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The success of public-policy initiatives and business strategies 
is affected by people’s willingness to spend or save, further 
their education, find a new job, develop their social connec-
tions, or invest in their health. This willingness, in turn, 
depends on people’s evaluation of their financial circum-
stances, social status, and physical condition. To make such 
evaluations, people often compare themselves with others 
(e.g., Festinger, 1954; Suls, Martin, & Wheeler, 2002). How 
people assess the circumstances of others has important conse-
quences for their willingness to change or maintain their own 
behavior. In the study reported here, we evaluated a simple 
computational model that predicts people’s assessments of 
their social environments based on the underlying statistical 
structure of those environments and how people sample from 
them.

Social-cognition research has shown that people’s percep-
tions of how they measure up against others are not accurate 
(Krueger & Funder, 2004). Across cultures, people appear to 
suffer from self-enhancement biases, such as the better-than-
average and optimism biases, which lead them to believe they 
have better traits (e.g., friendliness, intelligence), abilities 
(e.g., driving), and future prospects than others do, or that their 
position among others is better than it actually is (Loughnan  
et al., 2011; Sedikides, Gaertner, & Toguchi, 2003; Wood, 

1989). Such effects are considered to be among the most 
robust findings in the literature on social cognition (e.g., 
Alicke & Govorun, 2005; Chambers & Windschitl, 2004; 
Roese & Olson, 2007).

Why would people be consistently biased in representing 
their social environments? The dominant explanation is a moti-
vational bias: People distort reality to improve their sense of 
self-esteem and well-being (Alicke, Klotz, Breitenbecher, 
Yurak, & Vredenburg, 1995). Another influential explanation is 
the cognitive incompetence of people who overestimate their 
social position (Kruger & Dunning, 1999). Yet neither account 
can explain findings of the opposite effect—self-depreciation, 
in particular for people who otherwise show superior skills 
(Burson, Larrick, & Klayman, 2006; Kruger, 1999; Moore & 
Small, 2007). To explain both self-enhancement and self- 
depreciation, several cognitive biases have been proposed 
(Chambers & Windschitl, 2004), but most of these suggestions 
involve redescriptions rather than explanations of the effects 
(Moore, 2007a).
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It has been proposed that both self-enhancement and self-
depreciation effects can be explained by a simple statistical 
artifact—regression (Fiedler, 1996; Krueger & Mueller, 2002; 
Moore & Small, 2007). This account assumes that people have 
an unbiased representation of the overall social environment 
but that their reports contain some random noise that leads to 
underestimation of high performance and overestimation  
of low performance. Regression in its pure form cannot explain 
the finding that worse-off people (e.g., those with bad results 
on a particular task) make larger errors than do better-off  
people (those with good results on a particular task; e.g.,  
Burson et al., 2006; Ehrlinger, Johnson, Banner, Dunning, & 
Kruger, 2008; Krueger & Mueller, 2002; Kruger & Dunning, 
1999). To remedy this shortcoming, researchers have proposed 
that systematic biases, such as a general better-than-average 
bias (Krueger & Mueller, 2002) or a test-difficulty bias (Burson 
et al., 2006), counteract or add to the regression effects. The 

origins of these supposed biases remain unclear. We propose a 
new model that predicts both self-enhancement and self-
depreciation effects, as well as the differences in errors of 
better-off and worse-off people, without assuming any moti-
vational or cognitive biases.

Social-Sampling Model
In our simple model, apparent self-enhancement and self-
depreciation are caused by the interplay of the underlying 
environmental structure in people’s lives and the sampling 
processes that people use. In Figure 1, we illustrate how the 
model works using excerpts from our empirical data and 
model predictions (both described in more detail later). Two 
properties of the environmental structure play a major role. 
First, different population characteristics have different fre-
quency distributions (Fig. 1a). Although most people are doing 
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Fig. 1.  Empirical data and predictions of the social-sampling model for 3 of 10 studied characteristics of the Dutch population: household 
wealth (example of a J-left distribution), frequency of work stress (example of a J-right distribution), and number of friends (example of a 
symmetrical distribution). The first column (a) shows the actual population distributions of the three characteristics. The second column (b) 
presents participants’ estimated distributions within their social circles, separately for worse-off and better-off people (i.e., those positioned at 
the three lowest and three highest levels of each characteristic, respectively). The third column (c) shows the social-sampling model’s predictions 
for better-off and worse-off people’s estimates of the population distributions. The fourth column (d) shows better-off and worse-off people’s 
estimates of the population distributions. The fifth column (e) presents the model’s predictions for better-off and worse-off people’s estimates 
of the cumulative population distributions; the final column (f) shows better-off and worse-off people’s estimates of the cumulative population 
distributions.
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well in respect to some characteristics (e.g., frequency of work 
stress), most are doing less well in respect to other characteris-
tics (e.g., household wealth). When distributions are plotted so 
that x-axes always range from negative to positive levels of a 
characteristic (as in all figures in this article), they have a 
J-right shape when most people are doing well and a J-left 
shape when most people are doing poorly. The distributions are 
relatively symmetrical when most people are at middle levels.

Second, most social environments are spatially clustered: 
People with similar characteristics tend to live close to  
each other and move in similar social circles. This tendency 
toward homophily is a well-known property of social worlds 
(McPherson, Smith-Lovin, & Cook, 2001). Social circles of 
people who are relatively worse off on certain characteristics 
tend to include somewhat more people who are in a similar 
position than do social circles of people who are relatively bet-
ter off (Fig. 1b).

These aspects of environmental structure interact with two 
aspects of sampling processes that people engage in when esti-
mating properties of their social environment. First, people are 
unlikely to draw representative samples of the overall social 
environment (i.e., the general population). Instead, as has been 
proposed previously (Fiedler, 2000; Hertwig, Pachur, & 
Kurzenhäuser, 2005; Lichtenstein, Slovic, Fischhoff, Layman, 
& Combs, 1978; Pachur, Rieskamp, & Hertwig, 2005; Ross, 
Greene, & House, 1977), they rely on available samples—
their social circles. These typically include family, friends, and 
acquaintances they meet on a regular basis. Second, when 
people extrapolate from their social circles to the general pop-
ulation, they tend to smooth extreme peaks and valleys of their 
social-circle distributions. Reflecting these two aspects of  
the sampling process, both predicted (Fig. 1c) and empirically 
obtained (Fig. 1d) population estimates resemble smoothed 
social-circle distributions (Fig. 1b; see Fig. S1 in the Supple-
mental Material available online for more examples).

Smoothing can occur for several reasons alone or in combi-
nation. A certain amount of smoothing can occur because  
of noise inherent in response or retrieval processes (Juslin, 
Winman, & Olsson, 2000). This corresponds to the reliability 
parameter in the regression framework. It is also possible that 
people make deliberate adjustments to account for the fact that 
social circles tend to include people who are similar to each 
other and therefore are likely to include more extreme propor-
tions of particular characteristics than are found in the general 
population. Finally, people’s assessments could follow an 
updating process in which an initial judgment represented by a 
uniform prior distribution—often implemented as the first step 
in probabilistic models of cognition (Chater & Oaksford, 
2008)—is updated by information from one’s own social cir-
cle. All three processes could lead to a smoothing effect.

The social-sampling model is formalized as follows:

PEi  =  (SCi  –  SC
— 

)  ×  s  +  SC
— 

,

where PEi is a person’s estimate of the percentage of the gen-
eral population belonging to level i of a certain characteristic, 

SCi is the percentage of that person’s social circle belonging to 
level i, and SC

— 

 is the average percentage across all levels of 
that person’s social circle for that characteristic. The parame-
ter s reflects the smoothing of the social-circle distributions 
that occurs when they are used to estimate population distribu-
tions. The larger the parameter value, the lower the amount of 
smoothing. Smoothing moves all estimates toward their aver-
age (SC

— 

). For instance, when a person estimates the percent-
age of the general population belonging to the lowest level of 
income (PE1), the model predicts that this estimate will be 
based on the percentage of that person’s social circle at the 
lowest level of income (SC1), adjusted toward the mean per-
centage across all levels (SC

— 

; if there are seven levels of 
income, SC

—  

= 100/7 = 14.3). For example, if 10% of a person’s 
social circle belong to the lowest level of income, this leads to 
a predicted percentage of 12.1 for the general population, 
using a smoothing parameter value of s = .5 (i.e., (10 – 14.3) × 
0.5 + 14.3 = 12.1, as in Figs. 1c and 1e). This procedure can be 
applied for all other levels of income.

The social-sampling model makes two important predic-
tions. First, because of the interplay of the shapes of population 
distributions and the smoothing of social-circle distributions, 
people’s population estimates will appear as if they were 
affected by self-enhancement when the underlying distribu-
tion of the general population has a J-right shape (i.e., when 
most people are doing well) and by self-depreciation when the 
underlying distribution has a J-left shape (when most people are 
doing badly). Figure 1e illustrates this with cumulative versions 
of the distributions in Figure 1c. Cumulative distributions 
enable comparison between percentile ranks of the same indi-
vidual in actual and estimated population distributions. Note 
that the model’s predictions of estimated population distribu-
tions in Figure 1e are above the actual population distributions 
for J-right distributions but below the actual population distribu-
tions for J-left distributions. This means that one’s estimated 
percentile rank in the general population appears to be higher 
than it actually is for the J-right distributions (resulting in appar-
ent self-enhancement) and lower than it actually is for the J-left 
distributions (resulting in apparent self-depreciation).

Second, because of the interplay of spatial clustering of 
social environments and people’s reliance on social circles 
when estimating population distributions, the model predicts 
that when the underlying distribution has a J-right shape, the 
errors of population estimates of the worse-off people will be 
larger—toward more apparent self-enhancement—than the 
errors of the better-off people will be (Fig. 1e). This is because 
the social circles of worse-off people will tend to include more 
people who are also doing badly, and, consequently, they will 
overestimate the frequency of worse-off people in the general 
population. The reverse is predicted when the underlying  
distribution has a J-left shape: Here, the errors of worse-off 
people will be smaller than the errors of better-off people  
(Fig. 1e).

To test the predictions of the social-sampling model, we 
collected data from a large, probabilistic, nationally represen-
tative sample of Dutch citizens. This sample enabled us to 
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investigate self-enhancement and self-depreciation effects in 
the general population, in contrast to the convenient samples 
of students of elite universities that many previous studies 
have relied on (cf. Burson et al., 2006). It also enabled us to 
obtain valid population benchmarks to evaluate participants’ 
population estimates. In most previous studies, participants 
were asked about groups of “average students” or “average 
persons” (e.g., Alicke et al., 1995; Kruger & Dunning, 1999; 
Loughnan et al., 2011), but their estimates were compared 
with benchmarks calculated from empirical data taken from 
the other participants in that particular study, not from a repre-
sentative sample of students or from the general population.

Method
Participants

The sample of participants was drawn from 5,000 Dutch house-
holds participating in the Longitudinal Internet Studies for the 
Social Sciences (LISS) panel (raw data for the sample are avail-
able at www.lissdata.nl/dataarchive/study_units/view/54). The 
panel is based on a probability sample of households drawn 
from the population register by Statistics Netherlands. Each 
household is provided with a computer and Internet connec-
tion. The study was conducted in two waves 3 months apart: 

1,646 participants completed the first wave, and 1,416 com-
pleted the second wave. The sample was representative of the 
Dutch population 15 or more years of age in terms of gender, 
age, education, and income (Table 1).

Materials and procedure
In the first wave, participants answered questions about 10 
characteristics related to their own financial situation, love 
life, friendships, health, work stress, and education (e.g., 
“What is your highest level of education?”; text for all ques-
tions and the number of participants who gave valid responses 
to each question can be found in Question Texts and Table S1, 
respectively, in the Supplemental Material). All questions 
were presented in randomized order on 7-point fully labeled 
scales. From the answers, we derived actual population distri-
butions. The participants also estimated the distributions of 
these characteristics in the general population of The Nether-
lands (e.g., “What percentage of adults living in The Nether-
lands fall into the following categories?”). Following Nisbett 
and Kunda (1985), we asked participants to estimate the whole 
distribution of different characteristics of other people rather 
than just a summary indicator, such as the mean. This allowed 
us to examine the discrepancies between estimated and actual 
distributions in detail. Participants used an interactive online 

Table 1.  Characteristics of the Sample (N = 1,646) and the Dutch Population

Sample

Actual population  
percentageCharacteristic

Unweighted  
n

Weighted  
percentagea

Sex
  Male 746 49.1 49.1
  Female 900 50.9 50.9
Age
  15–24 years 191 10.4 14.7
  25–44 years 523 35.6 34.1
  45–64 years 705 35.7 33.3
  65+ years 227 18.3 17.9
Educationb

  Minimum compulsory education 99 10.9 8.9
  Higher general, preparatory scientific, or  

  middle-level applied education
267 23.7 24.3

  Higher applied education 707 39.4 41.4
  University degree or higher 419 15.8 15.9
Net household incomeb

  Up to €20,000 294 33.4 30.9
  €20,001–€40,000 770 42.6 43.7
  €40,001–€60,000 376 16.6 17.7
  More than €60,000 88 7.4 7.7

aTo obtain realistic estimates of population distributions from the sample data, we applied poststratification 
weights based on sex, age, education, marital status, and disposable household income using data from Statistics 
Netherlands. The weights were calculated using a multiplicative weighting procedure that involved iterative 
proportional fitting (or raking; see Bethlehem, 2002). bNot all participants gave valid responses regarding their 
education and household income.
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interface to allocate each characteristic across seven levels 
totaling 100% of the Dutch population (see Fig. S2 in the Sup-
plemental Material). A running tally and a dynamic bar chart 
were provided as aids.

By comparing participants’ position in the actual popula-
tion distribution with their position in their estimated popula-
tion distribution, we could infer whether they overestimated or 
underestimated their actual position in the general population. 
This indirect method of investigating people’s assessments of 
their social position is often used in studies of social compari-
son (Chambers & Windschitl, 2004). Although this method 
does not ask for explicit comparisons with other people, it has 
produced consistent, though smaller, self-enhancement and 
self-depreciation effects than more direct methods have 
(Chambers & Windschitl, 2004; Klar & Giladi, 1997; Moore, 
2007b).

In the second wave, the same participants were asked to 
estimate the distributions of the same characteristics in their 
own social circle (e.g., “What percentage of your social con-
tacts fall into the following categories?”), using the same 
interface. We defined social contacts as “adults you were in 
personal, face-to-face contact with at least twice this year, 
[such as] your friends, family, colleagues, and other acquain-
tances.” We asked for face-to-face contact to tap into the spa-
tial clustering of social environments that we hypothesized 
plays a role in the social-sampling model. In both waves, par-
ticipants also answered questions about their well-being 
(results for these measures are not presented here). The Ethics 
Committee of the Max Planck Institute for Human Develop-
ment approved the study.

Results
The results shown in Figure 2 suggest that most participants had 
rather accurate representations of their immediate social envi-
ronments. Although participants had very different social circles 
(see Fig. S1 in the Supplemental Material), average social-circle 
distributions followed the actual population distributions more 
closely than did the average estimates of population distribu-
tions. Because our sample was representative of the general 
population, the fact that average social-circle distributions 
resembled the actual population distributions suggests that there 
was little or no systematic deviation in participants’ reports of 
their social circles. In contrast, people’s estimates of the general 
population were less accurate and therefore suggest systematic 
deviations.

First, we observed both apparent self-enhancement and 
self-depreciation effects, depending on the characteristic. As 
Figure 2 illustrates, self-enhancement effects occurred for the 
characteristics with J-right distributions (e.g., household 
income, conflicts with partners, and health problems), that is, 
when most people were doing well. For these characteristics, 
people overestimated the relative frequency of the negative 
end of the scale and underestimated the relative frequency of 
the positive end, which made their own position look better 

than it really was. Self-depreciation effects occurred for the 
three characteristics whose distributions were J-left shaped 
(personal income, household wealth, and number of dates), 
that is, when most people were doing badly. For these charac-
teristics, people overestimated the relative frequency of the 
positive end of the scale and underestimated the relative 
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frequency of the negative end, which made their own position 
look worse than it really was.

Second, we observed that the deviations of estimated and 
actual population distributions depended on individuals’ posi-
tion on the given characteristic. For most J-right distributions, 
worse-off people made larger errors and appeared to self-
enhance more than did better-off people (Fig. 3). For the three 
J-left distributions, better-off people made equal or larger 
errors, thus appearing to self-depreciate more than worse-off 
people did. The social-sampling model is the only account that 
can predict this pattern of results, as illustrated in the next 
section.

Model Comparison

For simplicity and to avoid overfitting, we set s in the social-
sampling model to an intermediate value of 0.5 and evaluated 
the model’s predictions at the aggregate level with the average 
estimated population distributions. The predictions of the 
social-sampling model (illustrated in Figs. 1c and 1e) corre-
sponded well with the observed results (see Figs. 1d and 1f, 2, 
and 3). For J-right distributions, we predicted and observed a 
self-enhancement effect, and for J-left ones, we predicted and 
observed a self-depreciation effect. In addition, worse-off  
people appeared, as predicted, to enhance their position more 
(or depreciate it less) than did better-off people. The motiva-
tional account—that people distort reality to improve their 
well-being—cannot explain the self-depreciation effects. The 
cognitive-incompetence account—that people with less favor-
able characteristics make larger errors when estimating their 
social environments—is also not supported: For J-left distri-
butions, the better-off people—those with higher personal 
income and household wealth and those who went on more 
dates—made similar or larger errors than did worse-off peo-
ple. The pure-regression account can explain both self-
enhancement and self-depreciation effects but cannot explain 
the discrepancies in errors of better-off and worse-off people 
without introducing additional biases, because it makes the 
same predictions for both groups.

To examine these qualitative findings in more detail, we 
compared predictions of the social-sampling model with pre-
dictions of the regression model, the only other model that 
makes quantitative predictions. We set the parameter that 
regulates the amount of regression to a fixed value of 0.5 to 
predict average estimated population distributions (see Fig. 
S3 in the Supplemental Material), cumulative estimated pop-
ulation distributions (see Fig. S4 in the Supplemental Mate-
rial), and estimated population means (see Fig. S5 in the 
Supplemental Material). For both better-off and worse-off 
people, the social-sampling model predicted data patterns 
consistently better than the regression model did. For instance, 
the correlations between average predicted and estimated 
population distributions were higher and root-mean-square 
errors were lower for the social-sampling model for all 10 
characteristics for worse-off people and for 7 out of 10 char-
acteristics for better-off people. This result was not limited by 
the models’ a priori set parameter values. When we estimated 
the models’ parameters from data and tested their predictions 
with a cross-validation procedure, we obtained the same pat-
tern of results (see Model Comparison in the Supplemental 
Material for details).

Discussion
We found that people were, on average, rather accurate in 
assessing their social environments, but they showed some 
systematic deviations. Depending on the characteristic, we 
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Fig. 3.  Average errors of estimated population means for the 10 
characteristics. Results are presented separately for groups of participants 
at different levels of each characteristic (from those who are worse off to 
those who are better off). For each individual and characteristic, error 
size was calculated using the following formula: (estimated mean – actual 
mean)/actual mean. Error bars denote ±2 SE. Groups with fewer than 10 
observations are omitted.
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found apparent self-enhancement and self-depreciation effects, 
and people who were doing poorly tended to enhance their 
position more or depreciate it less than those who were better 
off. Although these results appear to suggest a motivational or 
a cognitive bias, they were predicted by a simple social-sam-
pling model that assumed an unbiased mind acting within a 
particular environmental structure. That people are well 
attuned to their immediate social environments but not as well 
to broader society (Fig. 2) can be considered adaptive: It is 
one’s social circle, not the “general population” or an “average 
person” that should have the biggest influence on one’s happi-
ness and aspirations. In addition, using social circles to esti-
mate population distributions is an effective strategy when the 
latter are unknown, particularly when people are aware that 
their social circles are not representative of the overall 
population.

The present results are consistent with Nisbett and Kunda’s 
(1985) finding that people can provide relatively accurate esti-
mates of social distributions. In addition, our results and model 
support Nisbett and Kunda’s contention that people have rea-
sonably accurate memories of the positions of at least several 
other people on a given characteristic and that they use this 
knowledge when estimating population distributions. Our 
results support the suggestion that people’s superior informa-
tion about themselves compared with their information about 
other people can explain apparent biases (e.g., Fiedler, 1996; 
Moore & Healy, 2008; Moore & Small, 2007). One major  
difference between our model and previously proposed  
differential-information theories (Moore & Healy, 2008; 
Moore & Small, 2007) is that our model predicts estimations 
for whole distributions based on social circles, and the differ-
ential-information theories assume that people use informa-
tion about themselves when predicting characteristics of other 
persons. Further, the differential-information theories have not 
been tested quantitatively.

Our results are also in line with findings showing that peo-
ple use their social circles to make judgments about frequen-
cies of health risks in the general population (Hertwig et al., 
2005; Pachur et al., 2005). The sampling process in the social-
sampling model resembles the regressed version of the so-
called availability-by-recall mechanism (Hertwig et al., 2005), 
according to which people judge that the more prevalent of 
two risks in their social circle is also more prevalent in the 
general population. Our model goes further by predicting esti-
mates of whole distributions rather than just binary judgments. 
In addition, in the social-sampling model, the sampling pro-
cess is only one component, the other being environmental 
properties. The interplay between these two components is 
essential for our model. Although the importance of studying 
how the environment interacts with the mind has been recog-
nized for many years (Brunswik, 1955; Simon, 1956), these 
ideas have only recently been applied more generally in psy-
chological research (Denrell, 2005; Fiedler, 2000; Fiedler & 
Juslin, 2006; Gigerenzer, Todd, & the ABC Research Group, 

1999; Juslin, Winman, & Hansson, 2007; Stewart, Chater, & 
Brown, 2006).

Our model provides a novel and parsimonious explanation 
for why many previous studies have found that people are 
prone to self-enhancement and why people with low test 
scores make larger errors than do people with high test scores 
(e.g., Burson et al., 2006; Ehrlinger et al., 2008; Krueger & 
Mueller, 2002; Kruger & Dunning, 1999). In most studies, the 
population that participants had to compare themselves with 
was broader than their social circle—typically other students 
at the same university. According to the social-sampling 
model, this leads to population estimates resembling smoothed 
versions of social circles. These sampling processes interact 
with the second property of previous studies: In most of  
them, the majority of participants scored relatively well. 
According to our model, the resulting J-right distribution  
in combination with the sampling processes leads to an  
overall self-enhancement effect. In addition, students with low 
scores—who are under the assumption that their circle of 
friends includes somewhat more people similar to themselves 
than the general population does— will overestimate the fre-
quency of other participants with low scores more than stu-
dents with high scores will. Therefore, they will appear to 
self-enhance more than the students with high scores will. 
Only for truly difficult tests—when the majority of partici-
pants score low—will most participants appear to underesti-
mate their position, with those who score high now making 
larger errors than those who score low (cf. Burson et al., 2006). 
Note that our model can be applied not only to indirect but also 
to direct comparisons given the (reasonable) assumption that, 
when estimating their position among others, people first form 
a representation of how others are doing.

The social-sampling model captures some of the basic 
aspects of how people represent their social environments. Of 
course, other processes might also be involved. Some people 
could have a rough idea of the shape of the true population 
distribution and combine it with what they know about their 
immediate social environments (Nisbett & Kunda, 1985). For 
instance, well-educated people in our sample seem to have had 
a rather good idea of what the overall population distribution 
of education levels looks like (see Fig. S3 in the Supplemental 
Material). Furthermore, when characteristics are vaguely 
defined (e.g., work stress) or are not publicly observable (e.g., 
conflicts with partners), it can be difficult to use social-circle 
information. In that case, people might use their own position 
for population estimates, perhaps combined with an expecta-
tion that natural phenomena are normally distributed (Nisbett 
& Kunda, 1985). Subjective biases in estimating one’s social 
circle may also play a role. For instance, some participants 
may have thought that people in their social circles are more 
similar to themselves than they really are. Such beliefs can 
even be helpful when predicting others’ behavior (Dawes  
& Mulford, 1996). Finally, different methods of assessing dis-
tributions (e.g., using direct rather than indirect methods, or 
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using summary indicators rather than whole distributions) 
might induce various motivational or cognitive biases. Statis-
tical artifacts specific to direct assessments may have contrib-
uted to the effects observed in other studies (Harris & Hahn, 
2011).

We have provided a novel computational model that can 
explain both self-enhancement and self-depreciation effects 
and that gives specific quantitative predictions about the direc-
tion and size of these effects in different population groups. 
Our explanation highlights the importance of studying both 
people’s inference processes and their environments to obtain 
a more complete picture of the nature of human cognition.
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