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1 Introduction
Modeling pedestrian behaviour in urban environments has received much attention
since the late 1990s. The main incentive stimulating this trend is probably the advance-
ment of computer and programming technologies which allow researchers to model
and simulate complex behaviour from a bottom-up perspective through agent-based
modeling (see, for example, Dijkstra and Timmermans, 2002; Haklay et al, 2001;
Kerridge et al, 2001). In addition, other studies examine local movement dynamics of
pedestrians such as queue following and obstacle evading. A typical example is the
social force model (see, for example, Helbing and Molnär, 1995; Helbing et al, 2001)
in which pedestrian movement is modeled as the result of competing forces from the
environment surrounding the pedestrian, based on principles similar to Newtonian
mechanics. However, work on calibrating such models is very rare (see, for example,
Hoogendoorn et al, 2007); the parameters of these models are often set arbitrarily
or sometimes measured directly from observable walking properties such as speed
and spacing (see, for example, Willis et al, 2004). Calibration is usually implemented
at more aggregate levels to examine the extent to which emergent phenomena pro-
duced through simulation, such as specific shape of flow, density, queue, and clog, are
consistent with actual observations.

We consider that, apart from viewing and modeling pedestrian movement analo-
gous to the behaviour of particles in physical fields, aspects such as cognition, decision,
and psychological activities are equally important for pedestrian modeling and useful
in practice. Moreover, calibrating pedestrian models at the level of decision making is
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considered to be equally important for validating underlying assumptions. Almost all
behaviour can be understood as the result of choice decisions. For example, pedestrians
decide to leave a place or stay, or go in one direction rather than another.

Models of pedestrian choice behaviour (and other types of activity choices)
have mostly been based on theories of rational choice. These theories suggest that
individuals invariably take into account the set of factors influencing their decision,
attach some value judgment (utility, attitude, satisfaction) to each choice alternative,
and choose the alternative that maximises their value judgment. Most operational
models use an additive function to represent the value-judgment process, implying
that a compensatory decision-making process is assumed in the sense that a low
judgment on some factor may be at least partially compensated by higher judgments
of one or more of the remaining factors influencing the decision. For example, in
the context of pedestrian store or shopping-centre choice behaviour, a pedestrian's
utility of alternatives is commonly defined as the summation of weighted (evaluation
of) physical factors such as store floorspace, store type and variety, distance, traffic
condition, and parking facility (see, for example, Borgers and Timmermans, 1986;
Oppewal and Timmermans, 1997; Saito and Ishibashi, 1992; Van der Waerden et al,
1998). Sociodemographics can also be incorporated into the utility function to repre-
sent their influences (see, for example, Fortheringham and Trew, 1993). Pedestrians are
assumed to choose the store bringing them the highest utility. Hoogendoorn and Bovy
(2004) developed an extensive framework based on expected utility maximisation to
model not only pedestrian route choice but also optimal activity schedule, trajectory,
and speed. In terms of microscopic movement, Antonini and Bierlaire (2006) used a
multinomial logit model to represent how pedestrians choose local walking directions
that are defined as discrete surrounding radial regions. A potential limitation of these
models is that they do not explicitly represent decision processes such as information
search and representation. Pedestrians are often assumed to have very good knowledge
about the environment and the ability to take into account all relevant factors influencing
decisions.

In contrast to these models of rational choice behaviour, models of bounded
rationality assume that decisions are made on subsets of factors and do not necessarily
result in optimal choices. These models often adopt noncompensatory rules and
decision heuristics to indicate that decisions may be made on an attribute-by-attribute
basis as opposed to a compensatory decision process (see, for example, Gigerenzer
et al, 1999; Payne and Bettman, 1988; Tversky, 1972). A few examples of such models
have appeared in planning and transportation literature. Often, how well a noncom-
pensatory choice model predicts observed choices has been tested. Foerster (1979) is
among the early researchers who attempted to introduce noncompensatory models such
as lexicographic, conjunctive, and disjunctive rules into travel-mode decision-process
modeling. The potential advantage of noncompensatory models was suggested by
positive results. Recker and Golob (1979) proposed an elimination-based model based
on sequential consideration of attributes. Applying the model to the problem of vehicle
choice and store choice, they estimated critical tolerances for attributes, assuming the
sequence of attribute consideration is known. Young (1984) assumed that individuals
have a set of minimally acceptable satisfaction levels which are used to judge the
satisfactoriness of corresponding attributes. These tolerances were estimated, while attri-
bute importance was provided by respondents, using rating scales. Borgers et al (1986)
suggested a hybrid model for residential preferences. They estimated a model which
assumes that individuals apply certain thresholds to particular attributes (noncompensa-
tory part), while the remaining attributes are processed in a compensatory fashion. In
contrast to the general support for noncompensatory models, Timmermans (1983) found
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less evidence for the superiority of noncompensatory decision rules. In his study of
shopping-centre choice, compensatory and noncompensatory decision rules performed
almost equally well.

This brief discussion of the literature suggests that research on models of bounded
rationality in planning is relatively scarce. Although existing research has provided
some degree of the potential value of exploring further the development of bounded
rationality models, the state of the art indicates some shortcomings. First, the models
are limited in the sense that they focus on the noncompensatory nature of the decision
rule. The process that leads to the selection of factors entering the decision process is
not usually modeled. Common practice is that factor selection and search sequence are
a priori assumed or obtained from the direct report of respondents. Second, the choice
of heuristics to be applied depends largely on the researcher's individual experiences
and intuition. Some general approach would be helpful to overcome, to some extent,
the arbitrariness involved in this selection process. For example, Swait (2001) shows
that incorporating attribute cutoffs and varying utility functions into conventional logit
models can approximate disjunctive and conjunctive rule, which means the heuristics
can be estimated. However, approximation is not exact; the information search process
cannot be identified and cutoffs are self-reported. Third, a particular heuristic model
is assumed to apply to all individuals. In reality, however, it is unlikely that different
individuals will use the same choice rules. Even for the same individual, decision
strategies may be dependent on context. Evidence of such behaviour has accumulated
over a long period (see, for example, Beach and Mitchell, 1978; Payne, 1982). What is
still missing is a fully operational approach that accounts for heuristic heterogeneity,
which would thus enhance models of bounded rationality.

Therefore, we propose a modeling approach that overcomes the limitations discussed
above and requires no more information than is required by conventional discrete choice
models, while it is based on richer behavioural assumptions, including that: (1) attribute
thresholds are incorporated in the utility function as the basic cognitive mechanism;
(2) heterogeneous decision heuristics can be exactly identified; (3) mental effort and
risk perception of heuristics are defined and their influences on choice of heuristic
are estimated. To illustrate this, the approach is applied to the go-home decision
of shopping pedestrians, which predicts the duration of pedestrians' shopping trips.
It could potentially also be applied to different kinds of decision problems.

The paper is organised as follows. First, we elaborate on the theoretical framework
underlying the approach. Next, we discuss the data collection, followed by a discussion of
the main findings of the model estimation. The paper is completed with a discussion and
conclusions.

2 Conceptual framework
2.1 Preference structure
On the basis of the principle of bounded rationality, any decision or choice process can
be understood as a problem-solving process in which an individual processes informa-
tion to arrive at a decision that achieves a particular goal within some margin of
accuracy. We assume that individuals will construct a mental representation of the
decision problem. This cognitive process is assumed to consist of at least three sequen-
tial processes: filtering of information, factor representation into states, and judging the
resulting states, individually and combined. Jointly, these processes lead to preference
formation.

Let X � fxj j j � 1, 2, .::, J g represent the set of factors (or attributes) influencing
the decision of interest. We assume that individuals do not necessarily take all these
factors into account, but mentally construct or reconstruct the problem and select a
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subset of the factors. This filtering process is not invariant, but will depend on the
decision problem, and, more importantly, on the activation level of the individual.

Let dj represent an activation threshold for factor xj . These thresholds act as filters.
Thus, by consciously, or unconsciously, applying these thresholds, a subset of activated
factors will enter the decision-making process. Only if all the thresholds are equal
to zero (defining that all factor stimulation can be transformed into positive real
numbers and larger values represent stronger stimulation), will all factors be considered.
Mathematically, this can be expressed as:

sj �
0; if xj < dj ,

1; if xj 5 dj ,

(
(1)

where sj is the mental state of the factor in mental representation. Consequently, the
set of factors considered, X 0, is X 0 � fxj j sj � 1g for all xj 2 X.

Once the relevant factors have been filtered, bounded rationality suggests that
individuals tend not to discriminate between all possible values of factors. Rather,
they will categorise the continuous factors into discrete classes or states, or recategorise
discrete factors.We assume that in the case of continuous factors, this process of factor
representation involves the application of a monotonically increasing set of threshold
values that discretise the continuous factors into an ordered set of discrete classes.
Let Dj � fdj 1 < djn < djN j n � 1, 2, .::, N g be a set of successively increasing activa-
tion thresholds for xj , corresponding to stricter judgment standards. (Note that N can
be factor dependent, so it should be Nj . For representational simplicity, the subscript j
is ignored.) A factor may then meet one or more of these increasingly stricter activation
thresholds and hence the stimulus becomes stronger. The relevant equations then become

sjn �
0; if xj < djn ,

1; if xj 5 djn ,

(
(2)

X 0 � fxj j sjn � 1g .
Thus, filtering and factor representation transforms categorical and continuous external
factors into a set of activated and nonactivated internal (mental) factor states.

Individuals will judge these states by (1) attaching values, (2) assigning relative
importance weights, (3) integrating these values for individual states in some way to
arrive at an overall judgment, and (4) evaluating the overall judgment against some
overall threshold value and making the decision. Attaching judgment values to states
implies that the state is evaluated. Weights indicate the relative importance of states.
In our approach, these values and weights are combined into a single value, wjn , which
can be interpreted as a part-worth utility, because they are both unknown parameters.
Let ujn � wjn sjn denote the value judgment of state n of factor xj . All states that are
incorporated in the decision-making process need to be combined according to some
integration rule to arrive at an overall value judgment for each choice alternative.
Various rules can be used. To facilitate operation, if an additive integration rule is
assumed, the overall value judgment of choice alternative i equals:

vi �
X

j

X
n

uijn . (3)

In the final step, we assume that the overall values are also categorised by checking
them against a set of L � fl1 < lm < lM j m � 1, 2, .::, M g of successively increasing
overall thresholds, resulting in the overall states, pim . This can be expressed as:

pim �
0; if vi < lm ,

1; if vi 5 lm .

(
(4)
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In case this representation involves only two preference orders (for example, reject
or accept), only one l is needed and pi � 0 defines rejecting the alternative, whereas
pi � 1 implies accepting it. For representational simplicity, in the remainder of this
paper, we will assume that only two orders exist.

Define a state-value set for each factor,

Vj � fvj 1 � 0, vj 2 � wj 1 , vj 3 � wj 1 � wj 2 , .::, vjN�1 �
XN
n � 1

wjng , (5)

which includes all possible value judgments related to the factor. Let vk represent any
factorial combination from value judgments in the sets, that is,

vk �
X

j

vj 1 , l 2 �1, .::, Nj � 1� . (6)

Ordering all the vk in ascending order forms an overall value set,

V �
�
v1 < vk < vK j k � 1, 2, .::, K; K �

Y
j

�Nj � 1�
�
. (7)

Checking these overall value judgments against the overall threshold l, results in a
unique pattern of relationships with some value judgments above the threshold, and
some below the threshold. Thus, the set of overall value judgments V can be divided
into a subset V0 of rejected overall value judgments and a set V1 of accepted ones.
This pattern can be viewed as a discrete preference structure, F, that is used to classify
overall value judgments of alternatives into an ordered set of preferences (in this case
reject or accept). Mathematically,

F � vk 2 V0 jvk < l

vk 2 V1 jvk 5 l

� �
. (8)

2.2 Decision heuristics
We assume that in every choice context, individuals will consciously or unconsciously
define a set of threshold values and apply decision heuristics which are logically
consistent with the preference structure. Because for different individuals, or in different
contexts, preference structures may differ in terms of the pattern of the sets of accepted
and rejected values, this implies that our cognitive process model automatically
generates heterogeneous decision heuristics. One extreme is the strictest preference
structure in the sense that no single value (judgment) combination survives the overall
threshold,

F � fvk 2 V0 jvk < lg . (9)

That means that, regardless of the states of the factors, the choice alternative
under evaluation will be rejected. In this case, no information search is implied
(or the heuristic of `no action', since the individual does not need to consider any
information). Relaxing l a little leads to a preference structure where only the value
combination of factor states with the highest threshold values is accepted,

F �
vk 2 V0 jvk < l

vk 2 V1 jvk 5 l, vk �
X

j

vjN�1

8<:
9=; . (10)

This preference structure implies a conjunctive heuristic in the sense that an alternative
will be accepted only when all factors are in their highest states. During the decision
process, any single factor being unsatisfactory will cause the decision process to stop,
regardless of the states of the other factors.
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At the opposite end is the most relaxed preference structure, representing the case
that all factor combinations will be accepted,

F � fvk 2 V1 jvk 5 lg . (11)

This preference structure implies the other `no action' heuristic since factors being
in whatever state will lead to the alternative being accepted. A little less tolerance
for l may result in a preference structure where all but the value combinations of
nonactivated factor states are accepted,

F �
vk 2 V0 jvk < l, vk �

X
j

vj1

vk 2 V1 jvk 5 l

8<:
9=; . (12)

Disjunctive heuristics can be inferred from this preference structure since any factor
state (except the nonactivated state) being satisfactory will cause the decision process
to stop and accept the choice alternative, regardless of the state of the other factors.

Within the spectrum, various other preference structures and heuristics can be
identified. For example, the lexicographic heuristic is implied in such a preference
structure,

F �
vk 2 V0 jvk < l,

X
k

Xn
t � 1

sjt jk � 0

vk 2 V1 jvk 5 l,
Y
k

YN
t � n 0

sjt jk � 1

8>>><>>>:
9>>>=>>>; for n < n 0 . (13)

According to this preference structure, there exists at least one factor j. When some
states of this factor are not activated, the decision process will stop and reject the
alternative. When some states are activated, the decision process will stop at accepting
the alternative. In between are those states whose status cannot determine accepting or
rejecting the alternative and further consideration of other factors is needed.

2.3 Choice of heuristics
We assume that individuals in different contexts may apply different preference struc-
tures and corresponding decision heuristics to solve problems. That is, individuals
will have a context-dependent repertoire of preference structures and corresponding
heuristics. Although we should always try to specify the context as much as possible,
there will always remain some stochastic element from the viewpoint of the analyst.
Such randomness can be included mathematically in the overall threshold, so that we
get l � f, where f is a probability density function. Because V is a discrete set, between
consecutive pairs of vk , there is a range of l, satisfying vkÿ1 < l 4 vk . It represents the
range of an invariant preference structure. The probability of this preference structure
fk being applied, pk , equals the probability of l being in this range:

pk �
�vk
vkÿ1

f dt . (14)

Equivalently, we may view this as the probability of applying decision heuristics
implied by the preference structure. To elaborate, assume that the notion of bounded
rationality implies that individuals cannot, or may not, feel the need to discriminate
to the fullest extent between the identified preference structures. Preference structures
with similar factor relaxation can be treated as similarly effective in satisfying a
particular need. We called this the preference tolerance, represented by a set of values
G � fgg j g � 1, 2, .:: , G ; G 4 K g, grouping preference structures into G� 1 subsets
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according toV,

Z �

z1 jvk < g1
z2 j g1 4 vk < g2
. . .
zg 0 j gg 0ÿ1 4 vk < gg 0
. . .
zG�1 j gG 4 vk

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
. (15)

In the case of high-involvement decisions, one would expect strict tolerances and
potentially many subsets. In contrast, in the case of low involvement, preference
structures may be grouped into a small number of broad classes. The process of
selecting a decision heuristic is a two-stage process, starting with an individual apply-
ing context-specific preference tolerances, followed by selecting a decision heuristic
within the relevant preference-structure subset. Let h � 1, 2, .::, H be the symbol for
heuristics.We assume that within each subset, the choice of a heuristic can be modeled
probabilistically based on the expected value of applying each heuristic,

ph2 z
g 0 � pz

g 0

exp uhX
h 0 2 z

g 0

exp uh 0
. (16)

The probability of every subset being selected, pz
g 0 , can be derived empirically from

equation (14) and is equal to the sum of the probabilities of preference structures
within that set, given the estimated preference tolerances. The expected value of a
heuristic, uh , may be composed of various factors. Here we consider two of those
factors. The first is the expected amount of mental effort, eh , which is defined to be
inflicted during searching a factor, considering the factors into the decision, represent-
ing their states, and attaching values. The second factor is risk perception, rh , which
represents subjective outcome diversity.

A complicating aspect is that individuals cannot be sure about the amount of
mental effort that could be involved before making the decision. They can only
estimate it subjectively based on their beliefs pjn that the factors occupy states that
make any further searching of subsequent factors useless. To illustrate, let three
factors x1 , x2 , and x3 have, A, B, and C states, respectively, (a � 1, 2, .::, A;
b � 1, 2, .::, B; c � 1, 2, .::, C ). Assume that the heuristic under consideration
implies the search sequence x1 ! x2 ! x3 . Let e1 , e2 , and e3 denote the amount
of mental effort inflicted when considering factor x1 , x2 , and x3 , respectively,
and let pa , pb , and pc represent the individual's beliefs that factors are in the states
with overall value judgments va , vb , and vc respectively, such that

X
a

pa � 1,X
b

pb � 1,
X
c

pc � 1. The expected amount of mental effort is then defined as,

eh � e1 �
X
a

� pa e2 Iab �
X
b

pa pb e3 Iabc � , (17)

Iab �
0; if vabc < l _ vabc 5 l , 8b, 8c,
1; otherwise,

(
(18)

Iabc �
0; if vabc < l _ vabc 5 l , 8c,
1; otherwise.

(
(19)
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Equation (17) reflects the fact that e1 is inevitably fully inflicted since x1 is considered
first. For each possible state of x1 , the expected effort is derived from two terms.
First, the effort of considering x2 is weighted by the probability of x1 being in a
particular state and Iab , an identity function defined by equation (18). Iab represents
a judgment process, in which an individual checks whether all possible value combina-
tions given the current factor state, vabc j a, are inactivated against l, or are all activated.
If all value combinations are inactivated, the unsearched factor is not considered and
no additional mental effort is involved. If all factors are activated, it means that the
same decision or preference applies to all instances of that factor and hence consider-
ing the factor will not have any effect on the preference ordering or decision. In these
case, Iab � 0; in contrast, Iab � 1, and x2 needs to be searched. According to the same
logic, the second term relates to searching x3 when at a state of x2 . Effort e3 is weighted
by pa pb, the joint probability of being in the previous two factor states, and Iabc is
another identity function judging whether the simultaneous conditions vabc j a, b against
l are satisfied or not. By this definition, due to the fact that the effort for searching
factors may differ and different factor values may cause earlier or later termination
of the decision process when the expected overall values are homogeneous against the
overall threshold, the expected effort of consideration sequences may differ also.

Preference structures with either very strict thresholds or very relaxed thresholds
are defined to be risky because most information about factors falls into the nonacti-
vated states or the activated states, respectively. This makes the decision of rejecting
or accepting alternatives very certain, but increases the potential risk of false rejection
or false acceptation, respectively. Thus, outcome diversity and risk perception are
inversely related. Risk perception is defined in terms of Shannon's information entropy
measure. Let pk , corresponding to vk, be the factorial joint product of the probabilities
of factor states. The probability of getting a positive, r�h or a negative, rÿh , outcome is,
respectively,

r�h �
X
k

pk , 8vk 5 l , (20)

rÿh � 1ÿ r�h .

Then, the risk perception of a heuristic is equal to

rh � ÿr�h ln r�h ÿ rÿh ln rÿh . (21)

Because the sequence of factor search does not influence rh , the risk perceptions are
the same for heuristics of the same preference structure. Thus, risk perception only
differentiates the values of heuristics of different preference structures.

In total, we assume that the value of a decision heuristic equals some weighted
linear trade-off between mental effort and risk perception,

uh � be eh � br rh . (22)

3 Illustration
3.1 Data
We will illustrate the suggested modeling approach in the context of pedestrian
go-home decisions, which determine the total duration of pedestrian's shopping trips.
The data used were collected in May 2004 as part of a pedestrian survey in Wang
Fujing Street, in the city centre of Beijing, China. Twenty students from the Depart-
ment of Urban and Regional Planning, Peking University administered the survey by
randomly asking pedestrians, who were near the end of their shopping trips, two
categories of questions: (1) respondents' sociodemographics; (2) their sequential set of
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stops and activities in the street. The total sample consists of 694 respondents. Except
for the final stop, the data do not provide any explicit information about the go-home
decision. Because we could not observe when go-home decisions were made, we
assumed that this decision is made implicitly or explicitly every time a store has
been visited and an additional approach was applied to estimate the time of decisions
(Zhu et al, 2006). This resulted in 2741 decision cases for model estimation.

3.2 Operationalisation
The go-home decision can be influenced by many factors such as the fulfillment of the
shopping list, feeling tired, or turning to other scheduled activities. Not all of them are
easy to measure in surveys. Here, we use time as the major factor influencing this
decision. Two types of time are distinguished: relative time, tR, and absolute time, tA.
Time tR refers to the time elapsed, in minutes, since the pedestrian started the shop-
ping trip. It correlates with the progress of purchasing the planned items during the
shopping trip, visiting schedules, and how tired the pedestrian has become. Time tA

refers to the time difference between the current time and the base time 0:00. It
correlates with available time budgets, reflecting when pedestrians must turn to other
business. It should be noted that other factors may need to be included in future
models. In this study, however, our primary focus was on developing the modeling
principles and thus we kept the number of explanations limited.

Let the threshold values for tR be DR � [dR
1 , .::, d

R
m , .::, d

R
M ], a row vector with M

elements, and the threshold values for tA be DA � [dA
1 , .::, d

A
n , .::, d

A
N ], a row vector

with N elements. W R � [wR
1 , .::, w

R
m , .::, w

R
M ]T and W A � [wA

1 , .::, w
A
n , .::, w

A
N ]

T are
column vectors for corresponding state values. An unobserved factor e with a standard
normal distribution is also assumed [since all terms in equation (23) have free param-
eters nonunit standard deviations can be reduced to unit standard deviation], while l
represents the overall threshold. The go-home decision model therefore is,

I�tR 5 DR�W R � I�tA 5 DA�W A � e 5 l , (23)

where I(z) is an element-wise identity function assigning 1 when the relation z is true,
and assigning 0 when z is false. Literally, if the sum of the observed and unobserved
values exceeds the overall threshold, the pedestrian will decide to go home. The
probability of the observed utility under the normal distribution of mean l and unit
standard deviation, equivalently the probability of going home pH, can be expressed as,

pH � F �I�tR 5 DR�W R � I�tA 5 DA�W A, l, 1� , (24)

where F represents the cumulative density function of the normal distribution. Param-
eters can be estimated in terms of a maximum likelihood estimator. The numbers of
threshold values M and N were not set a priori but estimated as part of the estimation
process. Because the model involves a discontinuous multidimensional step function,
the likelihood function is also discontinuous, multipeaked, and difficult to solve
analytically. Therefore, a hybrid estimation algorithm composed of a genetic algorithm
for global search and a quasi-Newtonian algorithm for local search provided by
MATLAB was used. To prevent overestimation, the consistent Akaike information
criteria (CAIC) (see, for example, Dayton and Lin, 1997) was applied to select a well-
fitted but relatively parsimonious model. Several models with different combinations
of threshold numbers were tried. The model with the lowest CAIC was finally selected.

3.3 Preference structures
Table 1 shows the estimation results for the preference structures. The estimated
number for DR is 2, implying that pedestrians categorise relative time (in minutes)
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into three discrete states: [<90, 90 ^ 180, >180). The number for DA is 3, implying
four discrete states for absolute time (in minutes) [<840, 840 ^ 960, 960 ^ 1140, >1140).
The threshold values show surprising regularity. The thresholds for relative time are
about 1.5 hours and 3 hours. The thresholds for absolute time are 14:00, 16:00, and
19:00. They conform to people's habit of using critical time spots as decision references.
Value judgments were bounded to positive values in the estimation procedure under
the assumption that pedestrians' inclination to go home should increase with time.
Value estimates do not show any conflicts with this assumption because conflicts should
have generated some values close to 0. A nonlinear relationship between time and the
impetus to go home is suggested as the increase in the values of each factor slows down
as time passes.

Additionally, two discrete choice models were estimated for comparison. The first
is a multinomial logit model with a linear utility function, which is,

pH � exp uH

exp uH � exp u S ,

u S � bR ln tR � bA ln tA , (25)

uH � bH ,

where the observable utility of shopping, u S, is a function of natural-logged time
variables, representing the marginally decreasing utility with the increase in time. The
utility of going home, uH, is represented by an alternative-specific constant, bH.
The second is a mixed logit model, which is gaining increasing popularity. The model
assumes that parameters are distributions, which may capture more heterogeneity in

Table 1. Model estimation results. (See text for definitions of symbols.)

Proposed model Multinomial logit model Mixed logit model

parameter estimate parameter estimate parameter estimate

dR
1 : threshold 1 for tR 90 bR: for ln tR ÿ1.4705 bR

m : mean of bR ÿ14.3453
dR
2 : threshold 2 for tR 180 bA: for ln tA ÿ8.5103 bR

sd : standard 0.9074

deviation of bR

wR
1 : value for state 1 of tR 0.8957 bH: for dummy ÿ67.1172 bA

m : mean of bA ÿ83.9423
variable

wR
2 : value for state 2 of tR 0.6764 bA

sd : standard 1.8076

deviation of bA

dA
1 : threshold 1 for tA 840 bH

m : mean of bH ÿ661.3274
dA
2 : threshold 2 for tA 960 bH

sd : standard 11.2442

deviation of bH

dA
3 : threshold 3 for tA 1140

wA
1 : value for state 1 for tA 1.1826

wA
2 : value for state 2 for tA 0.8374

wA
3 : value for state 3 for tA 0.7065

l: overall threshold 3.3883

qC: number of observations 2741 2741 2741

qP: number of parameters a 6 3 6

LL0: log-likelihood of null model ÿ1900 ÿ1900 ÿ1900
LL: log-likelihood ÿ1036 ÿ1085 ÿ1079
CAIC 2113 2197 2211

a Thresholds are not counted as free parameters because their values control the effectiveness of
the states.
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people's utility functions. However, the proposed model outperforms both discrete
choice models in terms of log-likelihood and CAIC.

3.4 Decision heuristics
By identifying the combinations of activated and nonactivated states of tR and tA and
summing their corresponding value judgments, we can derive the overall judgment
value for each of the twelve factor ^ state combinations.

Figure 1 portrays the combinations as a tree structure, and the value combinations,
vk , are ranked in ascending order according to their values. For example, v5 consists of
state 1 for tR and state 3 for tA, keeping in mind the principle of accumulating thresh-
olds, and thus equals 0� 0� 1:18� 0:84 � 2:02. By aggregating the random factor
and the overall threshold, we have l � N(3:39, 1), from which different decisions
heuristics can be derived. For example, if v11 < l 4 v12 , only v12 can be accepted.
Pedestrians will then go home only if tR is in state 3 and tA is in state 4. The
preference structure is,

f12 �
vk 2 V0 jvk < 4:29

vk 2 V1 jvk 5 4:29

� �
. (26)

This represents two conjunctive heuristics, one starts from searching tR and the other
from tA. Pedestrians will continue shopping if either tR is not in state 3 or tA is not
in state 4. Similarly, disjunctive heuristics are observed when v1 < l 4 v2 , with the
preference structure,

f2 �
vk 2 V0 jvk < 0:89

vk 2 V1 jvk 5 0:89

� �
. (27)

Pedestrians will decide to go home if tR is in state 2 or 3 when searching tR first or tA

is in state 2, 3 or 4 when searching tA first. Figure 2 shows the decision tree of these
two heuristics.

If we just make the overall threshold a little bit stricter so that v4 < l 4 v5 , a
lexicographic heuristic appears. It is implied by the preference structure,

f5 �
vk 2 V0 jvk < 2:02

vk 2 V1 jvk 5 2:02

� �
. (28)

Figure 3 shows the two heuristics that are consistent with this preference structure.
Different from the above preference structures, however, the lexicographic heuristic is
valid only when tA is searched first. That is, pedestrians can decide to go home if tA

is in state 3 or 4, and decide to continue shopping if tA is in state 1. They need to

v1 �
0.00

v3 �
1.18

v5 �
2.02

v7 �
2.72

v2 �
0.89

v6 �
2.07

v9 �
2.91

v11 �
3.62

v4 �
1.57

v8 �
2.75

v10 �
3.59

v12 �
4.29

tR

sR1 sR2

tA

sA1 sA2 sA3 sA4 sA1 sA2 sA3 sA4 sA1 sA2 sA3 sA4

tA tA

sR3

Figure 1. Factor ^ state combinations underlying the go-home decision. See text for definitions of
symbols.
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consider tR if tA is in state 2. The lexicographic interpretation does not hold when tR is
searched first because tR, regardless of its state, will not generate a definite outcome.

3.5 Choice of heuristics
To illustrate calculating the probabilities of preference structures and implied heuris-
tics, consider the above conjunctive heuristics. These heuristics are invariant within an
overall threshold range 3:62 < l 4 4:92, which corresponds to a probability 0.226
under the normal distribution l � N(3:39, 1). This suggests that there is 22.6% prob-
ability that a pedestrian applies these specific conjunctive heuristics. The probabilities
of the thirteen preference structures are shown as white bars in figure 4 (including
the preference structure that no factor states are activated, f13 , and the preference
structure that all factor states are activated, f1). As can be seen from the figure, the
probabilistic distribution zigzags as the strictness of preference structures increases.

The heuristic choice model implies estimating the following parameters: (1) the
preference tolerance G � fgg j g � 1, 2, .::, G; G 4 12g, which is used to derive pz

g0
of

tR tA

tA tR

sA1 sA2 sA3 sA4 sR1 sR2 sR3

sR1 sR2 sR3 sA1 sA2 sA3 sA4

Keep shopping Go home Keep shopping Go home

(a) (b)

Figure 2. Two disjunctive heuristics: (a) searching for tR first; (b) searching for tA first. (See text
for definitions of symbols.)

tR tA

sR1 sR2 sR3 sA1 sA2 sA3 sA4

tA tA tR

sA1 sA2 sA3 sA4 sA1 sA2 sA3 sA4 sR1 sR2 sR3

Keep shopping Go home Keep shopping Go home

(a) (b)

Figure 3. Lexicographic heuristic when considering tA first: (a) nonlexicographic when searching
tR first; (b) lexicographic when searching tA first. (See text for definitions of symbols.)
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each preference structure group; (2) eR and eA, the mental effort of searching eR and eA;
(3) PR � [ pR

1 , .::, p
R
m , .::, p

R
M ] and PA � [ pA

1 , .::, p
A
n , .::, p

A
N ], the probability beliefs

of the pedestrians regarding the factors states; and (4) bh , the parameter for rh .
The estimation procedure uses the sum of squared error as the goodness-of-fit criterion
and the hybrid algorithm, described earlier.

Three models with preference tolerances 0, 1, and 2, respectively, were fitted to the
thirteen preference structure probabilities. Figure 4 shows that the 0-tolerance model
performs poorly. In contrast, the 1-tolerance and 2-tolerance threshold models fit the
data almost perfectly. Trading-off between goodness of fit and model parsimony,
we selected the 1-tolerance threshold model and show the results in table 2. The model
implies that the preference structures are differentiated into two groups, split by
preference tolerance at 10. Group 1 includes f1 to f9 , with a total choice probability
31.8%, which can be interpreted as relatively relaxed preference structures, and group 2
includes f10 to f13 with a total choice probablity 68.2%, which can be interpreted as
relatively strict preference structures. The signs of the amount of mental effort for both
factors are negative, as hypothesized. Searching tA seems to cost almost five times
as much effort as searching tR, probably because searching absolute time requires
more frequent, external references such as checking one's watch or personal schedule.
In contrast, searching relative time may depend more on internal references, such as
effort consumption and need fulfillment, which can be instantly felt subconsciously.
As for the probability belief of factor states, it seems that pedestrians' beliefs that
the decision will be made within the first half hour of the shoppig trip is very weak,

P
ro
b
a
b
il
it
y

0.30

0.25

0.20

0.15

0.10

0.05

0.00

preference tolerance

Estimated

Fit 1PT
Fit 0 PT

Fit 2 PT

1 2 3 4 5 6 7 8 9 10 11 12 13

Preference structure

Figure 4. Probabilities of preference structures. PT � preference tolerance.

Table 2. Results of the heuristic choice model. (See text for definitions of symbols.)

Parameter Estimate

eR: effort of tR ÿ11.7149
pR
0 : probability for state 1 of tR 0.0635

pR
1 : probability for state 2 of tR 0.5481

pR
2 : probability for state 3 of tR 0.3884

eA: effort of tA ÿ53.1271
pA
0 : probability for state 1 of tA 0.3350

pA
1 : probability for state 2 of tA 0.1377

pA
2 : probability for state 3 of tA 0.2215

pA
3 : probability for state 4 of tA 0.3058

bh : parameter for rh 63.2634

g: preference tolerance 10

R 2 0.9996

Cognitive process model of individual choice behaviour 71



as pR
1 is only 6.4%. It reflects a tendency that pedestrians are not quite willing to make

very relaxed decisions which probably lead to early going-home decisions and deter
them from enjoying more shopping. Parameter bh turns out to be positive, suggesting
that pedestrians are risk averse and decision heuritics leading to diversified outcomes
are preferred, given the same effort. Overall, preference structures with large overall
thresholds are probably chosen more than those with small overall thresholds, suggest-
ing that saving effort and making quick decisions is more important than reducing
decision risk in the go-home decision.

Table 3 shows the estimated amount of values, and the corresponding probabilities
of heuristics. In group 1, heuristics searching tA first have a six times higher total
probability than heuristics searching tR first, even though eA is much larger. Excluding
the influence of risk perception, such a relationship generally still holds. This means
that pedestrians' beliefs about a factor state play a more important role. In less strict
decisions, a heuristic starting with more mental effort but reaching a decision quicker
is still preferable to a heuristic starting with less mental effort but taking more steps
to reach an outcome. When the thresholds become stricter, as in group 2, tR receives
more attention and the total probability of considering tR first becomes equal to the
probability of considering tA first.

4 Discussion and conclusions
In this paper, we have suggested a modeling approach based on principles of bounded
rationality. In particular, the model is based on the assumption that (1) individuals may
not necessarily take into consideration all factors potentially influencing their choice
behaviour, (2) that individuals do not necessarily discriminate between all values of
factors but rather group these into discrete factor states, (3) that individuals judge the
combination of activated and nonactivated factor states against some overall accep-
tance threshold. We have shown that by adapting this framework and estimating the
various thresholds and number of factor states, a flexible model is obtained with some
interesting properties.

First, the results of the model can indicate the extent to which observed behavioural
patterns can be explained in terms of rational choice behaviour. Evidence of rational
choice behaviour would be obtained if estimated thresholds are such that all factors are

Table 3. Estimated heuristic utilities and probabilities. See text for definitions of symbols.

Group Preference Heuristic utility Heuristic probability
structure

tR ! tA tA ! tR tR ! tA tA ! tR

1 1 0 0 0.0009 0.0010
2 ÿ5.6933 ÿ47.6631 <0.0001 <0.0001
3 2.0786 ÿ10.7615 0.0077 <0.0001
4 3.1386 ÿ11.3146 0.0221 <0.0001
5 ÿ6.1074 3.9926 <0.0001 0.0520
6 ÿ5.3176 2.1876 <0.0001 0.0085
7 ÿ2.3892 5.1159 0.0001 0.1598
8 1.3868 1.9402 0.0038 0.0067
9 1.7888 3.9552 0.0057 0.0501

Group sum 0.0404 0.2781

2 10 ÿ1.2116 0.9548 0.0270 0.2355
11 ÿ6.8118 ÿ2.0506 0.0001 0.0117
12 0.9144 ÿ23.4541 0.2262 <0.0001
13 0 0 0.0906 0.0906

Group sum 0.3439 0.3378
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taken into account, the number of states for each factor is high as this would indicate
detailed discrimination, and the overall threshold is high, implying that only the choice
rule with the highest value judgement is accepted. Any deviations from this outcome,
in contrast, would support aspects of bounded rationality. Second, heterogeneous
decision heuristics are automatically depicted. To further qualify this conclusion,
discrete choice models typically (if at all) depict consumer heterogeneity in terms of
estimate distributions around the parameters of one and the same utility function
and hence do not allow for different utility specifications as part of the same model.
Third, it acknowledges the fact that different decision heuristics may be equally
satisfying, and that the ultimate choice among these equivalent heuristics depends on
mental and risk perception. It reflects the notion of selective information processing
and context dependency. Fourth, the illustration of the approach on pedestrians'
go-home decision showed evidence of face validity. The overall model fit outperformed
that of two typical discrete choice models and parameter estimates can be explained
reasonably.

As a general decision model, this approach can be useful for understanding the
process of decision making in other contexts, while it requires no more data than are
needed to estimate conventional discrete choice models.With the knowledge of people's
decision strategies and their focus and representation of information, better predictions
can be made; information can be provided in more efficient forms. Undoubtedly, to
assure the potential advantages of the approach, more concrete tests are required. It will
be interesting to compare the estimated heuristics with data collected from self-reported
decision protocols or controlled experiments where information is presented differently
to respondents.
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