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In cross-sectional age variance extraction (CAVE), age, the indicator of a hypothesized developmental
mechanism, and a developmental outcome are specified as independent, mediator, and target variables,
respectively, to test hypotheses about behavioral development. We show that: (a) longitudinal change in
a mediator variable accounting for substantial cross-sectional age-related variance in the target variable
need not correlate with the target variable’s longitudinal change; and, conversely, (b) longitudinal change
in a mediator not sharing cross-sectional age-related variance with the target variable may nevertheless
correlate highly with that variable’s longitudinal change. We discourage use of CAVE for testing
multivariate hypotheses about behavioral development.

Keywords: cross-sectional data, longitudinal data, variance partitioning, correlated change, longitudinal
mediator

A central goal of developmental psychology is to identify the
number and nature of causes that drive age-related changes in
behavior (Baltes, Reese, & Nesselroade, 1988; Craik & Bialystok,
2008; Flavell, 1992; Hertzog, 1985; Kagan, 1980; Rabbitt, 1993;
Salthouse, 1994). A critical question, then, is whether age-related
changes in one aspect of behavior are brought about by age-related
changes in another aspect. For instance, cognitive aging researchers
have investigated whether adult age declines in complex cognition are
caused by changes in processing speed (e.g., Salthouse, 1996).

Mechanisms of developmental changes are generally not under
experimental control (Wohlwill, 1973). Hence, developmental
psychologists need to rely on observational research designs and
correlational statistical techniques to assess whether developmen-
tal change in different variables is correlated (Baltes et al., 1988;
Hertzog, 1985, 1996; Lindenberger & Pötter, 1998). Despite early

and repeated warnings (e.g., Baltes et al., 1988; Gollob & Reich-
ardt, 1987; Kalveram, 1965), developmental psychology has relied
heavily on cross-sectional samples for this purpose. In line with
earlier work (Collins, Graham, & Flaherty, 1998; Hofer, Flaherty,
& Hoffmann, 2006; Hofer & Sliwinski, 2001; Lindenberger &
Pötter, 1998; Maxwell & Cole, 2007; Sliwinski & Hofer, 1999),
this article further critiques the use of cross-sectional data for
developmental inference.

The basic principle of cross-sectional age variance extraction
(CAVE) can be illustrated with a simple three-variable mediation
model (e.g., MacKinnon & Fairchild, 2009), treating age as the
independent variable, X as the mediator variable, and Y as the
dependent, or target, variable. CAVE partitions the age-related
variance of Y (or the simple effect of age on Y) into two parts: one part
that is statistically predicted by X, and the remaining part that is not.
The amount of age-related variance in Y predicted by X is termed the
shared effect of age (because it is shared with the mediator).

In terms of effect size, the relative importance of the mediator
variable as a potential cause for age-related changes in the depen-
dent variable can be expressed as the proportion of total age-
related variance in the dependent variable that is shared with the
mediator variable (e.g., Verhaeghen & Salthouse, 1997; see also
Fairchild, MacKinnon, Taborga, & Taylor, 2009). Following an
earlier formal analysis by Lindenberger and Pötter (1998), we term
this quantity shared over simple effects (SOS). When the mediator
variable predicts all the age-related variance in the dependent
variable (i.e., complete mediation), then shared and simple effects
are equal, and SOS ! 1.0. Conversely, when the mediator variable
does not predict any of the age-related variance in the dependent
variable, then SOS ! 0.0 and mediation is absent (for more
information on SOS, see Lindenberger & Pötter, 1998).
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Lindenberger and Pötter (1998) showed that SOS are a quadratic
function of the partial correlation between the mediator variable
and the dependent variable controlling for the independent vari-
able. They also noted that for each mediator model there exists a
mathematically equivalent model positing that the age effects on X
and Y are entirely independent. Hence, Lindenberger and Pötter
(1998) concluded that CAVE should not be used when attempting
to infer the dimensions and causes of developmental change.

This article adds a temporal dimension to Lindenberger and
Pötter’s (1998) analysis by acknowledging that age or any other
relevant time dimension (e.g., time in study, time after disease
onset, or time to death) has a special conceptual and statistical
status because it functions as a vector on which observations are
aligned (Hofer & Sliwinski, 2001; Hofer et al., 2006; Wohlwill,
1970). From this perspective, cross-sectional data represent an
extreme case of missing data with respect to time. Figure 1
illustrates this point. In its upper panel, the full data set for 75
individuals observed 20 times on variable Y (e.g., reasoning) can
be seen. The middle panel highlights the cross-sectional data
points (i.e., one for each individual) observed in a hypothetical
cross-sectional study. In the lower panel, the change trajectories
have been deleted, and all that is left are cross-sectional observa-
tions, or one-occasion snapshots. Note that the longitudinal trajec-
tories of variable Y may not resemble those depicted in the upper
panel of Figure 1 to reduce to the same set of cross-sectional
snapshots. In other words, there is a one-to-many mapping of
cross-sectional data to underlying longitudinal trajectories.

Let us now posit an analogous picture for a candidate mediator
variable X (e.g., perceptual speed). X would also have been measured
once in each individual, at the same point in time as Y. On the basis
of the covariance matrix among age, X, and Y, researchers may
apply CAVE to test the hypothesis that X mediates age-related vari-
ance in Y.

Assume it is the case that, indeed, developmental changes in X
are driving developmental changes in Y. Conceptually, then, it is
reasonable to posit that individual differences in rates of change
for X and Y ought to be correlated. For instance, individuals who
decline more than average in perceptual speed should also decline
more than average in reasoning. CAVE presumes that cross-
sectional data can capture these change relations in some mean-
ingful way. Doubt would be cast on the validity of CAVE for
evaluating the structure of behavioral change if it detects statistical
mediation in cross-sectional data in the absence of positively
correlated changes between X and Y (cf. Maxwell & Cole, 2007).

This article scrutinizes CAVE from this perspective. First, we
express the cross-sectional correlation between X, Y, and SOS in
terms of a longitudinal latent growth curve model (LGCM;
McArdle & Nesselroade, 2003), using results from Appendixes A
and B. Second, by charting SOS as a function of LGCM param-
eters, we explore the relation between CAVE and correlated
changes. Finally, we discuss the implications of our formal anal-
ysis and conclude that CAVE is not well suited for testing multi-
variate hypotheses about developmental change.

Cross-Sectional Age Variance Extraction in Terms of
the Latent Growth Curve Model

To express SOS in terms of bivariate linear change, we param-
eterize the cross-sectional correlation between two variables in

Figure 1. Cross-sectional data as an extreme form of missingness: An
illustration. We assume a homogeneous population of individuals with a
linear change process, and sample 75 individual longitudinal trajectories
from this population (A). Cross-sectional observations are randomly se-
lected for each individual (B) at a given point in time. By deleting the
trajectories from which cross-sectional data points were taken (C), we note
the noninjective (one-to-many) relation between cross-sectional data and
their corresponding longitudinal trajectories.
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terms of a bivariate LGCM. For both variables X and Y, individual
growth is described by the level at the beginning of the observation
period (intercept) and a linear slope capturing a person’s change
over time t (e.g., chronological age). Each of the four values—two
intercepts and two slopes—is drawn from a normal distribution.
We also assume normally distributed error terms for X and Y at

each occasion, and scale time t from 0 to 1 (the following holds for
other time scalings).

In Appendix A, we formally derive the means and variances
of X and Y, their covariances with time, and the covariance
among each other. This allows us to express the cross-sectional
correlation between X and Y as a function of LGCM parameters:

12covIY,IX ! 6"covIY,SX ! covIX,SY# ! 4covSY,SX ! $SY,SX

!"12varIY ! 4varSY ! 12covIY,SY ! $SY
2 ! %Y

2#"12varIX ! 4varSX ! 12covIX,SX ! $SX
2 ! %X

2#
(1)

where IX and IY are the intercepts and SX and SY the slopes of X and
Y, respectively, and varIX, covIY,IX, $SX, and %X denote the vari-
ance, covariance, mean and error variance of the indexed variable.
We note that this equation can be derived from Hofer et al.’s
(2006) Equation 2 by distributing expectations over terms and
simplifying; see also Appendix A. On the basis of Equation 1,
increasing the correlation between the two linear changes
(covSY,SX) increases the cross-sectional correlation between X and
Y, as expected. Note, however, that several other components of
the growth process also contribute to the cross-sectional correla-
tion.

Building on Equation 1, the relation between SOS and LGCM
can be derived (see Appendix B). This relation can be summarized
as follows:1

SOS " 1 #
12varY"$SYvarX # $SXcovY,X#2

"varYvarX # covY,X
2 #"12varX # $SX

2 #$SY
2 (2)

The expressions varX, varY, and covY,X for the distribution param-
eters of X and Y are short notations for LGCM parameters, which
are defined in Lemmas 1 and 2 of Appendix A. In what follows,
we use Equation 2 to evaluate mediation in CAVE in terms of
different constellations of growth curve parameters (i.e., changes
in X and Y).

Illustrating the Properties of CAVE

The implications of Equation 2 are profound and demonstrate
the problematic nature of CAVE for developmental research. To
demonstrate this, we first examine the influence of correlated
change on SOS for parameter ranges that are typical of longitudi-
nal changes in adult cognition.2 Second, we identify a parameter
constellation for which higher correlations of longitudinal change
in the two variables (i.e., slope–slope correlations) are consistently
associated with greater age mediation (i.e., higher SOS) and ex-
amine the sensitivity of detecting this association to variation in
other parameters.

Example 1: Dependency of SOS Effects on the
Slope–Slope Correlation

Our illustration assumes (without loss of generality) that the two
variables are scaled as T scores, with a mean of 50 and a standard
deviation of 10 at the first measurement occasion (e.g., age 50).
The variance of the two slopes is set to a value of 0.35 SD units per
year, which corresponds to a variance of 50 for the entire obser-
vation interval of 20 years (Hertzog, Lindenberger, Ghisletta, &
von Oertzen, 2006). This amount of variance in change is likely to

overestimate rather than underestimate the amount of variance in
change, on the basis of what has been empirically observed in
longitudinal studies of adult cognitive development (e.g., de Frias,
Lövdén, Lindenberger, & Nilsson, 2007; Hultsch, Hertzog, Dixon,
& Small, 1998; Schaie, 1996). The error variance for both vari-
ables is set to 25, which corresponds to a growth curve reliability
of 0.80 at the first occasion (see Hertzog et al., 2006, for further
discussion). The cross-sectional correlation between the dependent
variable and age is set to r ! &0.25, which, with the current
parameter settings, corresponds to a mean longitudinal decline of
10 T-score units over the entire observation period of 20 years, or
the equivalent of 1 standard deviation at the first occasion. The
mean longitudinal change of the mediator variable is adapted to
express the cross-sectional correlation between the mediator and
age, which is varied systematically. To give an impression of the
relation between the two parameters in this example, a cross-
sectional correlation between the mediator and age of r ! &0.65
corresponds to a mean longitudinal decline of 32 T-score units in
20 years. The correlation between the two variables at baseline
(i.e., the intercept–intercept correlation) is fixed to 0.5, reflecting
the positive manifold of intellectual abilities, and the covariances
between the two intercepts and the two slopes are both fixed to
zero.

The three-dimensional Panel A in Figure 2 represents SOS as a
function of the cross-sectional correlation between the mediator
variable and age and the correlation between the linear changes
(slopes) of the mediator variable and the target variable as de-
scribed in Equation 2. Note that the influence of the cross-sectional
mediator–age correlation on SOS appears stronger than the influ-
ence of the slope–slope correlation. Indeed, if we inspect the
two-dimensional slice of the diagram at the plane where the
slope–slope correlation is zero (see Panel B), CAVE still suggests
that the mediator variable explains between 77% and 100% of
the age-related variance in the dependent variable; the exact value
continues to depend on the age correlation of the mediator, despite
the fact that the two change processes are uncorrelated. Complete
mediation (i.e., SOS ! 1.0) occurs when the age–mediator corre-
lation is about &0.5, which corresponds to a mean longitudinal
decline of 22 T scores over 20 years, a high but realistic value (see
Salthouse, 1996, for similar correlations of age with measures of

1 For brevity, we left the terms for variances of X and Y and the
covariance of X and Y in the equation. These three terms can be substituted
from the derivations in Appendix A and Equations A7, A8, and A28.

2 We acknowledge the late Paul B. Baltes, who suggested this line of
reasoning.
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Figure 2. Shared over simple effects (SOS) as a function of slope–slope and age–mediator correlations.
Variances of level are set to 100, variances of slopes are set to 50, error variance for both variables is set to 25,
and the correlation of the target variable Y with time is set to &0.25, corresponding to a mean change of roughly
&10 T-score units in 20 years. The mean change of the mediator is adapted to express the mediator–age
correlation. (A) SOS as a function of the longitudinal slope–slope and the cross-sectional age–mediator
correlations. (B) The slice from Panel A where the slope–slope correlation is 0. Although the two change
processes are not linked, SOS take on high values and still depend on the age–mediator correlation. (C) The slice
from Panel A when SOS are 1.0 (i.e., complete mediation according to cross-sectional age variance extraction).
Complete mediation can occur with slope–slope correlations ranging from &1 to 1.
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perceptual speed). To reiterate, in this empirically realistic situa-
tion, CAVE would suggest maximum interdependence between
the two time-based processes, despite the fact that individual
differences in change are uncorrelated.

Likewise, we can take a different slice of Panel A by inspecting
slope–slope correlations and age–mediator correlations when SOS
equal unity (see Panel C). We note that for any slope–slope
correlation in the complete range from –1.0 to 1.0, there is a
corresponding mediator–age correlation in the relatively small
range from –0.65 to –0.48 that yields complete mediation accord-
ing to CAVE. Hence, with SOS at maximum, slope–slope corre-
lations can take on any value from –1 to 1.

Example 2: Sensitivity of SOS to Latent Growth
Curve Parameters

So far, we have shown that SOS are a function of additional
LGCM parameters beyond the correlated changes covSY,SX, and
that these additional parameters can indeed dominate SOS. Nev-
ertheless, under some conditions, SOS may contain information
about the slope–slope correlations. One such case is represented by
the following parameter settings: The variances of the intercepts
are set to 100 and the variances of the slopes are set to 200, twice
the intercept variance. Error variance is again set to 25, and the
intercept-to-slope correlations are all set to zero. The mean
changes of the mediator X and the target Y are set to &14 and &5,
respectively. The covariance of intercepts is set to &3. Note that a
parameter constellation in which slope variances are twice as large
as intercept variances is unlikely to represent real longitudinal data
in adult cognitive development in an observational setting, which
were the target of the first example.

Panel A of Figure 3 displays SOS for slope–slope correlations
ranging from 0 to 1 under these assumptions. Every possible
positive value of correlated changes corresponds to exactly one
value of SOS, and the curve increases monotonically. Thus, in this
situation, SOS show the desired relation to correlated changes.
However, when we change the parameter settings slightly, the
situation is drastically altered. The parameters of Panel B in
Figure 3 are identical to those of Panel A, except that the mean
change for the target variable Y is &5 instead of &2.5. Note that
this alteration corresponds to only a quarter of the variable’s
standard deviation at the first measurement occasion and only
17.7% of the variable’s standard deviation for the slope. Never-

Figure 3. Sensitivity of shared over simple effects (SOS) to slight
changes in parameter constellations. Panel A shows SOS for slope–slope
correlations ranging from 0 to 1. The variances of the intercepts are 100,
the covariance of the intercepts is &3, the variances of the slopes are 200,
the error variance is 25, and all the intercept–slope correlations are 0. The
mean change of the target variable X is &14, and the mean change of the
mediator variable Y is &5. Under these conditions, the relationship be-
tween SOS and slope–slope correlations is monotonic and positive, as
mandated by theory. However, Panels B and C illustrate that this functional
form is altered by slight changes in parameters. In Panel B, the mean
change of the target variable X is reduced from &5 to &2.5 (1/4 of the
standard deviation, leaving everything else constant). In Panel C, the level
covariance is increased from &3 to 60 (correlation from close to 0 to 0.6,
leaving everything else constant).
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theless, this change substantially modifies the relation between
SOS and slope–slope correlations: Although the increase of SOS is
steeper for low slope–slope correlations, it reaches a peak at a
slope–slope correlation of 0.55 and decreases thereafter. Any
given value of SOS between 0.2 and 1 thus corresponds to two
totally different slope–slope correlations; for instance, a value of
SOS ! 0.4 may correspond either to a moderate correlation of .18
or to a very high correlation of .95. With a marginal shift in the
mean change of the target variable Y, the relation between SOS and
correlated change has become extremely ambiguous.

Finally, Panel C illustrates a further change in parameter values
resulting in a situation in which SOS prevailingly decrease as
slope–slope correlations increase. This time, the mean changes of
X and Y are the same as in Panel A (viz., –14 and –5), but the
level–level covariance has been set to 60, which corresponds to a
correlation of .6. All other parameters are identical to those of
Panel A; in particular, the growth processes within either variable
have remained unchanged. Now, SOS are informative about cor-
related change, but the other way around: Higher values for SOS
correspond to lower slope–slope correlations. In this situation,
CAVE yields paradoxical results: Shared effects approximate sim-
ple effects as slope–slope correlations are reduced from positive
values to zero.

Discussion

Extending the work by Kalveram (1965), Hertzog (1985), and
Hofer et al. (2006), we formally scrutinized the common practice
of CAVE from the perspective of correlated linear changes in a
bivariate LGCM. Our analysis shows that a candidate mediator
variable can fully mediate cross-sectional age differences in
CAVE, yet not manifest any correlated longitudinal change with
the target variable. Instead, the influence of slope–slope correla-
tions on SOS is easily offset by mean changes or by the correlation
between the mediator and the target variable at baseline. Next, we
explored whether SOS are positively related to slope–slope corre-
lations under empirically realistic conditions. Using parameter
values from longitudinal research on adult cognitive development,
we found that complete mediation of age-related variance in the
target variable (i.e., SOS ! 1.0) could occur for any possible value
of the slope–slope correlation (see Figure 2, Panel C). Also, when
slope–slope correlations were fixed to zero, age mediation contin-
ued to be substantial (see Figure 2, Panel B).

Finally, we searched for particular parameter constellations
where the slope–slope correlation does indeed exert a monotoni-
cally positive effect on SOS and presented the results for one such
constellation (Figure 3, Panel A). However, when exploring the
parameter space around this constellation, we noted that slight
changes in just one of the other parameters transformed the func-
tion relating the slope–slope correlation to SOS from monotoni-
cally increasing (Panel A) to curvilinear (Panel B) or virtually
monotonically decreasing (Panel C). Thus, the relation between
SOS and the slope–slope correlation was found to be highly
sensitive to minor parameter changes.

Our results are consistent with earlier explorations of the rela-
tion between longitudinal age changes and cross-sectional age
differences (e.g., Baltes & Labouvie, 1973; Cole & Maxwell,
2003; Hertzog, 1985; Hofer et al., 2006; Maxwell & Cole, 2007;
cf. MacKinnon & Fairchild, 2009). In line with Maxwell and Cole

(2007), who showed that cross-sectional estimates of longitudinal
mediation are severely biased under a large variety of conditions,
we conclude that CAVE is not a suitable research tool for inferring
either (a) that developmental trends in variables are similar be-
tween variables or (b) that development in a mediator variable
determines development in an outcome variable. Instead, CAVE
can produce results that, on one hand, indicate mediation and, on
the other hand, indicate a lack of mediation for reasons having
nothing to do with whether developmental changes in two vari-
ables are correlated. Although parameter constellations resulting in
a monotonically increasing relation between the slope–slope cor-
relation and SOS exist, such local constellations (see Figure 3) are
based on overly strict and unrealistic assumptions. Furthermore,
researchers generally do not know what region of the SOS space is
occupied by a given data set. The indeterminacy of results when
using CAVE argues against its use.

This conclusion has profound consequences for the existing
literature in the psychology of aging. One cannot conclude that
longitudinal changes in the mediator variable and the target vari-
able are correlated whenever CAVE shows that the mediator
variable predicts a substantial amount of cross-sectional age-
related variance in the target variable. As a descriptive statement,
it may be informative to report that some percentage of cross-
sectional age-related variance in one form of behavior is reduced
by statistical control of another form of behavior. However, such
a statement is typically interpreted as supporting or even demon-
strating developmental causation; that is, as demonstrating that the
mediator variable acts as the proximal cause of age-related
changes in the target variable. Accurate descriptive statements
based on CAVE such as, “'f(or reasoning, 78.6% of the age-
related variance was associated with speed” (Verhaeghen &
Salthouse, 1997, p. 241), do not permit the conclusion that
age-related changes in the mediator variable (e.g., perceptual
speed) determine changes in the outcome variable (e.g., reason-
ing). Furthermore, greater correlated change does not necessar-
ily translate into greater SOS when CAVE is compared for
multiple mediators. Rather, the variable with the strongest age
correlation is likely to end up being perceived as the key
mediator, even if its sensitivity to age is causally unrelated to
the age-related changes under study (see also Hofer et al., 2006;
Lindenberger & Pötter, 1998).

Our findings are relevant to the fact that empirical studies of
cognitive aging have found inconsistencies between longitudinal
and cross-sectional results. For example, perceptual speed appears
to be a stronger mediator of age effects on memory and fluid
intelligence in cross-sectional data than in longitudinal data (e.g.,
Hertzog, Dixon, Hultsch, & MacDonald, 2003; Hultsch et al.,
1998; Lempke & Zimprich, 2005; Lindenberger & Ghisletta, 2009;
Lindenberger, Mayr, & Kliegl, 1993; Zimprich & Martin, 2002).
Likewise, measures of sensory functioning almost fully mediate
chronological age effects in intelligence in cross-sectional data
(Baltes & Lindenberger, 1997; Lindenberger & Baltes, 1994) but
show only moderately correlated change in longitudinal data
(Anstey, Hofer, & Luszcz, 2003; Ghisletta & Lindenberger, 2005;
Lindenberger & Ghisletta, 2009). On the basis of Equation 2, it is
reasonable to assume that the strong mean age trends in perceptual
speed and sensory functions contribute to these cross-sectional
mediation effects (i.e., SOS). When interindividual differences in
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intraindividual change are analyzed directly, this mean-induced
component of cross-sectional covariation is removed.3

Given its brittle and volatile link to correlated change, CAVE is
more of a hindrance than a help in the quest to delineate the
temporal ordering and causal structure of behavioral change (see
also Maxwell & Cole, 2007). We discourage the use of CAVE for
this purpose. Proportions of “explained age-related variance” ob-
tained with CAVE have tended to create confusion among devel-
opmental researchers, especially if these proportions turned out to
be impressively large. To reiterate, when 78.6%, 80%, or even
100% of the age-related variance in reasoning is associated with
perceptual speed according to CAVE, this result does not imply
that (a) changes in speed are correlated with changes in reasoning,
(b) changes in speed precede changes in reasoning, or (c) changes
in speed cause changes in reasoning. Conversely, finding a low
value for SOS in CAVE does not imply that (a) changes in speed
are uncorrelated with changes in reasoning, (b) changes in speed
do not precede changes in reasoning, or (c) changes in speed are
functionally unrelated to changes in reasoning.

Limitations and Assumptions of the Present Analysis

Our formal analysis of CAVE is based on several assumptions.
First, we assume that the two change processes are linear and that
variables are drawn from a multivariate normal distribution. The
LGCM we adopted for formal analysis imposes further restrictions
on the structure of change; namely, that errors are uncorrelated and
that the growth process governs both first- and second-order mo-
ments. Second, and in a related fashion, the present analysis
assumes sample homogeneity in the sense that the LGCM provides
an accurate description of the change trajectories of all individuals
in the population and that slope–slope correlations based on inter-
individual differences in change represent valid approximations to
interdependencies in change within each of the individuals in the
sample under study.

We note, however, that the assumptions of linearity, multivar-
iate normality, and sample homogeneity coincide fully with the
assumptions of all the statistical procedures commonly used to
implement CAVE, be it hierarchical linear regression, linear struc-
tural equation modeling of mediation, path analysis, or common-
ality analyses (e.g., Pedhazur, 1982). That is, the assumptions of
our formal critique of the method are not stronger than the as-
sumptions inherent to the method itself.

Measuring What Matters in Developmental Research

From a more general methodological perspective, interpreting
cross-sectional age differences in terms of age-related changes
rests on the assumption that period and cohort effects are absent,
that sampling bias does not covary with age, and that individual
development can be captured by population parameters. All of
these assumptions are likely to be wrong. Cross-sectional analyses
provide a convenient basis for inferring whether a variable’s
central tendency depends on age, cohort, or both (Hertzog, 1996).
However, when it comes to understanding multivariate behavioral
change, there is no effective substitute for change-oriented designs
and statistical analyses, time consuming and resource demanding
as they may be. As researchers with an interest in the antecedents
and consequences of behavioral change, we should measure this

change at the individual level as precisely and adequately as we
can. In this context, research on statistical power has begun to
provide versatile tools for optimizing the efficiency of multivariate
longitudinal designs (Hertzog et al., 2006; Hertzog, Lindenberger,
Ghisletta, & von Oertzen, 2008; von Oertzen, 2010).

As noted by Nesselroade (1991) and Molenaar (2009), devel-
opmental research for far too long has adopted a surrogate ap-
proach to the study of individual behavior and development, with
between-person differences standing in for within-person changes
and for between-person differences in within-person change (see
also Baltes & Labouvie, 1973; Borsboom, Mellenbergh, & van
Heerden, 2003; Lautrey, 2003; Lindenberger & von Oertzen, 2006;
Molenaar, Huizenga, & Nesselroade, 2003). It is generally not
known whether multivariate structures based on between-person
differences are valid approximations to the structure of change
within a given individual. People may differ in the constellation of
causal factors contributing to their behavioral change, and the
degree of congruence between within-person structures and
between-person structures may vary by age (e.g., Brose, Schmie-
dek, Lövdén, Molenaar, & Lindenberger, 2010). In-depth assess-
ments of individual change trajectories are needed to shed light on
these unresolved issues. Painful as it may be, given the temporal
efficiency of the cross-sectional design, CAVE cannot be regarded
as a useful first step on this path.

3 In the field of child development, analogous discrepancies appear to
exist. For instance, on the basis of cross-sectional analyses, Fry and Hale
(1996) suggested that almost half of the age-related increase in fluid
intelligence from childhood to early adulthood is mediated by individual
differences in processing speed and working memory. Again, analyses of
interindividual differences in intraindividual change based on longitudinal
data suggest that the developmental association is weaker than extrapolated
on the basis of cross-sectional data (e.g., Schneider, Schumann-Hengsteler,
& Sodian, 2005).
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Appendix A

Expressing Cross-Sectional Variances in Terms of a Linear Growth Process

Hofer et al. (2006) expressed the covariance between two variables in a cross-sectional data set as
expectations of a bivariate latent growth curve model (LGCM; see Equation 2 in Hofer et al., 2006) and
arrived at the conclusion that “associations between time-dependent processes may arise from trends in mean
level even in the absence of correlated rates of change and correlated initial individual differences” (p. 171).
As shown here (Remark 5), Equation 1 of the present article can be derived from Hofer et al.’s (2006)
Equation 2 by distributing expectations over terms and simplifying. Doing so permits researchers to compute
the cross-sectional correlation implied by any given bivariate LGCM and to analytically study the relative
contributions of different LGCM components.

In this line, we express the cross-sectional variance and covariance of a mediator X and a dependent variable
Y in terms of the parameters of a linear growth process; that is, we assume that X and Y are given by a linear
model:

Y"t# " IY ! t ! SY ! errorY"t#

X"t# " IX ! t ! SX ! errorX"t#. (A1)

For ease of notation, we write in the following

"
r

f"r#)"r# :" "
&*

*

· · ·"
&*

*

"2+#
&n
2 e

&xi
2

2 & · · ·
&xn

2

2 f"r#dr1 · · · drn (A2)

for integrals over n Gaussian distribution.
Let $ be the mean vector and M be the covariance matrix of the four latent variables (two levels IY and IX

and two slopes SY and SX) of X and Y. Let C be the Cholesky decomposition of M; that is,

C " #
c1,1 0 0 0
c2,1 c2,2 0 0
c3,1 c3,2 c3,3 0
c4,1 c4,2 c4,3 c4,4

$ (A3)

with CCT ! M.
Let r " "r1, . . . , r4# be four Gaussian distributed random variables. Then, the four parameters IY, IX, SY,

and SX can be expressed by:

"IY, IX, SY, SX# " Cr ! $. (A4)

We assume normally distributed error terms for each measurement occasion of Y and X, with mean zero and
standard deviation %Y and %X, respectively. We express these error terms by errorj"t# " r4,j

"t# %j, j " 1, 2,
where r5

"t# and r6
"t#, respectively, are Gaussian variables that are independently distributed across time.
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Substituting Cr into Equation A1, we express Y(t) and X(t) hence as:

Y"t# " "$IY ! r1c1,1# ! "$SY ! r1c3,1 ! r2c3,2 ! r3c3,3# t ! r5
"t#%Y

X"t# " "$IX ! r1c2,1 ! r2c2,2# ! "$SX ! r1c4,1 ! r2c4,2 ! r3c4,3 ! r4c4,4# t ! r6
"t#%X

.

(A5)

Let time t be scaled from 0 to 1, assuming an uniform distribution. The mean of time is $t " -0
1 tdt " 1

2
.

Furthermore, -0
1 t2dt " 1

3
, and the variance of time is vart " -0

1"t # $t#
2dt " 1

12
.

Lemma 1. Variances and means of X and Y are given by:

$X " $IX !
1
2

$SX, (A6)

$Y " $IY !
1
2

$SY, (A7)

varX " varIX !
1
3

varSX ! covIX,SX !
1

12
$SX

2 ! %X
2, (A8)

varY " varIY !
1
3

varSY ! covIY,SY !
1

12
$SY

2 ! %Y
2. (A9)

Proof. The means are obvious. For the variances, we give a slightly more general proof here than usual. This
proof shows the statement independently of observation density, in particular even for continuous t.

Integrating the term "Y"t# # $Y#
2 over time and the Gaussian distributions yields the variance of Y:

varY " "
0

1"
r

%Y"t# # $IY #
1
2

$SY& 2

)"r#dt

" "
0

1"
r

% r1c1,1 ! "r1c3,1 ! r2c3,1 ! r3c3,3# t ! % t #
1
2& $SY ! r5

"t# %Y& 2

)"r#dt. (A10)

The integral -rrirj)"r# for i $ j is zero, whereas -rri
2)"r# " -r1 ! )"r# " 1. Using -0

1tdt " 1
2
, -0

1t2dt " 1
3
, and

-0
1"t # 1

2
#2dt " 1

12
, the expression simplifies to:

varY " "
0

1%c1,1
2 ! 2c1,1c3,1t ! % t #

1
2& 2

$SY
2 ! c3,1

2 t2 ! c3,2
2 t2 ! c3,3

2 t2 ! %Y
2& dt (A11)

" c1,1
2 ! c1,1c3,1 !

1
12

$SY
2 !

1
3
"c3,1

2 ! c3,2
2 ! c3,3

2 # ! %Y
2. (A12)

Since CCT " M, we have varIY " c1,1
2 , varSY " c3,1

2 ! c3,2
2 ! c3,3

2 , and cov IY,SY " c1,1c3,1. We thus obtain

varY " varIY !
1
3

varSY ! covIY,SY !
1

12
$SY

2 ! %Y
2. (A13)

We proceed analogously for X.
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Lemma 2. The covariance of Y and X with time are

covY,t "
1

12
$SY (A14)

covX,t "
1

12
$SX. (A15)

Proof. As in the proof of Lemma 1, we integrate the product of the two values over time and the random
distributions for Y:

covY,t " "
0

1"
r

% t #
1
2& %Y"t# # $IY #

1
2

$SY& )"r#dt (A16)

" "
0

1"
r

% t #
1
2&% r1c1,1 ! "r1c3,1 ! r2c3,2 ! r3c3,3# t ! % t #

1
2& $SY ! r5

"t#%Y& )"r#dt (A17)

using the same simplifications for the integrals, we obtain

covY,t " "
0

1 % t #
1
2& 2

$SYdt (A18)

"
1

12
$SY. (A19)

We proceed analogously for X.

Corollary 3. The correlations of Y and X with time are given by

rY,t "
$SY

!12varIY ! 4varSY ! 12covIY,SY ! $SY
2 ! 12%Y

2 (A20)

rX,t "
$SX

!12varIX ! 4varSX ! 12covIX,SX ! $SX
2 ! 12%X

2. (A21)

Solved to $SY and $SX, respectively, these terms can be transformed to

$SY " rY,t!12varIY ! 4varSY ! 12covIY,SY ! 12%Y
2

1 # rY,t
2 (A22)

$SX " rX,t!12varIX ! 4varSX ! 12covIX,SX ! 12%X
2

1 # rX,t
2 . (A23)

Proof. The correlation of Y and t is gained from substituting Lemma 2 into the definition of the correlation,

rY,t "
covY,t

!varYvart

. (A24)

The second statement is purely computational.
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Lemma 4. The correlation between Y and X is given by:

rY,X "
12covIY,IX ! 6"covIY,SX ! covIX,SY# ! 4covSY,SX ! $SY$SX

!"12varIY ! 4varSY ! 12covIY,SY ! $SY
2 ! %Y

2#"12varIX ! 4varSX ! 12covIX,SX ! $SX
2 ! %X

2#
.

(A25)

Proof. As before, we compute:

covY,X " "
0

1"
r

%Y"t# # $IY #
1
2
$SY&%X"t# # $IX #

1
2
$SX& )"r#dt

" "
0

1"
r

% r1c1,1 ! "r1c3,1 ! r2c3,2 ! r3c3,3# t ! % t #
1
2& $SY ! r5

"t#%Y&
% % r1c2,1 ! r2c2,2 ! "r1c4,1 ! r2c4,2 ! r3c4,3 ! r4c4,4# t ! % t #

1
2& $SX ! r6

"t)%X& )"r#dt. (A26)

Eliminating the integrals yields:

covY,X " "
0

1

c1,1c2,1 ! "c1,1c4,1 ! c3,1c2,1 ! c3,2c2,2#t

! "c3,1c4,1 ! c3,2c4,2 ! c3,3c4,3# t2 ! % t #
1
2& 2

$SY$SXdt (A27)

" c1,1c2,1 !
1
2
"c1,1c4,1 ! c3,1c2,1 ! c3,2c2,2#

!
1
3

"c3,1c4,1 ! c3,2c4,2 ! c3,3c4,3# !
1

12
$SY$SX. (A28)

Since CCT " M, we have c1,1c2,1 " covIY,IX, c1,1c4,1 " covIY, SX, c3,1c2,1 ! c3,2c2,2 " covIX,SY, and
c3,1c4,1 ! c3,2c4,2 ! c3,3c4,3 " covSY,SX. Using these transformations, the aforementioned term simplifies to:

covY,X " covIY,IX !
1
2
"covIY,SX ! covIX,SY# !

1
3

covSY,SX !
1

12
$SY$SX. (A29)

To compute the correlation of Y and X, we divide this term by the square root of the variances:

rY,X "
covY,X

!varYvarX

. (A30)

Remark 5. Hofer et al. (2006) gave the following equation (Equation 2 in their study):

Cov"X, Y# " E"LxiLyi ! LxiSYti ! LxiSyiti ! SXtiLyi (A31)

! SXtiLyi ! SXtiSYti ! SXtiSyiti # SXtiSYt!

! SxitiLyi ! SxitiSYti ! SxitiSyiti # SxitiSYt!

# SXt!SYti # SXt!Syiti ! SXt!SYt!)

In their notation, level and slope of X and Y are split in a constant term (IX, IY, SX and SY, without index i) and
a zero-mean normally distributed term (Lxi, Lyi, Sxi, and Syi with index i). The ti is the time at point i, conceived
as a random variable with mean t! of any distribution. After the expectation is distributed across terms, some
simplifications can be made. As time is independent of level and slope, all terms that include exactly one
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growth parameter indexed by i (Terms 2, 4, 6, 9, 11, and 13) are zero; they can thus be omitted. As t! is fixed,
E"t!ti# " t!2 " E"t!t!#, and Terms 12 and 14 cancel each other out. The remaining terms can be transformed
to Equation A29.

Appendix B

Controlling for the Mediator and SOS Effects

Again, let X be a mediator variable and Y be a dependent variable following a latent growth curve model
(LGCM) as given in Equation A1. In Appendix B, we compute the SOS of these two variables in terms of the
LGCM.

Theorem 6. The SOS of Y mediated by X are

SOS " 1 #
12varY"$SYvarX # $SXcovY,X#

2

"varYvarX # covY,X
2 #"12varX # $SX

2 # $SY
2 (B1)

with varY, varX, and covY,X from Lemmas 1 and 2.
Proof. We first express the partial correlation of Y and time controlling for X in terms of the latent growth
process:

rY,t!X "
rY,t # rY,XrX, t

!"1 # rY,X
2 #"1 # rX,t

2 #
(B2)

The square of this partial correlation corresponds to the unique effect of age on Y (Lindenberger & Pötter,
1998; see Figure 1). The difference between the simple effect (i.e. rY, t

2 ) and the unique effect is defined as the
shared effect of age and X on Y. Shared over simple effects, or SOS, are thus:

SOS "
shared
simple

(B3)

"
simple # unique

simple
(B4)

" 1 #
unique
simple

(B5)

" 1 #
rY,t!X

2

rY,t
2 (B6)

Simplifying this term and expressing it in terms of variances and covariances yields

SOS " 1 #
rY,t!X

2

rY,t
2 (B7)

" 1 #
"rY,t # rY,XrX,t#

2

rY,t
2 "1 # rY,X

2 #"1 # rX,t
2 #

(B8)

" 1 #
% 1 #

rY,XrX,t

rY,t
& 2

"1 # rY,X
2 #"1 # rX,t

2 #
(B9)
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" 1 #

"covY,tvarX # covY,XcovX,t#
2

varX
2varYvart

"varYvarX # covY,X
2 #"varXvart # covX,t

2 # covY,t
2

varY
2varX

2vart
2

(B10)

" 1 #
varYvart"covY,tvarX # covY,XcovX,t#

2

"varYvarX # covY, X
2 #"varXvart # covX,t

2 ) covY,t
2 . (B11)

Substituting variance of time and the covariances between Y and X with time, respectively, yields the
statement.

For some demonstrations, we want to describe all situations where SOS ! 1. The following corollary can
be derived from Theorem 6:

Corollary 7. If SOS ! 1, then

covSY,SX "
$SY

$SX

"3varIX ! varSX ! 3covIX,SX ! 3%X
2# # 3covIY,IX #

3
2

"covIY,SX ! covIX,SY#. (B12)

Proof. Assume SOS ! 1. Then, Equation B1 is transformed to

0 "
12varY"$SYvarX # $SXcovY,X#

2

"varYvarX # covY,X
2 #"12varX # $SX

2 #$SY
2 (B13)

NcovY,X "
$SY

$SX

varX. (B14)

Substituting Equations A29 and A8 into this equation and solving for covSY, SX yields:

covSY,SX " 3
$SY

$SX

%varIX !
1
3

varSX ! covIX,SX !
1

12
$SX

2 ! %X
2& # 3covIY,IX #

3
2

"covIY,SX ! covIX,SY# #
3

12
$SY$SX

(B15)

"
$SY

$SX

"3varIX ! varSX ! 3covIX,SX ! 3%X
2# # 3covIY,IX #

3
2

"covIY,SX ! covIX,SY# (B16)

If needed, Equations A22 and A23 can be used to replace the mean slopes by the correlation of Y and X with
time, respectively.
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