Klaus Lucas - Peter Roosen
Editors

Emergence, Analysis
and Evolution of Structures

Concepts and Strategies Across Disciplines

Katsikopoulos, K. V., & Gigerenzer, G. (2010). Decision structures
on the basis of bounded rationality. In K. Lucas & P. Roosen (Eds.),
Emergence, analysis and optimization of structures: Concepts and

strategies across disciplines (pp. 214-226). Berlin: Springer Verlag.

@ Springer



3.12 Decision Structures on the Basis of Bounded Rationality

Konstantinos V. Katsikopoulos and Gerd Gigerenzer

To the great relief of passengers all around the world airplanes take off, fly, and
land every day. Mathematicians, physicists, mechanical and aeronautical engineers
have created a large store of know-how on the technical aspects of aviation. The
management of the aviation industry, however, remains challenging. Consider, for
example, making decisions under uncertainty. We do not really know how to route
passengers to jointly optimize time, safety. and fuel efficiency. And, even if we
focused on just one objective, say time, the routing problem may be computationally
intractable.
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Like in aviation, many decision problems in large-scale technical systems resist
formulation in optimization terms for various reasons. Typical difficulties are mul-
tiple criteria, information that is not easily available and uncertainties of various
kinds. Even when they can be formulated as optimization problems, computing an
optimal solution often turns out to be intractable. What to do? The approach typi-
cally taken in the natural sciences and engineering is to optimize a simplification of
the original problem.

This often works well but it can be difficult to know if the simplifications hold and
what is the loss when they are violated. More broadly, the optimization approach —
with some exceptions, e.g., Taguchi methods — is not tailored to handle issues like
uncertainty, robustness, and flexibility that are increasingly recognized as funda-
mental in the management of engineering systems [Pap04]. Finally, the interface
between optimization methods and practitioners often lacks transparency, usability,
and acceptance [KOCZ93].

Overall, engineers are trained in the rigorous theory of optimization but all too
often, when they graduate, they seem to find themselves using heuristics that worked
in the past. At the Max Planck Institute for Human Development in Berlin, our
team of life, natural, and social scientists, as well as historians, philosophers, math-
ematicians, and engineers, has, for more than ten years, been studying heuristics
for decision making under uncertainty. Qur research program can be viewed as the
study of bounded rationality, a popular concept in the social sciences [Sim35]. One
of our interests is in modeling the heuristic cognitive processes laypeople and some
practitioners — medical doctors and mock jurors — use. This chapter samples some
answers to the normative question of how well the heuristics perform. The research
has used decision-making tasks that do not directly relate to technical concerns but
we also speculate how it can be applied to the management of engineering systems,
We start with some general comments on the heuristic view of bounded rationality.

3.12.1 Bounded Rationality: Fast and Frugal Heuristics

Bounded rationality is often interpreted as optimization under constraints, where
the constraints are due to impoverished cognitive ability or incomplete informa-
tion [Con96). This interpretation is contrary to Simon’s [Sim55] who emphasized
satisficing, such as picking any outcome that exceeds a pre-determined aspiration
level (as opposed to picking only an optimal outcome). Furthermore, this interpre-
tation does not allow much progress as it reverts the study of decision making back
to the study of logic, probability, and calculus, while excluding psychology.

Our approach to bounded rationality takes an ecological rather than logical view.
It does not study optimal, internally consistent decisions but decisions that surpass
aspiration levels with regard to external criteria like speed, accuracy, robustness,
and transparency. This fits well with engineering where the focus is not so much on
internal consistency but on external performance. Gigerenzer, Todd, and colleagues
[GTtARG99, TGtArgipl9] model the decisions with a breed of simple rules of
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thumb, called fast and frugal heuristics, which use a minimum of time, information,
and computational resources.

The heuristics can be understood from a Darwinian perspective. First, because
evolution does not follow a grand plan, there is a patchwork of heuristics, tailored
to particular problems. This gives flexibility to the bounded rationality approach.
Second, just as evolution produces adaptations that are bound to a particular eco-
logical niche, the heuristics are not rational or irrational, per se, but only relative
to an environment. Note that the study of the interaction between the decision-
maker and the environment — emphasized in the ecological approach to psychol-
ogy [Bru55, Sim56] — is missing in the optimization-under-constraints approach.

Finally, and importantly, heuristics exploit core psychological capacities, such as
the ability to track objects. This is exactly what allows the heuristics to be simple,
yet successful. For example, consider a pilot who spots another plane approaching,
and fears a collision. How can she avoid it? A simple heuristic that works is to look
at a scratch in her windshield and observe whether the other plane moves relative to
that scratch. If it does not, dive away quickly.

In short, in our view, bounded rationality deals with simple and transparent
heuristics that require minimum input, do not strive to find a best and general solu-
tion, but nevertheless are accurate and robust. What do these heuristics look like?

3.12.2 The Recognition Heuristic

Imagine you are a contestant in a TV game show and face the $1,000,000 question:
Which city has more inhabitants: Detroit or Milwaukee?

What is your answer? If you are American, then your chances of finding the right
answer, Detroit, are not bad. Some two thirds of undergraduates at the University
of Chicago did [GGO02]. If, however, you are German, your prospects look dismal
because most Germans know little about Detroit, and many have not even heard
of Milwaukee. How many correct inferences did the less knowledgeable German
group that we tested achieve? Despite a considerable lack of knowledge, nearly all
of the Germans answered the question correctly. How can people who know less
about a subject nevertheless make more correct inferences? The answer seems to be
that the Germans used a heuristic: If you recognize the name of one city but not the
other, then infer that the recognized city has the larger population. The Americans
could not use the heuristic, because they had heard of both cities. They knew too
much.

The recognition heuristic is useful when there is a strong correlation — in either
direction — between recognition and criterion. For simplicity, we assume that the
correlation is positive. For paired-comparison tasks, where the goal is to infer which
one of two objects (e.g., cities) has the higher value on a numerical criterion (e.g.,
population), the following fast and frugal heuristic can be used.

Recognition heuristic: If one of two objects is recognized and the other is not,
then infer that the recognized object has the higher value on the criterion.
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The recognition heuristic builds on the core capacity of recognition of faces,
voices, and, as here, of names. No computer program yet exists that can perform face
recognition as well as a human child does. Note that the capacity for recognition is
different from that for recall. For instance, one may recognize a face but not recall
anything about that person as a key determinant of its use, Journal of Experimental
Psychology: Learning, Memory, and Cognition [CM87].

Intuitively, the recognition heuristic is successful when ignorance is system-
atic rather than random, that is, when recognition is correlated with the crite-
rion. The direction of the correlation between recognition and the criterion can be
learned from experience, or it can be genetically coded. Substantial correlations
exist in competitive situations, such as between name recognition and the excel-
lence of colleges, the value of the products of companies, and the quality of sports
teams.

Consider forecasting the outcomes of the 32 English F.A. Cup third-round soc-
cer matches, such as Manchester United versus Shrewsberry Town. Ayton and
Onkal [AO97] tested 50 Turkish students and 54 British students. The Turkish par-
ticipants had very little knowledge about (or interest in) English soccer teams, while
the British participants knew quite a bit. Nevertheless, the Turkish forecasters were
nearly as accurate as the English ones (63% versus 66% correct). Their predictions
were consistent with the recognition heuristic in 627 out of 662 cases (95%). More
generally, a number of experimental studies have found that if the accuracy of the
recognition heuristic, @, is substantial (i.e., exceeds, say, 0.7), people use the heuris-
tics in about 90% of all cases [Nay01].

The recognition heuristic implies several counterintuitive phenomena of human
decision making that cannot be deduced from any other theory we are aware of. For
instance, recognition information tends to dominate further knowledge, in rats as
well as in people, even if there is conflicting evidence [GGO02, PHO6]. Here we con-
centrate on the counterintuitive finding that less information can increase accuracy.

3.12.3 The Less-is-More Effect

Assume that a person recognizes n out of N objects. The probability of being able to

use the heuristic equals the probability of recognizing exactly one object in a sample

of two, or

. 2n(N — n)

TN(N=-1)
Similarly, the probability that both objects are recognized, and thus other knowl-

edge beyond recognition must be used, equals

_ n(n— 1)

NN -1

rn) (3.20)

(3.21)

k(n)

Finally, the probability that neither object is recognized, which leads to the neces-
sity that the person has to guess, equals
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_ (N—n)(N—-—-n-1)
- N(N —1)

Let « be the accuracy of the person when exactly one object is recognized and
the recognition heuristic is used. Let g be the accuracy of the person when both
objects are recognized and other knowledge is used. We also assume that accuracy
equals ¥, when none of the objects is recognized (and we also assume «, 8 > V).
Thus, the overall accuracy of a person who recognizes n objects equals

(3.22)

g(n)

1
fn) =r(n)a+k(n)ﬁ+g(n)(5). (3.23)

Definition 1. The less-is-more effect occurs when there exist ny and n; so thatn; <
nz but f(n) > f(ny) withn;, n; €0, 1, ..., N.

Definition 2. The prevalence, p, of the less-is-more effect is the proportion of pairs
(ny, n2) with ny < ny for which f(n;) > f(n;) the less-is-more effect occurs.

The prevalence p of the less-is-more effect varies between zero — no effect —
for increasing f(n), and unity — there is always an effect — for strictly decreasing
f(n). The prevalence of the less-is-more effect depends on the person’s « and B.
For o = 0.8 and B = 0.6, simple enumeration yields p = 1/3. More generally, the
following holds [RK04].

Result I The less-is-more effect occurs (i.e., p # 0) if and only if « > S. The
effect becomes more prevalent (i.e., p increases) as ¢ increases or 8 decreases. The
assumption is that « and g are independent of n.

At first glance, the less-is-more effect might appear paradoxical. But it is not,
because less recognition information may simply enable more accurate cognitive
processing (via the use of the recognition heuristic). This is condition formalized by
o> f.

As an example, Goldstein and Gigerenzer discuss three Parisian sisters who
have to compare all pairs of cities from the most populous N = 100 German
cities [GGO2]. All sisters have @ = 0.8 and 8 = 0.6, but they vary on the number of
recognized objects: The youngest sister has n = 0, the middle sister has n = 50, and
the eldest sister has n = 100. When o > B the less-is-more effect is predicted: for
the middle sister, f(50) = 0.68, while for the eldest sister f(100) = 0.60. Accuracy
fora = 0.8 and B = 0.6, based on Egs. 3.19, 3.20, 3.21, 3.22, interpolated for all
n, is graphed in Fig. 3.81 (solid curve; the dashed curve will be explained below).

A less-is-more effect can emerge in at least three different situations. First, it
can occur between domains, that is, when the same group of people achieves higher
accuracy in a domain in which they know little than in a domain in which they
know a lot. For instance, when American students were tested on the 22 largest
American cities (such as New York versus Chicago) and on the 22 most populous
German cities (such as Cologne versus Frankfurt), they scored a median 71.0%
(mean 71.1%) correct on their own cities but slightly higher on the less familiar
German cities, with a median of 73.0% correct (mean 71.4%). This effect was
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Fig. 3.81 Predicted accuracy as a function of number of recognized objects for « = 0.8 and
B = 0.6, for individuals (solid curve) and three-member groups that use the majority rule (dashed
curve).

obtained despite a handicap: Many Americans already knew the three largest U. S.
cities in order, and did not have to make any inferences [GGO2]. A similar less-
is-more effect was demonstrated with Austrian students, whose scores for correct
answers were slightly higher for the 75 largest American cities than for the 75 largest
German cities [Hof95]. Second, a less-is-more effect can occur during knowledge
acquisition, that is, when an individual’s performance curve first increases but then
decreases again. Finally, the effect can occur between two groups of people, when a
more knowledgeable group makes fewer correct inferences than a less knowledge-
able group in a given domain. An example is the performance of the American and
German students on the question of whether Detroit or Milwaukee is more popu-
lous [GGO2]. Furthermore, Reimer and Katsikopoulos [RK04] ran a study where
groups of people decided together.

In this study, three people sat in front of a computer screen on which questions
such as “Which city has more inhabitants: Milan or Modena?” were displayed. The
task of the group was to find the correct answer through discussion, and they were
free to use whatever means. The correct solution is difficult to prove by an individ-
ual group member; thus one might expect that the majority determines the group
decision [GH97].

The accuracy, G(n), of a group using the majority rule is calculated as follows.
Assume first that the group is homogeneous (i.e., all members have equal «, 8,
and n) and independent (i.e., the recognition and inference processes of members
are independent given the values of the criterion on the objects). Let F(i) be the
probability of exactly i members being accurate and the group, using the majority
rule, being correct. Finally let the group have m members, ¢(m, i) be the number of
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ways in which i objects can be sampled out of m objects without replacement, and
majority (m) = (m+1)/2 if m is odd, and = (m/2) if m is even. Then, the following
holds, where i > majority (m):

F(i) = c(m.i}f(n}"(l — f(m)™*(1/2), i = majority (m) & m iseven
=c(m, i) f(n)'(1 — f(n))"™", otherwise. (3.24)
G(H) — Zr'=m:1jc\:ril)-'(m] ..... m F(f) (325)

The application of (3.24) and (3.25) for @ = 0.8, f = 0.6, and m = 3 is illustrated
in Fig. 3.81 (dashed curve). A less-is-more effect is again predicted and p = 1/3.
More generally, the following holds [RK04].

Result 2 Assume a homonegenous and independent group, using the majority
rule. Then, (i) less-is-more effect is predicted if and only if &« > B and (i7) the
prevalence of the effect equals the prevalence for one member. The assumption is
that & and B are independent of n.

Consider now the following conflict. Two group members have heard of both
cities and each concluded independently that city A is larger. But the third group
member has not heard of A, only of B, and concludes that B is larger (relying on the
recognition heuristic). After the three members finished their negotiation, what will
their consensus be? Given that two members have at least some knowledge about
both cities, one might expect that the consensus is always A, which is also what the
majority rule predicts. In fact, in more than half of all cases (59%), the group voted
for B [RKO04]. This rose to 76% if two members used recognition.

Group members letting their knowledge be dominated by others lack of recog-
nition may seem odd. But in fact this apparently irrational decision increased
the overall accuracy of the group. Broadly consistent with Result 2, Reimer and
Katsikopoulos [RK04] observed that when two groups had the same average « and
B (that were such that @ > B), the group who recognized fewer cities (smaller
n) typically had more correct answers. For instance, the members of one group
recognized on average only 60% of the cities and those in a second group 80%, but
the first group got 83% answers correct in a series of over 100 questions, whereas
the second only 75%. Thus, group members seem to intuitively trust the recognition
heuristic, which can improve accuracy and lead to the counterintuitive less-is-more
effect between groups.

3.12.4 Cue-Based Heuristics

When recognition is not valid, or people recognize all objects, heuristics can involve
search for reasons or, in psychological jargon, cues. A few years after his voyage on
the Beagle, the 29-year-old Charles Darwin divided a scrap of paper (titled, “This
is the Question™) into two columns with the headings “Marry” and “Not Marry”
and listed supporting reasons for each of the two possible courses of action, such
as “nice soft wife on a sofa with good fire” opposed to “conversation of clever men
at clubs.” Darwin concluded that he should marry, writing “Marry — Marry — Marry
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Q. E. D" decisively beneath the first column [Dar69, pp.232-233]. The following
year, Darwin married his cousin, Emma Wedgwood, with whom he eventually had
10 children. How did Darwin decide to marry, based on the possible consequences
he envisioned — children, loss of time, a constant companion? He did not tell us. But
we can use his “Question” as a thought experiment to illustrate various visions of
decision making.

Darwin searched in his memory for reasons. There are two visions of search:
optimizing search and heuristic search. Following Wald’s [Wal50] optimizing mod-
els of sequential analysis, several psychological theories postulated versions of
sequential search and stopping rules [BT93]. In the case of a binary hypothesis
(such as to marry or not marry), the basic idea of most sequential models is the
following: A threshold is calculated for accepting one of the two hypotheses, based
on the costs of the two possible errors, such as wrongly deciding that to marry is
the better option. Each reason or observation is then weighted and the evidence is
accumulated until the threshold for one hypothesis is met, at which point search
is stopped, and the hypothesis is accepted.

If Darwin had followed this procedure, he would have had to estimate, con-
sciously or unconsciously, how many conversations with clever friends are equiv-
alent to having one child, and how many hours in a smoky abode can be traded
against a lifetime of soft moments on the sofa. Weighting and adding is a mathe-
matically convenient assumption, but it assumes that there is a common currency
for all beliefs and desires in terms of quantitative probabilities and utilities. These
models are often presented as models whose task is to predict the outcome rather
than the process of decision making, although it has been suggested that the cal-
culations might be performed unconsciously using the common currency of neural
activation.

The second vision of search is that people use heuristics — either social heuris-
tics or cue-based heuristics — that exploit some core capacities. Social heuristics
exploit the capacity of humans for social learning and imitation (imitation needs not
result in learning), which is unmatched among the animal species. For instance, the
following heuristic generates social facilitation [LalO1]:

Do-what-the-majority-does heuristic: If you see the majority of your peers dis-
play a behavior, engage in the same behavior.

For the marriage problem, this heuristic makes a man start thinking of marriage
at a time when most other men in one’s social group do, say, around age 30. It
is a most frugal heuristic, for one does not even have to think of pros and cons.
Do-what-the-majority-does tends to perform well when (i) the observer and the
demonstrators of the behavior are exposed to similar environments that (ii) are
stable rather than changing, and (iii) noisy, that is, where it is hard to see what
the immediate consequence of one’s action is [BR85, GGH*01].

Darwin, however, seems to have based his decision on cues. We will describe
two classes of heuristics that search for cues. Unlike optimizing models, they
do not weight and add cues. One class of heuristics dispenses with adding, and
searches cues in order (a simple form of weighing). These are called lexicographic
heuristics. Another class dispenses with weighting and simply adds, or rallies,
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3.12.5 Lexicographic and Tallying Heuristics

We again consider the comparison task in which both objects are recognized. The
decision is made on the basis of n binary cues ¢y, ¢z, ..., ¢4, 1 > 2 (for any object
a cue ¢; equals 1 or 0). Since the 18th century, a popular decision rule for paired
comparisons is the linear rule [KMMO02] (2003). In this rule, cue ¢; has a weight
w;; weights can be estimated by, say, minimizing the sum of squared differences
between the predictions of the rule and the observations. For an object A with
cue values ¢;(A), the score Z;c;(A)w; is computed and the object with the higher
score is picked. If the scores are equal, an object is picked randomly. T'allying is a
linear rule where weights are equal to unity, an old idea in psychological measure-
ment [Gul50].

Take The Best is a heuristic in the lexicographic tradition. First, cues are ordered
by decreasing validity, where the validity v; of cue ¢; is the conditional probability
that the cue points to the larger object (c; = 1 on the larger object and ¢; = 0 on the
other object) given that the cue discriminates between the objects [¢;(A) # ¢;(B)].
(Without loss of generality it can be assumed that 1 > v; > I/z)- After cues are
ordered, the decision maker inspects the first cue. If this cue points to one of the
objects then this object is taken to be larger. If the cue does not discriminate between
the objects, then the second cue is inspected and so on until a discriminating cue is
found; if no such cue exists, an object is picked at random.

One-cue decision making has been observed in high-stake decisions. British
magistrates tend to make bail decisions on the basis of one good reason only [Dha03,
DAO1], and so do British general practitioners when they prescribe lipid-lowering
drugs [DHO1]. Many parents rely on one cue to decide on which doctor to drive to
in the night when their child becomes seriously ill [Sco02].

Both take the best and tallying are naive in the sense that they do not take cue
dependencies into account. While at first glance they might appear simplistic, sim-
ulation studies have shown that naive heuristics compare remarkably well to sta-
tistical benchmarks. Three decades ago, Dawes and Corrigan (1974) convincingly
argued that tallying can have greater predictive accuracy than linear regression. Ein-
horn and Hogarth [EH75] provided statistical reasons for this, including the absence
of sampling error in the estimation of weights. Czerlinski, Gigerenzer, and Goldstein
[CGG99] replicated this finding in twenty real-world datasets, emphasizing the con-
cepts of overfitting and robustness. To define these, we distinguish between a learn-
ing sample on which a model estimated its parameters and the test sample on which
the model is tested. Both samples are randomly drawn from the same population.

Definition 3. A model M overfits the learning sample if an alternative model M’
exists such that M has a smaller error than M’ in the learning sample but a larger
error in the test sample. In this case, M’ is called the more robust model.

Figure 3.82 shows the accuracy of three heuristics compared to linear regression,
averaged across 20 real-world problems [CGG99], e.g., to predict which Chicago
public high school has the higher dropout rate based on the socioeconomic and
ethnic compositions of the student bodies, the sizes of the classes, and the scores
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Fig. 3.82 Robustness of three heuristics and linear regression, averaged across 20 real-world prob-
lems.

of the students on various standardized tests. (Other problems were to predict peo-
ple’s attractiveness judgments, homelessness rates, adolescents’ obesity at age 18,
etc.) The three heuristics were take the best, minimalist (which is a lexicographic
heuristic that searches cues in random order), and rallying. take the best and mini-
malist were most frugal; they looked up, on average, only 2.4 and 2.2 cues before
they stopped search. Tallying and multiple regression looked up all cue information,
which amounted to an average of 7.7 cues. How accurate are the heuristics?

Linear regression had the best fit. However, the true test of a method concerns its
predictive accuracy, which was tested by cross-validation, that is, the four methods
learned their parameters on half of the data (learning sample), and were tested on
the other half (test sample). Figure 3.82 shows that regression over-fitted the data
relative to both rake the best and tallying. An intuitive way to understand overfitting
is the following: A set of observations consists of information that generalizes to the
other samples, and of information that does not (e.g., noise). By extracting too much
information from the data, one will get a better fit but will mistake more noise for
predictive information. The result can be a substantial decrease in one’s predictive
power. Note that both forms of simplifying — dispensing either with adding or with
weighting — resulted in greater robustness. Minimalist, however, which dispenses
with both weighting and adding, extracts too little information from the data.

In general, the predictive accuracy of a model increases with its fit, and decreases
with its number of adjustable parameters, and the difference between fit and predic-
tive accuracy grows smaller with larger number of data points [Aka73, FS94]. The
general lesson is that in judgments under uncertainty, one has to ignore information
in order to make good predictions. The art is to ignore the right kind. Heuristics that
promote simplicity, such as using the best cue that allows one to make a decision
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and ignore the rest of the cues, have a good chance of focusing on the information
that generalizes.

These results may appear counterintuitive. More information is always better;
more choice is always better — so the story goes. This cultural bias makes con-
trary findings look like weird oddities [HTO04]. Yet experts base their judgments on
surprisingly few pieces of information [Sha92], and professional handball players
make better decisions when they have less time [JRO3]. People can form reliable
impressions of strangers from video clips lasting half a minute [AR93], shoppers
buy more when there are fewer varieties [IL00], and zero-intelligence traders make
as much profit as intelligent people do in experimental markets [GS93]. Last but not
least, satisficers are reported to be more optimistic and have higher self-esteem and
life satisfaction, whereas maximizers excel in depression, perfectionism, regret, and
self-blame [SWM*02). Less can be more.

Beyond computer simulations, mathematical analyses have also been used to
investigate the accuracy of heuristics [MH02, HK05, KMOO]. In the case where
cues are conditionally independent (i.e., independent given the values of the crite-
rion on the objects), the optimality of take the best (that searches cues in the order
CLsCoyvivin ¢,) and tallying can be characterized as follows [KMO0O].

Result 3 For conditionally independent cues, Take The Best is optimal if and only
if 0; > T-;(o0x), where 0; = v; /(1 — v;).

Result 4 For conditionally independent cues, tallying is optimal if and only if
v = .

3.12.6 Other Tasks

The paired comparison task is related to other tasks such as deciding whether an
object is larger than a certain threshold (classification) or judging how large the
object is (estimation). Fast and frugal heuristics have been studied for these tasks
as well and have been again found to perform well compared to standard bench-
marks [HRO8]. For example, Katsikopoulos, Woike, and Brighton [Pro] found that
simple, fast and frugal trees can make more robust classifications than discriminant
analysis and trees used in artificial intelligence do [BFOS84]. Research on other
decision tasks is reviewed by Gigerenzer [Gig04].

3.12.7 Fast and Frugal Heuristics in Technology Development?

According to Moses [Pap04], one of the main goals of the study of technological
systems is to deal with changes that occur during the life cycle of these systems.
Change can be dealt with actively by building flexibility into the system, that is,
allowing the system to perform a number of functions. Change can also be dealt with
passively by building a robust system, that is, a system that does not lose much of
its performance when conditions vary. Both flexibility and robustness are necessary
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when there is uncertainty in the system. One might even say that uncertainty rep-
resents a chance for improvement in that it motivates flexibility and robustness
(perhaps this is what Moses means when he talks about “viewing uncertainty as
an opportunity” [Pap04]). The final challenge is to combine these properties with
transparency and usability so that the system will be accepted by its users.

Our research program was not designed to study technological systems. OQur
results about the normative success of heuristics were obtained in decision tasks
such as comparing dropout rates in highschools. We did not study how engineer-
ing students and practitioners compare, say, two product designs. Of course, at a
certain level of abstraction, these are very similar tasks, but we do not want to
downplay the potential influence of context. Thus, we see our results as making
a methodological suggestion about a new program of research. We believe that a
fast-and-frugal-heuristics approach to making decisions in engineering systems may
be helpful.

Fast and frugal heuristics tend to be robust. There are more results than those
presented here, to this effect. For example, Brighton [Bri06] has pitted the heuris-
tics against powerful machine learning methods (such as Quinlan’s ID3 method)
using the minimum description length as a criterion of robustness. He found that,
in many cases, heuristics compressed the data more than the machine learning
methods.

With their focus on external outcomes, heuristics implement more practical intel-
ligence than do mathematical methods that target full internal rigor. Furthermore,
heuristics are less ambitious than methods that try to work all the time; heuris-
tics are problem-specific and information-structure-specific. A given heuristic may
be applied successfully only to those comparisons, estimations, classifications, or
choices with certain statistical properties (i.e., flat or very skewed distribution of cue
validities). Taken together, however, heuristics cover a wide spectrum of decision
tasks. The set of heuristics has been called the adaptive toolbox [GS01].

The adaptive toolbox is a flexible system for decision making: To build the
heuristics in it, one combines different building blocks (rules for searching for infor-
mation, e.g., by validity, with rules for deciding based on the available information,
e.g., use only one cue). The building blocks themselves are based on core psycho-
logical capacities (e.g., recognition). The toolbox allows the introduction of new
heuristics by (i) combining existing building blocks in new ways or by (i) creating
new building blocks based on newly discovered capacities.

Finally, fast and frugal heuristics are transparent: They are easy to understand and
apply (and, hence, are more acceptable). There are two reasons for this. First, heuris-
tics are expressed as clear and simple sequential algorithms (e.g., Take The Best).
Second, the way they represent the information they use is consistent with people’s
cognitive representations (e.g., in Take The Best validities can be cast in terms of
frequencies, not conditional probabilities; see also [HLHGOO]). Perhaps for these
reasons, some practitioners, such as medical doctors, advocate the substitution of
classical decision analysis with fast and frugal heuristics [EEERO1, Nay0O1, KF00].
Just as some successful methods for engineering decision making — Pugh’s concept
selection [patICoEDS81] — heuristics can be used to generate, rather than to suggest
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or impose, new possibilities. We want to encourage academics and practitioners to
explore the potential of fast and frugal heuristics in engineering.






