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We  recently  introduced  a two-component  model  of the  mechanisms  underlying  age  dif-
ferences  in  memory  functioning  across  the  lifespan.  According  to  this  model,  memory
performance  is  based  on  associative  and  strategic  components.  The  associative  component
is relatively  mature  by  middle  childhood,  whereas  the  strategic  component  shows  a  mat-
urational  lag  and  continues  to develop  until  young  adulthood.  Focusing  on work  from  our
own  lab,  we  review  studies  from  the domains  of  episodic  and  working  memory  informed  by
this model,  and discuss  their potential  implications  for educational  settings.  The  episodic
memory  studies  uncover  the  latent  potential  of  the  associative  component  in childhood
by documenting  children’s  ability  to  greatly  improve  their  memory  performance  follow-
nstructional design
wo-component model
orking memory

ing mnemonic  instruction  and  training.  The  studies  on working  memory  also  point  to  an
immature  strategic  component  in  children  whose  operation  is enhanced  under  supportive
conditions.  Educational  settings  may  aim  at fostering  the interplay  between  associative  and
strategic  components.  We  explore  possible  routes  towards  this  goal  by  linking  our  findings
to recent  trends  in  research  on  instructional  design.
. Introduction

Cognitive capacities required for learning new asso-
iations depend on the interactions of neural networks
hat mature and develop across the lifespan. The encod-
ng, retention, and retrieval of events and facts form the
asis for acquiring new skills and knowledge. Hence, inves-
igating the mechanisms and modifiability of learning and

emory may  yield insights that are relevant for educa-
ional practice.

This review is focused on developmental changes in

emory functions from middle childhood up to old age.

or reasons introduced below, middle childhood is a period
n development in which environmental support provided
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by educational settings may  have particularly large and
beneficial effects on memory performance. With regard to
adulthood, lifelong learning is required for independent liv-
ing in modern knowledge-based societies (e.g., Schmiedek
et al., 2010). Senescence-related decline in various sen-
sory and cognitive functions poses challenges on the ability
to acquire new skills and knowledge. Accordingly, age-,
and even person-adapted learning environments may be
required to foster information and technology transfer at
all ages. In the following, we  present evidence from our
own research to highlight the strengths and weaknesses
of learning and memory across the lifespan, and explore
potential links to theories of instructional design (Mayer,
2005; Sweller et al., 1998).
Similar to others (D’Esposito, 2007; Fuster, 2003;
McIntosh, 2000; Postle, 2006; Zimmer, 2008), we conceive
of memory as an emergent property based on interactions
in a distributed neural network that involves occipital,
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temporal, parietal and frontal brain regions. Age-
comparative evidence from structural and functional
magnetic resonance imaging (s/fMRI) suggests that the
development of the underlying neural network is nonlin-
ear and heterochronic throughout the lifepan: posterior
brain regions such as occipital and mediotemporal cortices
mature relatively early, whereas prefrontal brain regions
show a maturational lag and continue in structural and
functional growth until young adulthood (Giedd et al.,
1999; Gogtay et al., 2004; Ofen et al., 2007; Sowell et al.,
1999; but see Ghetti et al., 2010). In later adulthood,
prefrontal regions are the first to show age-related decline.
But also medio-temporal structures, and here especially
the hippocampus, are vulnerable to senescent decline (e.g.,
Raz et al., 2005) that is even accelerated under pathologi-
cal conditions (e.g., Small et al., 2011). How exactly these
changes in neural structures relate to behavioral changes
in learning and memory still remains to be clarified.

Our group recently proposed a two-component frame-
work of memory that attempts to integrate behavioral
and neural evidence on memory performance from a lifes-
pan perspective (Sander et al., submitted for publication;
Shing and Lindenberger, 2011; Shing et al., 2010), based on
established theories and concepts (cf. Eichenbaum, 2002;
Moscovitch, 1992; O’Reilly and Norman, 2002; Prull et al.,
2000; Simons and Spiers, 2003). Our framework is moti-
vated by the empirical observation that memory functions
such as episodic memory and working memory show an
improvement across childhood, a peak in young adult-
hood, and a marked decline with advancing age (Cowan
et al., 2006; Gathercole, 1999; Luciana et al., 2005; Park
and Payer, 2006; Schneider and Pressley, 1997; Singer
et al., 2003). Despite the apparent symmetry in behav-
ioral performance at the two ends of ontogeny, lifespan
theory postulates that the mechanisms of maturation and
senescence are not the same (Baltes et al., 2006; Craik and
Bialystok, 2006). Accordingly, our work over the past years
has aimed at identifying commonalities and dissimilarities
in maturation and senescence of the cognitive and neu-
ral mechanisms underlying episodic and working memory
performance across the lifespan.

Central to our framework is the assumption that mem-
ory relies on the successful combination of two distinct but
intertwined processing components, one associative and
the other strategic (Sander et al., submitted for publication;
Shing and Lindenberger, 2011; Shing et al., 2008, 2010;
see also Werkle-Bergner et al., 2006). The associative
component refers to mechanisms during encoding, main-
tenance, and retrieval that integrate the features of a given
mnemonic event into a coherent memory trace that is
binding (Murre et al., 2006; Treisman, 1996). Binding pro-
cesses occur at different levels of information processing
(see e.g., Zimmer et al., 2006, for an elaboration on levels of
binding and possible mechanisms). Neurally, the functions
of the associative component are primarily dependent
on the integrity of mediotemporal (MTL) and posterior
brain regions (e.g., Simons and Spiers, 2003). Given the

comparably faster developmental gains in measures of
structural integrity for mediotemporal and posterior brain
regions (Gogtay et al., 2004; Sowell et al., 2003, 2004),
the associative component is thought to be relatively
e Neuroscience 2S (2012) S67– S77

mature by middle childhood. In contrast, senescence-
related decrements in hippocampal integrity (e.g., Raz et al.,
2005) render the associative component vulnerable to
age-related impairments (e.g., Naveh-Benjamin, 2000). In
contrast, the strategic component refers to top-down con-
trol processes involved in the organization and monitoring
of memory representations and mainly relies on prefrontal
brain regions (PFC; Miller and Cohen, 2001). Given the
protracted maturation of PFC, the strategic component is
not yet fully functional by middle childhood, and develops
across adolescence until young adulthood. Nevertheless,
structural measures reveal early losses in PFC integrity with
advancing adult age (e.g., Raz et al., 2005). Accordingly,
decrements in PFC-dependent functions are hypothesized
as a major source for age-related performance decrements
during adulthood (e.g., Park and Reuter-Lorenz, 2009).

In general, the associative and strategic components are
not thought to operate orthogonally. Rather, mnemonic
functions generally require the successful recruitment of
both associative and strategic processing mechanisms.
Accordingly, the reliance on either of the two  components
across developmental time is conceptualized in relative
terms. For example, although the associative component
is assumed to be relatively mature by middle childhood,
we would not preclude ongoing maturational processes
(e.g., Ghetti et al., 2010) that may  even be expedited by
successfully practicing the combined use of strategic and
associative components (e.g., Menon et al., 2005). At the
same time, both children and older adults exhibit persis-
tent difficulties when cognitive control demands are high
(e.g., Sander et al., 2011a, 2012), rendering interventions
targeting the strategic component useful to uncover the
upper limits of performance potential at both ends of the
lifespan (e.g., Brehmer et al., 2007; Shing et al., 2008).

The two-component model of memory development
was  originally introduced to study episodic memory devel-
opment (e.g., Shing et al., 2008) but has recently been
extended to working memory functioning (Sander et al.,
2011a,b, 2012, submitted for publication). In the follow-
ing, we will summarize work from both domains. We  will
report evidence suggesting that children’s lower mem-
ory performance as compared to young adults is indeed
related to the relative immaturity of strategic operations.
At the same time, it will become clear that children’s ini-
tial difficulties in strategic processing can be overcome by
environmental settings that are conducive to a more effi-
cient combination of strategic and associative components.
We will also report evidence demonstrating that individual
differences in memory development are enormous. Finally,
we will outline possible implications of our work for edu-
cational settings.

2. Episodic memory functioning

One line of experiments from our group used instruc-
tion and training to investigate age-related differences in
component processes supporting episodic memory func-

tioning. Episodic memory (Tulving, 1972) refers to the
explicit remembering of specific events that are situated
in time and place (e.g., episodes). In order to form such an
integrated memory representation that combines several
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ensory inputs (e.g., touch, smell, vision, sound) with stored
rior knowledge, episodic memory mechanisms are cru-
ially dependent on the associative mechanisms of the MTL
Simons and Spiers, 2003). Furthermore, episodic memo-
ies can be retrieved consciously and purposely (e.g., Rugg
nd Wilding, 2000; Tulving, 1972). The ability to form inte-
rated memory traces for events situated in time and place
s instrumental for the acquisition of knowledge about the
elf and the world (Tulving, 2002).

For the present review, we describe two multiphase
raining studies that investigated differences in episodic

emory function in lifespan samples of children aged
–12 years, younger adults, and older adults. In both
tudies, participants were first given an initial assess-
ent of memory performance, followed by instruction in a

ighly effective mnemonic technique, and they were finally
rained extensively on applying the technique. Both stud-
es followed the logic of testing-the-limits paradigms (e.g.,
indenberger and Baltes, 1995): with such procedures,
esearchers try to approximate upper limits of performance
otential with extensive practice and/or individually
djusted difficulty levels. For the two studies discussed
elow, extensive practice in elaborated mnemonic tech-
iques was used to equate pre-experimentally existing
ifferences in the spontaneous ability to recruit mem-
ry strategies. After participants had reached proficiency
n the use of the strategies, the remaining age-group
ifferences were assumed to be mainly driven by variabil-

ty in other processing mechanisms, i.e., the associative
omponent.

In the first study, Brehmer et al. (2007) investigated the
xtent to which memory performance can be improved
y instruction and training in a total of 108 participants

ncluding younger children aged 9–10 years, older chil-
ren aged 11–12 years, younger adults aged 20–25 years,
nd older adults aged 65–78 years. Participants learned
nd subsequently practiced an imagery-based mnemonic
echnique (Method of Loci) that emphasized the genera-
ion of interactive, dynamic images or thoughts to associate

 given location cue with an auditorily presented word. In
ultiple trials, the participant’s task was to memorize lists
ith 16 location-word pairs during encoding. Each encod-

ng phase was followed by a cued-recall test, in which the
ocations served as cues for the associated words. Dur-
ng the strategy-practice phase, the encoding time was
djusted individually so that all individuals practiced the
trategy at comparable levels of difficulty (towards a fixed
riterion of ∼60% correct recall). Practice lasted for two to
ix sessions, depending on the number of sessions needed
or each of the participants’ performance to reach a stable
symptote.

The main finding of this study is that both groups of
hildren and older adults did not differ in performance
evel at baseline and directly after strategy instruction,
ut that children’s performance improved substantially
ore than older adults’ after the extensive practice phase

see Fig. 1a). The data was generally consistent with the

ssumption that children and teenagers profit from learn-
ng a memory strategy. The extensive and individualized
eriod of practice presumably allowed children to over-

earn the use of the strategy, bringing the latent potential of
e Neuroscience 2S (2012) S67– S77 69

their well-established associative component to the fore. In
addition to mean age differences in memory performance,
substantial interindividual differences were observed from
the dynamically adjusted practice phase, particularly in
younger children. For example, the encoding times needed
by each of the children to reach a performance criterion of
62.5% correct responses ranged from 1 s to 7.2 s (see Fig. 2a
in Brehmer et al., 2007).

In a subsequent study, Shing et al. (2008) exam-
ined lifespan age differences in a verbal pair-recognition
paradigm in which both strategic and associative demands
were manipulated within person. Children (10–12 years),
teenagers (13–15 years), younger adults (20–25 years),
and older adults (70–75 years) participated in the study.
The strategic component was varied by giving participants
encoding instructions that emphasized remembering the
single items of the word pair, the exact pairing, or the
pairing through an instructed elaborated imagery strat-
egy. The associative demand was  varied by using word
pairs in which both words were familiar to the participants
(German–German, GG) or word pairs in which one of the
two words was the exact translation in a foreign language
(German–Malay, GM). By this, the GM-condition resembles
vocabulary learning. GM pairs were assumed to increase
the associative binding demands of the task as Malay was
a completely unknown language for the German speaking
participants.

Developmental differences between children and
teenagers were especially pronounced for the GG condi-
tion (see Fig. 1b): teenagers and younger adults improved
their performance substantially by simply being instructed
to encode the words as a pair, apparently making use of
self-initiated associative elaborations. Children and older
adults did not profit from the mere pair instruction to the
same extent as did teenagers and younger adults. However,
children improved more from being instructed in using an
imagery strategy than did the older adults.

Learning GM word pairs was  more difficult than GG
word pairs for all age groups and showed smaller improve-
ments due to instruction (see Fig. 1c). In a follow-up
experiment, participants were further trained on using the
imagery strategy for GM word pairs in five sessions. Partic-
ipants’ performance was boosted by the extensive practice
period. In particular, children and teenagers improved
their performance as a function of strategy practice, with
children achieving similar levels of performance as the
teenagers (see Fig. 1c, the rightmost data points for each
group).

The interaction between processes related to learning
and maturation was  further investigated in a follow-up
study conducted by Brehmer et al. (2008).  This study tested
long-term maintenance (11 months after training) of a pre-
viously acquired method of loci memory strategy (Brehmer
et al., 2007). Performance was  tested without and after
mnemonic reinstruction, indicating spontaneous versus
reactive maintenance, respectively. Children showed reli-
able spontaneous performance improvements relative to

the levels attained 11 months before, and did not show
reliable additional gains from renewed instruction. This
finding suggests that children did not need the instruc-
tion to reactivate their memory skills and to improve their
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Fig. 1. Empirical support for the two-component framework of memory development across the lifespan from the episodic memory domain. (a) Children’s
memory performance improves substantially after strategy instruction and extensive practice, revealing the latent potential of their associative component.
Adapted from Brehmer et al. (2007).  (b) Children’s memory performance for associatively less demanding German–German and (c) associatively demanding

ce. The 
German–Malay word pairs improves after strategy instruction and practi
of  the material. Adapted from Shing et al. (2008).

performance over time, possibly reflecting the maturation
of the neural memory network supporting the strategic
component of episodic memory.

To conclude, the two studies (Brehmer et al., 2007;
Shing et al., 2008) indicate that the associative compo-
nent of episodic memory is well developed in children and
teenagers, and can be used in a highly effective manner
when appropriate strategic instructions and training are
provided. The amount of performance potential appears
to depend on environmental and person-specific factors.
For example, the observed differences between the condi-
tions of German–German and German–Malay word pairs
in the study by Shing et al. (2008) show that the needs for
instruction, strategy supply, and training interact with the
associative demands of the to-be-learned materials. In the

same vein, the study by Brehmer et al. (2007) demonstrates
that the amount of environmental support needed differs
by age, and varies from person to person within a given age
segment (cf. Craik and Jennings, 1992).
need for instruction and practice interacts with the associative demands

3. Working memory functioning

Another line of experiments conducted by our group
extended the two component model of memory devel-
opment by investigating commonalities and differences
in mechanisms of working memory functioning across
the lifespan. Working memory (WM)  refers to our abil-
ity to briefly maintain and manipulate information in
order to guide goal-directed behavior (D’Esposito, 2007).
Its development during childhood is closely related to the
development of cognitive control and fluid intelligence
(Bunge et al., 2002; cf. Chapman and Lindenberger, 1989).

Although there is a wealth of literature on cognitive
WM theories (e.g., Baddeley, 1986; Barrouillet et al., 2004;
Cowan, 1995), our research is mainly inspired by neurosci-

entific views on WM functioning. According to these lines
of evidence, WM can be understood as a set of information
processing mechanisms that operate on representations
maintained and transformed in distributed neuronal
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Fig. 2. Empirical support for the two-component framework of memory development across the lifespan from the working memory domain. (a) Children improve their performance with longer presentation
times  suggesting an enforcement of top-down control over visual input. (b) Longer presentation times reduce distracter effects in children, although limits in the efficient suppression of distracting information
persist  with long presentation times. Adapted from Sander et al. (2011a). (c) Children engage similar inhibitory neural mechanisms as young adults as indicated by load modulations of lateralized alpha power.
However, inhibitory processes seem less robust when working memory load is high. Adapted from Sander et al. (2012).
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networks (e.g., D’Esposito, 2007; Postle, 2006; Zimmer,
2008). Most crucially, the structural and functional net-
works supporting WM mechanisms in the brain strongly
overlap with the networks viewed as critical for episodic
memory functioning (Ranganath, 2006; Ranganath and
Blumenfeld, 2005; Ranganath et al., 2005). Accordingly, one
line of studies in our lab set out to probe the usability of the
two-component framework of memory to explain lifespan
age differences within the domain of WM (Sander et al.,
2011a,b, 2012).

In the first study, Sander et al. (2011a) used a change-
detection paradigm (Luck and Vogel, 1997), a variant of
a delayed matching-to-sample task, to investigate the
development of component processes contributing to WM
capacity limits. In a change-detection paradigm, the par-
ticipant is initially presented briefly with a memory array
containing a variable number of items, such as colored
squares. After a retention interval of about one second, a
probe array is presented and the participant has to indicate
via button press whether one of the items has changed or
whether no change has occurred.

In line with prior research (Cowan et al., 2006; Riggs
et al., 2006), we observed that children (10–12 years)
and older adults (70–75 years) generally performed less
well than young adults on this task. To disentangle the
mechanisms that underlie the lower WM performance
in children and older adults, we varied the presentation
time of the memory display and presented variable num-
bers of items (2–10) for either 100 ms,  500 ms  or 1000 ms.
We assumed that under conditions of short presentation
time, performance primarily relies on fast-acting feature
binding mechanisms (e.g., Zimmer et al., 2006), that is,
the associative component. In contrast, longer presenta-
tion times would lead to relying increasingly on more
time-consuming control processes that stabilize early rep-
resentations (e.g., Gazzaley et al., 2008). In line with these
assumptions, our results demonstrated that all age groups
were able to improve their performance with longer pre-
sentation times, suggesting that they were generally able to
enforce top-down control over visual input when provided
with sufficient time to successfully form integrated repre-
sentations. Nevertheless, older adults’ performance lagged
children’s in all time conditions, especially under condi-
tions of a very short presentation time (i.e., 100 ms). This
observation is in accordance with the proposition that the
associative component of children is relatively functional
while it is impaired in older adults (see Fig. 2a).

In a second experiment within the same study (Sander
et al., 2011a)  top-down control demands were increased
by presenting distracters at the same time as targets at
encoding and retrieval. This experiment was specifically
designed to reveal constraints in the strategic processing
component. Again all age groups improved their per-
formance with longer presentation times, but distracter
effects were larger in the children and older adults than
in the young adults and persisted with long presenta-
tion times. Thus, children and older adults were generally

able to use top-down control operations, or the strategic
component of working memory. However, the persist-
ing distracter effects under challenging task conditions
revealed the efficiency limits of strategic control operations
e Neuroscience 2S (2012) S67– S77

in children and older adults (see Fig. 2b). Nevertheless, per-
formance in the children and older adults improved greatly
when task structures were adapted to accommodate for
less efficient control mechanisms, i.e., if they were given
more time (Fig. 2b).

The behavioral evidence presented above is corrobo-
rated by electrophysiological data. In a recent study (Sander
et al., 2011b), we investigated the contralateral delay activ-
ity (CDA), an event-related neurophysiological marker of
WM functioning (e.g., Vogel and Machizawa, 2004; Vogel
et al., 2005). The CDA is typically assessed with a cued
version of the change-detection task. In this variant, the
presentation of the memory array is preceded by a cue
that instructs the participants to covertly shift their atten-
tion to the left or right visual hemifield. Furthermore, the
participants are instructed to memorize only the items in
the cued hemifield, while those in the uncued hemifield
serve as distracters. The CDA is calculated as the difference
between EEG responses from sensors over the contralateral
hemisphere minus activity over the ipsilateral hemisphere
with regard to cue direction. Typically, the CDA increases in
amplitude with increasing WM load and reaches an asymp-
tote around the capacity limit (e.g., Vogel et al., 2005).

The results of our study revealed age differential pat-
terns of load-dependent CDA modulations with varying
presentation time. Comparing the CDA amplitudes of con-
ditions with 2 versus 4 items, the electrophysiological
data indicate that the children were able to boost their
performance presumably by engaging top-down control
with long (500 ms), but not with short presentation times
(100 ms). In contrast, younger adults showed signatures of
top-down control with short presentation time, but made
less use of strategic control with the long presentation time,
presumably because this condition was  so easy for them
that they did not need to rely on it.

In further analyses we investigated an electrophysiolog-
ical marker of inhibitory control processes within the same
cued change-detection paradigm (Sander et al., 2012),
namely, the power of neuronal oscillations in the alpha
frequency range (i.e., 7–13 Hz). Oscillatory activity in this
range provides a mechanism for the regulation of cortical
excitation and inhibition in the service of neural informa-
tion processing (e.g., Jensen and Mazaheri, 2010; Klimesch
et al., 2007). Lateralization of posterior alpha power in
change detection tasks has previously been shown to
reflect the inhibition of task-irrelevant information. Later-
alized alpha activity can be regarded as a marker of the
task-specific adaptation of cortical excitability. Further-
more, memory-load dependent modulations in lateralized
alpha oscillations were shown to relate to WM perfor-
mance (Sauseng et al., 2009).

In children and older adults, we observed a reliable
increase in lateralized posterior alpha power from low to
medium load conditions, suggesting that both age groups
engage the same neural mechanism as young adults. How-
ever, under high task-load conditions, hemispheric alpha
power differences no longer exist in children and older

adults, indicating that their task-specific adaptation of cor-
tical excitability is less robust in situations in which WM
capacity is overtaxed (see Fig. 2c). Thus, the efficiency of
inhibitory control processes in children and older adults
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eem to be constrained by the amount of presented (irrel-
vant) information.

Taken together, the three studies suggest that children
ave not yet reached the younger adults’ level of WM
erformance by middle childhood because the strategic
omponent of WM,  in particular, has not yet fully matured
cf. Bunge et al., 2002). At the same time, children perform
etter than older adults when presentation times are short,
uggesting that their associative binding mechanisms are
airly well established (Cowan et al., 2006; Sander et al.,
011a,b). In line with neuroimaging studies showing that
FC regions are recruited during WM performance (e.g.,
cherf et al., 2006; Wendelken et al., 2011) and cogni-
ive control (Bunge et al., 2002), our results point to the
ontinued development of top-down enhancement and
nhibitory control processes (Dempster, 1992; Diamond,
002) that contribute to WM performance. At the same
ime, our findings also show that the cognitive and neu-
al mechanisms of top-down control are already in place
y middle childhood, and that they can be put to work if
he tasks at hand are structured appropriately within the
unctional range of the individual.

. Potential implications for educational settings

Several implications for formal and informal educa-
ional settings can be derived from the results reviewed in
his paper. In line with others, we would like to caution that
ndings obtained in the developmental neuroscience labo-
atory do not transfer directly to educational settings. There
s an ongoing debate on how particular findings from neu-
oscience can be used to inform education (e.g. Ansari and
och, 2006; Blakemore and Frith, 2005; Fischer et al., 2010;
oswami, 2006; Hille, 2011; Stern et al., 2005). We  assume

hat insights from developmental neuroscience need to be
endered useful to derive informed decisions within the
onstraints and affordances of specific educational insti-
utions or other instructional settings (see De Smedt et al.,
010). In this sense, education can be seen as a “technology”
Bunge, 1985) that integrates evidence from psychology,
euroscience, sociology, and the content knowledge of the
arious subject matters into social practices that foster
earning and the cumulative build-up of knowledge among
tudents.

Another caveat beyond this general issue relates to
ore specific methodological boundaries of our studies

uch as small sample sizes and sample selectivity that
ay  also limit the generalizability to the classroom and

ther instructional scenarios (Ansari and Coch, 2006; Stern
t al., 2005). For instance, the studies summarized above
ere all based on positively selected samples, as the chil-
ren and teenagers had been recommended for, or were
lready attending, the school type with the highest entry
equirements after elementary school in Germany (i.e., the
ymnasium). This selection bias was purposefully intro-
uced to enhance the validity of comparisons to the groups
f younger and older adults, which were also positively

elected as well, admittedly at the cost of reducing gen-
ralizability to the general population.

Within the boundaries of this restricted generalizability,
e identified commonalities and differences with regard to
e Neuroscience 2S (2012) S67– S77 73

(episodic and working) memory development across the
lifespan on behavioral and neural levels of analysis. Over-
all, the results support the notion that behaviorally similar
performance outcomes may  be brought about by relying on
rather dissimilar sets of cognitive and neural mechanisms
(Baltes et al., 2006; Craik and Bialystok, 2006). In particular,
the various age groups seem to differentially rely on asso-
ciative and strategic memory components when encoding
to-be-learned contents. Accordingly, it seems appropriate
that the age groups should be differentially supported dur-
ing learning, for instance, in terms of strategy instruction
or training on the one hand, and in terms of learner pacing
and external memory offloading on the other hand.

Specifically, it appears advisable to structure formal and
informal educational settings such that the educational
environment is aligned to the needs and prerequisites of
groups of learners differing in age. This recommendation is
well in line with the literature on aptitude–treatment inter-
actions (Cronbach and Snow, 1977) advocating that optimal
learning occurs when an instructional design is matched
to learners’ particular prerequisites. Adaptively structured
learning environments may  be required in order to accom-
modate the age-graded differences in memory components
recruited for learning. In the remainder of this article, we
will elaborate the implications of this view in greater detail.

Presented in a nutshell, both the research on working
and on episodic memory development reviewed here sup-
port the claim that memory performance of children relies
predominantly on the associative component of memory,
at least up to elementary school, and unless the use of
strategies is explicitly instructed and supported. Appar-
ently, the ease with which children integrate the various
features of an episode into a compound memory trace
forms the core of memory development. The strategic com-
ponent of memory builds onto and follows the lead of
the associative component with a certain time lag that is
likely to vary from child to child and from task to task.
The relation between the protracted maturation of the PFC
and cognitive development has inspired influential the-
ories of child development (Dempster, 1992; Diamond,
2002) and has been subsequently substantiated with more
direct and cumulative evidence from behavioral neuro-
science research. For example, increased WM performance
in children has been shown to relate to functional changes
in frontal and parietal cortex (Bunge and Wright, 2007;
Klingberg, 2006; Nelson et al., 2000; Ofen et al., 2007;
Olesen et al., 2007). In addition to these more localized
changes, age-related differences in top-down control are
associated with a strengthening of effective connectivity
between frontal and posterior brain regions (Hwang et al.,
2010). In line with this evidence, the studies from our group
support the proposition that relatively low levels of strate-
gic functioning in children reflect the relative immaturity
of PFC, including its connections to more posterior brain
areas. There is evidence that increased functional inter-
actions between the mediotemporal lobe (MTL) and the
PFC underlie the development of more effective memory

encoding strategies in children and adolescents (Menon
et al., 2005). In a similar vein, a recent study by Cho et al.
(2011) showed differences in the activation pattern of
MTL, PFC, and posterior parietal cortex between children
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using different strategies when working on mathemati-
cal problems. Longitudinal training studies in combination
with neuroimaging techniques will be needed to further
investigate how strategy instruction and training influ-
ence activation patterns and promote interactions between
frontal and posterior brain regions.

The strategic components of memory performance
addressed in our experiments are, on the one hand, related
to learners’ ability to engage in an active organization and
integration of to be learned materials during encoding (e.g.,
using the Method of Loci or an imagery based strategy for
learning word pairs). On the other hand, these components
also relate to the ability to control the selection of relevant
information for processing, while at the same time avoiding
distractions due to the processing of irrelevant information
– particularly in the context of high time pressure and high
working memory load.

From an educational perspective, the strategic compo-
nent bears some resemblance to pivotal concepts in current
cognitive theories of instruction, such as Cognitive Load
Theory (CLT; Sweller et al., 1998) and Cognitive Theory of
Multimedia Learning (CTML; Mayer, 2005). These theories
address how learning outcomes can be optimized by tai-
loring instructional designs and learning scenarios to the
learner’s memory limitations and other individual prereq-
uisites of the learner (cf. Gerjets et al., 2009). Specifically,
they focus on how instructional designs might be opti-
mized in a way that they enable learners to: (a) focus on
the selection of relevant materials; (b) avoid distractions
due to processing of irrelevant information; and (c) engage
in active strategies to organize and integrate the to-be-
learned materials. Based on a rather global understanding
of the constraints of human cognitive architecture and the
resulting resource limitations, these theories have derived
several instructional principles that are intended to tailor
learning materials to working memory limitations. Typical
examples include the use of multimodality and redundancy
in instructional materials and to the efficient combination
of charts and text.

Interestingly, developmental considerations are almost
entirely absent from instructional theories such as CLT
or CTML. Differential effects of instructional design as a
function of the learner’s age have not often been exam-
ined because most of the studies have been carried out
with younger adults. For instance, an awareness of the
possible implications of a decline of memory functioning
in older adults for instructional design has only recently
emerged within this field (e.g., Paas et al., 2005). From
our perspective, introducing findings from developmen-
tal neuroscience like the ones summarized in this paper
into cognitive theories of instruction bears the potential
to arrive at age-graded instructional design recommenda-
tions. This observation applies both to older adults and
children. In the case of children, building this link may
inform instructional design decisions in school settings.

For instance, we found that younger children need to
train strategies for the organization and integration of to-

be-learned materials extensively because their strategic
abilities are limited. This finding has direct implications
for the design of instructional materials. Moreover, we
also observed that older adults have major difficulties in
e Neuroscience 2S (2012) S67– S77

overcoming the limitations of their associative abilities
through extensive training. This suggests the use of instruc-
tional technologies that constantly cue the operation of
the associative component by means of prompts, learner
assessments, and feedback.

Many of the educational recommendations made by
theories such as CLT and CTML are intended to help learn-
ers focus on relevant information and avoid the processing
of irrelevant information (e.g., using cueing, providing tem-
poral and spatial contiguity, avoiding seductive details or
redundancy, cf. Mayer, 2005). The findings reported in this
paper suggest that these considerations are especially rele-
vant for children and older adults, even though most of the
relevant studies in instructional design so far have been
conducted with young adults. If appropriate environmen-
tal support was given to attenuate the adverse effects of
less efficient strategic skills on task performance, children
should be able to exploit their latent potential for associa-
tive processing. These considerations suggest that general
instructional guidelines derived from theories of instruc-
tional design should be of particular relevance for children
and older adults.

A further observation based on the data summarized
in this article is that interindividual differences tend to be
larger in children and older adults than among younger
adults. The results of Brehmer et al. (2007) are particularly
impressive in this regard. The authors found that the pre-
sentation time needed to reach a given level of performance
varied by a factor of 7 in a relatively homogeneous group
of 8–9-year-old children. To a considerable extent, this
palpable heterogeneity is likely to reflect interindividual
differences in the pace of cortical development (e.g., Shaw
et al., 2006), rather than individual differences in ability
that are stable over time (see also Humphreys and Davey,
1988). This implies that the proposed aptitude–treatment
interaction perspective advocated with regard to age
groups should also be applied to individuals within age
groups. Instructional design recommendations that are
based on available memory resources might have to be
applied in a flexible way, depending on individual learner
characteristics. As these recommendations concern, among
other things, issues such as pacing, time for training, sup-
port for the selection of relevant and the avoidance of
irrelevant information, one possible approach would be to
use individualized instructional technology to allow teach-
ing formats that permit learners to acquire knowledge in
line with their developmental prerequisites and potential
for improvement.

At the other end of the lifespan, older adults do not only
suffer from a decline in strategic processes but also from
pronounced difficulties in associative binding operations
(Naveh-Benjamin, 2000; Shing et al., 2008), and may  have
problems in appropriately judging and using the novelty of
presented information to form long lasting memories (e.g.,
Shing et al., 2009; Wilson et al., 2006). Nevertheless, older
adults in general could recruit intact semantic knowledge
capabilities (Baltes et al., 2006). Accordingly, educational

settings for lifelong learning should concentrate on
providing integrated materials that allow older adults to
establish connections with their available semantic knowl-
edge and that stimulate elaborations without relying on
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earner-initiated strategic processing (cf. Craik, 1983).
urthermore, older learners may  particularly profit
rom highly structured environments that free cognitive
esources to focus on novel aspects of presented informa-
ion (Lindenberger and Lövden, 2006; Lindenberger et al.,
008).

In addition to the plea for age-related instructional
esign and for individualized instruction, particularly
or children, a final recommendation refers to the age-
omparative longitudinal follow-up data by Brehmer et al.
2008). In contrast to the adult groups, the children in this
tudy showed spontaneous improvements in mnemonic
kill when probed 11 months after the termination of
raining, presumably pointing to a powerful interaction of
earning and maturation. This finding shows that the effects
f strategy training can be relatively long-lasting, and may
ven increase over time, presumably in interaction with
aturational processes. This finding implies that forms of

raining that address strategies for the handling of learn-
ng materials might be particularly efficient at younger ages
ue to their potential long-term effects – even if training
eeds to be more extensive for this age group.

. Conclusion and outlook

Various forms of memory provide the basis for
he acquisition of new skills and knowledge. Hence,
evelopmental research on the modifiability of memory
erformance has important implications for education.
ccording to the framework presented in this article,
emory development consists of age-graded changes

n strategic and associative components. From this per-
pective, educational settings should be tailored to the
evelopment of these two components in ways that are
dapted to the individual learner. In the domain of episodic
emory, providing individualized instructions and train-

ng for the handling of learning materials appears to be
articularly promising. For instance, in the Shing et al.
2008) study, children learned to correctly recognize a very
arge number of German–Malay word pairs, suggesting that
he mnemonic strategy used in this study can be profitably
ut to use when learning the vocabulary of a foreign lan-
uage (cf. Bower, 1970). In the domain of working memory,
roviding information at the right pace and without too
uch distraction is critical. Existing instructional design

heories that focus on the role of memory limitations can be
sed to integrate these findings into a broader educational
erspective.

Developmental behavioral neuroscience aims at uncov-
ring the neural mechanisms of developmental changes
n behavior (e.g., Bunge, 2008; Dumontheil et al., 2010).
his journey has just begun, and many exciting discoveries
emain to be made. At present, very little is known about
he extent to which teaching formats interact with the
ace and outcome of cognitive development. Combining
he insights from developmental behavioral neuroscience

ith research on instructional design may  help to improve

earning environments in ways that better reflect age-
raded changes and individual differences in components
f learning and memory.
e Neuroscience 2S (2012) S67– S77 75
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