, where the rask is to order a large number of articles so
that the most relevant ones appear at the top of the list. When examining
this problem, Lee et al. (2002) constructed a “rational” Bayesian model
and found that in comparison to several competing models, a simple one-
reason heuristic proved superior.

What can these, and similar findings, tell us? Models implementing a
“rational” response to an underlying distribution which is assumed, but
inaccurarte, can result in performance inferior to that of a model which
makes no explicit attempt to model an underlying distriburtion, or conduct
any form of rational calculation. Many people find resuls like these sur-
prising, but modeler Jones may argue that they say nothing abour rational
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actor models in general, they merely supply an argument against poorly
designed rational actor models. Jones is correct, but misses the point. In a
large world, one cannot identify a rational model, or an optimal response,
with any confidence. Rather, the “rational” response is to search for bet-
ter and better models. In this sense, the pursuit of rational actor models
for large worlds can be counterproductive. First, one cannot assume that
rational calculation brings us closer and closer to effective responses o
uncertainty. Second, the alternative is nor silence, but an examination of
alternative models, particularly those which have been successful in the
past. Perhaps the worst case scenario is that Jones' approach focuses func-
tional analyses onto small world problems which bear little relation to the
large world problems of interest. Next, we focus on the first issue, which
concerns common intuitions about rational calculation.

5:§ HOW TO CONFRONT LARGE WORLDS

Mathematical objects such as generating distributions and rational
actors could be viewed as misnomers when set against the uncertainty
surrounding natural environments and the constraints impacting on
computational actors. From a rational actor perspective, these compli-
cating factors limit the opportunities for rigorous funcrional analysis.
But rather than defining limits on rational analysis, these complex-
ities highlight a need for alternative approaches (e.g. McNamara and
Houston 2009). The relacivist approach taken by our fictional modeler
Smith is standard practice when comparing the predictive accuracy of
learning algorithms and cognitive models on real-world darasets (e.g.
Perlich et al. 2003; Brighton 2006; Chater et al. 2003; Czerlinski et al.
1999; Gigerenzer and Goldstein 1996). Datasets are simply collections
of abservations relating covariates to a dependent variable. For example,
the daily stock prices over the last year, test results for a population of
patients undergoing treatment, or a series of utterances and their asso-
ciated meanings. Dartasets are usually samples from an unknown and
potentially unknowable distribution, often suffer from uncertainty aris-
ing from noisy or missing information, and may represent a snapshor of
a nonstationary problem. In much the same way, an organism function-
ing in an environment, and a scientist attempting to explain this organ-
ism’s functioning, both face problems shot through with uncertainty.
The question of which strategy is optimal under these circumstances
cannot be answered. But we can study why some strategies repeatedly
prove more effective than others.
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550 Making inferences with simple heuristics

The study of simple heuristics illustrates several crucial issues. Simple heu-
ristics are cognitive process models which ignore information (Gigerenzer
et al. 1999; Gigerenzer and Brighton 2009; Gigerenzer and Gaissmaier
2011). A central question in the study of heuristics is understanding when
and why they outperform alternative cognitive models. For many, the
idea that ignoring information can prove functional is counterintuitive.
Consider, for instance, the simple heuristic, take-the-best (Gigerenzer
and Goldstein 1996). Take-the-best is a cognitive process model describ-
ing how people decide which of two objects has a greater value on some
criterion of interest, such as the price of two houses, or the maximum
speed of two vehicles. If the criterion values are unknown, environmental
cues such as the presence of a swimming pool or whether the vehicle has a
jet engine or not, can be used to make an inference. More precisely, take-
the-best has three steps:

(1) Search rule: Search through cues in order of their validity.

(2) Stopping rule: Stop on finding the first cue thar discriminates berween
the objects (i.e. cue values are 1 and 0).

(3) Decision rule: Infer that the object with the positive cue value (1) has
the higher criterion value.

In short, take-the-best searches for the first cue which discriminates
between the objects, and then makes an inference using this cue alone.
For example, a house with a swimming pool is likely to be more expen-
sive than a house without. All other cues are ignored. Specifically, take-
the-best searches for cues in order of their validity, which is a measure of
how accurately each cue has made inferences on previous comparisons.
This measure is simple in comparison with the measures used by most
models, as it ignores any dependencies between cues. That is, take-the-
best orders cues by assuming that the predicrive ability of a cue can be
determined independently of the value of the other cues.

Take-the-best is a linear model.? Furthermore, it deviates from com-
mon statistical intuition, and the methods employed by commeonly
assumed models of cognitive processing. For example, the Gauss-Markov
theorem proves that among all unbiased linear models, the least-squares
estimate incurs the lowest variance (e.g. Fox 1997). Assuming that the

* This s true at an outcome level, but rake-the-best differs at a process level from the standard lin-
ear models, such as linear regression.
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problem in question is linear, this tells us thar a logistic regression model,
for example, should incur lower error than take-the-best. How can we
put this starement to the test? A classic rask in the study of simple heuris-
tics is the problem of inferring which of two German cities has a greater
population. The dataset in question describes the eighty-three largest
German cities using nine binary cues which derail properties of the cities,
such as whether or not a city has a university or an intercity train station,
or is located in Germany's industrial belt. After observing some sample
of these cities, and estimating the model parameters from this sample,
the accuracy of competing algorithms, like rake-the-best and logistic
regression, can be measured. Accuracy here refers to whether or not lar-
ger cities are correctly inferred as being larger. Crucially, the accuracy
of these inferences is measured by considering only novel pairs of cities,
comparisons between cities which were not used 1o estimate the model
parameters. lThis process is repeated for different samples, and is termed
cross-validation (Stone 1974).

Figure 5.3 plots the mean predictive accuracy of take-the-best as a func-
tion of the size of sample used to estimate the cue validities. In the same
plot, we report the predictive accuracy of logistic regression. Means are
reported, which are taken with respect to 5,000 random partitions of the
dataset into training and testing sets. Now, why, in contrast to our inter-
pretation of the Gauss-Markov theorem, does take-the-best outperform
logistic regression so significantly? The Gauss-Markov theorem, despite
often being interprered as staristical justification for the widespread use
of the least-squares linear model, is a small world theorem. The theorem
holds when fitting, rather than predicting, data. As soon as one makes
predictions about unseen data, the effects of underspecification and mis-
specification can change matters significantly.

A common response to this result, and similar findings for many other
datasets (e.g. Brighton 2006; Czerlinski et al. 1999), is thar logistic regres-
sion is a weak competitor, and more sophisticated methods designed
specifically for avoiding the problem of overfitting will outperform take-
the-best (e.g. Chater eral. 2003). In response, Figure 5.3 also compares the
performance of take-the-best with a support vector machine, one of the
most advanced methods in statistical pattern recognition (Vapnik 1995).
Again, take-the-best outperforms the support vector machine over a sig-
nificant portion of the learning curve. Notice that we have compared
three models without postulating, or making assumptions about, a gen-
erating distribution determining the relationship between properties of
German cities and their populations. Instead, we have respected the fact
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Figure 5.3. Can ignoring information be beneficial? For the German city population
task, the predictive accuracy of the simple heuristic take-the-best is plotted as a
function of the size of the sample used to estimate the model parameters, Take-the-best,
despite ignoring conditional dependencies berween cues and using only one cue 1o
make an inference, outperforms both logistic regression and a support veetor machine,
Mean predictive accuracies are reported for 5,000 random partitions of the dacaser.
Error bars show the variance,

that “a set of data is one thing and a mathematical object, such as a dis-
tribution, is quite another, not only different in degree bur different in
kind” (Rissanen 1986, p. 395), and measured the relative ability of the
models to make accurate inferences relative to the observations. How,
though, are results like these related to the question of decision making
in large worlds?

5.5.2 The biaslvariance dilemma in large worlds

Recall from our discussion of the bias/variance dilemma that the prob-
lem of making accurate predictions can be decomposed into two sub-
problems: the problem of reducing variance, and the problem of reducing
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bias. Variance arises due to underspecification, a lack of observations,
while bias tends to arise as result of misspecification, an inherent inabil-
ity on the part of the model to capture predictive patterns in the data. In
their influential presentation of the bias/variance dilemma, Geman et al.
(1992) discussed how restricting the hypothesis space can reduce variance.
If these restrictions do not introduce additional bias with respect to the
problem at hand, prediction error is likely to decrease. Another approach,
taken by several staristical models, is to introduce bias which is relevant
to the problem at hand, under the assumption that it will be ourweighed
by a greater reduction in variance. Recently, we showed that take-the-best
succeeds by exploiting this trick; take-the-best’s performance advantage
arises exclusively through a reduction in variance by ignoring conditional
dependencies berween cues (Brighton and Gigerenzer 2007; Gigerenzer
and Brighton 2009). The success of ridge regression and the naive Bayes
classifier can also be explained in these terms (e.g. Hoerl and Kennard
2000; Domingos and Pazzani 1997; Friedman 1997; Hastie et al. 2001).
From a rational actor perspective, where one conducts rational calcu-
lation with respect to an assumed hypothesis space and prior probabilicy
distribution, how can the success of alternative algorithms, like the naive
methods mentioned above, be explained? After all, why should deviations
from a full Bayesian calculation prove functional? Advocates of rational
actor models will likely argue that the success of any model can be
explained using rational principles. For example, one can ask under which
conditions take-the-best is optimal, and thereby frame take-the-best as
a rational actor model under these conditions. Thus, it is trivially true
that the success of heuristics, or any other model, in no way challenges
the small world study of rationality. Two points are crucial here. First,
while seeking a rational explanation for apparently nonrational proc-
esses can certainly yield great insight, this task is far from being a trivial
exercise, and will often achieve only a limited, approximate explanation
(e.g. Sanborn et al. 2010). The optimality conditions of the naive Bayes
classifier, for example, are only partially known, despite sustained study
and a clear Bayesian interpreration (e.g. Domingos and Pazzani 1997;
Kuncheva, 2006). Nevertheless, the naive Bayes classifier appears in the
top-ten list of data mining algorithms, and is used routinely in uncertain
contexts, those where the modeler is largely ignorant of the generating
distribution (Wu et al. 2007). Second, this issue has little or no impact
on the question of what strategies prove functional in a large world. If the
underlying structure of the problem is unknown, then optimality results
offer little help. In large worlds, all we can do is estimate the predictive
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accuracy of a range of methods, such as those algorithms which have per-
formed well in the past. The outcome of such an exploration will never be
a proof of oprimality, nor a state of understanding which tells us whar is
“rational.” In large worlds, we have no choice but to abandon the object-
ive of an optimal response, and instead search for improved understand-
ing. Possessing a rational interpretation of the algorithms used to conduct
this search changes nothing,

5.5.3 Understanding large worlds

We defined small worlds as presenting problems where all relevant factors
are cerrain and their formalization yields to feasible rational calculation.
Uncertainty enters the picture when the characteristics of the problem
must be inferred from observations, or when the complexity of the prob-
lem, once formalized, renders rational calculation infeasible. Faced with
some degree of ignorance, we have two options. First, we can develop a
rational actor model by making the assumptions necessary to recast the
problem as a certain, small world problem. Second, we can acknowledge
that an optimal response to an inherently uncertain problem is a fiction,
and likely to obscure our understanding (Klein 2001). Instead, we should
aim to examine the relative ability of competing models tw explain the
observations. The best model we can find is neicher optimal nor rational,
merely functional.

Put in these terms, at least two factors need to be considered in any
proposed definition of a large world. First, one must gauge the impact
of the basic uncertainty categories we introduced earlier, such as under-
specification, misspecification, and nonstationarity. From our perspective,
real-world problems of theoretical significance tend not to be small world
problems. We assume a large world by default, which is why we study heu-
ristics rather than rational actor models. Our goal is to understand how,
in mechanistic terms, organisms cope with uncertainty in the large worlds
to which they are adapted. The second factor to consider is the analytic
tractability of performing rational calculation, Thus, it would be an over-
sight not to mention here that exact computation of the posterior is only
possible for certain priors; brute force calculation is only tractable for very
restricted hypothesis spaces; and computationally tractable algorithms rely
almost exclusively on inexact methods which have oprimality guarantees
which are asymprotic in nature (e.g, Bishop 2006; MacKay 2003).

Rational principles themselves can be disputed, even in small worlds.
For classification tasks, the problem of assigning a class y € ¥ 1o a novel
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observation x, the gold standard is the Bayes optimal classifier, which
given a sample of observations S, a hypothesis space H, and prior Pr(H),
assigns a class y to an observation by

y=max Y, Pr(y, | x,H, )Pr(H,|S). (5.8)

xe¥ HeH

The class y assigned to x is calculated by considering the predictions of
all hypotheses in H, with each prediction weighted by the posterior prob-
ability of the hypothesis. Despite Equation 5.8 being widely regarded as
defining an optimal response for classification problems, Griinwald and
Langford (2007) have proven its suboptimality under certain forms of
misspecification (see also Diaconis and Freedman 1986). More broadly,
rationality principles used in the study of inductive inference are neces-
sarily based on statistical assumptions. For instance, Bayesian rationalicy
and algorithmic information theory are closely related due to the relation-
ship between probability and coding (which we drew on when explaining
Kullback-Leibler divergence), but they can differ both in theory (Vitinyi
and Li 2000; Griinwald 2005) and practice (Kearns et al. 1997; Pitr et
al. 2002). Subtleties such as these highlight that “rationality principles
are invented rather than discovered” (Binmore 2009, p. 2) and we should
question the view that there is one rationality thar follows directly from
the laws of probability theory, logic, or some other calculus.

In our introduction, we used the example of the aircraft manufacturer,
and argued that no engineer can hope to arrive at an accurate model of
relevant mechanical, atmospheric, and human factors which determine
the safety of a flight control system. Furthermore, even if this were pos-
sible, the analytic task of finding an optimal response to an appropriate
criterion, even if such a criterion exists in any meaningful sense, is beyond
the abilities of any expert. We view the significant questions facing the
study of inductive inference as having more in common with this large
world engineering problem than with the development of rational actor
models for small world problems. The study of large world inference
problems, like the study of flight control systems, is the search for mecha-
nisms which are more and more robust to uncertainty, but also the study
of when and why these mechanisms prove robust (Kitano 2004; Wagner
2005; Hammerstein et al. 2006). This second task can certainly profic
from the study of rational actor models and optimality modeling. But
this fact in no way questions or undermines the substantive, empirical
issue of understanding robust responses to large worlds. Rational inquiry
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should not be confused with rational actor models. The former is a com-
mitment to sound science, but the latter is a commitment to a particular
approach to modeling.

5.6 ARE RATIONAL ACTOR MODELS "RATIONAL"
QUTSIDE SMALL WORLDS?

Savage introduced the notion of a small world when questioning the val-
idity of Bayesian decision theory under conditions of uncertainty. We see
Savage's question as applying more broadly, beyond decision theory, and
impacting directly on the two key questions which guide the study of
inductive inference in humans and other animals. First, how, in mechan-
istic terms, do organisms arrive at inductive inferences? Second, what is
the relationship berween the behavior we observe in organisms, and the
optimal behavior as defined by a rational actor model? Now, in attempt-
ing to answer the second question, do we run the danger of committing
a Type Il error, and finding the right answer to the wrong question? In
contrast to the idea that humans are biased, error-prone users of dumb
heuristics, there is a growing tendency to view humans as astonishingly
well-adapted to an uncertain world, as evidenced by the ability of humans
to handle uncertainty in ways which exceed even the most sophisticated
human-engineered machinery (Geman et al. 1992; Poggio and Smale
2003; Tenenbaum et al. 2006). In this sense, evolved biological organisms
can be seen as existence proofs of adaptive responses to large, uncertain
worlds, This perspective makes the first question, the question of uncov-
ering the underlying cognitive and perceptual mechanisms of humans
and other animals, the key question.

Rather than hallmarks of advanced understanding, we have argued
that the concepts of rationality and optimality have the potential to
be counterproductive when examining large worlds, Withour doubr,
Bayesian decision theory and Bayesian statistics, to take two examples,
inform the question of what is rational in a small world. The crux of the
issue is then to assess the dangers of using the same concepts to under-
stand large worlds. While it is possible to analyze uncertain worlds by
introducing assumptions which discharge uncertainty, and recast the
problem as a small world problem, we have argued for an alternative. The
alternative is to follow a relativist approach which makes no attempr to
identify an optimal, rational response, but instead aims to incrementally
improve understanding by identifying models with greater and greater
predictive accuracy. Crucially, this approach dispenses with the need to
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make the assumptions necessary to recast the problem as a small world
problem. For some problems, we have to accept that our uncertainty
and ignorance make finding optimal, rational responses a meaningless
endeavor. This fact, though, does not make the study of uncertainty

meaningless.
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