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Abstract

It is often unclear which factor plays a more critical role in determining a group’s performance: the diversity among
members of the group or their individual abilities. In this study, we addressed this ‘‘diversity vs. ability’’ issue in a decision-
making task. We conducted three simulation studies in which we manipulated agents’ individual ability (or accuracy, in the
context of our investigation) and group diversity by varying (1) the heuristics agents used to search task-relevant
information (i.e., cues); (2) the size of their groups; (3) how much they had learned about a good cue search order; and (4)
the magnitude of errors in the information they searched. In each study, we found that a manipulation reducing agents’
individual accuracy simultaneously increased their group’s diversity, leading to a conflict between the two. These conflicts
enabled us to identify certain conditions under which diversity trumps individual accuracy, and vice versa. Specifically, we
found that individual accuracy is more important in task environments in which cues differ greatly in the quality of their
information, and diversity matters more when such differences are relatively small. Changing the size of a group and the
amount of learning by an agent had a limited impact on this general effect of task environment. Furthermore, we found that
a group achieves its highest accuracy when there is an intermediate amount of errors in the cue information, regardless of
the environment and the heuristic used, an effect that we believe has not been previously reported and warrants further
investigation.
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Introduction

Scientists from a variety of disciplines have studied extensively

the abilities of humans and animals to solve problems in groups

[1–4]. Of the factors identified as affecting a group’s performance,

two appear especially important: the diversity among members of

a group and their individual abilities [3,5–7]. However, the

contributions of these two factors to group performance are not

always equal. In judgment tasks where the value of a continuous

variable of interest needs to be estimated, diversity has been shown

to matter more than individual ability [4,5,8]; in problem-solving

tasks where the problems are technical or mathematical in nature

and difficult to solve, the reverse tends to be true [8–10]. In other

tasks, such as decision-making and creative problem solving, it is

often unclear which factor plays a more critical role [3,10–12]. In

this study, we tried to address this ‘‘diversity vs. ability’’ issue in a

decision-making task. Through three simulation studies in which

we systematically manipulated variables affecting both factors, we

identified conditions when diversity trumps ability, and vice versa.

In the type of decision problems probed in our study, an agent

or a group of agents was asked to decide which of two options (e.g.,

two patches) had a larger value on a certain criterion (e.g., amount

of food) on the basis of some relevant cues (e.g., smell, visual

pattern, etc.). Of the possible individual strategies applicable to

make this decision, we implemented two in this study that belong

to the family of ‘‘fast and frugal’’ heuristics [13–15]: take-the-best

and minimalist (see details of their algorithms in Methods and

Analyses). They are heuristics because they do not attempt to

search for all the available cues and integrate information from all

searched cues to make a decision. Instead, they search cues

sequentially and employ a simple ‘‘one-reason’’ decision-making

mechanism; that is, search stops as soon as a difference between

two options on a cue is found and a decision is made according to

their values on this stopping cue alone. The two heuristics differ in

their search rules: Whereas take-the-best searches cues in the order

of their validities, a measure of cue information quality, minimalist

searches cues randomly.

We focused on take-the-best and minimalist in this study for two

reasons. First, heuristics with structures identical or similar to those

of take-the-best and minimalist have been found to be adopted by

both humans and other species [15–19]. For example, when

choosing between two mating candidates, female guppies, Poecilia

reticulata, often rely on two cues: the amount of orange body color

(a genetic cue) and whether another female has mated with the

candidate before (a social cue). A female guppy will use the social

cue only when the difference between two males on the genetic cue

is not large enough (,40%) [18]. In another example, when

deciding which flower of two matches a model flower for foraging,

honeybees usually check cues in the order of odor, color, and

shape, using a latter cue only when the earlier cue or cues fail to
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distinguish [19]. The mating strategy of female guppies cannot be

easily extended to a group context, but this can be done for the

foraging strategy of honeybees: Each individual bee in a colony

may adopt a strategy similar to the one just described, and then

they may apply a majority or quorum rule to make a group

decision where to forage [20].

The second reason why we focused on take-the-best and

minimalist is that their different search rules enable us to examine

the relative contributions of diversity and ability in group decision-

making. Specifically, in the context of our study, ability was

represented by the average decision accuracy achieved by

individual agents in a group, and diversity was captured by the

range of information searched and the subsequent decisions made

by their group collectively. The ability of a group of agents using

take-the-best (the take-the-best group) tends to be higher than that

of a group of minimalist agents (the minimalist group), due to the

better search rule implemented in take-the-best. However, the

diversity level of the former is typically lower than that of the

latter, because searching cues randomly usually leads each

minimalist agent to search a different set of cues, increasing the

collective cue set explored by the group.

The contrasts between the take-the-best and minimalist groups

formed the basis of our investigation. In three studies, we

examined groups’ performances in four task environments that

differed in the distribution of cues’ validities (see Methods and

Analyses), which has been found as an ecological variable critical

to the individual decision accuracies of the take-the-best and

minimalist agents [21,22]. On the platform of these four task

environments, we compared: (1) take-the-best and minimalist

groups with varying group sizes; (2) take-the-best groups with

agents who had different amounts of learning regarding the cue

validity order; and (3) groups, both take-the-best and minimalist,

with agents who made decisions based on cue information with

varied degrees of errors. All of the three variables, group size,

individual learning, and information errors, can directly affect

individual accuracy and/or diversity and indirectly affect their

contributions to group decision accuracy. Finally, after each agent

within a group made an individual decision, a simple majority rule

was applied to determine the group decision. Although it is a

popular aggregation rule adopted by many groups in realistic

settings [20,23,24], the rule itself does not explicitly consider the

possible communications among group members and how the

information or decisions by others (i.e., public information) may

affect the quality of group decisions [4,25,26].

Results and Discussion

Study 1: Group Size
In this set of simulations, we pitted a take-the-best group directly

against a minimalist group, with group size m ranging from 1 to

100. Here, we assumed that all agents in the take-the-best group

searched cues in the same order, the order according to cues’

objective validities, and the information from each cue was error

free. In this way, the individual accuracy of a take-the-best agent

was at its maximum, but the diversity of the take-the-best group

was at its minimum—zero—because all take-the-best agents

searched the same cues and made the same decisions. Conse-

quently, there was no difference between the decisions of a take-

the-best agent and those of a take-the-best group; thus, group size

had no effect on this group’s decision accuracy. In contrast, a

larger group size could still increase the diversity level of a

minimalist group (see File S1 for the diversity results) and affect its

decision accuracy positively. The results of this study are shown in

Figure 1.

Three main results can be seen from Figure 1. First, the

minimalist group, which had a higher level of diversity but a lower

level of individual accuracy, outperformed the take-the-best group,

which had the opposite characteristics, in task environments where

the distribution of cue validities was relatively flat (e.g., the small-

difference, SD, environment) and when group size was moderately

large (m.4). Second, it was very difficult for a minimalist group to

beat a take-the-best group when cues differed drastically in their

validities. In the large-difference (LD) environment, for instance,

the accuracy of a minimalist group with 100 agents still lagged far

behind that of a take-the-best group, which was equivalent to the

accuracy of one take-the-best agent. Third, group size had a

positive effect on the accuracy of minimalist groups, but the effect

became increasingly smaller when group size got larger. The pool

of information (e.g., number of cues) from which agents draw their

decisions constrained the effect of group size: The more scarce the

information, the less the effect, and the fewer members will a

group need to reach the highest level of accuracy [6].

Overall, the results in this study show that the relative

importance of group diversity and individual accuracy depends

on the informational characteristics of the task environment.

When information is more evenly distributed among the cues,

searching as many cues as possible by a group, which often

depends on the size of the group and is a direct outcome of group

diversity, will be more critical to the group’s decision accuracy

than agents’ ability to make accurate decisions on their own.

However, when the quality of the cues’ information differs

significantly, agents’ knowledge of such differences, which results

in higher individual accuracy, will matter more than the diversity

of their group.

Study 2: Individual Learning
Although the extreme uniformity of the take-the-best group in

Study 1 was the logical outcome of the two assumptions made in

that study, it is questionable whether these assumptions hold in

reality. Let us start with cue order. Experiments with human

participants have shown that different take-the-best users often

search cues in different orders [27,28]. Such variance is partly due

to the varied experiences people have with the cues that can affect

their perceptions of cues’ validities. To reflect such individual

differences, we incorporated a learning component for the take-

the-best agents in this set of simulations (see details in Methods and

Analyses).

In general, each take-the-best agent started without knowledge

of cues’ validities and had to learn them through a randomly

drawn learning sample. After this learning process, which typically

resulted in agents learning different cue orders, a group of five

agents were asked to make decisions on a common sample. We

manipulated the number of options, n, in the learning sample

experienced by each take-the-best agent. It varied from as small as

10 to as large as the entire population, in which all agents were

assumed to eventually learn the objective cue validity order. The

results of this study are illustrated in Figure 2. Because the results

in the MD and ND environments were similar to the results in the

LD and SD environments, respectively, for the sake of brevity,

only results from the LD and SD environments are shown in

Figure 2.

In the LD environment, one can see three major results

(Figure 2). First, even a small amount of learning could help a take-

the-best agent perform much better than a minimalist agent that

was assumed to know nothing about cues’ validities. Second,

learning created diversity among take-the-best agents (see File S1

for the diversity results), which in turn created a positive difference

between the accuracy of a take-the-best group and that of a single

Diversity vs. Ability
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take-the-best agent in all but the ‘‘population’’ conditions. Third, a

group of five take-the-best agents who knew less about cues’

validity orders failed to beat one take-the-best agent who knew the

order perfectly in this environment, as seen in the population

condition. This shows again that in environments such as the LD

in which cues differ greatly in their quality, it is essential for

decision makers—either individuals or groups—to know which

cues are informational and which are not and to search and use

them accordingly.

The results in the SD environment differ from those in the LD

environment. When learning was limited (from n = 10 to 50), a

take-the-best agent always performed better than a minimalist

agent, as did a take-the-best group over a minimalist group. Even

though the two groups’ performance differences were small, they

were all in favor of the take-the-best group, which is in contrast to

the result in Study 1 in the same environment (Figure 1). Why?

Unlike in Study 1, there was diversity in the take-the-best group

here. Furthermore, in the SD environment, because cues’ validities

were very close to each other, their differences in a learning sample

were largely determined by random sampling errors. This made it

difficult for take-the-best agents to learn the objective cue validity

order and caused a rather flat learning curve with increased

learning experience. However, for the same reason, it also became

quite likely that one take-the-best agent would learn one cue order

from its own sample while another agent would learn a different

order from another, independent sample. This high level of

diversity in cue order led to a high level of diversity in the

information a take-the-best group searched for collectively.

Combined with their higher individual accuracy, a group of

learning take-the-best agents was now well equipped to outper-

form a group of minimalist agents in the SD environment.

With more learning, a take-the-best agent eventually achieved

its best individual accuracy in the population condition; however,

it is in this condition that the take-the-best group’s performance

dropped and became worse than that of the minimalist group once

again. This occurred because the take-the-best agents, with the

knowledge of the objective cue validity order, started to search

uniformly again, and the whole group lost the diversity it once

enjoyed when learning was limited. Such a loss of diversity was

detrimental to the group’s performance in environments like SD,

where gathering a large quantity of information is more critical

than knowing the quality of each piece of information.

Study 3: Information Errors
Having addressed the issue of cue order through the control of

individual learning, let us now turn to the quality of cue

information. When agents search cues either in their memory or

from the environment, there is no guarantee that the cue values

they obtain will be perfectly accurate [29,30]. When there are

random errors in cue values, different agents may make different

Figure 1. Results from Study 1: group size. Note that there was no effect of group size on a take-the-best (TTB) group’s performance in this set
of simulations, because the group was assumed to be totally homogeneous. MIN-1, MIN-5, MIN-15, and MIN-100 stand for a minimalist group with 1,
5, 15, and 100 agents, respectively. Environments differed in their distribution of cue validities: LD, large difference; MD, medium difference; SD, small
difference; ND, no difference. PC: Percentage correct.
doi:10.1371/journal.pone.0031043.g001
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decisions for the same pair of options, even when they all adopt the

same decision heuristic and search cues in the same order.

For instance, suppose that two flowers A and B are described by

three cues: odor, color, and shape, and a cue value of ‘‘1’’ indicates

flowers with better foraging values in terms of nectar content or

pollen quality. Suppose further that A and B are with cue values of

[1,0,1] and [1,1,0], respectively. Without information error, a

take-the-best agent would stop search at the color cue and choose

B. Meanwhile, if another take-the-best agent mistakenly perceives

the color cue’s value on B as ‘‘0’’ instead of ‘‘1,’’ it would stop

search at the shape cue and choose A instead. Allowing for such

errors in a task, it is possible that a group of take-the-best agents

would stop search at different cues, leading them to make different

decisions. On the other hand, the individual accuracy of these

agents is likely to decrease because errors will reduce the quality of

the cue information on which their decisions are based.

We created erroneous cue information by adding a random

error component to the cues’ true values (see details in Methods

and Analyses). The magnitude of errors was controlled by s, the

standard deviation of the error distribution. Five levels of s, 0, 0.2,

0.4, 0.6, and 0.8, were applied in this set of simulations, with a

higher s making it more likely that a cue’s apparent value would

deviate from its objective value. We investigated the effects of

information errors on both types of agents and groups, take-the-

best and minimalist, and the results are shown in Figure 3. Because

the results in the MD and ND environments resembled those in

the LD and SD environments, respectively, only results from the

LD and SD environments are shown.

From Figure 3, we see that information errors were clearly

detrimental to individual accuracy: As the error magnitude

increased from s= 0 to 0.8, both take-the-best and minimalist

agents made less and less accurate decisions. However, the effect of

these errors on group accuracy was not that straightforward. In all

environments, the following general pattern emerged: With a

larger error magnitude, group performance started to get better,

reached its best at some intermediate error level, and only got

worse slowly afterward. In other words, the right magnitude of

information errors could actually help a group make better

decisions than when there was no error. This rather counterin-

tuitive result was observed no matter which heuristic, take-the-best

or minimalist, agents were using and how cue validities were

distributed. Why?

The reason, we speculate, is the two opposing effects random

information errors had on group decisions. On the one hand, they

undermined individual agents’ performances by making cue values

noisier and reducing the qualities of cues. This in turn reduced

each agent’s contribution to the group, dragging the group’s

performance down. On the other hand, those errors diversified the

information searched by a group of agents and their individual

decisions (see File S1 for the diversity results), and this increased

diversity could push the group’s performance up. With informa-

tion errors in a task, these two opposing effects always existed but

did not always cancel each other out perfectly. With smaller

magnitudes of errors, the gain of group accuracy due to added

diversity could compensate for the loss due to reduced individual

accuracy, resulting in a net accuracy gain. As the magnitude of

errors increased, the gain would reach its maximum at some

intermediate level, with its exact value depending on factors such

as the heuristic used, the cue validity distribution, and the size of

the group. Finally, when there was too much error, the group

accuracy gain disappeared, and groups would perform below the

level they could achieve with no information error.

In addition to the finding that an intermediate amount of

information errors can actually improve groups’ decision accuracy,

two other results deserve mention. First, group performance

appeared quite robust against information errors. Even when

errors were large and had severely reduced agents’ individual

accuracy (s= 0.8), groups could still perform quite well compared

to when there was no error (s= 0). Second, information errors did

not alter the general pattern of the take-the-best and minimalist

Figure 2. Results from Study 2: individual learning. Because the results in the MD and ND environments were similar to the results in the LD
and SD environments, respectively, only results from the LD and SD environments are shown for the sake of brevity. Group size was 5 for all groups
from which the results were derived, and the amount of learning was measured by the number of options in a learning sample. The lines for
minimalist agents and groups are flat because no learning was assumed to take place for a minimalist agent in this set of simulations. Pop:
Population. MIN-Group and MIN-Ind.: Minimalist group and individual agents. TTB-Group and TTB-Ind.: Take-the-best group and individual agents.
doi:10.1371/journal.pone.0031043.g002
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groups’ relative performances observed in Study 1. That is, a take-

the-best group still performed better than a minimalist group in

the LD environment and worse in the SD environment.

Information errors did add diversity to both groups; however, as

long as all take-the-best agents searched cues in the same order,

their group would be less diverse than a minimalist group, making

it difficult for the former to beat the latter in the SD environment.

Discussion

Group diversity is often credited as the main reason for the

remarkable intelligence and achievements demonstrated by human

and animal groups [3,31,32]. Using computer simulations and

mathematical analyses, Hong and Page [33] predicted that a group

of randomly selected agents (the more diverse group) could in theory

outperform a group of best-performing agents (the group with

higher ability) in searching for the best solution to a problem (e.g.,

the design of a gasoline engine). In a study by Krause and colleagues

[8], this ‘‘diversity-can-trump-ability’’ prediction was confirmed in

one experiment in which human participants were asked to estimate

the number of marbles in a jar, but not in another in which the same

group of participants were asked to solve an abstract statistical

problem. Following the footprints of these two studies, we tried to

understand the roles of diversity and ability in a task of group

decision-making instead of problem solving or number judgment,

aiming to identify conditions when diversity can trump ability and

vice versa through three simulation studies.

We found that a conflict between ability, represented by

individual decision accuracy, and diversity was present in each of

the three studies. In Study 1, it was a take-the-best group versus a

minimalist group with varying group sizes; in Study 2, it was a

group of take-the-best agents who knew the cue validity order

outright versus another group of take-the-best agents who had to

learn it; and in Study 3, it was one group of agents who made their

decisions based on error-free information versus another group

whose decisions were based on erroneous information. These

conflicts indicate that it can be difficult to maintain high levels of

diversity and ability within a group simultaneously—a manipula-

tion augmenting one often ends up hurting the other [34,35]—and

show why trying to draw a definite conclusion of this ‘‘diversity vs.

ability’’ debate could be a futile pursuit.

Controlling and exploring the effects of four task variables, we

identified some conditions under which a more diverse group,

despite having a lower level of individual accuracy, made more

accurate group decisions than another group with the opposite

characteristics, and vice versa. In general, we found that the

informational characteristics of a task environment—the distribu-

tion of cues’ validities in particular for the task focused on in this

study—play a critical role in determining the winner of this

diversity–ability battle (see Figures 1–3). In environments where

good cues are very good and bad cues are quite bad, having a

group of agents who can use this disparity properly and as a result

achieve higher individual accuracy is more important than having

another group of agents who know little and can only rely on

diversity to boost their group’s performance; in other environ-

ments where cues are close in the quality of their information, the

reverse tends to be true. Moreover, we found that task

environment strongly moderates the effects of group size

(Figure 1) and individual learning (Figure 2), but to a much lesser

extent the effect of information errors (Figure 3).

Information is critical to the survival of an organism in the

environment that is not always reliable, due to the instability of the

environment (e.g., bad weathers) and the limited information

processing ability of the organism (e.g., in perception and

memory). Erroneous information, as shown in our Study 3, will

reduce the decision accuracy of an individual and possibly its

fitness if decisions are assumed to be consequential. However, this

obstacle can be easily overcome by a group of individuals, so much

so that a group is even able to achieve a higher level of accuracy

with erroneous information than with error-free information. The

Figure 3. Results from Study 3: information errors. Because the results in the MD and ND environments were similar to the results in the LD
and SD environments, respectively, only results from the LD and SD environments are shown for the sake of brevity. Group size was 5 for all groups
from which the results were derived, and the magnitude of error was measured as the standard deviation of a normal distribution from which the
random errors were generated. MIN-Group and MIN-Ind.: Minimalist group and individual agents. TTB-Group and TTB-Ind.: Take-the-best group and
individual agents.
doi:10.1371/journal.pone.0031043.g003
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robustness of groups against errors has been documented

[3,23,31]; however, to the best of our knowledge, ours is the first

study demonstrating this overcompensation effect of erroneous

information. The effect shows how ‘‘flawed’’ individuals may rely

on groups to achieve feats that cannot be reached by each of them,

and implies that groups should be tolerant towards, even

welcoming, the occasional errors made by its members.

Finally, a frequent feature of group decision-making is the use of

public information by group members [25,26,36]. In our study,

public information can be conveyed as either the actual decisions

made by other members (e.g., flowers other bees choose to forage)

or the cue orders they adopt to reach their decisions. It has been

shown that such information can be beneficial to the accuracy of

individual members who apply heuristics such as take-the-best and

minimalist to make decisions, but only to a limited extent to their

groups [37,38]. A likely effect of public information is the

convergence of members’ knowledge and decisions, which, as

demonstrated in both our Study 2 and other studies [4,6,26], will

reduce group diversity and may be detrimental to the accuracy of

group decisions and judgments. From our perspective, public

information is a double-edged sword like learning and information

errors, because of its conflicting effects on individual accuracy and

group diversity. To understand more precisely how it affects the

overall group performance could be a meaningful topic for future

research.

Methods and Analyses

Take-the-Best and Minimalist
Take-the-best is composed of three rules that cover the

processes of searching, stopping search, and deciding: (1) It

searches cues sequentially in the order of their validities (defined

below); (2) assuming that cues are expressed in or can be converted

to binary values, search stops whenever two options have different

values on a cue (i.e., [1, 0] or [0, 1]); and (3) a decision is made

according to the options’ values on the cue that stops search, with

the option having a higher cue value usually inferred as having a

larger criterion value. If all the cues are searched and none of them

differ in their values on the two options, a decision will be made

through random guessing. The rules of minimalist are similar to

those of take-the-best, with one exception: Instead of searching by

their validity order, minimalist searches cues randomly. This

makes minimalist generally less accurate than take-the-best, and

the larger the differences among cues’ validities, the larger the

accuracy gap between the two heuristics [13].

A cue’s validity V is calculated by V = R/(R+W), where R and W

are the number of correct (right) and incorrect (wrong) decisions,

respectively, made by using that cue when two options have

different values on it. The measure of validity is mathematically

related to the Goodman-Kruskal Gamma coefficient that has been

used in a broad range of tasks [39]. A cue’s objective validity is

defined as its validity in a population of options, which may differ

from its validity derived from a sample. In addition, if a cue is

positively correlated with the criterion, V should have a value

larger than 0.5. When V is less than 0.5, it implies that the decision

rule should be used in the reverse way.

Simulation Architecture
All of our simulations were programed and run in Matlab. To

simulate the task studied here, we need to generate one criterion

variable and several cue variables correlated with it, such that each

cue can carry some diagnostic value. In the case of honeybee

foraging, for example, the criterion variable may be the

attractiveness of a flower that correlates to certain extents with

the odor of the flower, the particle size of its pollens, and the

handling time required for extraction [40]. A popular way to

generate these variables in simulations is to create a criterion that

is the linear combination of the cues and a random error

component [41]. Five independent cues were first generated in our

simulations and then combined to create the criterion variable

using the following equation:

Y~b1:X1zb2:X2zb3:X3zb4:X4zb5:X5zbe:Xe

In the equation, Y is the criterion variable, Xi is a cue variable with

a standardized normal distribution N(0,1), and bi is the linear

coefficient of each cue variable Xi. Xe is the error term, which also

has an N(0,1) distribution, and be is its linear coefficient. The

number of cues was set at five because pilot simulations showed

that more than three cues were needed to achieve a high enough

level of diversity for the minimalist group and the probability of

searching beyond five cues by either take-the-best or minimalist

was very small.

Using this general equation, we created four task environments,

each characterized by a different set of bs; their specific values can

be seen in Table 1. We called the first one the large-difference

(LD) environment, for there was a large variance among the cues’

linear coefficients. The variance decreased gradually from the LD

to the medium-difference (MD), the small-difference (SD), and

finally the no-difference (ND) environment, where cue coefficients

were equal. Despite the apparent differences in the four

environments, they did have one thing in common: Cues in each

environment could together account for almost the same

proportion of variance in the criterion variable.

Because take-the-best and minimalist use binary cues to make

decisions, it is necessary to dichotomize the cues. We used the

median of a cue’s value distribution as the cutoff, above which a

cue value was converted to 1 and below which to 0. All cue

validities were then calculated (see Table 1). As the table shows,

the larger the b, the higher the validity in an environment.

Therefore, the differences in cues’ bs were transferred directly to

the differences in their validities. As a result, there was a highly

dispersed distribution of cue validities in the LD environment and

Table 1. The Linear Coefficients (b) and Validities (V) of the Five Cues in Four Task Environments.

Environment b1, b2, b3, b4, b5, be V1, V2, V3, V4, V5 Variance accounted for by the cues (%)

Large difference 0.37, 0.23, 0.11, 0.07, 0.04, 0.18 0.86, 0.71, 0.60, 0.57, 0.54 0.865

Medium difference 0.26, 0.20, 0.16, 0.13, 0.11, 0.16 0.78, 0.71, 0.67, 0.64, 0.61 0.864

Small difference 0.19, 0.18, 0.17, 0.16, 0.15, 0.15 0.71, 0.70, 0.69, 0.68, 0.67 0.866

No difference 0.17, 0.17, 0.17, 0.17, 0.17, 0.15 0.69, 0.69, 0.69, 0.69, 0.69 0.865

doi:10.1371/journal.pone.0031043.t001
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a totally flat distribution in the ND environment, with the MD and

SD environments in between.

With a continuous criterion variable and five binary cues (after

dichotomization) making up our simulated data, we took the

following general steps to obtain a group’s decision accuracy in a

certain task environment:

Step 1: Draw a random sample of data with n options in

it.

Step 2: For any pair of options in the sample, implement

the rules of either take-the-best or minimalist to make an

individual decision for an agent.

Step 3: Repeat Step 2 until all m agents in a group make

their decisions.

Step 4: Apply the simple-majority rule to make a group

decision.

Step 5: Repeat Steps 2–4 until all pairs of options in the

sample are compared.

Step 6: Calculate both the agents’ and their groups’

decision accuracy within a sample based on options’

actual criterion values.

Step 7: Repeat Steps 1–6 with N random samples and

use the means of the results from all samples as the final

results.

Specific Simulation Procedures
In Study 1 (group size), there were 15 options (n = 15), which

produced 105 pairs of options (15614/2) in each random sample.

Four group sizes were examined: m = 1, 5, 15, and 100; and for

each group size, 10,000 samples were run to get the results.

In Study 2 (individual learning), there were two types of samples

in each run. The first was the learning sample, in which a take-the-

best agent calculated each cue’s validity based on all possible pairs

of options in the sample. For a group of m agents, m random

samples were drawn for learning, one for each agent. Then, there

was the testing sample. Unlike the learning sample, there was only

one testing sample for a group. All agents would use the cue

validity orders they had learned previously to guide their search

and decision-making in this common sample. The size of the

learning sample, as measured by the number of options in the

sample n, was the parameter manipulated in this study. Five levels

were tested: 10, 15, 25, 50, and population. In all conditions, the

size of the group was set at 5, each testing sample consisted of 15

objects, and 10,000 random samples were run for both learning

and testing.

In Study 3 (information errors), errors in cues’ binary values

were created by adding a certain amount of random errors to cues’

continuous values before dichotomization. These errors con-

formed to an N(0, s) distribution, with the parameter s varied to

control the error magnitude. At a given error level, an

independent set of random errors was added to each cue and

for each group member. Hence, for i cues and m members, a total

of i*m sets of random errors were generated. Five values of s were

applied; and the larger the s, the more likely that a cue’s binary

values would flip. In all conditions, the group size was set at 5, the

number of objects in a task sample was 15, and 10,000 random

samples were run to get the results.

Supporting Information

File S1 Diversity Results. The results are shown in three

sheets in the Excel file, corresponding to the results in Study 1, 2,

and 3, respectively.

(XLS)
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