

This paper was originally published by Karger as: Rauers, A., Riediger, M., Schmiedek, F., & Lindenberger, U. (2011). **With a little help from my spouse: Does spousal collaboration compensate for the effects of cognitive aging?** *Gerontology*, *57*(2), 161–166. <u>https://doi.org/10.1159/000317335</u>

This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.

Nutzungsbedingungen:

Dieser Text wird unter einer Deposit-Lizenz (Keine Weiterverbreitung keine Bearbeitung) zur Verfügung gestellt. Gewährt wird ein nicht exklusives, nicht übertragbares, persönliches und beschränktes Recht auf Nutzung dieses Dieses Dokuments. Dokument ist ausschließlich für den persönlichen, nichtkommerziellen Gebrauch bestimmt. Auf sämtlichen Kopien dieses Dokuments müssen alle Urheberrechtshinweise und sonstigen Hinweise auf gesetzlichen Schutz beibehalten werden. Sie dürfen dieses Dokument nicht in irgendeiner Weise abändern, noch dürfen Sie dieses Dokument für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, aufführen, vertreiben anderweitig nutzen. Mit oder der Verwendung dieses Dokuments erkennen Sie die Nutzungsbedingungen an.

Terms of use:

This document is made available under Deposit Licence (No Redistribution - no modifications). We grant a non-exclusive, nontransferable, individual and limited right to using this document. This document is solely intended for your personal, noncommercial use. All of the copies of this documents must retain all copyright information and other information regarding legal protection. You are not allowed to alter this document in any way, to copy it for public or commercial purposes, to exhibit the document in public, to perform, distribute or otherwise use the document in public. By using this particular document, you accept the above-stated conditions of use.

Provided by:

Max Planck Institute for Human Development Library and Research Information <u>library@mpib-berlin.mpg.de</u>

Gerontology

Gerontology 2011;57:161–166 DOI: 10.1159/000317335

Published online: June 26, 2010

With a Little Help from My Spouse: Does Spousal Collaboration Compensate for the Effects of Cognitive Aging?

Antje Rauers^a Michaela Riediger^a Florian Schmiedek^{b, c} Ulman Lindenberger^c

^a Max Planck Research Group 'Affect Across the Lifespan', Max Planck Institute for Human Development, Berlin, ^bGerman Institute for International Educational Research (DIPF) Frankfurt am Main, Frankfurt am Main, and ^cCenter for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany

Key Words

Collaborative cognition \cdot Cognitive aging \cdot Interpersonal cueing

Abstract

Background: Collaborating with another person may help people compensate for aging-related losses in memory performance. However, collaborating in itself is effortful and draws upon individual cognitive resources. One factor that can facilitate collaboration, and decrease its resource requirements, is familiarity between interaction partners. Such facilitation should be particularly important when cognitive-mechanic resources are low. **Objective:** The current study was conducted to empirically test this theoretical notion. We hypothesized that cognitive aging should amplify the advantage of collaborating with a familiar partner over collaborating with an unfamiliar person. Methods: We developed an interpersonal cueing task based on the game Taboo[©]. The task modeled an everyday-life situation in which one person cues another person to retrieve a piece of information from memory. Seventy-six younger adults (20-33 years) and 80 older adults (63–79 years) worked on this task once with their spouse and once with an unfamiliar cross-sex partner from the same age group. Collaborative perfor-

KARGER

Fax +41 61 306 12 34 E-Mail karger@karger.ch www.karger.com © 2010 S. Karger AG, Basel 0304-324X/11/0572-0161\$38.00/0

Accessible online at: www.karger.com/ger mance was operationalized as the number of cue words needed until the partner guessed the target, as determined by independent trained coders. Performance in the Digit Symbol Substitution Test was used as an indicator of cognitive aging. **Results:** Multilevel-modeling analyses revealed that collaborating spouses outperformed collaborators who had not known each other before. This effect was comparable for both age groups but larger in persons with lower Digit Symbol scores. While participants with lower Digit Symbol scores generally performed worse in the collaborative task, they partly made up for this difference when working with the spouse. **Conclusion:** We conclude that spousal collaboration may offer a compensatory strategy to cope with individual aging-related losses.

Copyright © 2010 S. Karger AG, Basel

People often remind each other of appointments they should not miss, of things they should buy or of names they forgot. Many cognitive tasks in everyday life are thus not accomplished alone but in collaboration with others. We will argue that such memory collaboration is beneficial and cognitively demanding at the same time and that *facilitating* collaboration should hence become increasingly important across adulthood. In the present study,

Dr. Antje Rauers

Max Planck Research Group 'Affect Across the Lifespan' Max Planck Institute for Human Development Lentzeallee 94, DE–14195 Berlin (Germany)

Tel. +49 30 82406 353, Fax +49 30 82499 39, E-Mail rauers@mpib-berlin.mpg.de

we investigated this idea at the example of one factor that can facilitate collaboration, namely, the interaction partners' familiarity.

Memory collaboration has received considerable attention in the aging literature, and it has been suggested to help individuals compensate for aging-related losses in memory performance [1–3]. Empirical evidence indeed suggests that collaborating dyads' performance is superior to that of individuals in memory tasks [4–6].

While collaborating dyads outperform individuals, they usually do not reach the pooled (i.e. added, non-redundant) performance of 2 single persons who carry out the same task independently [7, 8]. Some of the dyad's theoretical potential thus seems to be lost in the interactive process, which has been ascribed to the cognitive demands of the interaction (e.g. to monitor the partner, process incoming information, generate an appropriate response, and keep it in mind until it is one's turn to respond [9]). These demands require the investment of cognitivemechanic resources (i.e. basic information-processing capacities such as processing speed, working memory capacity, reasoning and cognitive control). If interactive demands are complex, individual cognitive-mechanic capacities may thus delimit the usefulness of collaboration – a constraint worth emphasizing when approaching collaborative phenomena from a developmental perspective.

Cognitive-mechanic capacities decrease throughout adulthood [10, 11]. A developmental perspective on memory collaboration therefore raises the question of how interactions can be facilitated to preserve the potential benefits of collaboration throughout the adult lifespan – even in the face of aging-related losses in cognitive-mechanic capacity. One such factor that can facilitate an interaction is being familiar with the interaction partner.

Interactions among familiar partners are informed by past experiences, which can facilitate the interpretation of the partner's behavior [12]. For example, familiar partners have access to a pool of shared memories and also tend to converge in their retrieval strategies for these memories [13]. When cueing each other, they can hence tailor their cues to their partner's knowledge [14, 15]. Across various cognitive tasks, research has shown that familiar partners indeed outperform unfamiliar interaction partners [5, 7].

Considering the aging-related decline in cognitivemechanic resources across adulthood, it has been proposed that older adults may profit more from this *familiarity effect* than younger adults do [5, 12]. Empirical evidence on this suggested age-differential benefit from the interaction partners' familiarity is hardly available, with one study supporting [16] and another study not supporting this notion [17]. We propose that considerable interindividual variability in trajectories of cognitive aging [18, 19] may be among the reasons for this ambiguous pattern of findings. Although chronological age is negatively correlated with cognitive-mechanic capacity, it is only a proxy variable for a person's cognitive functioning [20, 21]. We therefore hypothesized that the benefit from collaborating with a familiar rather than an unfamiliar interaction partner would be moderated by the individual's cognitive-mechanic capacity but not necessarily by his or her chronological age.

Method

Sample

The sample consisted of n = 78 heterosexual couples (n = 156persons) from 2 age groups: younger participants (n = 76 persons, 38 couples; mean age = 26.64 years; SD = 2.77) and older participants (n = 80 persons, 40 couples; mean age = 71.59 years; SD = 3.56). All couples cohabitated and had been together for at least 6 months (younger couples: 0.68-10.87 years, M = 4.35, SD = 2.49; older couples: 7.30-58.52 years, M = 41.60, SD = 14.35). For simplicity, we will refer to real-life partners as 'spouses' regardless of their marriage status (84% of the older and 11% of the younger participants were married). Ninety percent of the younger adults and forty-eight percent of the older adults held a high school diploma or a higher degree. Only people who played the commercial game Taboo[©] (the basis of our experimental task, see below) <4 times a year were included in the sample in order to exclude persons with repeated practice in the task. Couples were paid EUR 100 for their participation. The ethics committee of the Max Planck Institute for Human Development had approved of the study.

Interpersonal Cueing Paradigm and Procedure

Based on the game Taboo[®], we developed a novel interpersonal-cueing paradigm simulating a collaborative everyday-life situation in which one person cues another person to help him or her retrieve a piece of information from memory. The participants were asked to explain target words to an interaction partner, using as few cue words as possible while avoiding a list of 'taboo cues'. The partner's task was to guess the target word. The number of words needed by the explaining partner to successfully cue the partner served as collaborative-performance outcome.

The participants took part in 2 experimental sessions (mean time interval = 1.89 days, SD = 1.51). In 1 session, they carried out the Taboo task with their spouse and in the other with an unfamiliar partner. Unrestricted time was given for task completion. Prior to the task, the participants completed 10 practice trials each (which were not included in the analyses), during which we provided performance feedback to assure that the task had been understood.

Across both sessions, the participants completed 48 trials of the task. Target words were balanced regarding everyday-life reference, frequency in the media, morphology and word length, as determined by lexical information and a prior, independent wordrating study with n = 65 adults. The order of experimental conditions was nearly counterbalanced (unfamiliar first in 54 and 50% of the younger and older couples, respectively) and was controlled for in the analyses reported here. Sociodemographic variables and cognitive-mechanic capacities were assessed in a separate questionnaire session.

Collaborative Performance

Collaborative performance was operationalized as the number of cue words needed by the explaining person until the partner guessed the target. All trials were transcribed and coded by 1 of 4 trained coders. Ten percent of the trials were coded by 2 coders to calculate intraclass correlations as an indicator of inter-rater reliability. Coders determined the number of cue words needed (intraclass correlation = 0.99; younger spouses: M = 6.78; between-person SD = 2.75; younger unfamiliar partners: M = 7.89, SD = 3.55; older spouses: M = 12.42, SD = 5.03; older unfamiliar partners: M = 14.77, SD = 7.43). Performance was similar for men (M = 10.64, SD = 5.39) and women (M = 10.41, SD = 4.96). Coders also coded the use of taboo cues (M = 0.21, between-person SD = 0.19; intraclass correlation = 0.90), for which we controlled in the analyses.

Cognitive-Mechanic Capacity

Cognitive-mechanic capacity was measured using the Digit Symbol Substitution Test (paper-and-pencil version [22]). This test assessing perceptual and motor speed is widely used as a reliable marker of aging-related decline in cognitive-mechanic capacities [23] and is regarded here as an indicator of the resources available to the individual for coping with the costs caused by collaboration. The task requires participants to fill in symbols corresponding to a given row of digits as fast as possible. Both younger and older adults' scores were similar to those found in other studies (younger adults: M = 60.17, SD = 9.32, older adults: M =41.31, SD = 8.61 [23]). The variable was normally distributed across the total sample and was grand mean centered before being used in the analyses.

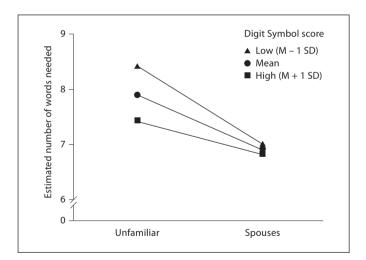
Analyses

The analyses were based on data from all trials in which the target word had been correctly guessed by the partner (n = 3,496). Trials where this was not the case were the exception for both younger (1.5%) and older adults (2.4%). We used crossed-random effects multilevel modeling [24, 25] to predict collaborative performance at a given trial, and included a trial level variance component at level 1 and 3 additional variance components at level 2 [26] pertaining to (a) the person who explained a target, (b) the person who guessed the target and (c) the natural partnership of the explaining person. The variance components thus modeled interdependencies in the dependent variable due to between-person and between-couple differences in the ability to explain and guess targets. Of interest with respect to our hypothesis are parameter estimates of the fixed effects of model predictors (i.e. age group, familiarity condition and Digit Symbol score). Analyses were implemented in SAS 9.1 for Windows, using the mixed procedure (SAS PROC MIXED, REML). We used the log-transformed distribution of the dependent variable (number of cue words used) to correct for the positive skewness of the untransformed variable. Following log-transformation $[log_{10}(x) [27]]$, the assumptions of normality and linearity were met. Degrees of freedom were adjusted according to the Kenward-Roger correction procedure to reduce the potential for type I error [28].

Results

We tested age group and Digit Symbol performance as moderators of the familiarity effect by predicting collaborative performance (i.e. the number of cue words needed to explain a target) using familiarity condition (i.e. collaborating with spouse vs. unfamiliar partner), age group, the explaining partners' Digit Symbol score, the interaction of age group and familiarity condition, and the interaction of the explaining partner's Digit Symbol score and familiarity condition as predictor variables. We controlled for the guessing partners' Digit Symbol scores, as each participant collaborated with 2 different partners, for the order of conditions and for the use of taboo cues. As can be seen in table 1, the participants performed better (i.e. they needed fewer cue words) when working with their spouse than when working with an unfamiliar partner. The interaction effect of age group and familiarity condition was not significant, suggesting that the familiarity effect was comparable for younger and older adults.

However, there was a significant interaction effect of familiarity condition with the explaining partners' Digit Symbol score. To follow up on this interaction, we plotted simple slopes for working with one's spouse versus an unfamiliar partner as estimated for individuals with mean, lower (M - 1 SD) and higher (M + 1 SD) Digit Symbol performance. As can be seen in figure 1, participants with lower Digit Symbol scores performed worse in the collaborative task but partly made up for this difference when cueing their spouses. That is, the lower the explaining partner's Digit Symbol score, the greater was the familiarity effect. This association was not different for younger and older adults (i.e. there was no 3-way interaction of age group, Digit Symbol performance and familiarity condition; estimate = 0.004, SE = 0.003, p = 0.17). Additionally controlling for relationship duration and partnership satisfaction (Relationship Assessment Scale [29]) did not change the results.


Discussion

The present study investigated interindividual differences in the familiarity effect, which denotes the often replicated finding that familiar interaction partners out-

Parameter	Estimate	SE
Fixed effects		
Intercept	1.018*	0.028
Familiarity (0 – spouse, 1 – unfamiliar)	0.041*	0.018
Age group (0 – younger, 1 – older)	0.199*	0.044
Explaining partner's Digit Symbol score	-0.003*	0.001
Familiarity \times age group	0.035	0.031
Familiarity \times explaining partner's Digit Symbol score	-0.003*	0.001
Order of conditions	0.020	0.026
Use of taboo cues	-0.410*	0.073
Guessing partner's Digit Symbol score	-0.001	0.001
Variance components		
Trial	0.082*	0.002
Explaining partner	0.006*	0.002
Guessing partner	0.005*	0.001
Explaining partner's natural partnership	0.006*	0.002

Table 1. Explaining partner's Digit Symbol score is less predictive of collaborative performance when interacting with spouse than with unfamiliar partner: results from crossed-random effects multilevel regression models (n = 3,496 trials)

Multilevel model predicting the number of words needed (log-transformed distribution). High values in the dependent variable represent low performance. The variance components were included to account for overall between-person and between-couple differences in the dependent variable (number of cue words needed), thus obtaining more accurate estimates of the fixed effects when predicting the dependent variable. Estimates for variance components are shown for the sake of completeness but are not informative for hypothesis testing, which relied exclusively on estimates for the fixed effects. For an estimation of effect size, the interaction effect is illustrated in figure 1 using the original metric of the dependent variable (i.e. number of cue words needed). * p < 0.05.

Fig. 1. Simple slopes for the familiarity effect in the case of low, mean and high Digit Symbol performance. Estimates from multilevel regression were retransformed and are shown in the original metric of the dependent variable (number of words needed). Estimates pertain to mean values in additional continuous predictors and were obtained from a model without the dichotomous variable of age group.

perform unfamiliar partners in collaborative tasks [5, 7]. Older adults, with less cognitive-mechanic capacities than younger adults, have been suggested to profit especially from this facilitative effect [5, 12]. However, empirical evidence on this notion has been rarely available and inconsistent to date. We assumed that the familiarity effect was not moderated by chronological age per se but by cognitive-mechanic capacities, which decline with age. Our results support the notion of changes in the size of the familiarity effect across adulthood. More precisely, our findings suggest that the benefit from knowing the partner for collaborative performance depends on the cognitive-mechanic resources available to the aging individual.

We replicated the familiarity effect in a sample of younger and older adults who collaborated on an interpersonal cueing task, working once with their spouses and once with an unfamiliar partner. The participants performed better working with their spouse than with an unfamiliar partner. This familiarity effect was comparable for both age groups but associated with performance in the Digit Symbol Substitution Test, a widely used marker for cognitive aging [23]. The lower the participants' Digit Symbol score, the greater was the familiarity effect. Given the within-person manipulation of partners' familiarity, word-finding difficulties in old age may explain the main effect of age but not between-person differences in the familiarity effect. Our results are in line with the theoretical notion that the familiarity effect should especially support individuals who operate at the limits of their cognitive capacities – a resource situation that becomes increasingly likely as people age [12].

The present work thus complements yet inconsistent research on the partners' chronological age as a moderator of the familiarity effect. Our data suggest that not chronological age in itself, but the availability of cognitive-mechanic resources, which decline with age, delimit the potential of collaborating. Our results further suggest that this disadvantage can be partly buffered when people collaborate with a familiar partner. Older adults' motivational focus on few meaningful relationships [30] may therefore not only be emotionally adaptive, but also offer cognitive benefits.

The specificity of the investigated task and sample impose limitations on the generalizability of the findings. Future research will be needed to replicate the reported result pattern using alternative collaborative tasks, as well as additional age groups and dyad compositions (e.g. friends, coworkers or senior adults collaborating with their adult son or daughter). Despite these limitations, the present data illustrate that collaborating with a familiar partner, such as a spouse, may help compensate for agingrelated losses.

Exclusive reliance on spousal collaboration may, however, also have its costs. It could, for example, foster mutual interdependency and thus compromise the important developmental challenge of preserving one's autonomy in old age [31]. It could also lead to uncritically accepting the partner's influence when this is in fact unwarranted [32] or result in impaired individual memory performance when interpersonal support is not or, as in the case of widowhood, no longer available [33].

Despite these potential caveats, collaborating with the spouse may help the aging individual cope with everyday challenges. Spousal collaboration is readily available in many everyday-life situations. Moreover, spouses can rely on their refined expertise in interacting with each other. This may imply less cognitive-mechanic demand than collaborating with alternative social partners. Spousal collaboration may thus be a simple and effective everyday-life strategy to compensate for the effects of cognitive aging.

Acknowledgments

We wish to thank Dulce Erdt and the many students and interns who assisted in the data collection.

References

- Dixon RA, Rust TB, Feltmate SE, Kwong See S: Memory and aging: selected research directions and application issues. Can Psychol 2007;48:67–76. doi:10.1037/cp2007008.
- 2 Zacks RT, Hasher L, Li KZH: Human memory; in Craik FIM, Salthouse TA (eds): The Handbook of Aging and Cognition, ed 2. Mahwah, Erlbaum, 2000, pp 293-358.
- 3 Martin M, Wight M: Dyadic cognition in old age: paradigms, findings, and directions; in Hofer SM, Alwin DF (eds): Handbook of Cognitive Aging: Interdisciplinary Perspectives. Thousand Oaks, Sage, 2008, pp 629– 646.
- 4 Gagnon LM, Dixon RA: Remembering and retelling stories in individual and collaborative contexts. Appl Cogn Psychol 2008;22: 1275–1297. doi:10.1002/acp.1437.
- 5 Johansson N, Andersson J, Rönnberg J: Compensation strategies in collaborative remembering in very old couples. Scand J Psychol 2005;46:349–359. doi:10.1111/j.1467-9450.2005.00465.x.

- 6 Ross M, Spencer SJ, Blatz CW, Restorick E: Collaboration reduces the frequency of false memories in older and younger adults. Psychol Aging 2008;23:85–92. doi:10.1037/0882-7974.23.1.85.
- 7 Andersson J, Rönnberg J: Cued memory collaboration – Effects of friendship and type of retrieval cue. Eur J Cogn Psychol 1997;9: 273–287. doi:10.1080/713752558.
- 8 Finley F, Hitch GJ, Meudell PR: Mutual inhibition in collaborative recall: evidence for a retrieval-based account. J Exp Psychol Learn Mem Cogn 2000;26:1556–1567. doi:10.1037/0278-7393.26.6.1556.
- 9 Weldon MS, Blair C, Huebsch PD: Group remembering: does social loafing underlie collaborative inhibition? J Exp Psychol Learn Mem Cogn 2000;26:1568–1577. doi:10.1037/ 0278-7393.26.6.1568.
- 10 Li SC, Lindenberger U, Hommel B, Aschersleben G, Prinz W, Baltes PB: Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span. Psychol Sci 2004;15:155–163. doi:10.1111/j.0956-7976.2004.01503003.x.
- 11 Salthouse TA: What and when of cognitive aging. Curr Dir Psycho Sci 2004;13:140–144. doi:10.1111/j.0963-7214.2004.00293.x.
- 12 Dixon RA: Exploring cognition in interactive situations: the aging of N + 1 minds; in Hess TM, Blanchard-Fields F (eds): Social Cognition and Aging; San Diego, Academic Press, 1999, pp 267–290.
- 13 Wegner DM, Raymond P, Erber R: Transactive memory in close relationships. J Pers Soc Psychol 1991;61:923–929. doi:10.1037/0022-3514.61.6.923.
- 14 Krauss RM, Fussell SR: Perspective-taking in communication: representations of others' knowledge in reference. Social Cogn 1991;9:2–24.

- 15 Rauers A, Riediger R, Schmiedek F, Lindenberger U: Using dyadic common ground enhances collaborative cognition in older, but not in younger couples. Unpublished manuscript, 2010.
- 16 Dixon RA, Gould ON: Younger and older adults collaborating on retelling everyday stories. Appl Dev Sci 1998;2:160–171. doi:10.1207/s1532480xads0203_4.
- 17 Gould ON, Osborn C, Krein H, Mortenson M: Collaborative recall in married and unacquainted dyads. Int J Aging Hum Dev 2002; 26:36–44. doi: 10.1080/01650250143000292.
- 18 Hertzog C, Dixon RA, Hultsch DF, MacDonald SWS: Latent change score models of adult cognition: are changes in processing speed and working memory associated with changes in episodic memory? PsycholAging 2003; 18:755–769. doi:10.1037/0882-7974.18.4.755.
- 19 Schaie KW: Developmental Influences on Adult Intelligence. New York, Oxford University Press, 2005.
- 20 Li SC, Schmiedek F: Age is not necessarily aging: another step towards understanding the 'clocks' that time aging. Gerontology 2002;48:5–12. doi:10.1159/000048917.

- 21 MacDonald SWS, Dixon RA, Cohen AL, Hazlitt JE: Biological age and 12-year cognitive change in older adults: findings from the Victoria Longitudinal Study. Gerontology 2004;50:64–81. doi:10.1159/000075557.
- 22 Wechsler D: Der Hamburg Wechsler Intelligenztest für Erwachsene (HAWIE). Bern, Huber, 1955.
- 23 Hoyer WJ, Stawski RS, Wasylyshyn C, Verhaeghen P: Adult age and digit symbol substitution performance: a meta-analysis. Psychol Aging 2004;19:11–214. doi:10.1037/0882-7974.19.1.211.
- 24 Baayen RH, Davidson DJ, Bates DM: Mixedeffects modeling with crossed random effects for subjects and items. J Mem Lang 2008;59:390-412. doi:10.1016/j.jml.2007.12. 005.
- 25 Locker L, Hoffman L, Bovaird JA: On the use of multilevel modeling as an alternative to items analysis in psycholinguistic research. Behav Res Methods 2007;39:723–730.
- 26 Snijders TAB, Kenny DA: The social relations model for family data: a multilevel approach. Pers Relat 1999;6:471–486. doi: 10.1111/j.1475-6811.1999.tb00204.x.

- 27 Tabachnik BG, Fidell LS: Using Multivariate Statistics, ed 4. Boston, Allyn & Bacon, 2001.
- 28 Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O: SAS for Mixed Models, ed 2. Cary, SAS Institute Inc, 2006.
- 29 Hendrick SS: A generic measure of relationship satisfaction. J Marriage Fam 1988;50: 93–98. doi:10.2307/352430.
- 30 Lang FR, Carstensen LL: Time counts: future time perspective, goals, and social relationships. Psychol Aging 2002;17:125–139. doi:10.1037/0882-7974.17.1.125.
- 31 Baltes MM, Horgas AL: Long-term care institutions and the maintenance of competence: a dialectic between compensation and overcompensation; in Willis SL, Schaie KW, Hayward MD (eds): Societal Mechanisms for Maintaining Competence in Old Age. New York, Springer, 1997, pp 142–181.
- 32 Peker M, Tekcan AI: The role of familiarity among group members in collaborative inhibition and social contagion. Soc Psychol 2009;40:111–118. doi:10.1027/1864-9335.40. 3.111.
- 33 Schaefer EG, Laing ML: 'Please, remind me...'. The role of others in prospective memory. Appl Cogn Psychol 2000;14:99–114. doi:10.1002/acp.773.