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Abstract
	 Heuristics	are	efficient	cognitive	processes	that	ignore	information.	In	contrast	to	the	widely	
held	view	that	less	processing	reduces	accuracy,	the	study	of	heuristics	shows	that	less	information,	
computation,	and	time	can	in	fact	improve	accuracy.	We	discuss	some	of	the	major	progress	made	
so	far,	focusing	on	the	discovery	of	less-is-more	effects	and	the	study	of	the	ecological	rationality	of	
heuristics	which	examines	in	which	environments	a	given	strategy	succeeds	or	fails,	and	why.	Homo	
heuristicus	has	a	biased	mind	and	ignores	part	of	the	available	information,	yet	a	biased	mind	can	
handle	uncertainty	more	efficiently	and	robustly	than	an	unbiased	mind	relying	on	more	resource-
intensive	and	general-purpose	processing	strategies.

Keywords: cognition, heuristics, uncertainty

Introduction

	 As	far	as	we	know,	animals	have	always	relied	
on	heuristics	 to	solve	adaptive	problems,	and	so	
have	humans.	To	measure	the	area	of	a	candidate	
nest	cavity,	a	narrow	crack	 in	a	rock,	an	ant	has	
no	yardstick	but	a	rule	of	thumb:	Run	around	on	
an	 irregular	path	 for	 a	fixed	period	while	 laying	
down	a	pheromone	trail,	and	then	leave.	Return,	
move	 around	 on	 a	 different	 irregular	 path,	 and	
estimate	 the	 size	 of	 the	 cavity	 by	 the	 frequency	
of	 encountering	 the	 old	 trail.	 This	 heuristic	 is	
remarkably	precise:	Nests	half	the	area	of	others	
yielded	 re-encounter	 frequencies	 1.96	 times	
greater	 (1).	 Many	 evolved	 rules	 of	 thumb	 are	
amazingly	simple	and	efficient	(2).	
	 The	 Old	 Testament	 says	 that	 God	 created	
humans	 in	his	 image	 and	 let	 them	dominate	 all	
animals,	 from	 whom	 they	 fundamentally	 differ	
(Genesis	1:26).	It	might	not	be	entirely	accidental	
that	in	cognitive	science	some	form	of	omniscience	
(knowledge	 of	 all	 relevant	 probabilities	 and	
utilities,	 for	 instance)	 and	 omnipotence	 (the	
ability	 to	 compute	 complex	 functions	 in	 a	 split	
second)	has	shaped	models	of	human	cognition.	
Yet	humans	and	animals	have	common	ancestors,	
related	 sensory	 and	 motor	 processes,	 and	 even	
share	common	cognitive	heuristics.	Consider	how	
a	 baseball	 outfielder	 catches	 a	 ball.	 The	 view	 of	
cognition	favoring	omniscience	and	omnipotence	
suggests	 that	 complex	problems	 are	 solved	with	
complex	 mental	 algorithms.	 Richard	 Dawkins,	
for	example,	argues	that	“He	behaves	as	if	he	had	
solved	a	set	of	differential	equations	in	predicting	

the	 trajectory	 of	 the	 ball.	 At	 some	 subconscious	
level,	 something	 functionally	 equivalent	 to	 the	
mathematical	calculations	is	going	on”	(3,	p	96).	
Dawkins	carefully	inserts	“as	if”	to	indicate	that	he	
is	not	quite	sure	whether	brains	actually	perform	
these	computations.	
	 And	there	is	indeed	no	evidence	that	brains	
do.	Instead,	experiments	have	shown	that	players	
rely	 on	 several	 heuristics.	 The	 gaze	 heuristic	 is	
the	simplest	one	and	works	 if	 the	ball	 is	already	
high	up	in	the	air:	Fix	your	gaze	on	the	ball,	start	
running,	and	adjust	your	running	speed	so	that	the	
angle	of	gaze	remains	constant	(4).	A	player	who	
relies	on	 the	gaze	heuristic	 can	 ignore	all	 causal	
variables	 necessary	 to	 compute	 the	 trajectory	 of	
the	 ball–the	 initial	 distance,	 velocity,	 angle,	 air	
resistance,	speed	and	direction	of	wind,	and	spin,	
among	 others.	 By	 paying	 attention	 to	 only	 one	
variable,	 the	 player	 will	 end	 up	 where	 the	 ball	
comes	 down	 without	 computing	 the	 exact	 spot.	
The	same	heuristic	is	also	used	by	animal	species	
for	 catching	 prey	 and	 for	 intercepting	 potential	
mates.	In	pursuit	and	predation,	bats,	birds,	and	
dragonflies	 maintain	 a	 constant	 optical	 angle	
between	 themselves	 and	 their	 prey,	 as	 do	 dogs	
when	catching	a	Frisbee	(5).	
	 In	 the	 1950s,	Herbert	Simon	proposed	 that	
people	 satisfice	 rather	 than	 maximize	 (6,7).	
Maximization	means	optimization,	the	process	of	
finding	 the	best	solution	 for	a	problem,	whereas	
satisficing	(a	Northumbrian	word	for	“satisfying”)	
means	 finding	 a	 good-enough	 solution.	 For	
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Simon,	 humans	 rely	 on	 heuristics	 not	 simply	
because	 their	cognitive	 limitations	prevent	 them	
from	 optimizing,	 but	 also	 because	 of	 the	 task	
environment.	For	instance,	chess	has	an	optimal	
solution,	 but	 no	 computer	 or	 mind,	 be	 it	 Deep	
Blue	or	Kasparov,	can	find	this	optimal	sequence	
of	moves	because	the	sequence	is	computationally	
intractable	to	discover	and	verify.	In	the	1970s,	the	
term	 heuristic	 acquired	 a	 different	 connotation,	
undergoing	 a	 shift	 from	 being	 regarded	 as	 a	
method	that	makes	computers	smart	to	one	that	
explains	why	people	are	not	smart.	
	 Daniel	Kahneman,	Amos	Tversky,	and	their	
collaborators	 published	 a	 series	 of	 experiments	
in	 which	 people’s	 reasoning	 was	 interpreted	
as	 exhibiting	 fallacies.	 “Heuristics	 and	 biases”	
became	one	phrase.	It	was	repeatedly	emphasized	
that	 heuristics	 are	 sometimes	 good	 and																																		
sometimes	 bad,	 but	 virtually	 every	 experiment	
was	 designed	 to	 show	 that	 people	 violate	 a	 law	
of	 logic,	 probability,	 or	 some	 other	 standard	 of	
rationality.	 By	 the	 end	 of	 the	 20th	 century,	 the	
use	of	heuristics	became	associated	with	shoddy	
mental	 software,	 generating	 three	 widespread	
misconceptions:

1.			Heuristics	are	always	second-best.	
2.	 We	 use	 heuristics	 only	 because	 of	 our		

cognitive	limitations.
3.	 More	 time,	 more	 information,	 and	 more	

computation	would	always	be	better.	

	 These	three	beliefs	are	based	on	the	so-called	
accuracy-effort	 trade-off, which	 is	 considered	
a	 general	 law	 of	 cognition:	 If	 you	 invest	 less	
effort,	the	cost	is	lower	accuracy.	Effort	refers	to	
searching	for	more	information,	performing	more	
computation,	or	 taking	more	time.	In	fact,	 these	
typically	 go	 together.	 Heuristics,	 on	 the	 other	
hand,	 allow	 for	 fast	 and	 frugal	 decisions;	 thus	
it	 is	 commonly	 assumed	 that	 they	 are	 second-
best	 approximations	 of	more	 complex	 “optimal”	
computations	 and	 serve	 the	 purpose	 of	 trading	
off	accuracy	for	effort.	Contrary	to	the	belief	in	a	
general	accuracy-effort	trade-off,	less	information	
and	 computation	 can	 actually	 lead	 to	 higher	
accuracy,	 and	 in	 these	 situations	 the	mind	does	
not	need	to	make	trade-offs.	Here,	a	less-is-more	
effect	holds.	That	 simple	heuristics	 can	be	more	
accurate	 than	 complex	 procedures	 is	 one	 of	 the	
major	discoveries	of	 the	 last	decades.	Heuristics	
achieve	 this	 accuracy	 by	 successfully	 exploiting	
evolved	 mental	 abilities	 and	 environmental	
structures.		Since	this	initial	finding	a	systematic	
science	of	heuristics	has	emerged.

The discovery of less-is-more
	 Many	 theories	 of	 cognition–from	 exemplar	
models	to	prospect	theory	to	Bayesian	models	of	
cognition–assume	 that	 all	 pieces	 of	 information	
should	 be	 combined	 in	 the	 final	 judgment.	 The	
classical	 critique	 of	 these	 models	 is	 that	 in	 the	
real	 world,	 search	 for	 information	 costs	 time	
or	money,	 so	 there	 is	a	point	where	 the	costs	of	
further	 search	 are	 no	 longer	 justified.	 This	 has	
led	to	optimization-under-constraints	theories	in	
which	search	in	the	world	(9)	or	in	memory	(10)	
is	terminated	when	the	expected	costs	exceed	the	
benefits.	 Note	 that	 in	 this	 “rational	 analysis	 of	
cognition,”	 more	 information	 is	 still	 considered	
better,	apart	from	its	costs.	Similarly,	the	seminal	
analysis	of	the	adaptive	decision	maker	(11)	rests	
on	the	assumption	that	the	rationale	for	heuristics	
is	a	trade-off	between	accuracy	and	effort,	where	
effort	is	a	function	of	the	amount	of	information	
and	computation	consumed:

Accuracy-effort trade-off:	 Information	 and	
computation	costs	time	and	effort;	therefore	
minds	 rely	 on	 simple	 heuristics	 that	 are	
less	 accurate	 than	 strategies	 that	 use	more	
information	and	computation.	

	 Here	 is	 the	 first	 important	 discovery:	
Heuristics	 can	 lead	 to	more	 accurate	 inferences	
than	 strategies	 that	 use	 more	 information	 and	
computation	 (see	 below).	 Thus,	 the	 accuracy-
effort	 trade-off	 does	 not	 generally	 hold;	 there	
are	situations	where	one	attains	higher	accuracy	
with	 less	 effort.	 Even	 when	 information	 and	
computation	 is	 entirely	 free,	 there	 is	 typically	 a	
point	where	less	is	more:

Less-is-more effects:	 More	 information	
or	 computation	 can	 decrease	 accuracy;	
therefore,	 minds	 rely	 on	 simple	 heuristics	
in	order	to	be	more	accurate	than	strategies	
that	use	more	information	and	time.	

	 To	 justify	 the	use	of	heuristics	by	accuracy-
effort	 trade-offs	 means	 that	 it	 is	 not	 worth	 the	
effort	 to	 rely	 on	more	 complex	 estimations	 and	
computations.	 A	 less-is-more	 effect,	 however,	
means	that	minds	would	not	gain	anything	from	
relying	on	complex	strategies,	even	if	direct	costs	
and	opportunity	costs	were	zero.		Accuracy-effort	
trade-offs	 are	 the	 conventional	 justification	 for	
why	 the	 cognitive	 system	 relies	 on	 heuristics	
(12,13),	 which	 refrains	 from	 any	 normative	
implications.	 Less-is-more	 effects	 are	 a	 second	
justification	with	normative	 consequences:	They	
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challenge	 the	 classical	 definition	 of	 rational	
decision-making	as	the	process	of	weighting	and	
adding	 all	 information.	Note	 that	 the	 term	 less-
is-more	does	not	mean	that	the	less	information	
one	 uses,	 the	 better	 the	 performance.	Rather,	 it	
refers	 to	 the	 existence	 of	 a	 point	 at	which	more	
information	or	computation	becomes	detrimental,	
independent	of	costs.	

Ignoring information can lead to more accurate 
predictions
	 In	 the	 1970s,	 researchers	 discovered	 that	
equal	 (or	 random)	 weights	 can	 predict	 almost	
as	 accurately	 as,	 and	 sometimes	 better	 than,	
multiple	 linear	 regression	 (14–17).	 Weighting	
equally	 is	 also	 termed	 tallying,	 reminiscent	 of	
the	tally	sticks	for	counting,	which	can	be	traced	
back	 some	 30	 000	 years	 in	 human	 history.	
These	results	came	as	a	surprise	to	the	scientific	
community.	 When	 Robin	 Dawes	 presented	 the	
results	at	professional	conferences,	distinguished	
attendees	 told	 him	 that	 they	 were	 “impossible,”	
his	 paper	 with	 Corrigan	 was	 first	 rejected	 and	
deemed	 “pre-mature”.	 A	 sample	 of	 recent	
textbooks	 in	 econometrics	 revealed	 that	 none	
referred	 to	 the	 findings	 of	 Dawes	 and	 Corrigan	
(18).	 In	 these	 original	 demonstrations,	 there	
was	 a	 slight	 imbalance:	Multiple	 regression	was	
tested	 by	 cross-validation	 (that	 is,	 the	 model	
was	 fitted	 to	 one	 half	 of	 the	 data	 and	 tested	 on	
the	 other	 half)	 but	 tallying	 was	 not.	 Czerlinski,	
Gigerenzer,	 and	Goldstein	 conducted	20	 studies		
in	 which	 both	 tallying	 and	 multiple	 regression	
were	 tested	 by	 cross-validation,	 correcting	
for	 this	 imbalance	 (19).	 All	 tasks	 were	 paired	
comparisons.	 For	 instance,	 estimating	 which	
of	 two	 Chicago	 high	 schools	 will	 have	 a	 higher	
drop-out	rate,	based	on	cues	such	as	writing	score	
and	proportion	of	Hispanic	 students.	Ten	of	 the																																																																															
20	 data	 sets	 were	 taken	 from	 a	 textbook	 on	
applied	multiple	regression	(20).	Averaged	across	
all	data	sets,	tallying	achieved	a	higher	predictive	
accuracy	 than	 multiple	 regression	 (Figure	 1).	
Regression	 tended	 to	 overfit	 the	data,	 as	 can	be	
seen	by	the	cross-over	of	lines:	It	had	a	higher	fit	
than	tallying,	but	a	lower	predictive	accuracy.	
	 The	 point	 here	 is	 not	 that	 tallying	 leads	
to	 more	 accurate	 predictions	 than	 multiple	
regression.	 The	 real	 and	 new	 question	 is	 in	
which	 environments	 simple	 tallying	 is	 more	
accurate	 than	multiple	 regression,	 and	 in	which	
environments	 it	 is	 not.	 This	 is	 the	 question	 of	
the	 ecological rationality of tallying.	 Tallying	
avoids	precise	computation	of	cue	weights.	Next,	
we	 consider	 less-is-more	 effects	 which	 arise	 by	
ignoring	 cues.	 The	 take-the-best	 heuristic	 is	 a	

model	of	how	people	infer	which	of	two	objects	has	
a	higher	value	on	a	criterion,	based	on	binary	cue	
values	retrieved	from	memory.	For	convenience,	
the	cue	value	that	signals	a	higher	criterion	value	
is	 1,	 and	 the	 other	 cue	 value	 is	0.	Take-the-best	
consists	of	3	building	blocks:

1.		Search	rule:	Search	through	cues	in	order	
of	their	validity.

2.		Stopping	rule:	Stop	on	finding	the	first	cue	
that	 discriminates	 between	 the	 objects	
(i.e.,	cue	values	are	1	and	0).

3.	 Decision	 rule:	 Infer	 that	 the	 object	 with	
the	 positive	 cue	 value	 (1)	 has	 the	 higher	
criterion	value.	

	 Take-the-best	is	a	member	of	the	one	good-
reason	family	of	heuristics	because	of	its	stopping	
rule:	 Search	 is	 stopped	 after	 finding	 the	 first	
cue	 that	enables	an	 inference	 to	be	made.	Take-
the-best	 simplifies	 decision	 making	 by	 both	
stopping	after	 the	first	cue	and	by	ordering	cues	
unconditionally	 by	 validity,	 which	 for	 it	 cue	 is	
given	by:	

 vi	=	number	of	correct	 inferences	using	cue								
i	/	number	of	possible	inferences	using	
cue	i.	

	 Both	 these	 simplifications	 have	 been	
observed	 in	 the	 behavior	 of	 humans	 and	 other	
animals,	 but	 routinely	 interpreted	 as	 signs	 of	
irrationality	 rather	 than	 adaptive	 behavior.	 In	
the	 late	 1990s,	 our	 research	 group	 tested	 how	
accurately	this	simple	heuristic	predicts	which	of	
two	 cities	 has	 the	 larger	 population,	 using	 real-
world	cities	and	binary	cues,	such	as	whether	the	
city	has	a	soccer	team	in	the	major	league	(21,22).	
The	unexpected	result	was	that	inferences	relying	
on	one	good	reason	were	more	accurate	than	both	
multiple	regression	and	tallying.	We	obtained	the	
same	result,	on	average,	for	20	studies	(Figure	1).	
This	result	came	as	a	surprise	to	both	us	and	the	
rest	 of	 the	 scientific	 community.	But	 there	were	
more	 surprises	 to	 come.	Chater	 et	 al.,	 (23)	used	
the	city	population	problem	and	tested	take-the-
best	 against	 heavy-weight	 non	 linear	 strategies:	
A	three-layer	feedforward	connectionist	network,	
trained	using	the	backpropagation	algorithm	(24),	
2	 exemplar-based	 models	 the	 nearest-neighbor	
classifier	(25),	and	Nosofsky’s	generalised	context	
model	 (26),	 and	 the	 decision	 tree	 induction	
algorithm	 C4.5	 (27).	 The	 predictive	 accuracy	 of	
the	 four	 complex	 strategies	 was	 rather	 similar,	
but	 the	 performance	 of	 take-the-best	 differed	
considerably.	 When	 the	 percentage	 of	 training	
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examples	(the	sample	size)	was	small	or	moderate	
(up	 to	 40%	 of	 all	 objects),	 take-the-best	 out	
performed	 or	 matched	 all	 the	 competitors,	 but	
when	the	sample	size	was	larger,	more	information	
and	 computation	 seemed	 to	 be	 better.	 This	was	
the	first	time	that	relying	on	one	good	reason	was	
shown	 to	 be	 as	 accurate	 as	 nonlinear	 methods,	
such	 as	 a	 neural	 network.	 Yet,	 as	Brighton	 (28)	
showed	 in	 a	 re-analysis,	 Chater	 et	 al.’s	 method	
of	fitting	the	models	on	the	learning	sample	and	
then	 testing	 these	 models	 on	 the	 entire	 sample	

(including	 the	 learning	 sample),	 favored	 those	
models	 that	 overfit	 the	 data,	 especially	 at	 high	
sample	 sizes.	 When	 cross-validation	 was	 used,	
there	was	a	new	surprise:	The	predictive	accuracy	
of	take-the-best	exceeded	that	of	all	rival	models	
over	 the	entire	 range	of	 sample	sizes	 (Figure	2).	
Cross-validation	 provides	 a	 far	 more	 reliable	
model	selection	criterion	and	is	standard	practice	
for	assessing	the	relative	performance	of	models	
of	inductive	inference	(29,30).	
	 Once	 again,	 another	 less-if-more	 effect	was	
discovered,	and	a	new	question	emerged:	In	which	
environments	 does	 relying	 on	 one	 good	 reason	
result	 in	 better	 performance	 than	 when	 relying	
on	a	neural	network	or	on	other	linear	and	non-
linear	 inference	 strategies?	 The	 success	 of	 take-
the-best	seems	to	be	due	to	the	fact	that	it	ignores	
dependencies	between	cues	in	what	turns	out	to	be	
an	adaptive	processing	policy	when	observations	
are	sparse.	Whereas	all	the	competitors	in	Figure	
2	attempt	to	estimate	the	dependencies	between	
cues	 in	 order	 to	 make	 better	 inferences,	 take-
the-best	 ignores	 them	 by	 ordering	 the	 cues	 by	
validity.	In	fact,	when	one	alters	the	search	rule	of	
take-the-best	by	carrying	out	the	more	resource-
intensive	process	of	ordering	cues	by	conditional	
validity,	 performance	 drops	 to	 the	 level	 of	 the	
more	 resource-intensive	 algorithms	 (Figure	 2a).	
Conditional	 validity	 takes	 into	 account	 the	 fact	
that	 when	 one	 cue	 appears	 before	 another	 in	
the	cue	order,	 this	first	cue	 is	 likely	 to	affect	 the	
validity	of	the	second	cue	and	all	subsequent	ones.	
	 These	two	results	are	instances	of	a	broader	
class	 of	 less-is-more	 effects	 found	 in	 the	 last	
decades,	 both	 analytically	 and	 experimentally.	
We	use less-is-more	here	as	a	generic	term	for	the	
class	of	phenomena	in	which	the	accuracy-effort	
trade-off	 does	 not	 hold,	 although	 the	 individual	
phenomena	differ	in	their	nature	and	explanation.	
Findings	 that	 show	 how	 less	 can	 be	 more	 have	
often	been	regarded	as	curiosities	rather	than	as	
opportunities	 to	 re-think	 how	 the	 mind	 works.	
We	turn	now	to	the	second	step	of	progress	made:	
the	development	of	an	understanding	of why	and	
when	heuristics	are	more	accurate	than	strategies	
that	use	more	information	and	computation.		The	
answer	 is	 not	 in	 the	 heuristic	 alone,	 but	 in	 the	
match	 between	 a	 heuristic	 and	 its	 environment.	
The	rationality	of	heuristics	is	therefore	ecological,	
not	logical.	

Ecological rationality
	 All	inductive	processes,	including	heuristics,	
make	bets.	This	is	why	a	heuristic	is	not	inherently	
good	 or	 bad,	 or	 accurate	 or	 inaccurate,	 as	 is	
sometimes	 believed.	 Its	 accuracy	 is	 always	

Figure	 1:	 Less-is-more	 effects.	 Both	 tallying	
and	 take-the-best	 predict	 more	
accurately	than	multiple	regression,	
despite	 using	 less	 information	 and	
computation.	 Note	 that	 multiple	
regression	 excels	 in	 data	 fitting	
(“hindsight”),	 that	 is	 fitting	 its	
parameters	 to	 data	 that	 is	 already	
known,	 but	 performs	 relatively	
poorly	 in	 prediction	 (“foresight,”	 as	
in	cross-validation).	Take-the-best	is	
the	most	frugal,	that	is,	it	looks	up,	on	
average,	only	2.4	cues	when	making	
inferences.	In	contrast,	both	multiple	
regression	 and	 tallying	 look	 up	 7.7	
cues	on	average.	The	 results	 shown	
are	 averaged	 across	 20	 studies,	
including	 psychological,	 biological,	
sociological,	and	economic	inference	
tasks	(19).
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relative	 to	 the	 structure	 of	 the	 environment.	
The	 study	 of	 the	 ecological	 rationality	 asks	 the	
following	 question:	 In	 which	 environments	 will	
a	 given	 heuristic	 succeed,	 and	 in	 which	 will	 it	
fail?	 Understanding	 when	 a	 heuristic	 succeeds	
is	 often	 made	 easier	 by	 first	 asking	 why	 it	
succeeds.	 As	 we	 have	 shown,	 when	 analysing	
the	success	of	heuristics,	we	often	find	that	 they	
avoid	overfitting	the	observations.	The	statistical	

concept	 of	 overfitting	 is	 part	 of	 the	 explanation	
for	why	heuristics	 succeed,	but	 to	gain	a	 clearer	
understanding	of	how	and	when	heuristics	exploit	
the	structure	of	the	environment,	this	issue	can	be	
examined	more	closely.	

Heuristics and bias
	 The	study	of	heuristics	is	often	associated	with	
the	term	bias.	The	heuristics	and	biases	program	

Figure	 2:	 For	 the	 city	 population	 task,	 the	 performance	 of	 take-the-best	 compared	 to	 five	
alternative	models.	Each	panel	plots	the	predictive	accuracy	of	take-the-best	and	a	
rival	model	as	a	function	of	the	number	of	objects	used	to	train	the	model.	 Take-the-
best	outperforms;	 (A)	A	 linear	perceptron	(essentially	 logistic	 regression),	 (B)	 the	
nearest	neighbor	classifier,	(C)	a	variant	of	take-the-best	that	uses	a	more	resource-
intensive	 search	 rule	 that	 orders	 cues	 by	 conditional	 validity,	 and	 (D)	 two	 tree	
induction	algorithms,	C4.5,	and	CART	(classification	and	regression	trees).



 Review Article |	Homo	heuristicus:	Less-is-more	effects	in	adaptive	cognition

www.mjms.usm.my 11

of	Kahneman	and	Tversky	used	 the	 term	with	a	
negative	 connotation:	 Reasoning	 errors	 reveal	
human	biases	 that,	 if	 overcome,	would	 result	 in	
better	 decisions.	 In	 this	 view,	 a	 bias	 is	 defined	
as	 the	 difference	 between	 human	 judgment	 and	
a	 “rational”	 norm,	 often	 taken	 as	 a	 law	 of	 logic	
or	 probability,	 such	 as	 statistical	 independence	
as	 in	 the	 gamblers’	 fallacy.	 In	 contrast	 to	 this	
negative	use	of	bias,	simple	heuristics	are	perhaps	
best	understood	 from	 the	perspective	 of	 pattern	
recognition	 and	 machine	 learning,	 where	 there	
are	 many	 examples	 of	 how	 a	 biased	 induction	
algorithm	 can	 predict	 more	 accurately	 than	 an	
unbiased	one	(29).	Findings	such	as	these	can	be	
explained	 by	 decomposing	 prediction	 error	 into	
the	sum	of	three	components,	only	one	of	which	is	
bias:

	 Total	error	=	(bias)2	+	variance	+	noise.

	 The	 derivation	 of	 this	 expression	 can	 be	
found	 in	many	machine	 learning	 and	 statistical	
inference	textbooks	(30–33)	(29),	but	is	perhaps	
most	 thoroughly	 set	 out	 and	 discussed	 in	 a	
landmark	 article	 by	 Geman	 et	 al.,	 (34).	 The	
concepts	of	bias	and	variance	can	be	understood	by	
first	imagining	an	underlying	(true)	function	that	
some	induction	algorithm	is	attempting	to	learn.	
The	algorithm	attempts	to	learn	the	function	from	
only	a	 (potentially	noisy)	data	sample	generated	
by	this	function.	Averaged	across	all	possible	data	
samples	of	a	given	size,	the	bias	of	the	algorithm	is	
defined	as	the	difference	between	the	underlying	
function	 and	 the	mean	 function	 induced	 by	 the	
algorithm	 from	 these	 data	 samples.	 Thus,	 zero	
bias	is	achieved	if	this	mean	function	is	precisely	
the	 underlying	 function.	 Variance	 captures	 how	
sensitive	the	induction	algorithm	is	to	the	contents	
of	 these	 individual	 samples	 and	 is	 defined	 as	
the	 sum	 squared	 difference	 between	 the	 mean	
function,	 mentioned	 above,	 and	 the	 individual	
functions	induced	from	each	of	the	samples.	
	 Notice	that	an	unbiased	algorithm	may	suffer	
from	 high	 variance,	 because	 the	 mean	 function	
may	 be	 precisely	 the	 underlying	 function	 but	
the	 individual	 functions	may	 suffer	 from	 excess	
variance	 and	 hence	 high	 error.	 An	 algorithm’s	
susceptibility	 to	 bias	 and	 variance	 will	 always	
depend	 on	 the	 underlying	 function	 and	 how	
many	observations	of	this	function	are	available.	
Our	 cognitive	 systems	 are	 confronted	 with	 the	
bias-variance	 dilemma	 whenever	 they	 attempt	
to	 make	 inferences	 about	 the	 world.	 What	 can	
this	 tell	 us	 about	 the	 cognitive	 processes	 used	
to	make	 these	 inferences?	 First	 of	 all,	 cognitive	
science	 is	 increasingly	 stressing	 the	 senses	 in	

which	the	cognitive	system	performs	remarkably	
well	 when	 generalizing	 from	 few	 observations,	
so	 much	 so	 that	 human	 performance	 is	 often	
characterized	 as	 optimal	 (35,36).	These	findings	
place	 considerable	 constraints	 on	 the	 range	 of	
potential	processing	models	capable	of	explaining	
human	performance.	From	the	perspective	of	the	
bias-variance	dilemma,	the	ability	of	the	cognitive	
system	 to	 make	 accurate	 predictions	 despite	
sparse	 exposure	 to	 the	 environment	 strongly	
indicates	that	the	variance	component	of	error	is	
successfully	 being	 kept	within	 acceptable	 limits.	
Although	 variance	 is	 likely	 to	 be	 the	 dominant	
source	 of	 error	when	observations	 are	 sparse,	 it	
is	 nevertheless	 controllable.	 This	 analysis	 has	
important	 implications	 for	 the	 possibility	 of	
general-purpose	 models.	 To	 control	 variance,	
one	must	 abandon	 the	 ideal	 of	 general-purpose	
inductive	 inference	and	 instead,	 consider	 to	one	
degree	or	another,	specialisation	(34).	Put	simply,	
the	bias-variance	dilemma	shows	formally	why	a	
mind	can	be	better	off	with	an	adaptive	 toolbox	
of	biased,	specialised	heuristics.	A	single,	general-
purpose	tool	with	many	adjustable	parameters	is	
likely	to	be	unstable	and	incur	greater	prediction	
error	as	a	result	of	high	variance.

Biased minds for making better predictions
	 The	 relationship	 between	 mind	 and	
environment	is	often	viewed	from	the	perspective	
of	 bias,	 following	 the	 “mirror	 view”	 of	 adaptive	
cognition	(37).	In	this	view,	a	good	mental	model	
or	processing	strategy	 is	assumed	to	be	one	that	
mirrors	 the	properties	of	 the	world	as	closely	as	
possible,	preferably	with	no	systematic	bias,	 just	
as	a	linear	model	is	assumed	to	be	appropriate	if	
the	world	 is	also	 linear.	A	cognitive	system	with	
a	systematic	bias,	in	contrast,	is	seen	as	a	source	
of	 error	 and	 the	 cause	 of	 cognitive	 illusions.	 If	
this	were	 true,	how	can	cognitive	heuristics	 that	
rely	only	on	one	good	reason	and	ignore	the	rest	
make	 more	 accurate	 inferences	 than	 strategies	
that	use	more	 information	and	 computation	do,	
as	 illustrated	 in	 Figure	 2?	 We	 have	 identified																									
three	reasons:

1.	 The	 advantage	 of	 simplicity	 is	 not	
because	 the	 world	 is	 similarly	 simple,	
as	 suggested	 by	 the	mirror	 view.	 This	 is	
illustrated	 by	 the	 apparent	 paradox	 that	
although	 natural	 environments	 exhibit	
dependencies	 between	 cues	 (such	 as	 the	
environment	 considered	 in	 Figure	 2,	
where	 correlations	 between	 cues	 range	
between	 -0.25	 and	 0.54),	 take-the-best	
can	make	accurate	predictions	by	ignoring	
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those	dependencies,	so	much	so	that	it	can	
outperform	 strategies	 that	 explicitly	 set	
out	to	model	these	dependencies.	Superior	
performance	 is	 achieved	 by	 betting	 on	
lower	variance,	not	lower	bias.	

2.	 As	 a	 consequence,	 if	 observations	 are	
sparse,	simple	heuristics	like	take-the-best	
are	 likely	 to	 outperform	 more	 general,	
flexible	 strategies.	 It	 is	 under	 these	
conditions	 that	 variance	will	 be	 the	most	
dominant	component	of	error.

3.	 Similarly,	 the	 more	 noise	 in	 the	
observations,	 the	 more	 likely	 a	 simple	
heuristic	like	take-the-best	will	outperform	
more	 flexible	 strategies.	 The	 greater	 the	
degree	 of	 noise,	 the	 more	 dominant	 the	
variance	component	of	error	is	likely	to	be.

	 This	argument	is	supported	by	a	diverse	set	
of	 related	 findings.	 First,	 consider	 how	 a	 retail	
marketing	 executive	 might	 distinguish	 between	
active	 and	 nonactive	 customers.	 	 Experienced	
managers	tend	to	rely	on	a	simple	hiatus	heuristic:	
Customers	 who	 have	 not	 made	 a	 purchase	 for																																																	
9	months	 are	 considered	 inactive.	 Yet	 there	 are	
more	sophisticated	methods,	such	as	the	Pareto/
Negative	 Binomial	 Distribution	 (NBD)	 model,	
which	considers	more	 information	and	relies	on	
more	 complex	 computations.	 But	 when	 tested,	
these	methods	 turned	 out	 to	 be	 less	 accurate	 in	
predicting	inactive	customers	than	the	hiatus	rule	
(38).	Second,	consider	 the	problem	of	 searching	
literature	databases,	where	the	task	is	to	order	a	
large	number	of	articles	so	that	the	most	relevant	
ones	appear	at	 the	 top	of	 the	 list.	 In	 this	 task,	a	
“one-reason”	 heuristic	 (inspired	 by	 take-the-
best)	 using	 limited	 search	 outperformed	 both	 a	
“rational”	Bayesian	model	 that	 considered	 all	 of	
the	 available	 information	 and	 PsychINFO	 (39).	
Third,	 consider	 the	problem	of	 investing	money	
into	 N	 funds.	 Harry	 Markowitz	 received	 the	
Noble	Prize	in	economics	for	finding	the	optimal	
solution,	 the	 mean-variance	 portfolio.	 When	 he	
made	his	own	 retirement	 investments,	however,	
he	did	not	use	his	optimizing	strategy,	but	instead	
relied	on	a	simple	heuristic:	1/N,	that	is,	allocate	
your	money	equally	to	each	of	N	alternatives	(see	
Table	1	below).	Was	his	intuition	correct?	Taking	
7	 investment	 problems,	 a	 study	 compared	 the	
1/N	 rule	 with	 14	 optimizing	 models,	 including	
the	 mean-variance	 portfolio	 and	 Bayesian	 and	
non-Bayesian	 models	 (40).	 The	 optimizing	
strategies	had	10	years	of	stock	data	 to	estimate	
their	parameters	and	on	that	basis	had	to	predict	
the	next	month’s	performance.	Next,	the	10-year	
window	was	moved	1	month	ahead,	and	the	next	

month	 had	 to	 be	 predicted	 and	 so	 on	 until	 the	
data	ran	out.	1/N,	in	contrast,	does	not	need	any	
past	information.	In	spite	(or	because)	of	this,	1/N	
ranked	 first	 (out	 of	 15)	 on	 certainty	 equivalent	
returns,	 second	 on	 turnover,	 and	 fifth	 on	 the	
Sharpe	ratio,	respectively.	

Unpacking the adaptive toolbox
	 The	adaptive	 toolbox	 is	a	metaphor	used	 to	
conceptualize	 the	 stock	of	 strategies	available	 to	
the	 organism.	Research	 on	 the	 adaptive	 toolbox	
attempts	to	formulate	a	deeper	understanding	of	
the	heuristics	that	humans	and	other	animals	use,	
the	building	blocks	of	heuristics	that	can	be	used	
to	generate	new	ones,	and	the	evolved	capacities	
that	 these	 building	 blocks	 exploit	 (41).	 Table	 1	
shows	 ten	 heuristics	 in	 the	 adaptive	 toolbox	 of	
humans.	But	how	does	the	mind	select	a	heuristic	
that	is	reasonable	for	the	task	at	hand?	Although	
far	from	a	complete	understanding	of	this	mostly	
unconscious	process,	we	know	 there	are	at	 least	
three	selection	principles.	The	first	is	that	memory	
constrains	the	choice	set	of	heuristics	and	thereby	
creates	 specific	 cognitive	 niches	 for	 different	
heuristics	 (42).	Consider	 the	choice	between	 the	
first	three	heuristics	in	Table	1:	(1)	the	recognition	
heuristic,	 (2)	 the	fluency	heuristic,	and	(3)	 take-
the-best.	 Assume	 it	 is	 2003,	 and	 a	 visitor	 has	
been	invited	to	the	third	round	of	the	Wimbledon	
Gentlemen’s	 tennis	 tournament	 and	 encouraged	
to	place	a	bet	on	who	will	win.	The	two	players	are	
Andy	Roddick	and	Tommy	Robredo.	First,	assume	
that	the	visitor	is	fairly	ignorant	about	tennis	and	
has	 heard	 of	 Roddick	 but	 not	 of	 Robredo.	 This	
state	 of	 memory	 restricts	 the	 choice	 set	 to	 the	
recognition	heuristic:

If	you	have	heard	of	one	player	but	not	 the	
other,	predict	that	the	recognized	player	will	
win	the	game.	

	 As	 it	happened,	Roddick	won	the	match.	In	
fact,	 this	 correct	 inference	 is	 not	 an	 exception.	
This	 simple	 heuristic	 predicted	 the	 matches	 of	
Wimbledon	2003	and	2005	with	equal	or	higher	
accuracy	than	the	ATP	rankings	and	the	seeding	
of	 the	 Wimbledon	 experts	 did	 (56,57).	 Now	
assume	that	the	visitor	has	heard	of	both	players,	
but	 recalls	 nothing	 else	 about	 them.	 That	 state	
of	 memory	 limits	 the	 choice	 set	 to	 the	 fluency	
heuristic:

If	 you	 have	 heard	 of	 both	 players,	 but	 the	
name	of	one	came	faster	to	your	mind	than	
the	other,	predict	that	this	player	will	win	the	
game.	
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Table	1:	Ten	well-studied	heuristics	for	which	there	is	evidence	that	they	are	in	the	adaptive	toolbox	of	
humans.	Each	heuristic	can	be	used	to	solve	problems	in	social	and	nonsocial	environments.	
See	the	references	given	for	more	information	regarding	their	ecological	rationality,	and	the	
surprising	predictions	they	entail

Heuristic Definition1 Ecologically								
rational,	if

Surprising	findings	
(examples)

Recognition	
heuristic
(43,44)

If	one	of	two	alternatives	
is	recognized,	infer	that	it	
has	the	higher	value	on	the	
criterion

Recognition	validity	>	0.5 Less-is-more	effect	if	α	>	β;	
systematic	forgetting	can	
be	beneficial	(45)

Fluency	
heuristic
(46)	

If	both	alternatives	are	
recognized	but	one	is	
recognized	faster,	infer	that	
it	has	the	higher	value	on	the	
criterion

Fluency	validity	>	0.5 Less-is-more	effect;	
systematic	forgetting	can	
be	beneficial	(45)

Take-the-best
(21)

To	infer	which	of	two	
alternatives	has	the			higher	
value:	
(1)	search	through	cues	in	

order	of	validity
(2)	stop	search	as	soon	as	a	

cue	discriminates
(3)	choose	the	alternative			

this	cue	favors

See	Table	1 Often	predicts	more	
accurately	than	multiple	
regression	(19,28)

Tallying	(15) To	estimate	a	criterion,											
do	not	estimate	weights	but	
simply	count	the	number	of	
positive	cues

Cue	validities	vary	little,	
low	redundancy
(47,48)

Often	predict	equally	or	
more	accurately	than	
multiple	regression	(19)		

Satisficing
(6,49)

Search	through	alternatives	
and	choose	the	first	one	that	
exceeds	your	aspiration	level

Number	of	alternatives	
decreases	rapidly	over	
time,	such	as	in	seasonal	
mating	pools	(50)

Aspiration	levels	can	lead	
to	significantly	better	
choices	than	chance,	even	
if	they	are	arbitrary	(51,52)

1/N;	equality	
heuristic	(40)

Allocate	resources	equally	to	
each	of	N	alternatives

High	unpredictability,	
small	learning	sample,	and	
large	N

Can	outperform	optimal	
asset	allocation	portfolios

Default	
heuristic
(53)

If	there	is	a	default,	do	
nothing

Values	of	those	who	set	
defaults	match	those	of	the	
decision	maker,	when	the	
consequences	of	a	choice	
are	hard	to	foresee

Explains	why	mass	mailing	
has	little	effect	on	organ	
donor	registration;	predicts	
behavior	when	trait	and	
preference	theories	fail

Tit-for-tat
(54)

Cooperate	first	and	then	
imitate	your	partner’s	last	
behavior

The	other	players	also	play	
tit-for-tat;	the	rules	of	the	
game	allow	for	defection	
or	cooperation	but	not	
divorce

Can	lead	to	a	higher	
payoff	than	optimization	
(backward	induction)

Imitate	the	
majority
(55)

Consider	the	majority	of	
people	in	your	peer	group	
and	imitate	their	behavior

Environment	is	stable	or	
only	changes	slowly;	info	
search	is	costly	or	time-
consuming

A	driving	force	in	bonding,	
group	identification,	and	
moral	behavior

Imitate	the	
successful
(55)

Consider	the	most	successful	
person	and	imitate	his	or	her	
behavior

Individual	learning	is	
slow;	information	search	is	
costly	or	time-consuming

A	driving	force	in	cultural	
evolution

1	For	formal	definitions,	see	references.
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	 Finally,	 assume	 that	 the	 visitor	 is	 more	
knowledgeable	and	can	recall	various	facts	about	
both	players.	That	again	eliminates	the	recognition	
heuristic	and	leaves	a	choice	between	the	fluency	
heuristic	 and	 take-the-best.	 According	 to	 the	
experimental	 evidence,	 the	 majority	 of	 subjects	
switch	to	knowledge-based	heuristics	such	as	take-
the-best	when	the	values	of	both	alternatives	on	
relevant	cues	can	be	recalled	(8),	consistent	with	
an	analysis	of	the	relative	ecological	rationality	of	
the	 two	 heuristics	 in	 this	 situation.	 The	 general	
point	is	that	memory	“selects”	heuristics	in	a	way	
that	makes	it	easier	and	faster	to	apply	a	heuristic	
when	it	is	likely	to	yield	accurate	decisions	(42).	In	
the	extreme	case	where	the	visitor	has	not	heard	
of	any	of	the	players,	none	of	the	heuristics	can	be	
used.	In	this	event,	the	visitor	can	resort	to	social	
heuristics,	such	as	imitate	the	majority:	Bet	on	the	
player	on	whom	most	others	bet.
	 The	second	known	selection	principle,	after	
memory,	 is	 feedback.	 Strategy	 selection	 theory	
(58)	 provides	 a	 quantitative	 model	 that	 can	 be	
understood	 as	 a	 reinforcement	 theory	 where	
the	 unit	 of	 reinforcement	 is	 not	 a	 behavior,	 but	
a	heuristic.	This	model	 allows	predictions	about	
the	probability	that	a	person	selects	one	strategy	
within	 a	 defined	 set	 of	 strategies.	 The	 third	
selection	 principle	 relies	 on	 the	 structure	 of	 the	
environment,	as	analyzed	in	the	study	of	ecological	
rationality.	For	instance,	the	recognition	heuristic	
is	likely	to	lead	to	fast	and	accurate	judgments	if	
the	 recognition	 validity	 is	 high,	 that	 is,	 a	 strong	
correlation	between	recognition	and	the	criterion	
exists,	 as	 is	 the	 case	 for	 tennis	 and	other	 sports	
tournaments.	 There	 is	 experimental	 evidence	
that	 people	 tend	 to	 rely	 on	 this	 heuristic	 if	 the	
recognition	 validity	 is	 high	 but	 less	 so	 if	 the	
recognition	 validity	 α	 is	 low	 or	 at	 chance	 level												
(α	 =	 0.5).	 For	 instance,	 name	 recognition	
of	 Swiss	 cities	 is	 a	 valid	 predictor	 for	 their																																																																																																							
population	(α	=	0.86),	but	not	for	their	distance	
from	 the	 center	 of	 Switzerland,	 the	 city	 of	
Interlaken	 (α	 =	 0.51).	 Pohl	 (59)	 reported	 that	
89%	 of	 participants	 relied	 on	 the	 recognition	
heuristic	 in	 judgments	 of	 population,	 but	 only	
54%	 in	 judgments	 of	 distance	 to	 Interlaken.	
Thus,	the	use	of	the	recognition	heuristic	involves	
two	 processes:	 first,	 recognition	 in	 order	 to	 see	
whether	the	heuristic	can	be	applied,	and	second,	
evaluation	in	order	to	judge	whether	it	should	be	
applied.

Homo heuristicus
	 In	 this	 article,	 we	 summarized	 a	 vision	 of	
human	 nature	 based	 on	 an	 adaptive	 toolbox	
of	 heuristics	 rather	 than	 on	 traits,	 attitudes,	

preferences,	 and	 similar	 internal	 explanations.	
We	discussed	the	progress	made	in	developing	a	
science	of	heuristics,	beginning	with	the	discovery	
of	 less-is-more	 effects	 that	 contradict	 the	
prevailing	explanation	in	terms	of	accuracy-effort	
trade-offs.	Instead,	we	argue	that	the	answer	to	the	
question	“Why	heuristics?”	lies	in	their	ecological	
rationality,	that	is,	in	the	environmental	structures	
to	which	a	given	heuristic	is	adapted.	Appealing	to	
the	bias-variance	dilemma,	we	proposed	how	the	
ecological	rationality	of	heuristics	can	be	formally	
studied,	focusing	on	uncertain	criteria	and	small	
samples	that	constitute	environmental	structures	
which	fast	and	frugal	heuristics	can	exploit.	Homo	
heuristicus	can	rely	on	heuristics	because	they	are	
accurate,	not	because	they	require	less	effort	at	the	
cost	of	some	accuracy	(60).	We	hope	to	have	raised	
our	readers	curiosity	about	the	emerging	science	
of	 heuristics,	 and	 also	hope	 that	 some	might	 be	
inspired	to	solve	some	of	the	open	questions,	such	
as	whether	there	is	a	system	of	building	blocks	of	
heuristics,	 similar	 to	 the	 elements	 in	 chemistry,	
and	 how	 a	 vocabulary	 for	 describing	 relevant	
environmental	structures	can	be	found.	
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