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Models of decision making are distinguished by those that aim for an optimal solution in a world that is
precisely specified by a set of assumptions (a so-called “small world”) and those that aim for a simple
but satisfactory solution in an uncertain world where the assumptions of optimization models may not be
met (a so-called “large world”). Few connections have been drawn between these 2 families of models.
In this study, the authors show how psychological concepts originating in the classic signal-detection
theory (SDT), a small-world approach to decision making, can be used to understand the workings of a
class of simple models known as fast-and-frugal trees (FFTs). Results indicate that (a) the setting of the
subjective decision criterion in SDT corresponds directly to the choice of exit structure in an FFT; (b) the
sensitivity of an FFT (measured in d�) is reflected by the order of cues searched and the properties of cues
in an FFT, including the mean and variance of cues’ individual d�s, the intercue correlation, and the
number of cues; and (c) compared with the ideal and the optimal sequential sampling models in SDT and
a majority model with an information search component, FFTs are extremely frugal (i.e., do not search
for much cue information), highly robust, and well adapted to the payoff structure of a task. These
findings demonstrate the potential of theory integration in understanding the common underlying
psychological structures of apparently disparate theories of cognition.
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In recollecting September 11, 2001, Louis Cook of the Emer-
gency Medical Services division of the New York City Fire
Department noted how the triage system Simple Triage and Rapid
Treatment (START) helped his team prioritize victims and identify
the ones who needed help the most (Cook, 2001). START classi-
fies the injured into two major categories: those who need medical
treatment immediately and those whose treatment can be delayed.
When employing START, which is illustrated in Figure 1, a
paramedic sequentially checks up to five diagnostic cues to decide
which category a person falls into; a decision can be made after
each cue is checked. In essence, START is a decision tree with a
very simple and transparent structure. Using this type of tree, a
person does not need to search for and integrate all the relevant
information to reach a decision; thus, a decision can be quickly
made with little effort. Such trees are designed to help people make
decisions in real settings, potentially achieving a high level of

decision accuracy under the constraints of limited information,
time, and resources. In the terminology of Leonard J. Savage
(1954) and Ken Binmore (2009), they are explicitly designed to
deal with “large world” problems.

Following Savage (1954), the father of modern Bayesian deci-
sion theory, we distinguish between the concepts of small and
large worlds. Savage’s prototypical example of a small world is a
lottery, the stock-in-trade of many decision-making studies. In a
small world, a person is assumed to have perfect knowledge of all
aspects of the situation, including all the states in which he or she
could be (e.g., winning or losing), all the acts he or she could
perform (e.g., play Gamble A or B), every possible consequence as
a result of each act and state (e.g., gain $6 if Gamble A is played
and won), and the probability of each consequence (e.g., 40% of
winning $6 under Gamble A). There are no surprises in a small
world, so an optimization calculus such as Bayes’s rule can be
applied to define the best or “rational” action. A person is further
assumed to have abundant time and resources to determine the best
action by processing all relevant information.

Louis Cook’s paramedic team, in contrast, had to deal with a
large world that did not provide full information. In a large world,
one may have only limited knowledge about the decision being
faced, contingencies and probabilities may change over time,
unexpected consequences or surprises may happen, only limited
time may be available to contemplate the decision, and there may
not exist a single criterion to evaluate decision options so that one
of them could be hailed as the best. Savage noted that it is always
possible to look before you leap in a small world, but we live in a
large world, where it is exceedingly difficult to optimize anything
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with even ordinary complexity, so we are well advised to live by
the adage, “We can cross that bridge when we come to it.”

Savage believed that one could not take optimization models
designed for small worlds as models of how people make decisions
in large worlds, “because the task implied in making such a
decision is not even remotely resembled by human possibility”
(Savage, 1954, p. 16). This view serves to highlight the contrast
between the one half of his book that is devoted to developing
Bayesian decision theory for small-world problems with the other
half on heuristics for decision making in large worlds. Today,
psychological theorizing is similarly split into the study of how
people’s decisions can be described by complex optimization
models that operate in small worlds and how people use simple
heuristics in large worlds, with scant interaction between the two
approaches (but see Hogarth & Karelaia, 2007, and Pleskac, 2007,
for exceptions). Does this split imply that we must seek the one
true path?

Our answer is no. Instead, we propose dealing with this schism
by starting with the following question: Can we better understand
heuristic decision making in large worlds with lessons learned
from small-world theories? This article is our attempt at an answer.
We apply well-studied concepts and methods associated with one
small-world theory, signal-detection theory (SDT), to understand
the nature of a class of large-world models, namely fast-and-frugal
trees, of which START is an example. At a general level, this
article contributes to what we believe to be a crucial issue in
psychological science, the integration of theories. We start by
briefly introducing SDT and fast-and-frugal trees.

Signal-Detection Theory

SDT, originating from the statistical theory of Neyman–Pearson
hypothesis testing (Gigerenzer, 1991; Gigerenzer & Murray, 1987,

Chapter 2), was first applied in psychology to study perception and
sensation (Tanner & Swets, 1954). However, over the years, SDT
has been applied in many other areas of psychology, such as
categorization (e.g., Ashby & Maddox, 1992), memory (e.g.,
Wixted & Stretch, 2004), confidence judgment (e.g., Wallsten &
Gonzalez-Vallejo, 1994), eyewitness testimony (e.g., Birnbaum,
1983), group decision making (e.g., Sorkin, Luan, & Itzkowitz,
2004), reasoning (Dube, Rotello, & Heit, 2010), and mate choice
(e.g., Haselton & Buss, 2000). The most important contribution of
SDT to the study of human cognition is distinguishing between
sensitivity and decision bias and developing methods to measure
the two separately.

The upper part of Figure 2 illustrates the main assumptions and
concepts of SDT as it is applied to a binary decision task,1 and
Table 1 lists details of some commonly used SDT terms. The
fundamental assumption of SDT is that the two types of events,
traditionally called signal and noise, have overlapping distribu-
tions on an observation scale X. After setting a decision criterion
on this scale (xc, as in Figure 2), four decision outcomes are
possible: hit, false alarm, miss, and correct rejection. Two mea-
sures, d� and c, are popularly adopted in SDT to quantify sensi-

1 Such binary decision tasks are traditionally referred to as yes–no tasks
in SDT. In a yes–no task, a stimulus is displayed and the person identifies
whether it is a member of one particular category or not. It should be
distinguished from a two-alternative forced-choice or 2AFC task, in which
two stimuli, each from a different category, are presented, and the person
indicates which of them is a member of a category of interest.
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Immediate
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Respiration: rate < 30?

Perfusion: radial pulse present and 
capillary refill ≤ 2 sec?

Yes No
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Yes No
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ImmediateDelayed

Mental: can follow simple 
commands?

Figure 1. A schematic version of the Simple Triage and Rapid Treatment (START) procedure, which
categorizes patients into those who need immediate medical treatment and those whose treatment can be delayed
(Super, 1984).
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tivity2 (or true decision accuracy) and decision bias, respectively.
In an empirical setting, with the knowledge of the frequency of
hits and the frequency of false alarms—P(Hit) and P(FA),
respectively—d� and c can be calculated using the equations in
Table 1. More detailed introductions to SDT can be found in
Macmillan and Creelman (2005), and Stanislaw and Todorov
(1999).

When decision outcomes differ greatly in their consequences,
the main concern of a decision maker often turns from simply
making an accurate decision to instead making one with high
expected value. To maximize expected value, according to Green
and Swets (1966), decision makers should base their decisions on
the likelihood ratio of an observation—LR(x) � f(x/signal)/f(x/
noise)—and adopt a decision criterion based on the likelihood ratio
called �optimal. The equation for calculating �optimal (see Table 1)
shows that a decision criterion should be set by factors that do not
depend on decision sensitivity (d�), and depending on the specific
values of those factors, it is possible that a biased decision criterion
(�optimal � 1, c � 0) fits better to a task than an unbiased one
(�optimal � 1, c � 0).

Besides distinguishing between sensitivity and bias and formu-
lating the optimal decision criterion in the processing of informa-
tion from one source or cue, SDT also contributes to the study of
decision making with multiple sources or cues. According to SDT,
achieving the best possible sensitivity with m cues requires two
steps. The first is integration: Observations from all cues (x1, x2 . . .
xm) need to be converted to a joint likelihood ratio statistic,

LR�xt� � LR�x1, x2 . . . xm� �
f�x1, x2 . . . xm/signal)

f�x1, x2 . . . xm/noise)

that represents the integrated information from those cues. The
second step is decision making: A decision is made by comparing
the joint likelihood ratio LR(xt) with �optimal. This two-stage
process assumes that one possesses full knowledge of the joint
distributions of the two decision events, information from all cues
is available, no error occurs in calculating LR(xt), and the value of
�optimal can be precisely estimated. Because these assumptions are
unlikely to be met in realistic settings, the process is often por-
trayed as ideal, resulting in ideal performance.

One critical assumption of the ideal, or the ideal observer, model
is that information from all cues can be obtained, which is often
not the case. When information must be sampled in sequence and
at a cost, it is desirable to implement a stopping rule to limit
information search. Following Wald’s generalization of Neyman–
Pearson theory to sequential decisions with stopping rules (Wald,
1947), a class of sequential sampling models with Bayesian infor-
mation updating mechanisms has been developed (e.g., Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006; Busemeyer & Rapo-
port, 1988; Busemeyer & Townsend, 1993; Edwards, 1965; Vick-
ers, 1979). Figure 3 illustrates a general sequential sampling model

2 In some fields, especially medicine, the term sensitivity refers to the hit
rate and specificity refers to the correct rejection rate.
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Figure 2. Where is the decision criterion in a fast-and-frugal tree (FFT)? The upper part of the figure illustrates
the main assumptions and concepts of signal-detection theory (SDT) in a binary decision task, and the lower part
illustrates the four possible FFTs that can be constructed when three cues are searched in a set order. Based on
the decisions pointed to by the first two exits, the trees are named from left to right FFTss, FFTsn, FFTns, and
FFTnn. The arrows connecting the figure parts indicate the rough locations of the four FFTs’ decision criteria
when they are used to make a binary s/n (for signal and noise, respectively) decision. Among the four, FFTss has
the most liberal decision criterion, and FFTnn has the most conservative one. The decision criteria of FFTsn and
FFTns are less extreme than the other two, with FFTsn being more liberal than FFTns. The two overlapping
normal distributions next to each cue illustrate SDT’s assumption about how object values are distributed on a
cue and emphasize that each cue comes with its own sensitivity and decision criterion (in d� and c, respectively;
see Table 1).
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for a binary decision task. Besides the decision criterion �optimal,
two other criteria exist: �s for signal and �n for noise. During the
sampling process, whenever the integrated likelihood ratio LR(xt)
exceeds �s or �n, search stops and a decision is made. If after
searching all cues LR(xt) still falls between the two criteria, a
decision is made by comparing LR(xt) with �optimal.

The aim of a normative sequential sampling model is to find
criteria (i.e., �optimal, �s, and �n) that maximize the expected value
of the decisions at hand. The values of those optimal criteria
depend on many factors, including the sensitivity, decision bias,
and cost of each cue to be sampled; sampling order of those cues;
and all the factors that influence the formation of �optimal, as
shown in Table 1. Moreover, the model assumes that information
is integrated in a Bayesian way; that is, the likelihood ratio statistic
LR(xt) is derived based on the distributional characteristics of cues
sampled from both the signal and noise distributions and their prior

probabilities. An early application of this modeling approach in
SDT can be found in the work of Swets and Green (1961), and a
more recent one in Luan, Sorkin, and Itzkowitz (2010).

Compared with the ideal SDT model, an advantage of the
optimal sequential sampling (OSS) model is its ability to tackle the
problem of information search, which is inherent in almost all
large-world tasks. But this does not necessarily validate OSS as a
large-world model. On the contrary, the OSS model actually
manifests many characteristics of a small-world model because of
its demanding knowledge and computational requirements. The
OSS model belongs to a broad class of models that optimize under
constraints. As pointed out by Gigerenzer and Todd (1999), “the
paradoxical approach of optimization under constraints is to model
‘limited search’ by assuming that the mind has essentially unlim-
ited time and knowledge with which to evaluate the costs and
benefits of further information search” (p. 11). In contrast, fast-
and-frugal trees such as START deal with realistic constraints by
sidestepping the process of optimization. In the following, we
specify the properties of fast-and-frugal trees and how people use
them to solve large-world problems.

Fast-and-Frugal Trees

SDT has been used as a model for both how people make
decisions (descriptive) and how they ought to make decisions
(prescriptive). Similarly, fast-and-frugal trees (FFTs) have also
been proposed as descriptive and prescriptive models in large
worlds. Before formally defining FFTs, we provide some exam-
ples of their applications. START is an FFT that prescribes how
paramedics should classify patients when confronting an over-
whelming number of casualties. Another FFT, illustrated in Fig-
ure 4a, has been used by emergency room doctors to decide
whether to send a patient suffering from severe chest pain to a
regular nursing bed or the coronary care unit (CCU; Green &
Mehr, 1997).

Following this FFT, a doctor should send a patient to the CCU
if (a) the patient has ST segment changes (in the ECG) or (b) chest
pain is the patient’s chief complaint, plus there is any sign of
danger in any one of five other diagnostic cues. Green and Mehr

Table 1
List of Commonly Used Signal-Detection Theory Terms, Their Definitions/Measurements, and Some Explanatory Notes

Term Definition/measurement Notesa

Hit Respond “signal” given signal Complementary to miss
False alarm (FA) Respond “signal” given noise Complementary to correct rejection (CR)
d� zHit � zFA zHit and zFA are the z scores of the hit rate and the FA rate,

respectively; d� reflects the standardized distance between the signal
(S) and noise (N) distributions

c �0.5 � (zHit 	 zFA) c 
 0: conservative bias, making more noise than signal decisions
relative to prior probabilities

c � 0: liberal bias, making more signal than noise decisions relative to
prior probabilities

c � 0: neutral bias, making decisions consistent with prior probabilities
�optimal V(CR) � V(FA)

V(Hit) � V(Miss)
�
P(N)

P(S)

P(N) and P(S) are prior probabilities of the two decision events; V(Hit),
V(Miss), V(CR),andV(FA) are expected values of the four decision
outcomes; with a certain d�: coptimal � ln��optimal�/d�.

a Readers who are not familiar with signal-detection theory may see our online supplementary materials for a more detailed introduction to the theory,
including some concrete examples demonstrating the calculations of d� and c.

When βn<LR(xt)<βs after 
all cues searched, compare 
LR(xt) with βoptimal.

Cue 3

Cue 2

Cue 1

LR(xt)βoptimal βs

Whenever 
LR(xt)>βs,
“signal”

Whenever 
LR(xt)< βn,
“noise”

βn

Figure 3. An illustration of a general sequential sampling model in which
three cues are searched in a set order. LR(xt) is the likelihood ratio statistic
that results from integrating information from the cues; �s and �n are the
criteria used to stop search and make a decision in favor of signal or noise,
respectively; �optimal is the optimal decision criterion used to make a
decision if LR(xt) failed to cross either �s or �n after all cues are searched.
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(1997) found that, compared with a logistic regression model that
uses eight cues simultaneously to make a decision, this FFT had a
higher overall predictive accuracy, in addition to its advantages in
frugality (i.e., number of cues checked to make a diagnosis) and
speed. Moreover, its transparency means that doctors can easily
understand how the diagnostic system works, whereas lack of
transparency has contributed to doctors’ resistance to complex
expert systems, such as logistic regression. Medical experts rely on
other FFTs as decision aids in clinical practice, such as when
performing HIV testing (Gigerenzer, Hoffrage, & Ebert, 1998),
performing mammography screening (Welch, 2004, p. 36), and
prescribing antibiotics to children (Fischer et al., 2002).

FFTs are not just prescriptive but descriptive models of decision
making as well. Figure 4b shows an FFT that judges in London
appear to use when deciding whether to make a punitive bail
decision (i.e., imprisonment or bail with restrictions) or a nonpu-
nitive one (i.e., unconditional bail). According to Dhami (2003),
there are 25 cues that potentially could be used to make this
decision. Based on 342 bail hearings by 116 judges in two London
courts, she found that FFTs involving only three cues both fit and
predicted the judges’ decisions better than a linear model using all
25 cues. Figure 4b shows the tree for one London court (the tree
for the other court is identical except for one cue). Moreover,
Dhami and colleagues found that other types of legal decisions
made by British judges are similarly well described by FFTs (e.g.,
Dhami & Ayton, 2001; Dhami & Harries, 2001). Additional evi-
dence for FFTs as descriptive models has been reported for deci-
sions based on vignettes about whether to prescribe medication to
treat depression (Smith & Gilhooly, 2006) and whether to admit
children suffering from asthma to the hospital (Kee et al., 2003), as
well as human participants’ responses, in terms of both reaction
time and accuracy, in classic categorization tasks (Fific, Little, &
Nosofsky, 2010).

Tree models of categorization and decision making have been
studied in a variety of disciplines, such as medicine, applied
statistics, computer science, and psychology (e.g., Breiman, Fried-
man, Stone, & Olshen, 1984; Busemeyer, Weg, Barkan, Li, & Ma,
2000; Green & Mehr, 1997; Quinlan, 1993). Martignon and col-
leagues conceptualized FFTs as a class of simple tree models that
categorize or make decisions with limited information search (e.g.,
Martignon, Katsikopoulos, & Woike, 2008; Martignon, Vitouch,
Takezawa, & Forster, 2003). Because the lines between categori-
zation and decision making are often murky (Ashby & Berretty,
1997), we frame FFTs in this study as decision models, highlight-
ing the consequences associated with the outcomes of categoriza-
tion.

In tasks where a binary decision needs to be made (e.g., imme-
diate or delayed treatment as in the triage problem) and there are
m cues available for making such a decision, an FFT is defined as
follows:

Definition: A fast-and-frugal tree is a decision tree that has m 	 1
exits, with one exit for each of the first m � 1 cues and two exits for
the last cue.

An FFT is composed of sequentially ordered cues. To make
a decision, an FFT starts by checking an object’s value on the
first cue. If it meets the exit condition of the cue, which is
generally framed as an if–then statement (e.g., if a person can
walk, then delayed), a decision is made and no other cues need
to be checked. Otherwise, an FFT considers the other cues one
after another until the exit condition of a cue is met. The last
cue of an FFT has two exits, to ensure that a decision will be
made in the end. Among all trees that could be constructed from
a group of ordered cues, an FFT has the minimal number of
exits. In contrast, a full tree has the maximum. For the triage
problem to which START is applied (see Figure 1), a full tree

Did prosecution request 
conditional bail or oppose bail?

No or N.A.

Nonpunitive

Yes

Punitive

Did previous court impose 
conditions or remand in custody? 

Yes

Punitive

Did police impose conditions or 
remand in custody? 

Yes

Punitive

No or N.A.

No or N.A.

ST segment 
change?

No Yes

Coronary 
Care UnitChief complaint of 

chest pain?  

Regular 
Nursing Bed

No

Any other factor?
(NTG, MI, ST↔, ST↑↓, T↑↓)

Regular 
Nursing Bed

No Yes

Coronary 
Care Unit

Yes

a b

Figure 4. Two examples of fast-and-frugal trees (FFTs) applied to large world problems. The left tree (a) is
designed to help emergency room doctors decide whether to send a patient with severe chest pain to the Coronary
Care Unit (CCU) or a regular nursing bed (Green & Mehr, 1997). The right tree (b) is a model of how British
judges decide whether to make a punitive bail decision (Dhami, 2003).
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would have 25, or 32, exits, each of which indicates a decision
for a unique cue profile (e.g., delayed for patients with a cue
profile of [“able to walk,” “able to breathe,” “respiration rate is
normal,” “perfusion is normal,” “can follow simple com-
mands”]). In essence, a full tree maps each possible cue profile
to a decision but always searches through all available cues.

The structure of a full tree can be simplified. For example, if a
person can walk without assistance, the person can surely breathe.
Thus, the exits in a full tree that match to cue profiles [“able to
walk,” “not able to breathe”] make little practical sense and hence
can be removed from consideration or pruned. Because pruned
trees often lead to better decision performance than full trees,
pruning methods are central to the study of decision trees (e.g.,
Quinlan, 1993). With respect to structure, an FFT can be viewed as
a decision tree whose exits cannot be further pruned, although the
construction of an FFT requires no actual pruning, as its number of
exits is predefined.

Because of its simple structure, an FFT may possess three
advantages over other decision models, including other types of
trees. First is its frugality, defined as the number of cues needed to
make a decision in a given task (Martignon et al., 2008). Frugality
is particularly desirable when information acquisition comes at
some cost (e.g., time, effort, money). Because an FFT searches for
cues one by one, striving to make a decision after each cue, it can
be highly frugal. The second is its simple decision rule. Unlike
models that weight and add information, an FFT bases its decisions
on the exit condition associated with each cue; thus, implementing
an FFT requires knowing only the order in which the cues are
checked and their exit conditions. Similar lexicographic decision
models (e.g., take the best, elimination by aspects) not only require
less mental effort to execute than the weighting-and-adding mod-
els (e.g., Mata, Schooler, & Rieskamp, 2007; Payne, Bettman, &
Johnson, 1993) but also make the process of decision making more
transparent and easier to communicate and understand (e.g., Reilly
et al., 2002).

The third advantage of an FFT is its potential for robustness.
One important goal of a model is to make accurate predictions
based on known data. Complex models with many free parameters
can usually fit known data well but may achieve this by fitting
spurious relations specific to a sample. As a result, their predictive
accuracy in a new sample may suffer (e.g., Myung, Forster, &
Browne, 2000). When there is a discrepancy between a model’s
fitting and predictive accuracy, the model is said to overfit the
data, and the more a model overfits, the less robust it is likely to
be. The simplicity of FFTs makes them less susceptible to over-
fitting and thus more robust. Martignon et al. (2008) offered some
supportive evidence by comparing the performances of three
models—FFTs, logistic regression, and a complex decision tree
named CART—in 30 different tasks. They found that FFTs had
the most stable performance across different training sample sizes,
and when the training sample sizes were small, FFTs performed
nearly as well as the other models in terms of the total number of
correct decisions made.

FFTs Through the Lens of SDT

The psychology underlying FFTs appears to have little in
common with that of SDT, although both are applied to the
same binary decision tasks with multiple cues. According to

SDT, the mind works like an intuitive statistician that sets
decision criteria and is characterized by its sensitivity d�. FFTs
search through cues sequentially and stop search after the first
cue that allows them to do so. From the vantage point of SDT,
one may wonder: Where is the decision criterion in an FFT?
Where is its sensitivity? In what follows, we apply well-
developed methodologies, measures, and concepts of SDT to
answer these questions and to gain a better understanding of the
psychology underlying FFTs. In Studies 1 and 2, we first ask
whether there is a decision criterion in an FFT; if so, how is it
reflected in an FFT’s structure, and how can it be adjusted?
Second, how is sensitivity implemented in an FFT, and how can
it be improved? In Study 3, we compare the decision-making
quality of the two theories in terms of sensitivity, frugality,
predictive accuracy, and expected value.

Study 1: Where Is the Decision Criterion in
an FFT?

The main conceptual contribution of SDT is to disentangle
sensitivity (d�), a measure of pure accuracy, from decision crite-
rion (c). It has been widely observed that when making a decision,
both sensitivity and decision criterion strongly influence the out-
come of a person’s decision (Green & Swets, 1966). Yet there has
been no systematic investigation of these two concepts in the
research of FFTs. In this study, we show how decision criteria are
manifested in the structure of an FFT.

Decision Criterion in the CCU Allocation Tree

To demonstrate the mapping from SDT to FFTs, let us return to
the CCU allocation tree illustrated in Figure 4a. On the basis of this
tree, physicians assign patients to a regular nursing bed or the
special coronary care unit. Maintaining the same cue order as in
this tree, four possible FFTs, each with a unique exit structure, can
be constructed; they are shown in the lower part of Figure 2.
Designating the four FFTs by the decisions associated with their
first and second exits, we refer to them from left to right as FFTss,
FFTsn, FFTns, and FFTnn. If a CCU decision is represented by an
“s” exit, then the CCU allocation tree would be designated as an
FFTsn. Now the question is: How does the decision criterion of that
tree differ from the others?

On the basis of the data used to develop the CCU allocation tree,
we calculated the hit and FA rates of the four FFTs, shown in
Figure 5. Graphical displays like Figure 5 are often employed in
SDT to illustrate the performance of a decision maker by plotting
P(Hit) and P(FA), or their transformed z-values zHit and zFA,
against each other. Such displays illustrate the receiver operating
characteristic (ROC) of a decision maker, and the [P(FA), P(Hit)]
and [zFA, zHit] spaces are often referred to as the ROC space and
the zROC space, respectively. Figure 5 shows that there is a
systematic shift in decision criteria associated with each of the four
FFTs. From FFTnn to FFTss, it is clear that the decisions made by
an FFT become more and more liberal. The bias measures c of the
four trees are 0.37, –0.31, –0.88, and –1.47 for FFTnn, FFTns,
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FFTsn, and FFTss, respectively.3 Thus, it appears that having more
“s” exits in an FFT and having these exits earlier in the cue
sequence lead to a more liberal bias. However, given the limited
data from which the four trees are constructed (sample size � 89),
the generality of this result is unclear. To examine whether such a
bias shift is systematic, we compared analytically the hit and FA
rates of the four FFTs that are composed of three cues ordered in
a certain sequence.

Decision Criteria of Three-Cue FFTs

Following the terminology in SDT, an object is assumed to
belong to either the signal or the noise category, and there are two
corresponding distributions of object values for each cue. If an
object is from signal, it has the cue profile [xs1, xs2, xs3], in which
xsi represents the object’s value on the ith cue; if it is from noise,
the cue profile is [xn1, xn2, xn3]. Provided that the decision criteria
of the three cues are [xc1, xc2, xc3], based on their exit structures,
the hit and FA rates of the four FFTs can be expressed as the
following:

P(Hit)FFTss � P�xs1 � xc1� � P��xs1 � xc1� � �xs2 � xc2�


� P��xs1 � xc1� � �xs2 � xc2� � �xs3 � xc3�


P(Hit)FFTsn � P�xs1 � xc1�

� P��xs1 � xc1� � �xs2 � xc2� � �xs3 � xc3�


P(Hit)FFTns � P��xs1 � xc1� � �xs2 � xc2�


� P��xs1 � xc1� � �xs2 � xc2� � �xs3 � xc3�


P(Hit)FFTnn � P��xs1 � xc1� � �xs2 � xc2� � �xs3 � xc3�


P(FA)FFTss � P�xn1 � xc1� � P��xn1 � xc1� � �xn2 � xc2�


� P��xn1 � xc1� � �xn2 � xc2� � �xn3 � xc3�


P(FA)FFTsn � P�xn1 � xc1�

� P��xn1 � xc1� � �xn2 � xc2� � �xn3 � xc3�


P(FA)FFTns � P��xn1 � xc1� � �xn2 � xc2�


� P��xn1 � xc1� � �xn2 � xc2� � �xn3 � xc3�


P(FA)FFTnn � P��xn1 � xc1� � �xn2 � xc2� � �xn3 � xc3�


Note that the equations for the hit and FA rates under each FFT
are the same except for the category from which an object is
drawn. The hit (and FA) rate of each FFT is the sum of the hit (and
FA) rates contributed by its cues. For an FFTsn, of which the CCU
allocation tree is an instance, there are two components in its hit
rate: one from the first cue P�xs1 � xc1�, the probability that an “s”
decision can be made by this cue, and the other from the third cue
P��xs1 � xc1� � �xs2 � xc2� � �xs3 � xc3�
, the probability that
this cue makes an “s” decision given that neither of the first two
cues can make a decision.

When comparing two decision makers, if both the hit and FA
rates of one are higher than those of the other, then the former has
a more liberal decision bias than the latter.4 Keeping this in mind,
let us first compare the hit and FA rates of the two trees FFTss and
FFTsn. Because both FFTss and FFTsn have an “s” exit on the first
cue, the first components of their hit rates are identical. Their
second components, however, differ. Particularly, the probability
specified in the second component of FFTss, P�(xs1 � xc1)�(xs2 

xc2)
, cannot be lower than the probability specified in the second
component of FFTsn, P�(xs1 � xc1)�(xs2 
 xc2)�(xs3 
 xc3)
,
because the latter is a subset of the former. Given that a third
component exists in the hit rate of FFTss but not in FFTsn, the
overall hit rate of FFTss cannot be lower than that of FFTsn. The
same relation holds for the two trees’ FA rates as well.

Now let us examine the hit and FA rates of FFTsn and FFTns.
From the equations of their hit rates, we see that the two compo-
nents of FFTns’s hit rate, P�(xs1 
 xc1)�(xs2 
 xc2)
 and P�(xs1 

xc1)�(xs2 � xc2)�(xs3 
 xc3)
, are actually both subsets of the first
component of FFTsn’s hit rate, P(xs1 
 xc1), and the two are
mutually exclusive. Thus, even if the second component of
FFTsn’s hit rate is zero, the overall hit rate of FFTsn cannot be
lower than that of FFTns, nor can its FA rate be lower than that of
FFTns. Following a similar deduction process, it can be shown that
the hit and FA rates of FFTns cannot be lower than those of FFTnn

either.

3 When the hit rate is 1, as is the case for both the FFTsn and the FFTss

trees in the CCU allocation example, c and d� cannot be calculated using
the standard equation. In keeping with the convention in SDT (e.g.,
Stanislaw & Todorov, 1999), we used a modified hit rate defined as (N �
0.5)/N, where N was the number of signal trials (or patients who really
needed to be admitted to the CCU) in the sample. This modified hit rate
was then used to calculate the decision criteria (c) and sensitivities (d�) of
the FFTsn and the FFTss trees.

4 From Table 1, it can be seen that the larger the sum of zHit and zFA,
the lower the value of c and, hence, the more liberal a decision maker.
Because z(x) is a monotonic function of x, if both P(Hit) and P(FA) of a
decision maker A are larger than those of another decision maker B, the
sum of zHit and zFA of A is also larger than that of B. Thus, A should have
a more liberal decision bias than B.
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Figure 5. The performance of four fast-and-frugal trees (FFTs) in the
receiver operating characteristic (ROC) space. Retaining the same cue
order, the four FFTs are composed of the three cues used in the CCU
allocation tree (see Figure 4a for an illustration). The CCU allocation tree
is of the type FFTsn, in which “s” represents a decision to send a patient to
the CCU and “n” a decision to send a patient to a regular nursing bed.
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To summarize, both hit and FA rates will decrease successively
as we transform the tree from FFTss to FFTsn, FFTns, and FFTnn.
Hence, its decision criterion will become increasingly conserva-
tive. The relative decision criteria of the four FFTs are illustrated
in Figure 2. Because FFTss is the most liberal tree and FFTnn the
most conservative, we refer to them as the strictly liberal and
strictly conservative trees, respectively. In Figure 2, the trees’
decision criteria are projected into two normal distributions of
object values as assumed in SDT. Nevertheless, their systematic
differences hold regardless of the forms that the signal and noise
distributions take.

Decision Criteria of m-Cue Fast-and-Frugal Trees

When there are m cues in an FFT, the following algorithm
judges the relative decision bias of a pair of FFTs that are con-
structed from cues ordered in the same sequence:

Step 1: Check whether the exits on each cue of the two FFTs
are the same, starting from Cue 1.

Step 2: Stop at the cue on which the two FFTs have different
exits.

Step 3: Infer that the hit and FA rates of the FFT with an “s”
exit are no lower than those of the other FFT. Hence, the
former has at least as liberal a decision bias as the latter.

The comparison algorithm is implied by a property of FFTs that
we call lexicographic decision bias, which states that

An FFT of the form FFT��s�� will always be at least as liberal as
another FFT of the form FFT��n��, where �� represents cues that
share the same exits and �� represents cues that may or may not have
the same exits.

A detailed proof of this property can be found in Appendix A.
Lexicographic decision bias is noncompensatory in nature,

meaning that no matter what type of exits the cues have after the
first differentiating cue or how many subsequent cues there are, an
FFT��s�� will always be at least as liberal as an FFT��n��. For
example, suppose that there are two FFTs composed of the same
five ranked cues, one being FFTsnnn and the other FFTnsss. Al-
though there is only one “s” exit in the first tree but three in the
second, the former is still more liberal than the latter, because its
sole “s” exit happens to be on the first cue. This counterintuitive
result is further confirmed in Study 2, where we compared FFTs
with specific cue property values. Knowledge of this lexicographic
decision bias property will facilitate constructing an FFT with a
particular level of decision bias.

Summary and Discussion

We demonstrated and proved in this study that FFTs composed
of the same ranked cues but with different exit structures differ
systematically in their decision biases. Such systematic differences
enable decision makers to adjust their decision criterion by simply
arranging the exit structure of an FFT without changing the order
of the cues that make up the tree or their specific properties. This
makes FFTs similar to SDT in that a mechanism outside the
distributions of cues can be used to adjust one’s decision criterion.

The difference is that in SDT, the adjustment can be done contin-
uously because decision makers can set their decision criterion to
any value, but in FFTs, the adjustment can only be done discretely,
limited by the number of FFTs that can be constructed. With the
finding that the psychological concept of decision criterion in SDT
can indeed be reflected in the structure of an FFT, we now ask
whether there is also a similar correspondence between the two in
sensitivity.

Study 2: Where Is the Sensitivity in an FFT?

According to SDT, the sensitivity (d�) of a decision maker
should depend on the distributional characteristics of the person’s
observations (see Figure 2). When there are multiple cues involved
in the decision-making process, Sorkin and Dai (1994) showed that
the d� of an ideal observer in SDT should be sensitive to the mean
and variance of cues’ individual d�s, their intercue correlations,
and the number of cues, but not to cues’ decision criteria. Inves-
tigating how the sensitivity of FFTs responds to those cue prop-
erties is one major goal of this study. Because FFTs search cues
sequentially, another goal is to explore how different search orders
of cues influence FFTs’ sensitivity.

Method

We characterize each cue by its two SDT measures: d� and c.
Therefore, a set of m cues can be described by two vectors: di� �
[d1�, d2� . . . dm�] and ci � [c1, c2 . . . cm]. In addition, the intercue
correlation �ij for each pair of cues also needs to be specified.
Ideally, this would require the specification of a set of �ijs. How-
ever, to simplify the representation, we assume that all �ijs are
equal, so that a set of m cues can be described by a single
correlation parameter �. With m cues, there are (m!) � (2m�1)
FFTs that can be constructed, with the first term representing the
number of ways cues can be ordered and the second indicating the
number of available exit structures under a particular cue order.
Although various cue-ordering criteria have been proposed for
decision trees in general and FFTs in particular (e.g., Dhami &
Ayton, 2001; Martignon et al., 2008; White & Liu, 1994), here we
restrict our analysis to ordering cues with respect to the d� of each
cue. Nevertheless, in the General Discussion, we consider the
relation between cue orders based on d� and information gain, a
measure commonly used to construct decision trees.

By assigning specific values to the three cue properties (di�, ci,
and �), we created 6,006 three-cue conditions. More specifically,
there were 286 combinations of di�, generated by the following
procedure:

1. Start with di� � [0.5, 0.5, 0.5], in which the first value of
the vector d1� represents the highest d� of a cue among the
three and d3� the lowest;

2. Raise d1� incrementally by 0.2 until it reaches 2.5;

3. Raise d2� incrementally by 0.2 until it reaches d1�;

4. Raise d3� incrementally by 0.2 until it reaches d2�.

Thus, the last combination of di� was [2.5, 2.5, 2.5]. In addition,
there were seven levels of the intercue correlation � (0, 0.1, 0.2,
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0.3, 0.4, 0.5, and 0.6) and three conditions of ci: (a) all neutral [0,
0, 0], (b) all conservative [1, 1, 1], and (c) all liberal [�1, –1, –1].
Conditions with unequal ci among the three cues (e.g., [1, 0, –1])
were also explored. Because the results from those unequal-ci

conditions were fundamentally no different from those of the
equal-ci conditions, we do not report them here but in the supple-
mentary materials.5 In addition to the 6,006 (i.e., 286 � 7 � 3)
three-cue conditions, one five-cue condition, and two other three-
cue conditions were analyzed to compare the effect of the number
of cues (m) on sensitivity.

To calculate the d� of an FFT, we assume that cue values of an
object are drawn from one of two multivariate normal distribu-
tions, signal and noise. For noise, the means of all cue variables
were set to 0; and for signal, they were [d1�, d2� . . . dm�]. For both
distributions, the variance of each cue variable was 1 and the
covariance between any pair of cues was �. With these distribu-
tional parameters, cues’ standardized decision criteria [c1, c2 . . .
cm] were further converted to specific cue values [xc1, xc2 . . . xcm],
so that they could be used to calculate the hit and FA rates of an
FFT, and in turn its d� (see Appendix B for the detailed procedure).

Effects of Cue Orders on FFTs’ Sensitivity

To examine the effects of cue order on the sensitivity of an FFT,
let us start with three-cue FFTs. With three cues, six orders are
possible. Given that each cue is named after its d� ranking, with 1
being the highest, the six orders are 1-2-3, 1-3-2, 2-1-3, 2-3-1,
3-1-2, and 3-2-1. Figure 6 shows the sensitivity of four FFTs in
one cue-property condition, in which di� � [1.7, 1.5, 1.3], ci � [0,
0, 0], and � � 0.3, and under each of the six cue orders. Results
from the other 6,005 three-cue conditions lead to the same con-
clusions as in this example.

Three major results can be observed in Figure 6. First, the
sensitivity of the strictly liberal and conservative trees, FFTss and
FFTnn, is not affected by cue order at all. Because a consensus
among the three cues is needed to make either an “s” decision
(FFTss) or an “n” decision (FFTnn), cue order cannot influence the
overall hit and FA rates of those trees and in turn their d�s. Second,
for the other two trees, FFTns and FFTsn, cue order does affect
their sensitivity. In general, the more the order deviates from the
cues’ d� order, the lower the sensitivity of an FFT. In other words,
when cues differ in their individual d�, a 1-2-3 cue order generally
leads to a higher d� than a 2-1-3 order, which is, in turn, better than
a 3-1-2 order.

The third and probably most interesting result is that for FFTsn

and FFTns, the two cue orders 1-2-3 and 1-3-2 result in the same
sensitivity, as do the orders 2-1-3 and 2-3-1 and the orders 3-1-2
and 3-2-1. Therefore, once the first cue is set, the sensitivity of an
FFTsn or an FFTns does not depend on which cue is considered
second and which third. The explanation for this result is that cases
that cannot be decided by the first cue require a consensus of the
remaining cues to make either an “s” decision (FFTsn) or an “n”
decision (FFTns); in a sense, the remaining two cues result in
strictly liberal and conservative subtrees.

For FFTs composed of more than three cues, the general con-
clusions from Results 1 and 3 still hold. In fact, for FFTs com-
posed of m cues, the following rule applies:

If the exits of an FFT are the same type from its kth to (m � 1)th cues,
where 1 � k � (m � 1), the sensitivity of the FFT is determined

strictly by the order of the first k � 1 cues but is unaffected by how
cues are ordered between the kth and mth cues.

This rule holds for any number of cues with any combination of
properties; we refer to it as the partial order invariance rule of
FFTs. Assuming that m � 5 and k � 3, the rule indicates that, after
the order of the first two cues is set, the sensitivity of an FFTsnss

will remain the same no matter how the remaining three cues are
ordered. Together with the result in Figure 6 that a cue order
further deviated from the d� order will generally lead to a lower
sensitivity of an FFT, this rule suggests that a decision maker
should be concerned only with the ordering of the first k � 1 cues
in an FFT and that to achieve a higher d� of the FFT, it would be
best to order these cues according to their d� ranking.

Effects of Cue Properties on FFTs’ Sensitivity

Figure 7 plots the performance of the four three-cue FFTs in the
zROC space for various cue-property conditions. Their cues are
ordered according to their d� values (i.e., order 1-2-3). In such an
ROC presentation, sensitivity can be inferred simply by taking the
difference between the two coordinate values (i.e., d� � zHit �
zFA). Moreover, the performance of decision makers with equal
sensitivity but employing different decision criteria will result in
points in this ROC space that can be fit perfectly by a straight line.
Each of the four panels in Figure 7 demonstrates the effects of a
single cue property on FFTs’ sensitivity. In each panel, three levels
of a certain cue property are chosen for comparison purposes. At
each level, the four points from left to right in the ROC space
correspond to the performance of FFTnn, FFTns, FFTsn, and FFTss,
respectively, and each point represents the average performance of
FFTs that share the same cue-property value. Moreover, for each
cue-property condition the mean d� of the four FFTs, d�-FFTs, is
labeled.

Figure 7A shows the effect of �d�, the average d� of the three
cues used to compose an FFT. For the three levels of �d�, 0.9, 1.5,
and 2.1, there are 147, 378, and 147 conditions at each level,
respectively. Figure 7B shows the effect of �, the intercue corre-
lation among the cues. There are 1,001 conditions at each of the
three levels of �: 0, 0.3, and 0.6. Figure 7C shows the effect of
Vard�, the variance of the three cues’ individual d�s. For the three
levels of Vard�, 0, 0.33, and 0.97, there are 231, 252, and 84
conditions at each level, respectively. Finally, Figure 7D shows the
effect of ci, the decision criteria of the cues. There are 2,002
conditions at each level of ci.

We see from Figure 7A that an FFT’s sensitivity is positively
related to �d�, which reflects the overall information quality of the
cues, and from Figure 7B that an FFT’s sensitivity is negatively
related to �, which is often used as a measure of information
redundancy among cues. Figure 7C shows that the sensitivity of
FFTsn and FFTns increases with Vard�, but the sensitivity of FFTss

and FFTnn does not, as indicated by the points clustered in the
leftmost and rightmost parts of the ROC space. The main reason

5 We examined 24 unequal-ci conditions that include all 27 combina-
tions from c � [�1, 0, 1], excluding the three equal-ci conditions, yielding
a total of 48,068 (256 di� � 7� � 24 ci) cue-property conditions. The results
from the analysis of those conditions can be found in the online supple-
mental materials.
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for this pattern of results is that when Vard� is high, it is likely that
the d� value of the first cue is also high. This helps increase the
sensitivity of FFTsn and FFTns, but not that of FFTss and FFTnn,
which is insensitive to cue orders (see the previous section). Figure
7D reveals two effects of ci on FFTs’ performance: (a) When the
decision criteria of the cues progress from being conservative ([1,
1, 1]) to liberal ([�1, �1, �1]), the decision criterion of an FFT
also moves from being more conservative to more liberal, and (b)
ci have little effect on the sensitivity of an FFT, as the 12 points in
Figure 7D can be fitted well by one straight line.6

Because the points plotted in Figure 7 are the result of averaging
over many cue conditions, these graphs can obscure the relative
impact of different cue properties. To overcome this problem, we
ran a series of step-wise regressions using the four cue proper-
ties—�d�, �, Vard�, and ci—as the predictors and the sensitivity of

an FFT or the mean sensitivity of the four FFTs (d�-FFTs) as the
predicted variables. The results of these analyses are shown in
Table 2. In general, two main results can be seen from the table: (a)
The predictors can account for an FFT’s sensitivity quite well
(R2 
 .96), and (b) the most useful predictor is �d�, which alone
leads to an R2 of around .85. The results of the regression analyses
are consistent with those shown in Figure 7. For instance, Vard� is
found to have little effect on the sensitivity of FFTss and FFTnn,
which is also observed in Figure 7C, but it is the second most

6 Note that this conclusion is drawn from cue-property conditions where
the cues’ decision criteria are set to be equal (i.e., c1 � c2 � c3). However,
even in conditions where they are unequal, the same general conclusion
still holds.

Figure 6. The sensitivity (d�) of each three-cue fast-and-frugal tree (FFT) in a cue-property condition where
di� � [1.7, 1.5, 1.3], ci � [0, 0, 0], and � � 0.3. In each panel of the figure, the six bars show the d�s of a certain
FFT under six possible cue orders; a cue order is labeled by the d�s of the cues that are searched sequentially.
Following the conventions in the main text, the order [1.7, 1.5, 1.3] corresponds to the order 1-2-3, order [1.5,
1.7, 1.3] to the order 2-1-3, and so on.
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important factor in predicting the sensitivity of FFTsn and FFTns.
According to Sorkin and Dai (1994), the ideal observer of SDT is
responsive to the following cue properties: �d�, �, Vard�, and m, the
number of cues. We find it interesting that the mean d� of the four
types of FFTs, d�-FFTs are also sensitive to the first three param-
eters.

Our analyses show that the sensitivity of an FFT also depends
on the number of cues, m. For the sake of brevity, in Figure 8 we
illustrate the results of these analyses by comparing two particular
three-cue conditions with one five-cue condition. In the five-cue
condition, the 16 points running from lower left to upper right
represent in turn the performance of FFTnnnn, FFTnnns, FFTnnsn,

FFTnnss, FFTnsnn, FFTnsns, FFTnssn, FFTnsss, FFTsnnn, FFTsnns,
FFTsnsn, FFTsnss, FFTssnn, FFTssns, FFTsssn, and FFTssss. Their
relative decision biases provide a concrete demonstration of the
lexicographic decision bias property of FFTs (see Study 1). One of
the three-cue conditions—the one with di� � [1.43, 1.0, 0.57]—is
equivalent to the five-cue condition in terms of �d�, �, Vard�, and
ci. As can be seen from Figure 8, the sensitivity of the five-cue
FFTs appears higher than that of the FFTs from this three-cue
condition. However, this does not imply that including more cues
in an FFT always has a positive effect on its sensitivity.

Comparing these five-cue FFTs with the FFTs from another
three-cue condition with di� � [1.50, 1.25, 1.0], in which the three
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Figure 7. The sensitivity of the four three-cue fast-and-frugal trees (FFTs) averaged over conditions with
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Sensitivity at three levels of ci, the decision criteria of the cues.
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cues are the three best cues of the five-cue condition, we see that
FFTs’ sensitivities in the two conditions are nearly identical. This
result shows that having more cues does not improve an FFT’s
sensitivity if only cues of lower quality are included. Nevertheless,
there is a potential benefit of having more cues in an FFT. As
shown in Figure 8, compared with the four FFTs in a three-cue
condition, a wider range of decision biases can be covered by the
16 FFTs in the five-cue condition. Therefore, having more cues to
work with provides one with more flexibility to construct an FFT
with a desired decision bias, although these additional cues may do
little to improve its sensitivity.

Finally, from Figures 7 and 8, we see that the points of FFTs in
a certain cue-property condition can generally be fitted well by a
straight line in the zROC space. This implies that these FFTs are
similar in sensitivity, despite their drastic differences in decision
criterion. To examine how general a result this is, we calculated
the R2 value of an ROC line that fits the four FFTs in each of the
6,006 three-cue conditions. The average R2 is .966, indicating that
the sensitivity differences among these FFTs are indeed quite
small.

Summary and Discussion

In SDT, sensitivity d� is measured by the difference between the
means of the signal and noise distributions. Where is d� in an FFT?

We showed that sensitivity is found in its cue structure, that is, in
the order of the cues and the individual properties of these cues.
For three-cue FFTs, which are frequently used in applied settings
such as the CCU allocation tree, the first cue determines sensitivity
and the order of the remaining cues is irrelevant. In all three-cue
conditions investigated in this study, the sensitivity of an FFT
decreases when cues with a lower d� are considered first. If there
are more than three cues, the partial order invariance rule applies;
it implies that an FFT’s sensitivity does not depend on the order of
consecutive cues that share the same kind of exit. Strictly liberal
and conservative FFTs are special cases in which all cues are
consecutive cues that share the same exit; therefore, cue order does
not affect their sensitivity. Besides cue order, the characteristics of
the cues also influence the sensitivity of an FFT.

In Figures 7 and 8, we demonstrated the effects of five cue
properties on FFTs’ sensitivity. We found that with other cue
properties held constant, the d� of an FFT tends to be higher when
(a) the mean of cues’ individual sensitivity �d� is high, (b) the
intercue correlation � is low, (c) cues’ variance Vard� is high, and
(d) there are more and better quality cues available to construct an
FFT. We also found that the d� of an FFT is affected only to a
small extent by the decision biases of its cues (ci), which, in
contrast, can substantially affect an FFT’s overall decision bias. It
should be noted that these five cue properties exert similar effects
on the sensitivity of the ideal observer of SDT, although the ideal
model and FFTs are based on entirely different decision-making
mechanisms.

So far, we have only considered sensitivity of FFTs in a small
world, where everything is known to a decision maker. But people
working in a large world, such as paramedics at the scene of an
accident and physicians in an emergency room, often must act
quickly on the basis of uncertain information, while being mindful
of the serious consequences of their decisions. Therefore, to un-
derstand the workings of FFTs better, we consider performance
measures that go beyond sensitivity.

Study 3: Performance Beyond Sensitivity

When making decisions, people often care about not only the
accuracy of their decisions but also the consequences, which can
be roughly captured by the expected value of the decisions. When
different decisions yield drastically different consequences, con-
cerns about accuracy often become secondary. To increase the
expected value of a decision, it has been argued in SDT that careful
attention must be paid to the selection of an appropriate decision
criterion. Therefore, from SDT’s perspective, a model’s capability
to adjust its decision criterion in response to the characteristics of
a task, mainly the payoffs of the decision outcomes, determines its

Table 2
Results of the Step-Wise Regression Analyses on the Sensitivity of Fast-and-Frugal Trees (FFTs)

Predicted variable

Predictors and resulting adjusted R2 at each step

Predictor 1 R2 (1a) Predictor 2 R2 (1, 2a) Predictor 3 R2 (1, 2, 3a)

d�-FFTs �d� .899 � .974 Vard� .987
d�-FFTsn, d�-FFTns �d� .843 Vard� .912 � .962
d�-FFTss, d�-FFTnn �d� .873 � .968 ci .982

a The number(s) inside the parentheses indicate the adjusted R2 values using the corresponding predictor(s).

Figure 8. The sensitivity of the 16 fast-and-frugal trees (FFTs) in one
five-cue condition, in which di� � [1.50, 1.25, 1.0, 0.75, 0.50], and the
sensitivity of the eight FFTs in two three-cue conditions, in which di� �
[1.50, 1.25, 1.0] and [1.43, 1.0, 0.57], respectively. In all three conditions,
the intercue correlation � is 0.3 and all cues are unbiased (ci � 0).
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expected value performance to a large extent. Besides expected
value, speed, which is closely related to the frugality of a model,
is another major concern of real-time decision making. Moreover,
because a person usually has only limited experience in a task, how
effectively a model can help predict the outcomes of unknown
cases based on the person’s previous learning indicates another
important performance measure: predictive accuracy.

In this study, we explore comparative advantages and disadvan-
tages of FFTs by pitting them against three other models. One is
the ideal model in SDT, which assumes that information from all
cues is integrated into a likelihood ratio and a decision is made by
comparing this value to the optimal decision criterion �optimal. The
second is the OSS model, which is designed to deal with situations
where cue information needs to be sampled sequentially at a cost.
The third one is the majority model. Using this model, a person
first ranks cues according to their d� values and then checks the
binary decisions made by each cue sequentially until a simple
majority is reached.

The majority model examined in this study differs from other
majority models studied in both the SDT and group decision
research (e.g., Hastie & Kemeda, 2005; Sorkin et al., 2004) in that
it incorporates a search component. For instance, suppose that
there are three cues in a task and that their values for an object are
x1, x2, and x3. Suppose further that in relation to each cue’s
decision criterion xci, x1 
 xc1, x2 
 xc2, and x3 � xc3. Thus, the
binary decisions of those cues are “s,” “s,” and “n,” respectively.
A person using the majority model can stop search after the first
two cues, because the majority of cues necessarily favor an “s”
decision. As a result of this search algorithm, the majority model
does not always search for all available cues to make a decision.
The majority model thus shares two common characteristics with
FFTs: sequential information search and a simple decision mech-
anism. However, the two models do differ in one critical aspect:
After cues are ordered, one can adjust the decision criterion of an
FFT by arranging its exit structure in different ways, whereas the
decision criterion of the majority model is fully determined by the
decision criteria of the cues. Such inflexibility may hurt the ma-
jority model’s performance in terms of expected value.

In the following sections, we compare the performance of the
FFTs, the ideal SDT model, and the majority model on four
different measures: sensitivity, frugality, predictive sensitivity, and
expected value. Because the OSS model reduces to the ideal model
when search costs are not taken into account, we add OSS into the
mix only when considering expected value.7

Sensitivity and Frugality

The sensitivity (d�) and frugality of each model are derived
analytically under the assumptions that (a) cue values are drawn
from two multivariate normal distributions, (b) the prior probabil-
ities of the two decision categories P(S) and P(N) are equal, and
(c) the precise values of all cue properties are known. Following
the processes explained in Appendix B, we derived the d� and
frugality of each of the three models—FFTs, majority, and
ideal—in the 6,006 three-cue conditions specified in Study 2. The
average d�s of the three models are 2.37, 1.94, and 1.92 for the
ideal, FFTs, and the majority model, respectively; their average
frugalities are in turn 3.0, 1.75, and 2.36.

When everything is known about the cues, the ideal model
optimally uses this information. It achieves its high level of sen-
sitivity at the cost of always considering all three cues. In contrast,
the majority model sometimes requires only two cues to make a
decision and the FFTs can often get by with just one. Although the
FFTs search fewer cues, the FFTs and majority model manage to
achieve similar levels of sensitivity. This result shows that sensi-
tivity (or accuracy) and frugality need not trade off; a model can
perform well in one aspect without sacrificing the other (see also
Gigerenzer, Todd, & the ABC Research Group, 1999).

Predictive Sensitivity

It is important that a model makes accurate predictions about
previously unseen cases. In this study, we measure the predictive
accuracy of a model in terms of predictive sensitivity. Whereas
sensitivity is derived analytically based on the assumption that the
exact values of all parameters a model ever needs to know are
known, predictive sensitivity depends on parameter values esti-
mated from a sample. Various methods have been applied in
psychology to measure models’ predictive accuracy (e.g., Myung
et al., 2000; Shiffrin, Lee, Kim, & Wagenmakers, 2008). Here, we
use accumulative prediction (AP; see Wagenmakers, Grünwald, &
Steyvers, 2006), a method similar to cross-validation, to measure
models’ predictive sensitivity.8 We implemented AP as follows:

1. Five objects were randomly drawn from both the noise
and signal distributions; the parameter values of a model
were then estimated based on these 10 objects.9

2. Either the noise or the signal distribution was randomly
picked and one new object was randomly drawn from this
distribution. Based on the previously estimated parameter
values, a model made a prediction about whether this
object was a signal or a noise.

3. Model parameters were estimated again based on all
objects that had already been seen, including the original
10 plus the new one.

4. Steps 2 and 3 were reiterated for (N � 10) times, with N
being the sample size of interest. The accumulated pre-
diction performance, which was measured by d� through
tallying hits and FAs from all iterations, is the predictive
sensitivity of a model.

7 The sensitivity and frugality of the OSS model depend on the specific
values of the two stopping criteria �s and �n. When they are set at higher
values, the sensitivity of the OSS model will be relatively high, but more
cues will be searched before making a decision. In some sense, the OSS
model can be considered as a constrained version of the ideal model, with
�s and �n regulating its sensitivity and frugality.

8 We thank Michael Lee for suggesting the AP method, which is pro-
cedurally similar to leave-one-out cross-validation. However, in contrast to
cross-validation, AP can be connected to Bayesian and minimum descrip-
tion length (MDL) model selection methods.

9 There is no consensus in the AP literature on the size of the sample
initially used to estimate parameters. We settled on 10 because it was
problematic to estimate all the ideal model’s parameters with smaller
sample sizes.

328 LUAN, SCHOOLER, AND GIGERENZER



The number of parameters needed by the models varies. The ideal
model needs estimates of the means and variance–covariance
matrices of two multivariate normal distributions (signal and
noise) to calculate the likelihood ratio of a cue value vector [x1, x2

. . . xm]. Both the FFTs and the majority model need to estimate the
hit and FA rates of the cues, so that their d�s can be calculated to
establish the d� cue order.

Our analysis of predictive sensitivity focuses on conditions
where three cues are available (i.e., m � 3), as was the case in our
previous analysis of sensitivity. However, because of the extensive
computation required for deriving the predictive sensitivity of a
model, we considered fewer conditions (18) compared to the
analysis of sensitivity. Specifically, among the 18 conditions, there
are three levels of � (0, 0.3, and 0.6), two levels of �d� (1 and 1.5),
and three levels of Vard� (0, 0.04, and 0.25). In all conditions, cues’
decision criteria (ci) were set to [0, 0, 0], as our (unreported)
preliminary analysis showed that different values of ci had little
effect on the relative performance of the three models. Moreover,
five sample sizes (N � 20, 40, 80, 200, and 2,000) were examined.
They match the sample sizes employed in experiments under the
SDT framework, in which the number of trials administered to a
participant varies from tens to thousands (e.g., Green & Swets,
1966; Macmillan & Creelman, 2005). In each sample size and
under every cue-property condition, the results were based on
1,000,000 cases (e.g., for a sample size of 200 objects, 5,000
random samples were run). The average predictive sensitivity
of each model over the 18 cue-property conditions is shown in
Figure 9.

Three major results can be observed: First, the majority model’s
predictive sensitivity is unaffected by sample size, an indication
that it does not have a tendency to overfit and is extremely robust.
This result may appear surprising, because the model orders cues
according to their d� values, and any misestimation of the order

might reduce its predictive sensitivity. However, cue order actually
has no effect on the sensitivity of this model, as any search order
in a trial will lead to the same decision.10

Second, the predictive sensitivity of the FFTs is close to that of
the majority model and varies little across different sample sizes,
indicating that FFTs are very robust as well. For the strictly liberal
and conservative FFTs, sample size has no effect on their predic-
tive sensitivity whatsoever; the sensitivity of these FFTs, like that
of the majority model, is totally insensitive to cue orders. For the
two less biased FFTs, their predictive sensitivity increases gradu-
ally with sample size. Our previous analysis has shown that mis-
placing the first cue in these two FFTs generally reduces their
sensitivity (see Study 2). Because such an error is more likely to
occur when sample sizes are small, this result was expected. What
came as a surprise to us are the rather limited performance gains
that accrue as sample size increases from 20 to 2,000. Apparently,
it is not too difficult to sort out which cues to search first even
when sample size is extremely small.

Finally, the predictive sensitivity of the ideal model responds
dramatically to increasing sample size and does not surpass that of
the other two models until sample size reaches 200. As the ideal
model requires estimates for a large number of parameters, it tends
to overfit the data, a characteristic shared by many complex
models (e.g., Myung et al., 2000).11

Expected Value

To measure a model’s expected value, decision payoffs must be
specified. Table 3 shows three payoff conditions, in which the
value of a decision outcome is expressed in generic, measurement-
free units. Across the three conditions, the positive values or
rewards for the two correct decisions, V(Hit) and V(CR), are set to
be equal, but the negative values or penalties for the two incorrect
decisions, V(Miss) and V(FA), differ. They are set up in such a way
that to maximize expected value, the decision criterion should
gradually shift from being more liberal when the penalty for a miss
is higher than for an FA (Condition I), to unbiased when the
penalties for a miss and an FA are equal (II), and finally to more
conservative when the penalty for an FA is higher than for a miss
(III). The optimal likelihood ratio decision criterion �optimal in
each condition, shown at the bottom of Table 3, reflects the
shifting requirements.

In addition to decision payoffs, another factor related to ex-
pected value is the cost of cue search. We examined four cue-cost
conditions: (a) Cost � 0, in which there is no cost for acquiring cue
information; (b) Cost � d�, in which the cost of acquiring infor-
mation from a cue is the same as the cue’s d� value; (c) Cost � 1;
and (d) Cost � 2, where acquiring each cue costs 1 unit and 2
units, respectively. Because results from the last three conditions
share the same general pattern, differing from each other by fixed

10 Interested readers should consult Appendix B in Karelaia (2006) for a
more thorough treatment of why cue order does not affect the majority
model’s decisions.

11 We replicated all the predictive sensitivity analyses reported in this
section using the equal-split cross-validation method. The results, consis-
tent with those obtained using AP, are reported in the supplementary
materials.
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Figure 9. The predictive sensitivity of the three models: ideal, majority,
and fast-and-frugal trees (FFTs). For each sample size, the performance of
a model is averaged over 18 cue-property conditions (see text). Note that
because FFTnn and FFTns have the same predictive sensitivity as FFTss and
FFTsn, respectively, we only show the results of FFTss and FFTsn in the
figure.
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constants, only results from the Cost � 0 and Cost � d� conditions
are reported.

Expected values of FFTs. Before we compare the expected
value results across the models, we first examine the expected
value results for the FFTs, which are shown in Figure 10. The
expected value of an FFT in each Payoff � Cue-Cost condition
was calculated based on the average sensitivity of that FFT over
6,006 three-cue-property conditions. In the Cost � 0 condition, we
see that the expected values of an FFT can differ substantially
across the payoff conditions. The expected values of the strictly
liberal tree FFTss provide a case in point. In Payoff Condition I,
where the penalty for a miss is heavier than that for an FA and a
liberal decision criterion is preferred, the expected value of FFTss

is the highest among the four, with another liberal tree FFTsn

trailing closely behind. In Payoff Condition II, where a miss and an
FA are equally costly and a neutral decision criterion is preferred,
FFTss’s expected value is below that of the two less biased trees,
FFTsn and FFTns, and is the same as that of FFTnn. In Payoff
Condition III, where an FA now has a more severe consequence
than a miss and a conservative decision criterion is preferred,

FFTss lags far behind any of the other three FFTs in expected
value.

Expected values of the other FFTs all lead to the same general
pattern: An FFT’s expected value depends largely on the fit
between its decision criterion and the optimal decision criterion in
a specific task; the better the fit, the higher the expected value.
This pattern holds in the Cost � d� condition as well. The only
difference between an FFT’s expected values in the Cost � 0 and
Cost � d� conditions is the cost of cue search.

Because the decisions of FFTs may differ substantially in terms
of expected value, it is essential to select the type of FFT most
appropriate for a given payoff condition. In contrast to the preci-
sion required to set the optimal decision criterion �optimal in SDT,
all that is needed to select a proper FFT is the rough relative
consequences of the decision outcomes, especially the two deci-
sion errors. If one error, say miss, is obviously more consequential
than the other, a more liberally biased FFT, such as FFTss, would
be most suitable. If the two errors are roughly equally consequen-
tial, then a less biased FFT, such as FFTsn or FFTns, should be
preferred. Experiments have shown that although people’s deci-

Table 3
Values of the Four Decision Outcomes and the Optimal Likelihood Ratio Decision Criterion,
�Optimal, in Each of the Three Payoff Conditions

Decision outcome

Payoff condition

I (heavy penalty for miss) II (balanced payoff) III (heavy penalty for FA)

V(FA) �10 �10 �50
V(CR) 10 10 10
V(Hit) 10 10 10
V(Miss) �50 �10 �10
�optimal

a 0.33 1 3

Note. FA � false alarm; CR � correct rejection.
a �optimal was calculated based on the assumption that the prior odds ratio of noise to signal, P(N)/P(S),
equals 1.
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sion criteria often deviate from �optimal, the directions of those
criteria are generally consistent with �optimal (e.g., Erev, 1998;
Green & Swets, 1966); this directional knowledge is the most
critical requirement for selecting an FFT in a task.

Let us now look back at the CCU allocation tree (see Figure 4a),
which is an FFTsn with a relatively liberal decision bias. Besides
its good sensitivity (d� � 1.90), its decision bias also fits well to its
task of assigning patients reporting chest pain to either the CCU or
a regular nursing bed. In this task, a miss is when a patient at risk
for a heart attack is sent to a regular nursing bed, whereas an FA
is when a patient at low risk is sent to the CCU. For most people,
the cost of a miss will be more severe than the cost of an FA,
suggesting that a more liberal criterion is appropriate for this task.
Among the four types of FFTs, only an FFTss is more liberal than
an FFTsn. But, the markedly superior sensitivity of an FFTsn

compared to that of an FFTss (d� � 0.73) makes FFTsn clearly the
overall best choice in this particular task.

Model comparisons in expected value. Unlike the analysis
of FFTs’ expected values, the comparisons among models’ ex-
pected values are based on their predictive sensitivity. Because the
sensitivities of the FFTs and the majority model vary little, if at all,
across different sample sizes, the expected values of these two
models barely change when sensitivity is replaced by predictive
sensitivity as the basis for expected value. However, this is not the
case for the ideal model. The expected value of the ideal model is
the decision payoff calculated based on the model’s predictive
sensitivity—which, depending on the size of a sample, can be
much lower than its sensitivity—minus the total cue search cost
that is fixed in a cue-cost condition, given that the ideal model
always searches all cues. Calculating the expected value of the
OSS model, however, is more complicated.

Recall that the OSS model limits cue search by setting up two
stopping criteria �s and �n in addition to �optimal (see Figure 3).
Therefore, the OSS model must learn values of �s and �n that can
maximize expected value. There is no good analytic solution for
finding the optimal �s and �n, so these values must be found
numerically.12 Moreover, unlike the ideal model, cues must be
searched in a certain order in the OSS model. And unlike FFTs and
the majority model, the OSS model does not have to search in
cues’ d� order but in whichever order yields the maximum ex-
pected value in a given sample. Thus, in a three-cue situation, all
six cue orders must be considered. Finally, the OSS model needs
to estimate all the parameters estimated by the ideal model, be-
cause it updates information using the integrated likelihood ratio
LR(xt), whose value depends on knowing the distributional param-
eters of the cues.

Overall, it is a computationally demanding process to estimate
parameters for the OSS model from a sample. Considering that the
accumulative prediction procedure requires estimating all param-
eters afresh for each new case, it was quite time consuming to
derive the expected values of the OSS model.13 Limited by time
and the speed of our computers, we ran just one three-cue condi-
tion, in which di� � [2.0, 1.5, 1.0], � � 0.3, and ci � [0, 0, 0], to
compare expected values of the four models. Two decision payoffs
were implemented—balanced payoff (Condition II) and heavy
penalty for miss (Condition I), together with two cue-cost condi-
tions—Cost � 0 and Cost � d�. In each Payoff � Cue-Cost
condition, four sample sizes were examined: N � 20, 80, 200, and
2,000. The number of samples run under each sample size was set

so that a total of 100,000 samples were run for each (e.g., for N �
80, 1,250 samples).

The models’ expected value performances are shown in Figure 11.
In each payoff condition, only the expected values of two FFTs,
the two whose decision criteria fit better to the payoff condition,
are shown. From the figure, we see that the OSS and the ideal
models perform identically in the Cost � 0 conditions. Because the
OSS model does not need to set criteria to limit search when there
is no cost to sample cues, the expected value of the model depends
solely on its predictive sensitivity, as does that of the ideal model.
As a result, both models tend to overfit the data when sample size
is small and perform less well than the two FFTs until sample size
reaches 200. In the Cost � d� conditions, the OSS model does
perform better than the ideal model, mainly because of its mech-
anisms for limiting cue search. However, even more learning is
now required for the OSS model to outperform the two better
suited FFTs: Its expected value does not surpass that of the two
FFTs until sample size is very large (N � 2,000), a clear indication
that extensive learning is required for the OSS model to stably
estimate its many parameters.14

As was the case for predictive sensitivity, the majority model’s
expected value is not affected by sample size. Compared with the
two FFTs, the majority model performs equally well in the bal-
anced Payoff � Cost � 0 condition but worse when there is either
a heavy penalty for a miss or cue search becomes costly (Cost �
d�), and still worse when both factors are present (the heavy
penalty for Miss � Cost � d� condition). Because the majority
model on average searches more cues than the FFTs, it follows that
its expected value is affected more negatively by cue cost than the
FFTs’. The interesting result here is the generally poor perfor-
mance of the majority model in the condition where a biased
decision is desired. With a set of cues, unlike the decision criterion
of an FFT, which can be adjusted by rearranging the exit structure,
the decision criterion of the majority model is fixed. This inflex-
ibility may not cause a problem when the majority model’s deci-
sion criterion happens to be consistent with the demands of a
payoff condition; however, it is problematic when the payoffs
change and a different decision criterion is then required. Thus,

12 Analytical solutions are available for relatively simple situations in
which d� of each cue is the same and cues are independent (e.g., Rapoport
& Burkheimer, 1971). The difficulty of deriving an analytical solution
drastically increases for most cue-property conditions probed in this study;
therefore, we settled on a numerical method. Specifically, two parameters
bs and bn were used, so that ln�s � ln�optimal	 bs and ln�n � ln�optimal �
bn. We varied bs and bn from 0 to 2, with a step size of 0.1. Thus, 21 values
of each were tried, which resulted in 21 � 21 � 441 pairs of ln�s and ln�n.

13 For instance, it took one computer with a 2.66G-Hz Intel Core 2 Duo
CPU and 4GB internal memory about 20 min to finish running a sample of
80 cases in the Cost � d� condition. Therefore, it took us a total of around
420 hr to finish 1,250 samples with that sample size. In contrast, it took less
than 2 min to obtain the results of FFTs under the same condition. With 10
computers running simultaneously, it took us more than 3 weeks to get the
results of the OSS model reported in Figure 11.

14 Through experimenting with several sample sizes other than the ones
shown in Figure 11, we estimated that in the Cost � d� condition, it would
require a sample size of roughly 800 for the OSS model to perform as well
as the two better suited FFTs in the balanced payoff condition, and 1,500
in the heavy penalty for miss condition.
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given that one can select an appropriate FFT to use in a payoff
condition, FFTs perform better overall than the majority model in
expected value.

In general, the expected value of a model depends on the
model’s sensitivity or predictive sensitivity if learning is required,
on its frugality if cue search is costly, and on the ability of the
model to adjust its decision criterion in response to the payoff
structure of a task. Among the four models discussed here, the
majority model lacks a criterion-adjustment mechanism, and the
ideal model tends to search too many cues. Therefore, their ex-
pected values are generally lower than the other two models’. The
strength of the OSS model lies in its ability to strike a good balance
between accuracy and frugality with the consideration of all vari-
ables that may affect this trade-off, in addition to its ability to
select a decision criterion that matches perfectly to a task’s payoff
structure. Compared with the OSS model, with its arduous pursuit
for perfection, the FFTs are lazy models that work only hard
enough to find a satisfactory cue order and an exit structure that
fits reasonably well to the payoff structure. However, as we see
from Figure 11, the FFTs perform nearly as well as the OSS model
when sample sizes are fairly large, and are clearly better than the
OSS model when sample sizes are relatively small. Although we
investigated only one cue property condition, given the character-
istics of the models, we are confident that the general results

observed in this condition would be found in other conditions as
well.

Model Comparison Summary

In this study, we compared four models—FFTs, majority, ideal,
and OSS—in four aspects of performance: sensitivity, frugality,
predictive sensitivity, and expected value. FFTs perform similarly
to the majority model in sensitivity and predictive sensitivity but
are more frugal and can achieve expected values that are equal to
or higher than that of the majority model. Hence, FFTs trump the
majority model overall. The performances of the ideal model and
the FFTs demonstrate a clear trade-off: Whereas the ideal model
has higher sensitivity, the FFTs are more frugal. This trade-off is
to some extent mitigated when accuracy is measured in predictive
sensitivity instead of sensitivity. The ideal model trails behind the
FFTs in predictive sensitivity when sample sizes are small (less
than 200), because of both its tendency to overfit data and FFTs’
robustness to sampling noise. When cues are sampled without any
costs, the expected value of the ideal model is identical to that of
the OSS model. Whenever there are costs for cue search, however,
the expected value of the ideal model falls short of that of the OSS
model. As discussed above, FFTs prove again to be highly robust
when performance is measured in terms of expected value. They
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Figure 11. The expected values of four models: optimal sequential sampling (OSS), ideal, majority, and
fast-and-frugal trees (FFTs), in two Payoff � two Cue-Cost � four Sample Size conditions. The cue property
values are di� � [2.0, 1.50, 1.0], � � 0.3, and ci � [0, 0, 0]. Note that the performances of the OSS and ideal
models are identical in the Cost � 0 conditions, and the performances of FFTsn and FFTns are identical in the
balanced payoff conditions.
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outperform the OSS model even in conditions that provide abun-
dant learning opportunities (sample size larger than 500) for the
OSS model to estimate its parameters.

General Discussion

FFTs have been adopted to deal with decision problems in
various domains (e.g., Dhami, 2003; Fischer et al., 2002; Green &
Mehr, 1997; Super, 1984). Through the lens of SDT, our goal is to
understand FFTs’ basic properties, when they do well, and how
they can do even better. In Study 1, we found that systematic
differences in FFTs’ exit structures determine the relative differ-
ences in their decision criteria, according to the principle of lexi-
cographic decision bias. In Study 2, we examined how the sensi-
tivity of FFTs depends on the order of cues used to construct them
and the properties of those cues. The effect of cue orders is
summarized by the partial order invariance rule, which states that
switching the order of contiguous cues that share like exits does
not affect an FFT’s sensitivity. Once cues are ordered by their d�
values, an FFT’s sensitivity is in general positively related to the
mean and variance of cues’ individual d�s (�d� and Vard�), nega-
tively related to the intercue correlation (�), and scarcely affected
by the individual decision biases (ci) of the cues. In Study 3, we
compared FFTs with the majority, ideal, and OSS models. We
found that FFTs were frugal and robust, competing well with the
other models in terms of predictive sensitivity and expected value,
especially with smaller sample sizes.15 In the following, we dis-
cuss several topics related to the findings of our studies and FFTs
in general.

Ordering Cues by d� and Information Gain

Constructing a typical decision tree requires ordering cues
and pruning unnecessary exits (e.g., Breiman et al., 1984;
Dietterich, 2000; Quinlan, 1993). However, constructing an
FFT requires no pruning, because the number of exits is set, as
per its definition, leaving cue ordering the major concern. In
keeping with SDT, we ordered cues according to d�, which, to
the best of our knowledge, had not been tried before. Therefore,
it is of interest to know how such orders correspond to those
based on other cue-ordering indices, among which information
gain is probably the most popular (Quinlan, 1993). To connect
information gain and the two SDT measures d� and c, we ran a
series of analyses,16 which show that (a) unlike d�, information
gain depends on the prior odds of the two decision events, and
the closer these odds are to 1, the higher the information gain;
(b) a cue’s information gain can be predicted well by its d� and
c, with the effect of d� being more prominent; (c) in a three-cue
set, when cues’ decision criteria are randomly assigned, a d�
order is totally consistent with an information gain order around
67.5% of the time, whereas the two are completely at odds with
each other only about 3.5% of the time; and when the decision
criteria of the three cues are set to be equal, the two orders are
consistent with each other 100% of the time. Because cues’
decision criteria are unlikely to be either totally random or
exactly the same in a real task, these latter two extreme condi-
tions suggest that we should observe perfectly consistent cue
orders using the two indices between 67.5% and 100% of the

time. Such high consistency in ordering suggests that ordering
cues using either d� or information gain should lead to similar
performances of an FFT.

Ideal and Real Observers

Achieving the performance of the ideal observer model re-
quires precise knowledge of cue properties, availability of all
cue information, and abundant resources dedicated to cue in-
formation integration. Failure to meet any of those conditions
will result in a less than ideal performance. Participants who
have been trained to integrate information optimally in simple
tasks involving merely two cues failed to achieve ideal perfor-
mance even after hundreds of learning trials with timely and
accurate feedback (e.g., Ashby & Maddox, 1990, 1992). Yet the
demands of the ideal observer model pale in comparison to
those required by the OSS model. To achieve the maximum
expected value, the OSS model’s search for the optimal stop-
ping and decision criteria adds an extra burden of both knowl-
edge and processing. The exceptionally long time it took our
computers to find the optimal stopping criteria does not rule out
the plausibility of this model—after all, humans are known to
achieve feats no computers can match— but it surely does not
speak in its favor. Even if humans do make decisions using
models that share the same general elements as the OSS model
(see Figure 3), as some studies have argued (e.g., Busemeyer &
Townsend, 1993; Lee & Cummins, 2004; Lee & Dry, 2006;
Vickers, 1979), there is no evidence that the decision and
stopping criteria they adopt are optimal.

After years of research experience with the ideal observer
model, Wilson Geisler (2003), echoing Savage (1954), remarked
that

organisms generally do not perform optimally, and hence one
should not think of an ideal observer as a potentially realistic
model of the actual performance of the organism. Rather, the value
of an ideal observer is to provide a precise measure of the stimulus
information available for performing the task, a computational
theory of how to perform the task, and an appropriate benchmark
against which to compare the performance of the organism. (p.
825)

15 Part of our results in Studies 2 and 3 was derived on the basis of
the assumption that the signal and noise distributions are normal with
equal variances. We did explore some conditions with the variance ratio
different from 1 in Study 2 and found that such a change did not affect
the major results regarding the effects of cue properties on FFTs’
sensitivity, measured in either d’, which is a proper measure for
equal-variance normal distributions, or Az, which has been argued as a
more robust sensitivity measure (e.g., Rotello, Masson, & Verde, 2008;
Swets, 1986). These results can be found in the supplementary mate-
rials. Future studies could examine the robustness of our results more
thoroughly by systematically varying the variance ratio of the distribu-
tions and/or their forms.

16 Some results can be found in the online supplemental materials. For
the sake of brevity, we do not introduce the formula used to calculate
information gain. Oaksford and Chater (1996) and Nelson (2005) provide
introductions to information gain and examples of how it has been applied
in psychological research.
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The same can very well be said for the OSS model.17 Abandoning
the search for optimality, we see FFTs as alternative models
designed to deal with realistic constraints, employing search and
decision mechanisms that are simple, frugal, flexible, robust, and
transparent. FFTs in their various forms have already been adopted
by many experts in the field, be they paramedics (e.g., the START
triage system), pediatricians (e.g., Fischer et al., 2002), judges
(e.g., Dhami, 2003), and perhaps even professional burglars (e.g.,
Garcia-Retamero & Dhami, 2009).

Potential Applications of FFTs to SDT

We have looked at FFTs through the lens of SDT. What might
we learn by looking at SDT from the perspective of FFTs? Gig-
erenzer and Brighton (2009) conjectured that heuristics achieve
high predictive accuracy because, in part, bias in their predictions
protects them from perturbations in training samples. For FFTs,
such bias resides in the coarse nature of their search and decision
mechanisms. Specifically, search by FFTs requires only a rank
order of cues, and the decision criterion of an FFT is adjusted
discretely without taking account of the exact values of the deci-
sion payoffs and prior odds. Such coarseness might explain why
FFTs outperform the ideal observer and OSS models when param-
eters cannot be pinned down easily. We wonder whether these
models could benefit from forsaking their fastidious pursuit of
precision.

By lazily adjusting parameters in a coarse way, these optimiza-
tion models may achieve higher levels of predictive accuracy,
especially when sample sizes are small. Although exactly how to
implement a lazy parameter search is beyond the scope of the
present study, we offer some thoughts about how such a search
might proceed for the OSS model: (a) Instead of testing all pos-
sible cue orders, search cues only in the order of their d�s; (b)
ignore intercue correlations; (c) select the stopping criteria from a
limited pool of values—for instance, one might choose from five
criterion values that are “very stringent,” “stringent,” “intermedi-
ate,” “lax,” and “very lax” to correspond to task situations where
costs are “very high,” “high,” “medium,” “low,” and “very low,”
respectively; and (d) instead of estimating �optimal, the decision
criterion could be selected from a small set of criteria that corre-
spond to “heavy penalty for miss,” “balanced payoff,” and “heavy
penalty for FA” payoff conditions. Simplifications as such would
act as strong priors on the OSS model’s parameter values, reducing
its flexibility but potentially improving its performance for small
samples.

Variants of the Majority Model

The majority model has served as an alternative to the ideal type
of models in SDT (e.g., Sorkin et al., 2004; Sorkin, West, &
Robinson, 1998). We modified the model by adding a search rule;
that is, searching cues in d� order and stopping search when a
simple majority is reached. In addition, its decision criterion could
be adjusted by choosing the number of cues ks (for signal) and kn

(for noise) out of m cues needed to make a decision. In its current
form, the majority model in a three-cue situation uses the 2s–2n
rule—if two out of three cues agree on the same decision, a
decision is made, independent of cue order.

Alternatively, one could use a 2s–1n rule, which states that two
votes are needed to make an “s” decision while only one is needed
for an “n” decision. The change appears minor, but it can affect all
aspects of the majority model’s performance. First, the order of
cue search could affect the frugality and sensitivity of the model,
because the first cue searched influences how quickly and accu-
rately a noise decision will be made. Second, assuming that cues
are still searched by their d� order, the sensitivity of the model will
likely change, although whether it would be better or worse than
the 2s–2n rule is uncertain. Third, because the rule makes it easier
to make a noise decision, it leads to a more conservative decision
bias compared with the 2s–2n rule. Thus, in payoff conditions
where a more conservative bias is desired (e.g., there is a heavier
penalty for an FA than a miss), the 2s–1n majority model may
outperform the 2s–2n version we tested.

Some majority models with other decision rules turn out to be
identical to FFTs. For instance, with three cues, the 3s–1n and
3n–1s versions of the majority model are the same as FFTnn and
FFTss, respectively. Thus, despite differences in how the models
are framed and in what domains they are commonly applied, clear
connections can be drawn between these two types of decision
models. From our perspective, understanding how the variants of
the majority model perform will be an interesting and highly
relevant extension of the present study.

Theory Integration: Connecting Paradigms

In psychology, the goal of bridging different theories is rarely
pursued. As Walter Mischel (2009) put it, many psychologists still
tend to treat theories like toothbrushes—no self-respecting person
wants to use anyone else’s. We see this article as an exercise in
theory integration, bridging small and large worlds and corre-
sponding optimizing and satisficing theories. When we began our
analysis, we were unsure whether SDT and FFTs, two apparently
disparate theories, would have much in common. Even now, we
still find it surprising that the key concepts of SDT can be found
in the structure of FFTs, albeit represented by different processes,
such as the choice of an FFT’s exit structure setting its decision
criterion. We hope that this step toward conceptual integration will
prompt others to search for hidden features shared between seem-
ingly distinctive psychological theories. Whereas borrowing tooth-
brushes can indeed be dangerous, or at the very least distasteful,
sharing theories can be a healthy practice, contributing to more
coherent and unified theory in psychology.

17 It should be noted that we have limited our discussion to the optimal
sequential sampling model (i.e., OSS). Various nonoptimal sequential
sampling models exist and provide good accounts for plenty of behavioral
results (e.g., Lee & Corlett, 2003; Lee & Dry, 2006; Vickers, 1979). In
general, those models make simplifying assumptions about the distribu-
tional properties of the cues and how the stopping criteria are learned and
set.
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Appendix A

Proof of the Lexicographic Decision Bias Property of FFTs

We prove here that the hit rate of the tree FFT��s�� is no lower than that of the tree FFT��n��. Assume that
the first differentiating cue is the kth cue in a sequence of m cues. Before that cue, the two trees have identical
exits (represented by ��); after that cue, the two may or may not have identical exits (represented by ��). The
hit rate of each of the two trees can be expressed by a three-component equation:

FFT��s��: �
1

k�1

P(Hit) 	 P(Hit)k 	 �
k	1

m

P�Hit�

FFT��n��: �
1

k�1

P(Hit) 	 0 	 �
k	1

m

P(Hit).

Because the two trees are identical in their first components and P(Hit)k of FFT��n�� is 0, if the second

component P(Hit)k of FFT��s�� is no lower than the third component �
k 	 1

m

P�Hit� of FFT��n��, the overall hit

rate of FFT��s�� should be no lower than that of FFT��n��. P(Hit)k of FFT��s�� is equal to P�(xsk 
 xck) � �
,

in which � represents all objects that have yet to be classified before the kth cue. �
k	1

m

P�Hit� of FFT��n�� can

be expressed by the following equation:

�
k	1

m

P(Hit) � P��xsk � xck� � exit�k	1� � �
 � P��xsk � xck� � exit(k	1�
† � exit�k	2� � �
 � . . .

� P��xsk � xck� � exit}�k	1�
† � exit(k	2�

† � . . . � exitm � �].

In the equation, each component on the right-hand side represents the hit rate of a cue, from the (k 	 1)th
cue onward. For all components, if it is an “n” exit on the ith cue, exiti � A and exiti

† � (xsi 
 xci); and if
it is an “s” exit, exiti � (xsi 
 xci) and exiti

† � (xsi � xci). Because each component is mutually exclusive and
all are subsets of P�(xsk 
 xck) � �
, their summation cannot be greater than P�(xsk 
 xck) � �
, which is P(Hit)k

of FFT��s��. Therefore, it is proved that �
k	1

m

P�Hit� of FFT��n�� cannot be greater than P(Hit)k of FFT��s��;

and the overall hit rate of FFT��s�� cannot be lower than that of FFT��n��.
By replacing the term xs with xn and following the same steps as above, the FA rate of FFT��s�� can also

be proved to be no lower than that of FFT��n��.

Appendix B

Deductions of Models’ Sensitivity and Frugality

The deductions of an FFT’s sensitivity (d�) and frugality are demonstrated through the example of FFTsn.
First, to calculate the d� of FFTsn, we need to know its hit and FA rates. The P(Hit) and P(FA) of FFTsn are
calculated through the following equations:

P�Hit�FFTsn � P�xs1 � xc1� � P��xs1 � xc1� � �xs2 � xc2� � �xs3 � xc3�


P�FA�FFTsn � P�xn1 � xc1� � P��xn1 � xc1� � �xn2 � xc2� � �xn3 � xc3�


The value of each probability component on the right-hand side of the equations can be obtained with the
knowledge of xci and the parameter values of the two multivariate normal distributions of the cues. The
frugality of FFTsn (F) is calculated through the following equation:

(Appendices continue)
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FFFTsn � P�S� � �1 � P�xs1 � xc1� � 2 � P��xs1 � xc1� � �xs2 � xc2�
 �
3 � P��xs1 � xc1� � �xs2 � xc2�
 � �

P�N� � �1 � P�xn1 � xc1� � 2 � P��xn1 � xc1� � �xn2 � xc2�
 �
3 � P��xn1 � xc1� � �xn2 � xc2�
 �

P(S) and P(N) are the prior probabilities of signal and noise, respectively. The sensitivity and frugality of other FFTs can
be worked out in similar ways.

The deductions of the majority model’s sensitivity and frugality are demonstrated through the case where m (total number
of cues) is 3 and k (the simple majority number) is 2. As with FFTs, to calculate the d� of the majority model, we need to
calculate its hit and FA rates first. These two probabilities are

P�Hit�Majority � P��xs1 � xc1� � �xs2 � xc2�
 � P��xs1 � xc1� � �xs2 � xc2� � �xs3 � xc3�


� P��xs1 � xc1� � �xs2 � xc2� � �xs3 � xc3�


P�FA�Majority � P��xn1 � xc1� � �xn2 � xc2�
 � P��xn1 � xc1� � �xn2 � xc2� � �xn3 � xc3�


� P��xn1 � xc1� � �xn2 � xc2� � �xn3 � xc3�


The frugality of this particular majority model is

FMajority � P�S� � � 2 � �P��xs1 � xc1� � �xs2 � xc2�
 � P��xs1 � xc1� � �xs2 � xc2�
� �
3 � �P��xs1 � xc1� � �xs2 � xc2�
 � P��xs1 � xc1� � �xs2 � xc2�
� � �

P�N� � � 2 � �P��xn1 � xc1� � �xn2 � xc2�
 � P��xn1 � xc1� � �xn2 � xc2�
� �
3 � �P��xn1 � xc1� � �xn2 � xc2�
 � P��xn1 � xc1� � �xn2 � xc2�
� �

Similar equations can be developed to calculate other majority models’ sensitivity and frugality when m and
k take values other than 3 and 2. The Matlab code used in our study to derive the sensitivity and frugality of
the FFTs and those of the majority model can be found in the online supplemental materials.

The frugality of the ideal model is always the total number of cues m. An equation was developed by Sorkin
and Dai (1994) to calculate the ideal d� of m cues directly:

d�Ideal � �m � Vard�

1 � �
�

m � �d�
2

1 � � � �m � 1�

In the equation, Vard� and �d� are the variance and mean of the cues’ individual d�s, and � is the uniform
intercue correlation of the cues.
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