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Abstract

Learning by following explicit advice is fundamental for human cultural evolution, yet the neurobiology of adaptive social
learning is largely unknown. Here, we used simulations to analyze the adaptive value of social learning mechanisms,
computational modeling of behavioral data to describe cognitive mechanisms involved in social learning, and model-based
functional magnetic resonance imaging (fMRI) to identify the neurobiological basis of following advice. One-time advice
received before learning had a sustained influence on people’s learning processes. This was best explained by social
learning mechanisms implementing a more positive evaluation of the outcomes from recommended options. Computer
simulations showed that this ‘‘outcome-bonus’’ accumulates more rewards than an alternative mechanism implementing
higher initial reward expectation for recommended options. fMRI results revealed a neural outcome-bonus signal in the
septal area and the left caudate. This neural signal coded rewards in the absence of advice, and crucially, it signaled greater
positive rewards for positive and negative feedback after recommended rather than after non-recommended choices.
Hence, our results indicate that following advice is intrinsically rewarding. A positive correlation between the model’s
outcome-bonus parameter and amygdala activity after positive feedback directly relates the computational model to brain
activity. These results advance the understanding of social learning by providing a neurobiological account for adaptive
learning from advice.

Citation: Biele G, Rieskamp J, Krugel LK, Heekeren HR (2011) The Neural Basis of Following Advice. PLoS Biol 9(6): e1001089. doi:10.1371/journal.pbio.1001089

Academic Editor: Tim Behrens, University of Oxford, United Kingdom

Received January 9, 2011; Accepted May 9, 2011; Published June 21, 2011

Copyright: � 2011 Biele et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding provided by the Max Planck Society and the German Federal Ministry of Education and Research. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Abbreviations: AIC, Aikake information criterion; BIC, Bayesian information criterion; BOLD, blood-oxygen level-dependent; fMRI, functional magnetic resonance
imaging; MPFC, medial prefrontal cortex; OFC, orbitofrontal cortex; VMPFC, ventromedial prefrontal cortex; VST, ventral striatum.

* E-mail: g.p.biele@psykologi.uio.no

Introduction

The nature and level of social learning in human societies is

unmatched in the animal world. Especially when decisions are

difficult, people rely on advice or recommendations regarding a

decision or course of action [1]. Accumulating knowledge through

social learning (particularly advice taking) is uniquely human and

fundamental to the evolution of human culture [2–4], and it is

plausible that genetic adaptations to social learning evolved in

humans [5]. Cumulative social learning strongly relies on advice

taking, which transmits social information more reliably than

imitation or observational learning. For the individual, heeding

advice can be especially useful when mistakes are costly and social

information is accurate [4,6]. Accordingly, advice taking affects

many domains of learning and decision making, such as

cooperation [6,7], financial decisions [8], or consumer behavior

[9]. For instance, people do not discover a healthy diet by trial and

error but combine recommendations from others with their own

experiences to choose their meals.

The influence of advice and social learning in general does not

require direct personal interaction but can be observed in

situations where social information is transmitted by observation

or by written or spoken advice [10–12]. Recent fMRI experiments

provided the first insights into the neurobiological mechanisms

underlying social learning. Social prediction error signals are used

to learn about the probability of good advice from advisors with

sometimes cooperative and sometimes uncooperative motives [13]

and determine to what extent initial judgments are adjusted based

on social information [14]. However, these results do not provide a

mechanistic explanation for the often-observed sustained influence

of advice or, more generally, the human propensity for social

learning. In particular, it remains unclear if and how the brain

implements an adaptive social learning mechanism to combine

supportive advice with individual information gained through

personal experience.

Reinforcement learning models [15] can provide hypotheses

about the influence of advice on decision making, especially when

decisions are based on past experiences. These models specify

distinct sub-mechanisms of learning, such as the initial evaluation

of choice options or the repeated evaluation of choice outcomes,

which have different behavioral [16] and neuronal signatures [17]

that may be separately influenced by advice. Behavioral studies

have shown that the human propensity for following advice could

be explained by its influence on the evaluation of outcomes rather

than on initial reward expectations or choice processes [12,18].

This influence is described best by an outcome-bonus model [12],

which postulates a learning mechanism in which a reward bonus is

added to both good and bad outcomes of recommended options.

More specifically, rewards from recommended options lead to

stronger positive reinforcements than rewards with the same
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objective value from alternative, non-recommended options.

Correspondingly, punishments from recommended options inhibit

the choice of that option less than punishments with the same

objective disutility from non-recommended options. In fact, when

the punishment from a recommended option is smaller than the

size of the outcome-bonus, the punishment may still lead to a

positive reinforcement. The behavioral evidence in favor of the

outcome-bonus model suggests that the neurobiological imple-

mentation of advice-following relies on the brain’s reward system.

Neurophysiological experiments in monkeys and fMRI experi-

ments in humans [15,19] consistently report reward representation

in targets of dopaminergic midbrain projection neurons. Positive

outcomes (rewards) elicit an increase in blood-oxygen level-

dependent (BOLD) responses in the ventromedial prefrontal

cortex (VMPFC) [20,21], the medial prefrontal cortex (MPFC)

[22,23], the amygdala [24], and the ventral striatum (VST) [25–

27]. Of particular interest in the context of social learning is the

septal area, because it signals reward [28] and triggers release of

oxytocin [29], which in turn is known to enhance trusting behavior

[30]. Hence, we predicted that positive outcomes from a

recommended decision would lead to greater positive BOLD

responses than positive outcomes from non-recommended deci-

sions in these reward sensitive regions. Furthermore, whereas

negative outcomes should lead to a negative BOLD response after

choosing a non-recommended option, negative outcomes after

choosing a recommended option should lead to an attenuated

BOLD response decrease or even to a positive BOLD response.

Based on these predictions, we investigated if and how the

outcome-bonus is implemented in the brain. In addition, we

compared computational models and used simulations to test

whether the outcome-bonus model provides the best explanation

of behavior and if it is an adaptive social learning mechanism. We

show that, compared to alternative social-learning mechanisms,

the outcome-bonus is more adaptive and can better account for

the observed behavior. Moreover, we identified a neural outcome-

bonus signal in the septal area and the left caudate.

Results

Sustained Influence of Advice Is Explained by the
Outcome-Bonus

Participants in the experiment learned that advice (i.e., a form

on which the advisor marked which option the advice receiver

should choose) was given from a second group of participants, who

had previous experience with the task and were motivated to give

good advice (see Figure 1 and Text S1 for details). Of the 21

participants, 16 received good advice. Regardless of good or bad

advice, participants chose the recommended deck (41.5% of all

choices) twice as often as they chose the non-recommended deck

with the same payoff distribution (21.5% of all choices; p,.0001).

Notably, this effect of advice was not limited to the beginning of

the experiment, but rather was sustained; Figure 2A shows that

participants robustly preferred the recommended deck to the non-

recommended deck with the identical payoff distribution through-

out the entire experiment. This result is consistent with the

outcome-bonus but not with the assumption that advice influences

only the evaluation of choice options prior to individual learning.

In the first half and, to a lesser extent, the second half of the

trials, recipients of good advice chose the good decks more

frequently than recipients of bad advice. The fact that this effect is

greater in the first half (p = .039, effect size r = .39) than in the

second half of the experiment (p = .137, effect size r = .25) indicates

that bad advice harmed learning more during the first half of the

experiment (c.f. Figure S2). The relatively weaker influence of bad

advice in the second half of the experiment shows that decisions

were made based on a combination of advice and individual

learning, because only individual learning by the participants

receiving bad advice can explain why they performed nearly as

well as receivers of good advice in the second half of the

experiment.

We evaluated the outcome-bonus model quantitatively by

comparing it with alternative models based on standard model

selection criteria. The results provide strong empirical support for

the outcome-bonus mechanism as essential to explain social

learning. In particular, we derived the Bayes factor from the

Bayesian information criterion (BIC) [31]. With this model

selection criterion, we found strong evidence in favor of the

outcome-bonus model and a combined model implementing an

outcome-bonus and higher initial reward expectations for the

recommended deck (henceforth prior+outcome-bonus model).

Figure 2B illustrates that, when considering the models’ Bayes

factors, these models predict the observed behavior equally well

and much better than alternative models. Additionally, we

compared the models by their Akaike information criterion

(AIC) as an additional model selection criterion. Here, the

prior+outcome-bonus model was the best model. Moreover,

comparing the outcome-bonus, the prior, and the prior+out-

come-bonus model against each other illustrates that removing the

assumption of an outcome-bonus hurts the model fit more than

removing the prior. When comparing the AIC (or BIC) values of

the prior, the outcome-bonus, and the prior+outcome-bonus

models with eight alternative models on a participant-by-

participant level, the prior model is on average better for 59.7%

(or 57.6%) of participants, the outcome-bonus model for 62.3% (or

64.4%), and the prior+outcome-bonus model for 67.1% (or

47.5%) (see Text S1 for details). Like the previous model

comparison results, these comparisons underline the relevance of

the outcome-bonus mechanism.

Simulated learning paths of the models illustrate that the

outcome-bonus model, but not the prior model, predicts our key

behavioral result, namely the sustained effect of advice on

Author Summary

Learning by following advice is fundamental for human
cultural evolution. Yet it is largely unknown how the brain
implements advice-taking in order to maximize rewards.
Here, we used functional magnetic resonance imaging
(fMRI) and behavioral experiments to study how people
use one-off advice. We find that advice had a sustained
effect on choices and modulated learning in two ways.
First, participants initially assumed that the recommended
option was most beneficial. Second, and more importantly,
gains and losses obtained after following advice received
an ‘‘outcome-bonus,’’ in which they were evaluated more
positively than after not following advice. In other words,
following advice was in general intrinsically rewarding.
Computer simulations showed that the outcome-bonus is
adaptive, because it benefits from good advice and limits
the effect of bad advice. The fMRI analysis revealed a
neural outcome-bonus signal in the septal area and left
caudate head, structures previously implicated in trust and
reward based learning. Participants with greater outcome-
bonuses showed a greater gain-signal increase after
following advice in the amygdala, a structure implicated
in processing emotions and social information. In sum,
these results suggest that decision makers adaptively
combine advice and individual learning with a social
learning mechanism in which advice modulates the neural
reward response.
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participants’ behavior (c.f. Figures 2A and 3B). It might appear

counterintuitive that the outcome-bonus is assumed to stay

constant throughout the learning process. However, dynamic

versions of the outcome-bonus model and the prior+outcome-

bonus model, in which the outcome-bonus increases with time

after good advice and decreases with time after bad advice,

describe learning more poorly than the models using a constant

outcome-bonus. Alternatively, advice could only influence the

evaluation of gains or losses. These alternative models, however,

again fitted the observed learning processes less well than the

original outcome-bonus model (see Text S1 for details). In sum,

regardless of the model selection criterion, the change of prior

evaluations of options and more importantly the outcome-bonus

mechanism are crucial constituents of descriptive social learning

models for the influence of advice on learning. Because the

prior+outcome-bonus model explained the data altogether best,

we used predictions and parameters of this model in the fMRI

analysis.

The Outcome-Bonus Is an Adaptive Social Learning
Mechanism

The outcome-bonus mechanism may be crucial to explain

learning processes because it helps people to solve the learning task

successfully. Indeed, when advice is more likely to be good than

bad and the task is difficult and long (as was the case in our

experiment), the outcome-bonus model is generally more adaptive

(i.e., leading to higher average rewards) than the prior model

because it ensures a lasting influence of good advice.

Beyond this basic insight, the simulation results depicted in

Figure 3A show that, when good and bad advice are equally likely,

the outcome-bonus model performs worse than the prior model

only in a situation where at the same time (a) learning is difficult,

and (b) the outcome-bonus is so large that recommended bad

options are evaluated more positively than the objectively good

options. Crucially, however, Figure 3A also shows that, in most

situations, the outcome-bonus model outperforms the prior model

when good and bad advice is equally likely. When advice is bad,

the outcome-bonus model performs better because the prior model

learns only late—after the wrong initial expectation for the

recommended deck has been unlearned—which options are best

(c.f. inset in Figure 3B). The advantage of the outcome-bonus

model after bad advice is particularly strong for easier tasks where

individual learning is relatively successful, because it does not

interfere strongly with individual learning, whereas the prior does

(see also Text S1). When advice is good, the outcome-bonus model

performs better because it leads to a preference for a good option

long after the effect of higher initial expectations has decayed (c.f.

Figure 3B).

The superiority of the outcome-bonus model is notable, as the

prior model resembles more a Bayesian approach, in which advice

as prior information should influence the initial evaluation of

choice options. However, whereas the prior model learns the

expected values more accurately in the long run, cumulative

rewards do depend on the choices made based on the learned

values. The sustained overestimation of the rewards from a good

option implemented by the outcome-bonus model (after good

advice) helps to make the choice of that option occur more

frequently and ultimately helps to accumulate more rewards.

Following Advice Modulates BOLD Responses in the
Reward System

We used fMRI to test the prediction that rewards from

recommended versus non-recommended options would lead to

greater BOLD responses in reward-sensitive brain regions.

Regions implementing the outcome-bonus (outcome-bonus re-

gions) should fulfill two conditions. First, when advice is followed,

gains should lead to a greater increase in BOLD signals and losses

should lead to a smaller decrease in BOLD signals (compared to

Figure 1. Experimental design. The task implemented key features of a realistic social learning situation, in which the learner receives well-
intentioned advice prior to individual learning, but good advice is not certain. (A) In the learning task, participants repeatedly chose from one of four
card decks associated with different gains and losses (c.f. Figure S1), with the goal of maximizing cumulative rewards. Each trial started with the
presentation of the four decks. Participants had 2.5 s to choose a deck. After a variable fixation interval, feedback was presented for 2.5 s. (B) Advisors
performed the 4-armed bandit task in the laboratory and indicated their advice on a form, which advice-receivers obtained before performing the
task in the scanner.
doi:10.1371/journal.pbio.1001089.g001
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when not following advice). Second, when advice is not followed,

outcome-bonus regions should be gain-preferring; that is, these

regions should show a regular reward signal with an increased

positive BOLD signal after gains and a reduced BOLD signal after

losses [32]. Only one cluster comprising the septal area and the left

caudate head showed the predicted effect of advice (max. z-score

= 3.49; Montreal Neurological Institute [MNI] coordinates: x = 4,

y = 2, z = 4; see Figure 4A and 4B) and was also gain-preferring,

suggesting that this region implements the outcome-bonus. This

outcome-bonus implementation cannot be explained in terms of

different payoff distributions of the good and bad options because

the experiment was designed such that good and bad decks were

equally likely to lead to gains or losses (although the magnitudes of

gains and losses differed). Moreover, because our fMRI analysis

controlled for both different gain and loss magnitudes of good and

bad options as well as different prediction error magnitudes of the

advice and no-advice condition, the result can neither be ascribed

to the fact that advisors recommended good options more

frequently than bad options nor to differences in prediction errors

elicited by feedbacks from the different choice options.

For more detailed insights into how the brain evaluates

outcomes that are dependent on advice, we contrasted feedback-

related BOLD responses separately for gains and losses in reward

signaling regions after following and not following advice (see

Figure 4C and 4D, and Text S1). For losses, we found greater

BOLD responses after following advice in two gain-preferring

regions: the VMPFC (max. z-score = 3.35; x = 210, y = 52,

z = 218) and the left caudate (max. z-score = 3.23; x = 216,

y = 20, z = 26). However, these regions did not provide a complete

outcome-bonus signal because the BOLD response to positive

feedback was not greater after following advice. One cluster in the

orbitofrontal cortex also showed a weaker BOLD signal reduction

for losses after following advice (max. z-score = 3.35; x = 16,

y = 28, z = 212), but voxels in this region were not gain-preferring.

For gains, we found that the difference between activity in the left

amygdala after following or not following advice correlates with

the outcome-bonus parameter of the prior+outcome-bonus model

(max. z-score = 3.02; x = 226, y = 24, z = 214), suggesting that

the amygdala also implements the outcome-bonus.

To investigate how advice modulates standard brain responses

to rewards, we investigated advice-dependent changes in brain

regions that showed greater activity after not following advice for

gains compared to losses. Such reward signals were identified in

the VMPFC, the ventral striatum (VST), and the right insula. The

parameter estimates of these regions for gains and losses after

following and not following advice show that advice led to an

attenuation of the BOLD response in the VMPFC and VST, such

that gain and loss signals are closer to the baseline BOLD response

after advice was followed (see Figure 5).

To check the robustness of the neural outcome-bonus signal

resulting from the effect of advice, we performed supplementary

fMRI analyses. First, the above described analysis did not reveal a

Figure 2. Behavioral and modeling results. (A) Participants’ average choice proportions (running average of 11 trials 62 standard errors) for the
recommended and the non-recommended corresponding deck. This sustained influence of advice is consistent with the outcome-bonus mechanism,
but not with the assumption that advice influences only the evaluation of choice options prior to individual learning (see below for detailed
description of the social learning models). (B) The panel shows Bayes factors comparing the two models with the lowest Bayesian information
criterion (outcome-bonus model and prior+outcome-bonus model) with the other models. The Bayes factor shows how much more likely the two
best models are as compared to the model in the respective row. For instance, the last row shows that the prior+outcome-bonus model is about 30
times and the outcome-bonus model is about 40 times more likely than the individual learning model. Models assuming the influence of advice on
evaluation of either gains or losses performed worse than the original outcome-bonus model. Moreover, more complex models implementing a
dynamic outcome-bonus do not predict the data better than the simpler models with stable outcome-bonus. The inset (same order of models on the
x-axis) shows that these results also hold when using the Akaike information criterion (AIC) as a model selection criterion. Because the AIC imposes
smaller penalties for additional free parameters (for our sample size), models with a dynamic outcome-bonus perform better according to the AIC
criterion. In sum, regardless of the model selection criterion, an outcome-bonus and a prior mechanism are implemented in the best models, but a
dynamic or payoff-selective outcome-bonus mechanism is not.
doi:10.1371/journal.pbio.1001089.g002
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correlation between BOLD responses and prediction errors, likely

because it included separate regressors for positive versus negative

payoffs, which captured the variance associated with positive

versus negative prediction errors. Indeed, a supplementary fMRI

analysis tailored to reveal a prediction error signal identified

correlations with prediction errors in the VST (Figure S6A).

Importantly, this analysis also revealed the above reported effect of

advice on reward signals in the septal area and the left caudate

head (Figure S6B). Second, to further investigate the existence of a

sustained effect of advice on learning and the neural correlates

underlying this effect, we performed another fMRI analysis that

tested whether the outcome-bonus changed from the first to the

second half of the trials in which advice was followed. Consistent

with our modeling results showing that models with a dynamic

outcome-bonus do not explain behavior substantially better than

models with a constant outcome-bonus, we did not find a change

in the neural outcome-bonus signal in the septal area over time.

However, we found reduced BOLD responses for feedback after

following advice in the paracingulate gyrus and the superior

temporal sulcus (see Figures S7 and S8 for details), which are

commonly associated with theory-of-mind processes and trusting

behavior [33,34].

Discussion

Taken together, behavioral, modeling, simulation, and neuro-

imaging data provide strong convergent evidence for a sustained

effect of well-intentioned advice on decision making, which can be

explained by an outcome-bonus model for following advice.

Behavioral data showed that advice had a long-lasting influence on

decision making and learning. Simulations suggest that the

outcome-bonus is an adaptive social learning mechanism in a

broad range of social learning environments. The model

comparison showed that the outcome-bonus is necessary to

explain the behavioral effect of advice. fMRI data supported this

conclusion, as advice modulated reward-related brain activity so

that the gain-sensitive septal area and the left caudate head

showed a greater reward signal after following rather than not

following advice; even negative outcomes elicited a positive reward

response when advice was followed.

One feature of the experiment was that participants controlled

when to follow advice, so that advice-following trials were not

randomized across the experiment. Hence, additional factors

might have influenced the observed differences between following

and not following advice. Future experiments that randomly

interleave trials of tasks with and without advice should further

investigate this issue.

Still, the current experiment allowed us to rule out a number of

alternative mechanisms that could a priori explain advice

following. Among these, the brain could provide a greater

expected reward signal for the recommended option. Alternative-

ly, choosing the non-recommended option could be associated

with anticipated regret, or negative feedback for the recommended

option could lead to particularly strong regret. Moreover,

outcomes from the recommended option could be processed with

greater attention. Our behavioral and fMRI results do not support

Figure 3. Adaptive value of social learning models. We used computer simulations to compare the average rewards gained by the prior model
and the outcome-bonus model when performing a 4-armed bandit task with 100 trials after receiving advice about which bandit has the highest
payoffs. To examine the models’ performance over a range of learning settings, simulations were repeated for different task difficulties, levels of social
influence, probabilities of correct advice, and learning parameters (see Text S1). (A) Difference in average payoffs across learning environments for
50% good advice. Each cell depicts the difference in average payoffs of the two models for a particular combination of task difficulty and social
influence. The difference was computed from 1,000 simulated learning tasks for each model, whereby each model received good advice in half of the
tasks. Difficulty, defined as difference in mean payoffs divided by payoff variance, is varied on the y-axis. Social influence, defined as either the
magnitude of outcome-bonus (bb) or higher initial reward expectation for the recommended option (bp), is varied on the x-axis. The outcome-bonus
model is more likely to choose a highly rewarded option (and thus accumulates most reward) for most levels of task difficulty and social influence,
with exception of the combination of bad advice in a difficult task with strong social influence. (B) Learning curves show that the outcome-bonus
model is better because it profits from good advice in the long run, even if individual learning already leads to a clear preference for a good bandit.
The inset depicts cumulative rewards for both models. After bad advice, cumulative payoffs are reduced less for the outcome-bonus model
compared to the prior model (see inset). In contrast, the prior model does not profit from good advice in the long run, and cumulative payoffs are
greatly reduced after bad advice (see also Figures S3–S5). The inset also highlights that bad advice harms the prior model because it abolishes
choices of the better option until the prior expectation induced by advice has been unlearned.
doi:10.1371/journal.pbio.1001089.g003
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Figure 4. Neural basis of an outcome-bonus after following advice. (A) Feedback after following advice led to greater activity in the left
caudate head and septal area. (B) Parameter estimates (PE) of the General Linear Model analysis suggest that the outcome-bonus is implemented in
the septal area and left caudate as a greater increase in BOLD signal for gains and as a smaller decrease in BOLD signal for losses after following

The Neural Basis of Following Advice
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these alternative hypotheses. First, the decision phase was not

characterized by a greater reward anticipation signal in the VST

or the VMPFC when participants chose the recommended deck.

Rather, the change in BOLD signal in a number of brain regions

was smaller when choices were made and advice was followed (see

Figure S9). This replicates the findings of an earlier study, which

examined the effect of advice on investment decisions [35] and

reported reduced activity in decision-related regions during advice

trials. We did not find a greater change in the BOLD signal in

regret-associated regions like the anterior cingulate cortex or the

orbitofrontal cortex [36] during the choice or during the

processing of negative feedback from non-recommended decks.

Our fMRI results are also inconsistent with an attention account

as we found that the reward signal in the VMPFC, as identified by

contrasting gains and losses after not following advice, had a

greater magnitude after not following compared to following

advice. Similar results were reported for a study that compared

orbitofrontal reward signals of self-determined and instructed

choices [37]. Finally, simple attention effects cannot be reconciled

readily neither with our behavioral finding that participants still

learn which of the non-recommended decks is better nor with the

notion that they prefer the recommended to the non-recom-

mended of two options with the same expected value. Instead, our

results suggest that advice modulates reward processing in two

ways. First, the standard reward signal in the VMPFC and VST is

attenuated. Second, the septal area and the left caudate head

implement an outcome-bonus for recommended options. Impor-

tantly, the outcome-bonus signal does not replace the standard

reward signal but seems to influence learning in addition to an

attenuated standard reward signal.

Prior neuroimaging research on decision making in social

contexts addressed the differences between social and nonsocial

cognition [38] and the computational processes underlying

decision making and learning in a social context [39]. Notably,

recent studies showed that a social prediction error signal predicts

future conformity with humans and computers [14] and that,

when advice is given on a trial-by-trial level during strategic

interaction, the brain tracks the quality of advice through social

reinforcement learning signals [13].

We discovered that, on a neurobiological level, the human

propensity for following trustworthy advice could be explained by

the modulation of the neural reward response. Importantly, the

outcome-bonus does not replace the standard reward signal.

Instead, it supplements a still present, though attenuated, learning

signal in the VMPFC and the VST (where a partial outcome-

bonus is implemented). More specifically, only the septal area and

the left caudate implement the full outcome-bonus signal. These

regions signaled a more positive evaluation of outcomes after

following advice and were also sensitive to rewards after not

following advice. Notably, the septal area is ideally suited as the

neural substrate of the outcome-bonus, because it contains

neurons that mediate reinforcement [28] and project to nuclei in

the hypothalamus that release oxytocin [29], a neurotransmitter

known to facilitate trust [30]. Accordingly, a recent study showed

greater activity in the septal area during trusting behavior [34].

Hence, our findings suggest that an intrinsic reward signal in the

Figure 5. Advice modulated the standard BOLD response to rewards. (A) Regions showing greater BOLD response to positive than to
negative feedback after not following advice. Top left: VMPFC (max. z-score = 3.50, x = 24, y = 50, z = 218); top right: Left VST (max z-score = 3.73,
x = 216, y = 12, z = 210); bottom left: Insular cortex (max z-score = 3.33, x = 38, y = 8, z = 216). (B) Estimated parameter estimates show that following
advice led to an attenuation of the standard reward signal (as identified from trials in which participants did not follow advice) in the VMPFC and the
VST.
doi:10.1371/journal.pbio.1001089.g005

advice. (C and D) VST, VMPFC, and OFC showed a greater reduction in BOLD response to negative outcomes if these followed deviation from advice.
(E) Participants with higher outcome-bonus parameters showed greater increases in BOLD signal in the left lateral amygdala for gains after following
advice compared to after not following advice. (F) Scatter plot illustrating this correlation (1 outlier participant removed). Note that all regions
implementing the outcome-bonus are gain preferring after not following advice, in that they all show an increase in BOLD signal to gains and a
decrease in BOLD signal to losses.
doi:10.1371/journal.pbio.1001089.g004
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septal area facilitates trust, which, in turn, would facilitate future

advice-following. The correlation of the outcome-bonus estimated

for individual participants and the difference of positive reward

signals in the amygdala after following versus not following advice

suggests that this structure is also involved in maintaining the

influence of advice. This result is plausible, as the amygdala is

known to be involved in the detection of trust from faces [40]

during social interaction [41] and in the generation of reward

prediction errors during learning [39,42].

The notion of intrinsic reward for following advice may seem

counterintuitive, particularly because a Bayesian approach would

suggest that advice influences expectations prior to individual

experience. From an adaptive perspective, the relevant criterion to

choose a social learning mechanism is the amount of reward that

can be accumulated using a specific mechanism. Bayesian models

are optimal in the sense that they accurately learn expected

payoffs. This does not imply, however, that these models also

accumulate most rewards because the obtained rewards depend

also on how choices are derived from expected payoffs. Hence,

when advice is predominantly good, the outcome-bonus model

performs well as it biases choices persistently in the direction of the

recommended option, whereas the prior model affects choices only

initially.

Another interesting result is that the models implementing a

dynamic outcome-bonus did not explain participants’ behavior as

well as the models implementing a stable outcome-bonus. We

ascribe this to characteristics of our task designed to mimic everyday

situations of advice following, in which the task at hand is often

difficult, and the recommendation comes from a competent and

motivated advisor. Hence, future research is needed to show

whether the influence of advice is stable or dynamic when the task is

relatively easy or the competence of the advisor is less uncertain.

The notion of intrinsic reward for following advice is consistent

with both a learning and an evolutionary perspective. The effect of

advice on reward representation suggests that following advice acts

similarly to a secondary reinforcer. Following advice alone, which

is usually followed by positive outcomes, elicits a reward response.

Likewise, it has been proposed that imitation—another form of

social learning—has the quality of a secondary reinforcer for

children, who frequently experience that imitation leads to positive

outcomes [43]. Mathematical analysis shows that the propensity

for social learning can evolve on the population level in the

environmental conditions that characterized the era of human

evolutionary adaptation [2,4]. Moreover, social learning can solve

problems that individual learning cannot, such as cooperation in

social dilemmas or the accumulation of knowledge across

generations [2,6,7,44]. Therefore, it seems plausible that humans

have evolved mechanisms for social learning [5,45]. We

complement these explanations by providing a neurobiological

account of an adaptive social learning mechanism, which can also

explain the human propensity for social learning. Importantly,

insights into the neurobiological mechanisms underlying social

learning can pave the way for a targeted search of genetic

adaptations to social learning. Based on our results, one could

speculate that genetic adaptation to social learning involves genes

that modulate reward processing.

In conclusion, we present evidence that the brain’s reward

system implements an adaptive social learning mechanism by

generating a greater reward signal for outcomes received after

following trustworthy advice. This outcome-bonus could also

explain maladaptive social learning, which should occur particu-

larly when the difference between choice options is hard to detect

or when social influence is strong. Indeed, others have reported

that decision makers will follow advice that implies sub-optimal

decisions when decisions are difficult or contain a dilemma [7] and

that social influence determines preferential choice beyond the

quality of consumed goods [46]. Fundamentally, our results

advance the understanding of social learning by providing a

neurobiological account of the human propensity for social

learning and of the sustained influence of social information on

learning and decision making.

Materials and Methods

Participants
Twenty-one right-handed healthy participants performed a

four-armed bandit task with 168 trials while being scanned in an

MRI scanner. All participants were free of neurological and

psychiatric history and gave written informed consent in accord

with local ethics. An additional 10 participants were recruited to

function as advisors for participants in the fMRI experiment.

Task
Participants in the fMRI experiment received advice from a

randomly selected advisor before entering the MRI scanner. To

establish incentives for following advice, we truthfully informed

participants that the advisor had performed the same task before

and that the advisor’s payment partially depended on the

receiver’s earnings. This design comes close to natural settings of

advice-giving and -taking, where the advisor is motivated to give

good advice, but the advice-receiver still cannot be entirely sure

whether she receives the best advice.

In the learning task (performed in the MRI scanner),

participants repeatedly chose from four card decks and received

feedback after each trial (Figure 1 and Text S1). The four decks

were comprised of two identical ‘‘good decks’’ with a high positive

expected value and two identical ‘‘bad decks’’ with a low positive

expected value (see Figure S1). Therefore, preference for the

recommended deck over the corresponding deck with the same

payoff distribution would be a clear indicator of the influence of

advice. To examine the effect of advice on rewards and

punishments, each card deck generated 50% positive and 50%

negative payoffs across all trials. The bad decks had slightly higher

gains but much larger losses than the good decks.

Social Learning Models
To investigate the influence of advice on learning, we first

compared how a standard reinforcement learning model, an

‘‘outcome-bonus’’ model, a ‘‘prior’’ model, and a combined

‘‘prior+outcome-bonus’’ model described participants’ choices.

The standard reinforcement learning model assigns each option

i an expected reward qi(t). On the basis of the expected rewards,

choices are made according to the softmax choice rule [47], which

determines the probability pi(t) of choosing option i of the J options

in round t as follows:

pi tð Þ~ exp½t:qi(t)�
PJ

j~1 exp½t:qi(t)�
, ð1Þ

where t is a sensitivity parameter determining how likely the

option with the largest expected reward will be chosen. Note that

this choice function holds for all trials except the first, for which we

assumed that the decision maker chooses the recommended

option. This assumption was implemented in all tested models.

After a choice is made, the expected rewards are updated on the

basis of the prediction error. That is, the deviation between the

expected and actually received reward:
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qi tz1ð Þ~qi tð Þza ri tð Þ{qi tð Þ½ �, ð2Þ

where ri(t) is the reward obtained from choosing deck i in trial t and

a is the learning rate that determines the impact of the prediction

error in the updating process.

The outcome-bonus model differs from the standard reinforce-

ment-learning model by changing the reinforcement of outcomes

from recommended options. Accordingly, the updating rule

(Equation 2) was modified such that when the recommended

option was chosen, a constant bonus was added to the objective

reward:

qi tz1ð Þ~qi tð Þza ri tð Þzg(i)mbb{qi tð Þ½ �, ð3Þ

where g(i) is an indicator function that takes the value 1 if option i

is recommended and the value 0 if option i is not recommended,

bb is a free outcome-bonus parameter capturing the level of social

influence, and m is the expected payoff from choosing randomly

among all options and serves as a normalization constant to allow

for comparison across tasks with different payoff magnitudes.

The prior model assumes a higher initial reward expectation for

the recommended choice option. Hence, the initial reward

expectation in the prior model is defined as qi 1ð Þ~g(i)mbpN,

where bp captures the social influence on the prior expectations

and N is the number of trials in the learning experiment, which we

chose as a simple scaling factor, allowing for the comparison of the

weight of the prior compared to the payoff that can be obtained in

the experiment. For the combined prior+outcome-bonus model,

both the initial reward expectation and the outcome-bonus were

used to modify the evaluation of the choice options.

Additionally to the aforementioned models, we examined (a) a

dynamic version of the outcome-bonus that becomes increasingly

large after good advice and increasingly small and negative after

bad advice. We also tested various other modifications of the

outcome-bonus model, which (b) combined dynamic outcome-

bonus and higher prior reward expectation for the recommended

option, restricted the outcome-bonus to only (c) gains or (d) losses,

(e) assumed that losses after following advice are processed as zero

payoffs (see Text S1 for details).

For all models, we estimated the parameter values that

maximized the log likelihood of trial-by-trial choice predictions

for each participant separately (see Text S1). Model comparison

was performed based on AIC and BIC values, which are derived

from the log likelihood but additionally penalize models with a

greater number of free parameters.

fMRI Analysis
The functional analysis was based on 12 regressors (plus six

motion-parameter regressors): Two regressors modeled the choice

of the recommended and the non-recommended option(s),

respectively. Four binary regressors modeled (a) positive and (b)

negative feedback after choosing the recommended option and (c)

positive and (d) negative feedback after non-recommended

options, respectively. An additional set of four corresponding

parametric regressors controlled for feedback magnitude. One

regressor modeled prediction errors estimated with the combined

prior+outcome-bonus model. One error regressor modeled

feedback after missed trials, in which participants made no

decisions. For group-level results, individual-level contrasts were

averaged using the FMRIB Local Analysis of Mixed Effects

module in FSL (see Text S1), and one-sample t tests were

performed at each voxel for each contrast of interest.

To identify regions implementing advice and reward-sensitive

feedback signals, we used the four regressors (a) through (d),

described above. Advice-sensitive regions were identified by the

contrast [1 1 21 21] for these regressors. To test if the resulting

functional regions of interest (ROIs) were also reward-sensitive, we

tested these voxels with the contrast [0 0 1 21], based on the

assumption that, after not following advice, feedback allows for the

identification of reward responses that are uncontaminated by

advice. An additional whole brain contrast, comparing gains and

losses after not following advice [0 0 1 21], revealed commonly

reported reward signals in the VST and the VMPFC.

Following our predictions, we investigated representations of

reward in a set of anatomically defined regions comprising the

major reward-representing areas of the brain. We defined the

reward ROIs based on the Harvard-Oxford subcortical structural

atlas and included the following anatomical regions: nucleus

accumbens, caudate, putamen, thalamus, medial frontal cortex,

and amygdala. For the amygdala, Z (Gaussianized T) statistic

images were thresholded with a small volume correction

determined by z.2.576, and a minimum cluster size of 36 voxels

determined with the AFNI AlphaSim tool (see Text S1). For the

ROI comprising all other regions, Z statistic images were

thresholded with a small volume correction determined by

z.2.576 and a minimum cluster size of 92 voxels, also determined

with the AFNI AlphaSim tool.

Supporting Information

Figure S1 The payoff distribution for the four decks in the task.

Good decks with higher average rewards were associated with

relatively low gains and with moderate losses. Bad options with

lower average rewards were associated with higher gains than the

good decks, but also with much larger losses.

(TIF)

Figure S2 The probability of choosing one of the two good

decks, separately for the first and second half of the experiment

and for participants who received good and bad advice. Black lines

indicate two standard errors of the mean. Participants who

received bad advice (n = 5) generally chose the good decks less

frequently than participants who received good advice (n = 16) but

also improved performance from the first to the second half.

(TIF)

Figure S3 Performance of social learning models for typical

learning parameters. Each panel shows one model’s mean

cumulative payoff on the z-axis. The levels of social influence

and task difficulty are varied across the x- and y-axis, respectively.

Difficulty is calculated as the difference in the mean payoff of the

good and bad options, so that higher values indicate easier tasks.

The performance of the outcome-bonus model is depicted by the

blue surface, and the performance of the prior model is depicted

by the red surface.

(TIF)

Figure S4 Performance of social learning models for typical

learning parameters. (This figure presents the same data as Figure

S3 in a different format.) Each subplot shows average payoffs of

the two social learning models for different levels of social

influence. The difficulty of the basic learning task (higher values

indicate easier tasks) is varied along the global y-axis with easy

tasks at the top and hard tasks at the bottom. The three columns

show results for different qualities of advice. In sum, the figure

indicates that the outcome-bonus model generally performs better.

The prior model only performs better when, at the same time, (a)

the task is hard, (b) bad advice is more likely, and (c) the social
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influence is relatively strong. The reason is that, in this case, the

outcome-bonus can be larger than the payoff difference between

good and bad options, so that the outcome-bonus model

consistently prefers the recommended but bad option.

(TIF)

Figure S5 Performance differences in the social learning models

across different learning parameters. Panel A shows the perfor-

mance differences of the models. That is, the mean payoff of the

outcome-bonus model minus the mean payoff of the prior model

for typical learning parameters and 50% correct advice, while

varying the impact of social influence (x-axis) and difficulty (y-axis).

Panels C shows replications of the different difficulty and social

learning parameters examined in Panel A for different learning

rates (on the x-axis) and choice sensitivities (on the y-axis). Panels B

and D show results of the same analysis for 25% and 75% good

advice. Note that hotter colors (red and yellow) indicate an

advantage of the outcome-bonus model, cooler colors (blue and

cyan) indicate an advantage of the prior model, and neutral color

(green) indicates similar performance of the two models.

(TIF)

Figure S6 The results of an alternative fMRI analysis optimized

to detect correlations of BOLD response and prediction errors.

The left panel shows a region in the ventral striatum that correlates

positively with prediction errors for recommended and non-

recommended options (x = 210, y = 6, z = 28, max z-value = 3.1).

The right panel shows the results of contrasting the intercept

regressors for recommended minus non-recommended feedback

(x = 24, y = 10, z = 4, max z-value = 3.2). The effect of advice on

feedback signals identified in this analysis comprises the same

region as identified in the original analysis and reported in the

main text.

(TIF)

Figure S7 The results of a supplementary analysis, investigating

potential changes in the outcome-bonus signal over time. This

analysis was based on the original analysis, to which we added two

more regressors capturing (f) gain feedback- and (g) loss feedback-

related activity after following advice for the second half of trials,

in which participants chose the recommended option. Important-

ly, in this analysis, we found the same outcome-bonus signal in the

septal area as identified in the original analysis (shown in Figure

S8). Parameter estimates for regressors (f) and (g) did not differ

significantly from zero in regions implementing the outcome-

bonus. Instead, we found a reduced BOLD signal for feedback in

regions commonly associated with theory-of-mind (TOM) reason-

ing or negative feedback after following advice. These results are

significant after whole brain correction, based on a z-threshold of

2.576 and a minimum cluster size of 152 voxels (cluster size

criterion obtained with AFNI AlphaSim, see Text S1). (A)

Reduced activation for feedback after following advice (i.e. the

contrast vector had a 21 for regressors (f) and (g) and 0 for all

other regressors) in the dorsomedial prefrontal cortex/paracingu-

late cortex (DMPFC/PCC, x = 26, y = 42, z = 16, max z-

value = 3.13). (B) Reduced activation for feedback after following

advice in the superior temporal sulcus (STS, x = 264, y = 28,

z = 26, max z-value = 3.21). The PCC and STS are commonly

associated with reasoning about the intentions and traits of other

people and have been shown to be active when participants play

economic games like the trust game [48,49]. (C) Reduced

activation for positive feedback after advice-following in the STS

(x = 262, y = 26, z = 24, max z-value = 3.11). (D) Reduced

activation for negative feedback after following advice in the

rostral cingulate zone (RCZ, x = 220, y = 24, z = 48, max z-value

= 3.21). The RCZ is associated with processes of conflict

monitoring and learning from negative feedback [50]. (E) Reduced

activation for negative feedback after following advice in the

anterior cingulate cortex (ACC, x = 22, y = 2, z = 32, max z-value

= 3.21). In sum, these fMRI results suggest that the neural

outcome-bonus does not change over the course of learning. Note

that this is consistent with our finding that the dynamic outcome-

bonus models do not fit participants’ behavior better than the

models with a constant outcome-bonus. Furthermore, these results

are consistent with the hypothesis that participants reason more

about the advisors’ intentions and capabilities during the first half

of the experiment and that they experience negative feedback as

less conflicting after following advice in the later stages of the

experiment (possibly because they have learned that losses cannot

be avoided).

(TIF)

Figure S8 Result for the contrast of feedback advised .

feedback not advised of the control analysis described in the

legend to Figure S7. We still identified an outcome-bonus signal

for feedback after following advice versus not following advice in

the septal area/left caudate (x = 26, y = 12, z = 6, max z-value

= 3.26) over the entire experiment, after controlling for the effects

of time by introducing additional regressors modeling feedback

effects for the second half of the experiment (details in the legend

to Figure S7).

(TIF)

Figure S9 A number of regions showed greater activation when

participants decided to not follow advice. (A) Left supplementary

motor area (SMA, x = 228, y = 26, z = 60, max z-value = 3.33),

(B) right post-central gyrus (x = 46, y = 234, z = 60, max z-value

= 3.56), (C) left central operculum with extension into caudate and

putamen (x = 234, y = 8, z = 10, max z-value = 3.05), (D) and left

VST (x = 228, y = 26, z = 60, max z-value = 3.07). Results shown

in (A, B, C) are significant after whole brain correction, based on a

z-threshold of 2.576 and a minimum cluster size of 152 voxels

(cluster size criterion obtained with AFNI AlphaSim). With a

cluster size of 81 voxels, the VST result approaches significance

when correcting for multiple comparison in the reward ROI

(minimum cluster size would be 92 voxel). In particular, the

reduced activation in the SMA and the VST suggests that

following advice is accompanied by a reduction in decision-related

brain activity. A similar result has been reported for following

advice in the context of financial decisions [35].

(TIF)

Table S1 The table provides basic information about the

compared models. Columns under the header ‘‘Implemented

social learning mechanisms’’ contain a ‘‘+’’ if a particular model

implemented the respective social learning mechanism. LL is the

log likelihood, AIC is the Aikake information criterion, BIC is the

Bayesian information criterion (see supplementary methods for

details).

(DOC)

Table S2 Values represent the percentage out of 21 participants

for whom the prior, the outcome-bonus, or the prior+outcome-

bonus model is better than the alternative models.

(DOC)

Table S3 Parameter values for the prior + outcome-bonus

model.

(DOC)

Text S1 The text contains a detailed description of the computer

simulation procedure and additional simulation results (see also

Figures S2–S4). In addition, supporting materials and methods
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provide a detailed description of the experiment (see also Figure

S4), behavioural results (see also Figure S5), all social learning

models and modelling results (see also Tables S1 and S2), the

model fitting procedure, and the fMRI analysis.

(DOC)
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