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1 Introduction

Variability across and within individuals is a fundamental property of adult age
changes in behavior [20, 21, 24|. Some people seem young for their age, others
seem old; shining examples of older individuals who maintained high levels of intel-
lectual functioning well into very old age, such as Johann Wolfgang von Goethe or
Sophocles, stand in contrast to individuals whose cognitive resources are depleted
by the time they reach later adulthood. A similar contrast exists between different
intellectual abilities. For example, if one looks at the speed needed to identify and
discriminate between different percepts, one is likely to find monotonic decline after
late adolescence and early adulthood. But if one looks at verbal knowledge, one will
find age stability or positive change into very old age [36]. As a general rule, tasks
that assess individual differences in speed, reliability, and coordination of elemen-
tary processing operations show greater decline, whereas tasks that assess individual
differences in acquired knowledge show less decline.

The simultaneous presence of resource growth, maintenance, and decline, both
across individuals and across abilities, calls for statistical methods that are able to
efficiently capture both the commonalities and the differences of age-based changes
in levels of functioning across the lifespan [S]. In this context, a family of meth-
ods known as latent growth curve models (LGCMs), multi-level models, random-
coefficient modeling has gained prominence in recent years [15]. Despite their
widespread and increasing application, central statistical properties of these models
have not yet been explored or formally analyzed. In this chapter, we introduce a
general strategy for evaluating the suitability of LGCM for charting lifespan changes
in behavior, with a specific emphasis on statistical power.

LGCMs |26] are a particular set of structural equation models (SEMs) aimed at
describing the general, average trend in change as well as the individual differences
around the group trend. Extensions allow for including predictors of interindividual
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differences in change parameters obtained from the time series analyzed. Because
longitudinal data are composed of repeated measures, the non-zero within-person
correlation violates the common statistical assumption of independence in ordinary
least squares regression analysis. A family of analyses for correlated data (e.g.,
multi-level, hierarchical linear, mixed effects, and random effects models) thus pro-
vides an appealing analytical strategy for longitudinal data | 18]. The LGCM and the
correlated data approach to repeated measures are statistically equivalent |30, 33].
For simplicity, we will here subsume both statistical approaches under the heading
of LGCM.

LGCMs have become the favorite analytical tool of many psychological resear-
chers for theoretical investigations about development and change phenomena. Sev-
eral long-standing goals of longitudinal analyses may be achieved by implementing
proper LGCMs under specific assumptions [4]. Because of their popularity, many
software packages allow for easily reproducible LGCM analyses, either within the
more general SEM framework or within the analogous correlated data approach
(software implementation may highlight and optimize different statistical aspects;
see |13, 22]). However, not all scientific inquiries nor all longitudinal data are
amenable to LGCM analyses, and some warnings have been raised as to the limits
of LGCMs (25, 34]. In particular, LGCMs have been utilized to reach substantive
conclusions about concomitant interindividual differences in a multivariate space,
especially in cognitive aging research. Yet, in samples of aging individuals it is
often very hard to detect interindividual differences in change and subsequently,
covariances among change components. Given the need to more fully understand
statistical properties of LGCMs simulation work to this end has appeared in the
literature (e.g., [11, 14, 16]).

LGCMs are most commonly computed with SEM software by applying a maxi-
mum likelihood estimation procedure to a moment matrix containing covariance and
mean information about the repeated measures. For the common case of incomplete
data, the Full Information Maximum Likelihood (FIML) variant allows analyzing
raw data of all observations, without excluding observations with an incomplete
data vector (cf. [1, 19, 27]). The FIML algorithm is now the choice of incomplete
data treatment in many SEM software packages, including Mx [32], Lisrel [17],
AMOS [2], EQS 6], and MPlus [31]. The mathematical formulation of the FIML
algorithm can be found in the original source by Lange et al. (1976) or in some
SEM manuals cited above. However, the general implementation of Lange et al.’s
formulation within each SEM software package and the remaining elements of the
general computation procedure used in the parameter estimation process are not
easily documented, hence generally not available to SEM users.

In this chapter, we aim at (a) presenting a general simulation procedure [or testing
specific statistical properties of LGCMs and (b) describing the mathematical formu-
lation of the estimation procedure adopted within our data-generation-plus-analysis
engine. The simulation tool can be found athttp: / /www.mpib-berlin.mpg.
de/en/forschung/computerscience/.

In Sect. 2, we discuss the general LGCM and its assumptions. In Sect. 3, we
describe two fitting functions, the Least Squares and the Minus 2 Log Likelihood,
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and their implementation in our engine. The issues of starting values and non-
admissible estimation areas is discussed. Section 4 describes the general simula-
tion procedure. Data are generated in accordance with the LGCM and a set of
known parameter values (we shall call “population values”), then selected following
specific considerations about time sampling, and finally analyzed. Comparisons of
slightly different LGCMs are presented to allow for inferential conclusions about
single parameters of interest. Section 5 presents an illustration of the engine to
investigate a particular set of parameters within the LGCM. A more detailed analysis
of LGCM parameters under a wide variety of empirically plausible conditions is
presented in [ 14, 16]. The present simulation serves illustrative purposes. Finally, in
Sect. 6 we discuss our conclusions.

2 The Latent Growth Curve Model

Consider N units (e.g., persons) with K data points, corresponding to V variables
measured at 7" time points (i.e., K = VT'). The data points are obtained by applying
a continuous function f, defining the relations among P parameters, R Gaussian
distributed random numbers, and T time points to each variable v =0, ...,V — I,
We call such a continuous function a meodel. Let C denote this function space. Then
¥ € C**X denotes the covariance matrix of the data points with respect to the
parameters. Likewise, u € C* denotes the vector of means with respect to the
parameters. We denote the vector of parameters by p.

We define here a particular linear model with equal interval measurement, where
for each variable v and for each uniti =0, ..., N — 1 we consider a level /,; and
a slope s, ;. A data point for a unit i is defined by

f
ft.n'.i' = '{I'.l- £ ? «Sui terri (1)

where ¢ is a time point (i.e.,t =0, .... T — 1)and err, ,; is a normally distributed
error term. While err, .. ; contains a time subscript ¢, indicating that its value changes
across a unit’s time series, both {,; and s, ; are time invariant. All three terms are
dependent on the unit /i and variable v.

The means, variances, and covariances of /,;, s,;, and err,,; represent the
parameters of the linear LGCM for each variable v (e.g., [26]). Assuming that the
error components have mean zero, do not covary with any other parameter, and have
a time-invariant variance, the parameters of the model are 2V means for all levels

. 2 M — =
and slopes, 3V variances for all levels, slopes, and errors, and 22— covariances

among all levels and slopes. The total number of parameters is 3V + g%i}—‘ =
207 + 4v.

w and ¥ are created with the matrix A € Q%*?Y | defined as
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R ULES:
A= 2 it =j+V (2)
0 otherwise
A will hence look like
(1 0 0 % 0 0\
10 0+ 0 0
1o oXFt o 0
01 00 % 0
01 00 4+ 0
A= & & st & 5 s i (3)
o1 00 o
0 10 g
0 10 1
\0 0 o

To obtain the vector p, we multiply A by the vector of the means of all levels
and slopes:

=
TR—Y, V- YR - sy ) (4)

Let M denote the covariance matrix of levels and slopes in the same order. X is
then obtainable by

Y= AMAT (5)

Note that in the linear LGCM, all entries in i and ¥ are linear. Furthermore, the
parameters in u are only means of levels and slopes, while the parameters in X are
covariances of levels, slopes, and error.

In sum, then, the usual application of LGCM in psychological research consists
in analyzing N time series, one for each unit i of analysis, spanning over T time
points, for a total of V variables. Researchers then wish to obtain information about
the level 1, ;, the slope s, ;, and the error err, ., ; for each variable v. The overall level
means, slope means, level variances, slope variances, covariances among all levels
and slopes, and error variances are the elements of p.
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3 Least Squares and Minus Two Log Likelihood Fitting
Functions

To obtain the optimal parameter values by applying the LGCM to an N - K data
matrix, indices are defined that mathematically define the distance between the
observed data points and the expectations of the LGCM contingent upon the param-
eter values. Indices are norm functions on the parameters and the data, which are
minimal iff the most suitable parameter values are estimated. We consider two
indices, the Euclidean distance and the Deviance. We then discuss two asso-
ciated fitting functions, which minimize these distances given the observed data
and estimated parameters in p. For the Deviance, we use an iterative procedure
that needs starting values. Inadmissible estimation areas of the fitting functions are
defined and finally we discuss how our engine handles them.

The Euclidean distance fit index defines the distance between the covariance
matrix and mean vector of the data and the covariance matrix £(p) and mean vector
1(p) predicted by the model given p. Let S be the covariance matrix of the observed
data and m be the mean vector of the observed data. Then, the Euclidean distance Is
is defined as

K—=1 K-

K-l
Y@ —mi2+ Y (EP); - Sis)’ (6)

i=0 i=0 j=0

So, the Euclidean distance is the Frobenius norm on the difference of covariance
matrices plus the absolute value of the difference of the mean vectors. If /s is mini-
mal, the Euclidean distance (in the K? 4+ K dimensional space) between (X, i) and
(S, m) is minimal. We call the point of global minimum the least square estimate.

The square root can be omitted for computing the least square estimate, and if the
parameters are distinguished between those associated to the means (i.e.. parameters
appearing in y. but not in X) and those associated to the variances—covariances (i.e.,
parameters appearing in X, but not in u), both can be estimated separately. In linear
models, the /s index is a polynomial of degree two, and hence its extremes are
uniquely determined. /s can be obtained by computing the first two derivatives with
respect to p. The first derivative with respect to one parameter & is

als? & o AL
% ( ) +3:32 ( ”) ek

i=0 j=0

The second derivative with respect to 6, and 6 is

s> i P iiz 2 -
06,06, a6, 6 . a6, 06,

i=()
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-

T aof5e . : ;
If the model is linear, — is zero for ) # 6 and constant otherwise, so a single

[Llea Rt dvd
step in Newton's Method (with any starting value, take 0 for simplicity) obtains the
least square estimates.

The second fit index we consider is the Deviance, also commonly called the
Minus Two Log Likelihood or —2LL. Lange [19] defined the Deviance to easily
accommodate incomplete data patterns (for instance in pedigree analysis for behay-
ioral genetics research). The Deviance is defined by

N
FP)=N-K-In27 + Y In[Z(P)| + " — u(p)" =@ '« = u() (9)

i=l

where x'") is the data vector of the ith person. Since £(p) is a covariance matrix, it
follows that it must be positive definite and consequently has a positive determinant;
F(p) is considered undefined otherwise. Hence, the image of F is in R.

The above definition of the Minus Two Log Likelihood easily allows han-
dling of incomplete data by deleting, or filtering, the rows and columns in X and u
corresponding to missing data points (cf. [1, 27]). Formally, let M; C {1, ..., K}
denote the incomplete, or missing, values in x'"’. Let £ v, denote the matrix £ with
all columns and rows in M; deleted, and v, denote the vector of means with all
elements in M, deleted. Then,

N
F)=N-K-In27+)  In|Za, (DI + " =g, PY Epa, (7' 6 = s, (P))

i=l

(10)
Analogous to the s fit index, we wish to obtain the minimal value of F(p). We
will call the P parameter values globally minimizing F(}p) the —2L L estimates.

3.1 Minimization of the Fitting Functions
A convenient minimization method for the —2L L. index is Newton's Method applied

to the first derivatives of F(p), finding an extremum of F(p) by searching for a
common zero of the first derivatives. The following propositions are used:

gzl = trace (E_'E)

06 a6
dtrace(Z D
Lt 20 = trace (‘—) (1)
06 a0
ax! _g-t9Z
e ae

We then obtain (see also [19])
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aF ki _,sm) 178
peti= I J 2 stz _2 il E _{H_
55 — L= frace ( 29 20 ) W =n)

A%

i) i
—(x wi g 20

—1(".,{“__#) (]2)

The second derivatives can be computed in full generality by

a*F 0% .., 08 1B
— = Z{"_l trace —E*'f—-Z"';—— 5 -
06, t)b‘z s (JH: {)H| 066>

T

?u » o\ 195
=9 b ; (i) 9 ( ) b | | ‘_[r! =
(;19.;)91) WSS %, i

an o f 1 ({'),u 2 S—
2 =) +2(—) ' — " =
& (ae,) (aﬂﬁ)"' ;}92) B W

1 :)EE ,d):

i) ¥ 3 iy 13
+(x #} 26, 26, { M) (13)
. HED) ;
— (' _ Pyl beylid _
G ) B g s & T H)
W Tt 0E o 1 0Z | )
b 2 =X (x' =
BT SRR e ST e BT =)

Given that the above formulae are too complex for quick computation, we make use
of the following simplifications:

N N K
Zx‘”rix“" =¥ Y a2 oy (14)
=l fok=1

i=l
K N
iy (0

i=

and similarly

[\’]z

N
Z_r{”TE =

i=l i

K .
Z Y}”#A-Uj.k (13)
k=1

(i)
(}'J,{Ju;Zt'

b

Il
-|| M"

By computing the vector of all sums X = S, x and all moments M, =
Z}L .r;' 'X, in advance, we get rid of the outer sums in all formulae.

In some models such as the LGCM. there are parameters associated to the means
and others associated to the variances—covariances. That is, the set of parameters
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Briovasy #p decomposes into two disjunct subsets 6y, ..., B and 644, ..., fp. such
: dx
that it € R[0). ..., 61X and = € R[f41. ... 0p]X*X . Thus, L)Ff is zero if i < [ and
f i
o

_—I is zero if i > [.
ob;

If we consider linear models, all entries in £ and pu are linear, and therefore
0z T
80,00, — 096,00,

Consequently, the terms above simplify to the following five terms:
If i <[, thatis, 6; is a parameter associated to the means, then

= 0. regardless of i and ;.

2 AT
%E-—-E(%) (X —K-p) (16)
fori >/
A= g1 Qg
a6
% = n - trace (E"}g—ﬁz:) ~MOA+2u"AX —nu" Ap (17)

where M denotes the moment matrix above and © the sum over component-wise

products.
Fori </ and j </, the second derivatives are
ap
= 18
(39;' ) i

e T
ALY A
06,00, 00,

fori <landj >

O F au\' 0%
- zz(f—‘”) T B~ K) (19)
36,06, 0, 30,
and finally fori > [ and j >/
)
26,
(1D d):
B:=A—3x'4535' =
a6, '+ (}9,-
3*F D> 7 "
—— = K - trace A— +MEOB—-2u'"BX —nu' Bu (20)
f’(‘),'i’]f‘)j 9,

These computations allow us to find the extremum of F() by applying Newton’s
Method. In a simulation work, as is ours, data are generated by population values
given a priori. Thus, it would be possible to take the population values as starting
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values for the iteration process. In empirical research situations, however, the pop-
vlation values are not known, and an alternative way of providing starting values
must be applied.

One common method is to use the least square estimates as starting values. In
this line, the simulation engine first computes the least square estimates and uses
them as starting values for the iterative process.

3.2 Inadmissable Estimation Areas

The —2LL fitindex is not defined on those parameter vectors p for which X5 is not
positive definite. We call these areas inadmissible estimation areas. A strategy to
avoid the estimation algorithm from falling into inadmissible estimation areas is to
apply a penalty function (cf. [32]), which artificially increases the fit index adopted
when the algorithm is approaching inadmissible areas. This will force the estimation
algorithm away from inadmissible estimation areas.

Let £ denote the upper k x k submatrix of . We define the following penalty
function pen which is added to the F(p):

K
0 1Zel = 0
peu(E}:Ep():g} v plEy) = e""z“" —1 %<0 20
Thus,
dpen s ap
= i 2,
= (D Z_: (Z0) (22)
and
p AR
—(Z) = ; : 23
g Y {-2c'*f.,%|£k|e""zl" 1% <0 e
where
Nz 0%
A% _ | Xy |trace (E‘ jk) (24)
ag ae
We can hence simplify
)| £ > LR B
B tI AilE le —elE P — —2¢| Zy|"trace (E,\ ]Hk) =iz (25)

The derivative of pen is continuous. The second derivative for non-positive | Z| is



104 T. von QOertzen et al.

9* ITy Ty e
ol () = | Z¢|trace (E;l%’-éi) (—4c)| Z |trace (E;"___}_) e 1l

36,06, 26,
2 0%, 0, 7%, :
=205 Ptrace | =Bi—3r <=2 4 378 | oreiT
H=2el Bl mce( ka6, Fo; ' * a6iax)"
ITi o o
H(=20) T Ptrace [ £7' 222 ) (—20)| 5 Ptrace [ £ 222 ) o=l
a6, a6
2 . 2 ) ‘}E
= (=2¢)| TP~ 1= ((2 — 2¢|Z¢|?) trace (E;' ‘,}H") (26)
o172
0% DN DN B3
trace | Z F2t + trace [ — Z; le—3x!
( 4 ;ml) oo, * ae, k30,6,

For non-negative |Zy|, the derivative is constant zero. For |Z;| = 0, the derivatives
are zero by both definitions, so pen is twice differentiable. In the linear model, the
first derivative of pen is zero for the mean parameters, because pen only depends on
parameters associated to variances and covariances. Moreover, in the linear model,
the second derivative of Sigma is zero for all parameters.

Computationally, the determinants of all £; are computed first. If all of them
are above zero, the penalty function and its derivatives are zero. The (relatively
complex) computations for the derivatives of the penalty function are only applied
otherwise.

However, when the matrix is not positive definite and relatively far away from
the boundary of positive definiteness, the penalty function results in high values.
which are likely to produce computational difficulties. We therefore do not want to
rely solely on a penalty function. Moreover, Newton's Method on the first deriva-
tives of F(p) only reveals an extreme point, but not necessarily a minimum. To
circumvent both problems. we introduce a modification of Newton's Method by
extension of the idea of damping (cf. [10]). This modification has so far not been
used elsewhere for parameter estimation. We choose a damping factor dependent on
the two-dimensional situation along the gradient. We quickly summarize the idea.

In the original Newton’s Method, to find a common zero of fi, ..., fx :RXK -
IR, in each step the Jacobian J of f),..., [fx defined by
af 0fx
g oy
J= (27)
afi afx

px  dpx
is computed. If p'"’ denotes the position of the ith step, then

p{!-l-ll = plfl = J([?!“)-}f(,ﬂt“) {28)
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To i mprove the quality of p''*", replace this line by
P(f-i—]l = p(fl +:‘-J(p”l)_lf{p{”)

where A € R is a parameter that can be freely chosen. The original Newton’s Method
is achieved by setting A = —1. We make a successive search for the best A by the
following method:

Let p; := p + AJ(p)~' £(p'") and fi = f(p). Consider three values 1y <
ki < Ay initially set to —1, 0, 1. By decreasing Ay, respectively increasing A, we
change the three values until f; is the minimum of the three values. Because the
direction of the gradient J(p'")~! f(p'"’) points toward an extremum, we expect
to find three values with the requested condition quickly. Otherwise, we take the
preceding best value of A corresponding to the lowest f;.

When Ay < &) < Ay with f;, < f;, and fi, < fi, are found, we check whether
Ly = fi,. Let A; correspond to the higher of the two, and let A4 := LiE be
the mean of A; and A;. We then check whether f;, or f;, is smaller and repeat the
process with the corresponding A and its two neighboring A. These three As again
respect the condition that the middle A corresponds to the lowest value. We repeat
this process until Xy, A, and Az only differ by a small a priori distance and continue
with Newton's Method on p;, .

4 General Simulation Procedure

To test certain statistical properties of the LGCM, we will create data points with an
LGCM and a given set of known parameters (similarly to [14, 16]). Here we explain
how the completed data points were created, how the data points were selected to
match substantive questions of interest, and the evaluation criteria we computed
to appraise the quality of the statistical methods (in particular how the parameter
estimates themselves can be compared to the initial population parameter values).

4.1 Data Generation

Consistent with the LGCM, we specify a priori a variance—covariance matrix M €
R2V*2V of the levels and slopes, vector i € R*Y of the means of the levels and
slopes, and an error variance @ uncorrelated with any other variable. From these
initial parameters, we generate general level /,; and slope s, ; scores, for variable
v and unit of analysis i, such that the first and second moments of /,; and s, ;
correspond to j¢ and M, respectively.

To this end, we perform a Cholesky decomposition of the covariance matrix M
of the parameters, i.e., we find a lower left triangular matrix C, such that CC7 =
M. Since M is a covariance matrix, it is positive definite, and thus the Cholesky
Decomposition exists. The matrix C can be computed recursively by
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i—1
mij— Zk:j CriCk.j

{ < j

Cii (29)
Cij = {— ¥ .
! J"Hi.j - Zk=ll CriChky =]
0 =

Let € RY be N Gaussian-distributed random variables. The levels and slopes
can then be obtained by taking

Lo lv—1.n=1. 800 Sy .N=1) =Cr +p

l.; and s,; are then normally distributed with means p and variance-covariance
matrix M, as can be checked

fCr(Cr)Tw(r} = fCrrTCT(u(r')

=C (f rr "‘(u[f‘)) el

=CICT (30)
=M
where
s . .
ff(r)w(r)::f f Q2r) 2 ¢ 2 2 f(rdry---dry
r —00 -0

as a short notation for integrals over some Gaussian distribution.

The error term err,,; can be computed by multiplying a Gaussian-distributed
variable by ¢, independently for all 7, v, and i.

Hence, in the end we generate N level scores [/, ;. slope scores s, ;. and error
scores erry ;. which all correspond to the initial population LGCM parameters M,
i, and @, These values are finally combined according to the LGCM equation (1) to
obtain K final data points for each unit of observation.

4.2 Data Selection

Let x'“’ be the data points created as described above given the population variance—
covariance matrix X, the population mean vector yu, and the population error
variance—covariance matrix #. At this point we may apply the estimation procedures
explained above to obtain the LGCM parameter values from the observed data x'.
Alternatively, if we are interested in specific statistical properties of the LGCM, we
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may select some of the data from x'"’. For instance, we may test the robustness of
LGCM to incomplete data under certain conditions (e.g., [28, 29, 12]).

One dimension of interest in our simulation is the time interval spanned by
the data points 7. Large scale longitudinal studies, or panels, are very expensive
and laborious, and consequently typically last less than a decade (although notable
exceptions exist). Of interest to many applied researchers is the necessary duration
of a longitudinal study in order to detect reliable variance in change (cf. [15]). In
the context of LGCM, this question translates into the number of longitudinal data
points necessary Lo detect reliable variance in the slope scores s, ;. Other LGCM
parameters defined in X, t, or @ can of course be examined.

To select the data to be examined, we perform a selection operation on the com-
plete data set x'"’ of each unit of observation i. Let A be the full data set of all data
points for each unit of observation. For each selection condition, we select (ran-
domly or according to some predefined criterion, such as the number of longitudinal
measurements) a subset J/ € A of the observed data points. We then restrict the data
vector x''" of each unit of observation, the matrix X, the vector g, and the matrix 6
to the rows and columns corresponding to the indices in J (for each variable v).

This selection operation allows testing the robustness of LGCM to incomplete
data. The LGCM is then applied to the resulting subset of data J and the overall fit
of the model (/s or Deviance) and the resulting parameter cstimates p are evaluated
in light of prespecified criteria.

4.3 Evaluation Criteria
We specified several evaluation criteria based on the statistical distribution of the x>

statistic and its degrees of freedom. For each LGCM computed on every generated
data set, we obtain the parameters and evaluation criteria summarized in Table 1.

Table 1 Parameters and evaluation criteria

Least square estimates
—2L L estimates

—2LL value for the estimates

—2LL value for the saturated model

—2L L value for the population parameters

—2L L value for the independent model with free means
—2LL value for the independent model with averaged means
—2LL value for the parameters of the free model

SRMR for the variance—covariance matrix

SRMR for the mean vector

X B W b — e —

Here, we have (a) the following estimates:

1. The estimated parameters for the minimal Least Square index. This includes all
elements of X and u estimated with the /s procedure specified above.
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2. The estimated parameters for the minimal —2LL index. This includes all ele-
ments of ¥ and . estimated with the —2L L procedure specified above.

and (b) the following fit indices:

I. The —2LL value of the —21 L estimates. This is the actual value of the —2LL

fit index corresponding to the parameter estimates obtained with the —2L L pro-

cedure (cf. the estimates in point 2 above). In this application, the model is a

LGCM with ail parameters freely estimated.

The —2LL value for the saturated model. This is the —2/. L value for the model

estimating one parameter for each unknown, that is, one parameter for cach ele-

ment in £ and in . This model is the least parsimonious and yields the best fit

to the data. Indeed. to obtain this —2L L we substituted £ with § and g with m

in the equation for —2LL.

3. The —2ZLL value for population parameters. This corresponds to the —2L L fit
index when the parameters are not estimated, but fixed at the known population
values, with which the data were generated in the first place. In this application,
the model is a LGCM with all parameters fixed (hence not estimated) to the
initial population values.

4. The —2LL value for the independent model with free means. This is a common
baseline comparison model in the structural equation modeling literature (e.g.,
[71). This —2LL value is the value obtained when the independence model,
rather than the LGCM, is compared to the observed data. In the independence
model, all longitudinal measures are posited independent of each other, but with
possibly different variance values. The model expectation variance—covariance
matrix S is hence a diagonal matrix, where all covariances are equal to zero. To
separate the effects due to the variance—covariance matrix £ from those of the
mean vector g, this first independence model estimates all mean values sepa-
rately, so that m counts (V — 1) - (T' — |) parameters.

5. The —2LL value for the independent model with averaged means. This fit
index is equivalent to the previous, except that it is also restrictive on the
mean structure. Here only (V — 1) parameters are estimated for the means,
that s, only one mean value for each variable v. Hence this model posits inde-
pendence among the longitudinal measurements and no average longitudinal
change.

6. The —2LL value of the free model. To reach statistical conclusions about a
specific LGCM parameter (e.g., the correlation between two variables™ slope
scores). the initial LGCM model, whose —2LL fit is (1). will be constrained
with a value of O for that specific parameter. The statistical inference about that
parameter can be based on the —2L L contribution due to that parameter, which
is the difference between the —2L L in (1) and the —2L L of the free model, in
which the paramelter is recly estimated rather than constrained at 0,

7. The Standardized Root Mean Residual (SRMR) for the variance—covariance
matrix. This fit index is similar to the squared Euclidean distance between
the standardized data variance—covariance matrix § and the model expected

o
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variance—covariance matrix X with the parameter values p. This SRMR is
defined by

2

“ VEPNEP)j;  /SiSi -

i=0 j=0

8. The Standardized Root Mean Residual (SRMR) for the mean vector. This SRMR
ignores all variance—covariance information and assesses the squared Euclidean
distance between the mean vectors p and m:

K
SRM Ruean(P) = ) ((P); — m;)? (32)

=l

All models described above are statistically nested in the free model, meaning
that the parameters estimated by each model are a subsct of the parameters of the
free model. The free model will always obtain a Deviance, which is smaller or equal
to the any other model, because it describes the overall data structure better or as
equally well as any other model. The —2 L L difference between any other model and
the free model is distributed as a x statistic with as many degrees of freedom as the
difference between the number of parameters estimated by the two models, because
they are statistically nested. Differences of —2L L statistics can be re-expressed as
Comparative Root Mean Square Error of Approximation (cf. [8]), defined as

CRMSEA = maxl(#4=340). 0 33)
T Adf k-

where Ax? corresponds to the difference in x> values and Adf to the difference in
degrees of freedom (df') between the two nested models.

4.4 Summarizing the Simulation Procedure

The total simulation procedure is illustrated in Fig. 1. First, the population values
and the model for data creation are used to generate the data set as described in
Sect. 4.1. Possibly, specific data points are selected as described in Sect. 4.2, and
the model is restricted by constraining specific parameters of focus. The restricted
model is then applied to the selected data set to minimize the least squares or the
—2LL index and to obtain the estimated parameters. The estimated parameters may
then be compared to the original parameters (i.e., the population values) or by cer-
tain evaluation criteria to finally ascertain their quality, as described in Sect. 4.3.
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Population
Values

Possible Mode
Restriction

Fig. 1 Representation of simulation strategy

5 An Illustration

In this section, we present an illustration of our engine for data generation plus
least squares and full information maximum likelihood estimation to test statistical
propertics of LGCMs. We will limit the analyses to two LGCM parameters. A more
extensive analysis of LGCM statistical properties is provided in [ 14, 16].

In this application, we were particularly interested in testing the power of
LGCMs in estimating variances and covariances of the slope components. Much
recent work in our main research field, cognitive aging, has focused on interindivid-
ual differences in change, or differential change, and relationships of change over
time. General salient questions in adult cognitive development concern whether
aging individuals change similarly or display subgroups according to their devel-
opmental patterns (e.g., the successful aging paradigm proposed by [35, 3]) and
whether changes in one domain, such as cognitive abilities, are related to changes
in other domains, such as sensory functions (e.g., [9]).

5.1 Population Parameters

Based on existing research examples (cf. [ 14, 16]), we generated data on V = 2
variables for N = 200 and N = 500 units of analysis over T = 20 time points. We
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chose the following variance—covariance matrix M and mean vector u for levels
and slopes (in the order level of variable one, level of variable two, slope of variable
one, and slope of variable two):

100 50
50 100 50

M=1% o0s |*=]-2 G4
0 X 2550 -20

In this example, we were interested in the effect of the within-variable level-slope
covariance X on the power to detect the covariance between the two slopes. To
this end, we varied X from —21.21 to 0.00 to 21.21, which corresponds to varying
the within-variable level-slope correlation from —0.3 to 0.0 and 0.3, respectively.
The error variance of both variables was set to 10. which is equivalent to an initial
reliability of 0.91 for both variables. This corresponds to the reliability of good
cognitive tests (e.g., [23]).

5.2 Data Selection

Two hundred replicate data sets per combination of population parameters are gen-
eraled and successively altered and analyzed. The data selection concerned the time
dimension, or length of the individual time series. only. The full data sets generated
in the first step simulate cognitive aging studies lasting 7 = 20 epochs (e.g., weeks,
months, or, relevant to the choice of the population parameters, years). In empirical
terms, it is very laborious and problematic for several reasons to repeatedly measure
a sample for 20 years. One practical question for researchers is then: For how many
years, or on how many occasions, do | need to measure my participants to detect
reliable variance in change and reliable covariance in change with LGCM analyses
(as a function of sample size, real variance and covariance in change, and variables’
reliabilities)?

Hence we selected data according to the time dimension, by retaining 3 (1 =
0.2,4),4( =0,2.4,6),50=0,2,4,6,8),6(=0,2,4,6,8,10), 10(r =0,
2,4,6,8,10,12, 14, 16, 18), and all 20 (from O to 19, by increments of 1) repeated
measures. This condition will allow comparing the power to detect reliable variance
in change and covariance in change as a function of study length, sample size, and
the effect size of within-variable level-slope correlations (X in (34)), accounting for
variables’ reliabilities and the effect sizes of the variances and means of levels and
slopes.
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5.3 Parameters of Focus

In this illustration, we focus on the two variances of slope scores Variance(s )
and Variance(s. ;) and the covariance between them, Covariance(s| ;:s>). The
three parameters are boldfaced in the matrix representation of M in (34). During the
parameter estimation procedure, we will hence solve three models: (M 1) the LGCM
with all parameters freely estimated; (M2) an LGCM with the covariance of slope
scores fixed at 0, hence not estimated: and (M3) an LGCM with both variances of
slope scores and their dependent covariances fixed at 0. Model (M1) estimates the
total number of parameters of a bivariate LGCM., that is 16, model (M2) estimates
15 parameters, and model (M3) estimates 9 parameters.

Besides the evaluation of the three models by means of the fit indices described in
4.3, relative model comparisons are possible. Models (M2) and (M3) are statistically
nested within (M1) and model (M3) is statistically nested in (M2). so that statistical
pairwisc model comparisons are justified.

5.4 Definition of Power

The main dependent variable of our illustration concerns the power of LGCMs
to correctly reject the null hypothesis that the parameters of focus are equal to 0
(when their analogous population parameters are different from 0). In this illustra-
tion, power of the parameters of focus is defined for all combinations of population
parameters, because Variance(s) y) = Variance(sz) = 50 and Covariance(s) .
s2.4) = 25 in all combinations of population parameters.

To define power in our simulation, we computed for all 200 replicates of each
combination of population parameters two statistical comparisons: We compared
models (M1) and (M2) to calculate the loss in —2LL fit due to not estimating the
Covariance(sy ;:s>) and models (M1) and (M3) for the loss in fit attributable Lo
the Variance(s) ) and Variance(sa) and all dependent covariances (which are
not defined when their relative variances are zero). The two differences in fit are
distributed as a x2 with | and 7 degree(s) of freedom, respectively. A significant
model comparison is obtained when the comparison x* value is greater, at an alpha
level of 0.05. than 3.84 and 14.07, respectively. Power is then defined as the ratio of
significant model comparisons out of the total 200 for each combination of popula-
tion parameters.

5.5 Results

The power estimates for detecting the Variance(s ;) and Variance(s, ;) are plot-
ted in Fig. 2, and those for Covariance(s) x: 524 ) in Fig. 3.

In general, the within-variable level-slope correlation seems to affect power to
detect the variance of slopes only when three occasions are retained with N = 200
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Power to detect variance of slopes

N=200 N=500

- 1.0 - 1.0
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Fig. 2 Power to detect variances of slopes as a function of within-variable level-slope correlation
(left, dark bar r = —0.30, middle, grey bar r = 0, right, white bar r = 0.30) and occasions
retained

or N = 500 and with four occasions with N = 200. When five or more occasions
are retained, power is very high with both sample sizes across the three values of
the within-variable level-slope correlation.

Power to detect the covariance of slopes is acceptable with six occasions or more
when N = 200 and five or more occasions with N = 500, independently of the
within-variable level-slope correlation.

To test formally the effects observed with the barplots, we tested the differences
between the analogous power columns of both sample sizes for significance. The
event to successfully reject the null hypothesis is binary distributed with the power

Power to detect covariance of slopes
N =200 N=500

ey
' 2
— 0.4 o
0.2
. =t 0.0
13 10 0
MNumber of occasions Number of occasions

Fig. 3 Power to detect covariance of slopes as a function of within-variable level-slope correlation
(left, dark bar r = —0.30, middle, grev bar r = 0, right, white bar r = 0.30) and occasions
retained
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as probability for rejection. Thus, the number of rejections in 200 replicates is bino-
mially distributed with the power equal to the probability. Two cells are therefore
significantly different to an & level if the probability of being drawn from the same
binomial distribution is less than .

This analysis confirmed our assumptions that occasions strongly affect the power
to detect both variables’ slope variance and the across-variable slope covariance. All
comparisons between two analogous cells of the same parameter but differing with
respect to occasions were significantly different (p < 0.001), unless the power was
maximum (i.e., 100%). Likewise, the effect of sample size was cqually significant
(p < 0.001) for all analogous cells differing only with respect to sample size, unless
power was 100%.

The within-variable level-slope covariance had no significant effects on the
power to detect the across-variable covariance of slopes at an @ = 0.01 level.
Yet, the within-variable level-slope covariance had a significant effect on the power
to detect the two slope variances. For the power to detect variance in change, all
cells different only in level-slope covariance were highly significantly different
(a < 0.001, unless power was 100%).

In sum, the simulation showed that detection power of variance is higher with a
positive within-variable correlation between level and slope, and even higher when
this correlation is negative. The power of across-variable covariance of change, on
the other hand, does not appear to be significantly affected by the within-variable
level-slope correlations.

6 Discussion and Outlook

In this chapter, we presented a simulation procedure for testing statistical properties
of Latent Growth Curve Models (LGCM). In the application, we applied the pro-
cedure to study the power of LGCMs to detect variances and covariances of linear
change. The simulation engine ( http://www.mpib-berlin.mpg.de/en/
forschung/computerscience/.) produced data according to a linear LGCM
with different parameters, then selected those data sets, and finally analyzed them
under different parameter restrictions to compute nested model comparisons focused
around parameters of interest (variances in and covariance of change).

To estimate the LGCM parameters for each generated data set, we provided some
technically equivalent transformations of the derivatives of the Minus Two Log
Likelihood index. which allowed us quickly finding minimal points by a variant
of Newton's Method. In this manner, we were able to avoid areas of the parameter
space that are inadmissible for covariance matrices and to separale minima from
maxima.

In the illustration, we showed that the power to detect variances of change in a
LGCM is dependent on the within-variable level-slope covariance, while the power
to detect across-variable covariance of changes in a LGCM apparently is not. A
possible explanation of this effect can be found in detail in [16].
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[n short, there is more than one possible statistical test for the variance in change.
One may nest a model with both variances in change constrained to be zero within
an unrestricted model. This will lead 10 a 2-degree-of-freedom chi square compar-
ison. Alternatively, one may also compare a model with both variances in change
fixed to zero as well as all related covariances, which corresponds to a 7-degree-of-
freedom chi square comparison (2 variances and 7 covariances). In [16], we showed
that while the latter method is superior when the real covariances associated to
the change factors in the population are zero, the former is superior when those
covariances are different from zero. Because in the present illustration we applied
the former method, the resulting power to detect variances in change increased with
higher within-variable level-slope covariance.

In future work, we intend to elaborate our research of simulation methods and
expand the simulation engine to cope with the incongruence due to creating data
with one LGCM specification and subsequently analyzing those data with a different
LGCM specification. Also, the effects of more complex data selection strategies will
be addressed.

LGCMs have become a prominent method of data analysis in much psycholog-
ical researchs. These models are appealing because they (a) allow disentangling
level from change in information; (b) allow specifying a wide varicty of pre-defined
change patterns (e.g., polynomial, exponential, and Gompertz) or estimating the
change pattern empirically from the data analyzed; (c) allow analyzing all data
available, even in the presence of incomplete data, as long as the missing at random
assumption is met; and most importantly (d) have contributed significantly to the
advancement of theoretical knowledge about the cognitive aging literature.

The study of statistical behaviors of LGCMs is however still a very active
research field. Although much cognitive aging literature focuses on change param-
eters, especially variance and covariance, the field as a whole still does not know
the limits of LGCMs. We showed that even under ideal and empirically unrealistic
assumptions about the data (e.g., group homogeneity with respect to the change
phenomenon examined, nonexistent longitudinal dropout, and correct a priori spec-
ification of the change function) certain LGCM parameters of chief substantive
importance are estimated with low to very low power.

Simulation studies such as this allow us furthering our knowledge about the limits
and tenability of LGCMs under given research situations. We believe that much
more research is needed to persuade LGCM users not to rest on substantive findings,
which might be invalid because of inherent LGCM lack of power under specific
conditions, most of which still in need of being discovered.

References

1. Arbuckle, J.L. Full information estimation in the presence of incomplete data. In: G.A.
Marcoulides, R.E. Schumacker (Eds.), Advanced Structural Equation Modeling: Issues and
Techniques (pp. 243-277). Mahwah, NJ: Lawrence Erlbaum Associates, Inc. (1996).



116

(]

T. von Oertzen et al.

. Arbuckle, J.L.. Wothke, W. Amos 4.0. User’s Guide. Chicago, IL: SmallWaters Corporation

(1995).

. Baltes, P.B., Baltes, M.M. Successful Aging: Perspectives from the Behavioral Sciences.

Cambridge, UK: Cambridge University Press (1990).

. Baltes, P.B., Nesselroade, J.R. History and rationale of longitudinal research. In J.R. Nessel-

roade. P.B. Baltes (Eds.), Longitudinal Research in the Study of Behavior and Development
(pp. 1-39). New York: Academic Press, Inc. (1979).

. Baltes, PB., Reese, H.W., Nesselroade, J.R. Life-Span Developmental Psychology: Introduc-

tion to Research Methods. Monterrey, CA: Brooks/Cole (1977).

. Bentler, PM. EQS Program Manual. Encino, CA: Multivariate Software, Inc. (1995).
. Bollen, K.A. Structural Equations with Latent Variables. New York: John Wiley (1989).
. Browne. M.. Cudeck. R. Alternative ways of assessing model fit. In K.A. Boolen, J.S. Long

(Eds.), Testing Structural Equation Models (pp. 136-162). Newbury Park, CA: Sage Publica-
tions, Inc. (1993).

. Deary, 1.J. Sensory discrimination and intelligence: Postmortem or resurrection? American

Journal of Psychology, 107:95-115 (1994).

. Deuflhard, P.,, Hohmann, A. Numerische Mathematik [Numerical mathematics]. Berlin,

Germany: Walter de Gruyter (1993).

. Fan, X. Power of latent growth modeling for detecting group differences in linear growth

trajectory parameters. Structural Equation Modeling, 10:380-400 (2003).

2. Ghisletta, P. A simulation analysis of alternative methods to correct for selective dropout

in longitudinal studies. Unpublished doctoral thesis. University of Virginia, Charlotiesville,
Virginia (1999).

. Ghisletta, P., Lindenberger, U, Static and dynamic longitudinal structural analyses of cognitive

changes in old age. Gerontology, 50:12-16 (2004).

. Hertzog, C., Lindenberger, U.. Ghisletta, P., Ocertzen, T. On the power of multivariate latent

growth curve models to detect correlated change. Psychological Methods, 11(3):244-252
(2006).

. Hertzog, C., Nesselroade, J.R. Assessing psychological change in adulthood: An overview of

methodological issues. Psychology and Aging, 18:639-657 (2003).

. Hertzog, C.. von Oertzen, T.. Ghisletta, P., Lindenberger, U. Evaluating the power of latent

growth curve models to detect individual differences in change. Structural Equation Modeling,
15:541-563 (2008).

. Joreskog, K.G., Sorbom, D. LISREL 8. User's Reference Guide. Chicago, IL: Scientific

Software International (1996).

. Laird, N.M., Ware. J.H. Random-effects models for longitudinal data. Biometrics, 38:

963-974 (1982).

. Lange, K., Westlake, J., Spence, M.A. Extensions to pedigree analysis. iii. variance compo-

nents by the scoring method. Annals of Human Genetics, 39:485-491 (1976).

. Lindenberger, U. Lifespan theories of cognitive development. In N. Smelser, P. Baltes

(Eds.), International Encyclopedia of the Social and Behavioral Sciences (pp. 8848-8854).
Oxford: Elsevier Science (2001).

. Lindenberger. U., Chicherio, C. Développement intellectuel au cours du cycle de vie : Sources

de variabilité et niveaux d'analyse. L' Année Psychologique, 108:757-793 (2008).

. Lindenberger, U., Ghisletta, P. Modeling longitudinal changes in old age: From covariance

structures to dynamic systems. In R.A. Dixon, L. Biickman, L.G. Nilsson (Eds.), New
Frontiers in Cognitive Aging (pp. 199-216). Oxford. UK: Oxford University Press (2004).

23, Lindenberger, U., Mayr, U.. Kliegl, R. Speed and intelligence in old age. Psychology and

Aging, 8:207-220 (1993).

. Lindenberger, U., Oertzen, T. Variability in cognitive aging: From taxonomy to theory.

In F. Craik. E. Bialystok (Eds.), Lifespan Cognition: Mechanisms of Change (pp. 297-314).
Oxford: Oxford University Press (2006).



Simulation Statistical Power in LGCM 117

25.

26.

32.

3%

34.

(YRR
o LA

Marsh, H., Hau, K.T. Multilevel modeling of longitudinal growth and change: Substantive
effects or regression toward the mean artifacts? Multivariate Behavioral Research, 37:245-282
(2001).
McArdle, 1.J. Latent growth within behavior genetic models. Behavior Genetics, 16:163-200
(1986).

. McArdle, J.J. Structural factor analysis experiments with incomplete data. Multivariate

Behavioral Research, 29:409-454 (1994).

. McArdle, JI.. Hamagami. F. Modeling incomplete longitudinal data using latent growth

structural equation models. In L.M. Collins, J.L. Horn (Eds.), Best Methods for the Analy-
sis of Change: Recent Advances, Unanswered Questions, Future Directions (pp. 276-304).
Washington, DC: American Psychological Association (1991).

. McArdle, J.J., Hamagami, F. Modeling incomplete cross-sectional and longitudinal data using

latent growth structural models. Experimental Aging Research, 18:145-166 (1992).

30. McArdle, 1.J.. Hamagami, F. Multilevel models from a multiple group structural equation

perspective. In G.A. Marcoulides, R.E. Schumaker (Eds.), Advanced Structural Equation
Modeling. Issues and Techniques (pp. 89-124). Mahwah, NJ: Lawrence Erlbaum Associates
(1996).

. Muthén. L.K., Muthén, B.O. MPlus User's Guide. Los Angeles, CA: Muthén and Muthén

(1998).

Neale, M.C., Boker, S.C., Xie, G., Maes, H.H. Mx: Statistical Modeling (5th edn.). Richmond:
Medical College of Virginia (1999).

Raudenbush, S.W. Toward a coherent framework for comparing trajectories of individual
change. In L.M. Collins, A.G. Sayer (Eds.), New Methods for the Analysis of Change (2nd
edn.. pp. 33-64). Washington, DC: American Psychological Association (2000).

Rovine, M., Molenaar, P.C.M. The covariance between level and shape in the latent growth
curve model with estimated basis vector coefficients. Methods of Psychological Research
Online, 3:95-107 (1998).

. Rowe, J.W., Kahn, R.L. Human aging: Usual and successful. Science, 237:143-149 (1987).
. Singer, T., Verhaeghen, P.., Lindenberger, U.. Baltes, P. The fate of cognition in very old

age: Six-year longitudinal findings in the Berlin aging study (BASE). Psychology and Aging.
18:318-331 (2003).



