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Hertzog et al. evaluated the statistical power of linear latent growth curve models
(LGCMs) to detect individual differences in change, i.e., variances of latent slopes, as a
function of sample size, number of longitudinal measurement occasions, and growth
curve reliability. We extend this work by investigating the effect of the number of
indicators per measurement occasion on power. We analytically demonstrate that the
positive effect of multiple indicators on statistical power is inversely related to the
relative magnitude of occasion-specific latent residual variance and is independent of
the specific model that constitutes the observed variables, in particular of other
parameters in the LGCM. When designing a study, researchers have to consider trade-
offs of costs and benefits of different design features. We demonstrate how knowledge
about power equivalent transformations between indicator measurement designs
allows researchers to identify the most cost-efficient research design for detecting
parameters of interest. Finally, we integrate different formal results to exhibit the trade-
off between the number of measurement occasions and number of indicators per
occasion for constant power in LGCMs.

1. Introduction

Latent growth curve models (LGCMs) are an increasingly popular method for assessing
change in longitudinal data (e.g., Duncan, Duncan, Strycker, Li, & Alpert, 1999;
McArdle, 1988; Meredith & Tisak, 1990; Raudenbush & Bryk, 2002). A major advantage
of these models is that they allow one to directly estimate random effects (i.e., individual
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differences) in latent intercepts and slopes across time. For a given variable, the
intercept and slope variances represent individual differences in initial performance and
change, respectively (Rogosa &Willett, 1985; Singer &Willett, 2003), and the intercept–
slope covariance reflects the extent to which individual differences in initial status
correlate with subsequent change.1

Recently, Hertzog, Lindenberger, Ghisletta, and von Oertzen (2006, 2008)
reported a series of simulations on the statistical power to detect covariances and
variances of change in linear single-indicator LGCMs. Statistical power is defined as
the probability that a statistical test, such as a likelihood-ratio (LR) test, rejects a null
hypothesis of, for instance, no variances in slopes (Snijders & Bosker, 1999). There
are a number of study design parameters that influence power in longitudinal studies,
including sample size, the observation time, the observation density, and the growth
curve reliability (GCR). Hertzog et al. (2008) found that GCR, defined as the ratio of
growth curve determined variance to total variance at the first longitudinal occasion,
is an important determinant of power. When GCR was high, the power to detect
moderate-sized true slope variance of half the intercept variance was typically high as
long as sample size was moderate (say, 500 or greater) and there were four or more
occasions of measurement. When GCR was low, the power to detect the same true
slope variance was often low, even with large sample sizes and many longitudinal
occasions.

GCR deviates from unity to the extent that residual variance not determined by the
growth curve increases from 0. The total residual variance for each measurement in an
LGCM is a sum of two independent variance sources: (a) measurement error of the
observed variable induced by an error of the measurement itself (Lord & Novick, 1968;
McDonald, 1999); and (b) latent residuals, representing the imperfection of the model’s
simplified approximation to reality. In a study design using a single indicator for each
observed variable that changes over time, these two sources of residual variances cannot
be separately identified. Instead, both sources are absorbed into a single residual
variance parameter. Nevertheless, they have distinct meanings and interpretations
(McArdle, 1988).

Measurement error in observed variables is well understood in terms of classical
notions of reliability or dependability (e.g., Cronbach, Gleser, Nanda, & Rajaratnam,
1972); namely, it is the extent to which respondents generate inconsistent observed
scores on a given measure, given equivalent underlying scores on the latent variable.
Measurement errors in latent variable models will typically also include systematic
sources of errors that are unique to the measure. The latent residuals, in contrast, reflect
the extent to which the functional form of growth in the LGCM fails to fit the changing
variable over time. A variable can be highly reliable at a given point in time but highly
fluctuant over time. For example, this pattern could emerge when measuring cyclic
mood states (e.g., Hertzog & Nesselroade, 1987; Nesselroade, 1991). On the other hand,
measurement error at the level of each indicator imposed on a linear latent growth
process may cause substantial deviations in a given variable around its latent intra-
individual regression function, even when the growth process for true scores is
perfectly linear in its functional form (Rogosa, Brandt, & Zimowski, 1982; Singer &
Willett, 2003).

1 This interpretation assumes that the LGCM is scaled to have the inception of the longitudinal observations
define the intercept (cf. Rovine & Molenaar, 1998).
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In the present paper, we investigate multiple-indicator LGCMs (MI-LGCMs), in
which two or more indicators are available at each occasion as measures for each
latent variable. For our purposes, we assume that observed variables are available at all
measurements, although this assumption can be relaxed (e.g., McArdle & Hamagami,
1992). However, our results are not limited to LGCMs but generalize to all structural
equation models (SEMs) in which multiple indicators are exogenous manifest variables
of common endogenous latent variables, irrespective of the regression model linking
the two. Multiple indicators can be used for all SEMs, and the results regarding the
benefits of multiple indicators for statistical power given in the present paper are valid
regardless of the specification of the latent regression model defining constructs with
multiple indicators.

An MI-LGCM is a second-order factor model (McArdle, 1988; Sayer & Cumsille, 2001)
in which the first-order factors are defined by a classical occasion-specific longitudinal
factor model (Tisak & Meredith, 1990). We assume the same indicators are available as
measures of the first-order factors at all occasions. Figure 1 shows a hypothetical
multiple-indicator model for a construct X measured at five time points by three
indicators O1, O2, and O3. MI-LGCMs have been recommended by methodologists
(McArdle, 1988; Sayer & Cumsille, 2001) but have not been as widely used in practice as
single-indicator models.

In contrast to single-indicator LGCMs, MI-LGCMs allow one to separately estimate
the two sources of residual variance, since by definition measurement error (E in
Figure 1) acts independently on each indicator variable, whereas the latent residual
(R in Figure 1) at each occasion of measurement influences all indicators for that
occasion.2 A second advantage of MI-LGCMs is that multiple indicators correct for
attenuation due to random measurement error (e.g., Bollen, 1989), and hence the GCR
to detect linear constraints in the parameters of the model increases with multiple-
indicator models compared to single indicators. Because of the importance of GCR to

L

E11 E12 E13

R1 X1

O11 O12 O13

E21 E22 E23

R2 X2

O21 O22 O23

E31 E32 E33

R3 X3

O31 O32 O33

E41 E42 E43

R4 X4

O41 O42 O43

S

0.2 0.30.1

E51 E52 E53

R5 X5

O51 O52 O53

0.4

Figure 1. Example LGCM with five occasions of measurement and three indicators at each

measurement. The latent residuals R1–R5 affect the latent score at each time point, while the

measurement errors E11–E53 affect each indicator separately. L, level; S, slope; X, latent score;

O, observation.

2 For convenience, we ignore the mixed case in which temporally correlated, systematic measurement error is
shared by more than one indicator variable, but not all available indicator variables. Mixed cases can be
handled by specifying and estimating the implied measurement residual covariances.
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statistical power, Hertzog et al. (2008) speculated that multiple indicators could be
an appropriate way to improve statistical power in LGCMs. Nevertheless, use of two or
more tests to gain additional indicators may be costly, for instance in terms of money
and respondent burden. Hence, it is important to evaluate how much power exactly
can be gained from using multiple indicators in LGCMs.

Arguably, multiple indicators should be effective in reducing the impact of
measurement error, but they should not affect the impact of latent residual variance.
In the present paper, we apply extant formal results (cf. Dolan, Wicherts, &
Molenaar, 2004; Hancock, 2006; Penev & Raykov, 2006; von Oertzen, 2010) to
provide a simple proof for this assertion. We also show some implications of the
independent effects on power for both residual variance sources R and E for
applications of MI-LGCMs.

The separable influences on power lead to larger practical questions concerning
the design of studies using LGCMs to analyse individual differences in change.
Specifically, to what extent could limitations in GCR be compensated by using more
indicators at each occasion? Adding indicators to a design may be less expensive than
adding measurement occasions to study development in a longitudinal study. Hence,
developmental researchers might wish to know the answer to the following question:
how might one trade adding extra indicators for fewer longitudinal occasions
of measurement and still maintain equal power to detect variances in slopes?
Von Oertzen (2010) provided a general methodology to approach problems like this;
combining his results with formal results about multiple indicators leads us to a
formal expression for the trade-off between number of measurement occasions and
number of indicators at each measurement for constant power to detect slope effects
in an MI-LGCM. That is, we give an exact expression for how many occasions of
measurement can be saved if additional indicators are added to the design while
maintaining equal statistical power.

This problem can be understood as a case of optimal design for quantitative analysis
of longitudinal data (e.g., Raudenbush & Xiao-Fang, 2001). As noted by Tomarken and
Waller (2005), treatment of design optimality, in terms of cost and efficiency of
a given design for adequately addressing critical hypotheses, is a much needed
and somewhat neglected aspect of designing studies that target the use of SEMs.
Statistical power provides a means of operationally defining optimal trade-offs between
different features of the research design to make efficient and effective design
choices (MacCallum, Lee, & Browne, 2010; Raudenbush & Xiao-Fang, 2001; see also
MacCallum, Browne, & Li, 2006).

The remainder of this paper is organized as follows. In Section 2 we introduce the
formal relation between multiple-indicator and single-indicator models and discuss its
implications for designing multiple-indicator studies. We then provide a realistic
research example to exemplify and validate the effects described analytically.

In Section 4 we show three main results that emerge from the combination of
the analytical and empirical power analysis. First, we show how the two residual
variance sources, i.e., latent residual and measurement error, affect statistical power
in an MI-LGCM. Second, we give an example to show how costs of a study design
may be reduced using the formal comparison of multiple-indicator models. Third,
we investigate how many occasions of observation can be saved when adding
additional indicators for the latent variable at each occasion in the example MI-
LGCM. We then close by discussing the implications of these findings for the
applied researcher.
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2. Analytical comparison of multiple-indicator models

Using multiple indicators to measure a single variable can be perceived as a method of
improving the reliability of the measurement. For example, from a psychometric
perspective, two indicators with low reliability could have equal or greater efficiency to
answer a given research question than a model with a single but more reliable indicator.
Although this fact is commonly accepted, it is difficult to concretize what precisely is
meant by ‘efficiency’ without a quantitative conception of it.

One operationalization of efficiency is the statistical power of a given test on the
data. While some applied researchers harbour a good conception about the reliability
needed for a single indicator, it is much less intuitive to decide on the number of
multiple indicators and their reliabilities when multiple indicators are a viable option.
So, the question that arises is: what reliability would a single indicator need in order to
achieve equivalent statistical power to that of a given set of indicators? In other terms,
what is the ‘effective’ reliability of a given set of indicators?

In this paper, we make use of a fairly simple analytical equation: measuring a
construct with K indicators with regression weights l1; … ; lK and normally distributed
measurement error with known, fixed variances s2

1, … , s2
K , the power of any LR test

on parameters relevant to the construct is the same as that of a test on the construct
measured by a single indicator with an effective error variance ðs2

effÞ of

s2
eff ¼

1
PK

i¼1
l2i
s2
i

: ð1Þ

In other words, for the power of a test, it is irrelevant whether the construct is measured
by multiple indicators of specified error variances or by a single indicator of accordingly
lower error variance. As a side remark, equation (1) is the harmonic mean of the error
variances of the normalized indicators. It is also the error variance of a weighted pooling
of the indicators, with loadings 1=li.

Von Oertzen (2010) systematically investigated power equivalent models, i.e.,
measurement models that produce the same power for LR tests. He proved that the
above equation is in fact necessary and sufficient for precise power equivalence. In the
following, we will adopt the term power equivalent for two measurement models that
produce the same power for an LR test against the same specified hypothesis.

Other papers have investigated implications of this equation for statistical power in
SEMs. Dolan et al. (2004) showed that a special case of this equation is a necessary
condition for two alternative models having equal mean of the theoretical distribution of
the log-likelihood ratio. Using the fact that power can be approximated by assuming a
non-central chi-square distribution (cf. Satorra, Saris, & de Pijper, 1991), Dolan et al.
showed that the power is approximately equal for two sets of indicators if the above
equation yields the same value for s2

eff. Penev and Raykov (2006) provided an alternative
proof that increased the generality of this condition. Independently, Hancock (2006)
gave the same equation as a condition under which two sets of indicators allow for
equally powerful tests, also using the non-centrality factor of the non-central chi-square
distribution.

Dolan et al. (2004), Hancock (2006), and von Oertzen (2010) all argued that the
main advantage of equation (1) over power approximations or Monte Carlo simulations
is its generality. No matter how the construct that is measured by the multiple indicators
emerges, the interdependency of the indicators can be described by equation (1). For
example, consider a variable X that may be measured either by two indicators of
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variance 1 and 7, or by two other indicators with variance 2 and 3 (in any unit).
Intuitively, it is difficult to judge which set may yield higher data quality. Equation (1)
shows that the effective error is 0.875 for the first set of indicators, and 1.2 for the
second set of indicators. Thus, a test of a hypothesis regarding X will be more powerful
with the first set of indicators. This will be equally true if X is measured just once in
two groups (e.g., to test for equal means), or if X is measured longitudinally over several
years assuming a linear LGCM (e.g., to test for a covariance between initial intercept
and slope), or if X is measured in comparison to a second variable Y in a bivariate model
such as a bivariate dual change score model (cf. McArdle et al., 2004).

In this paper, we apply the equation to an MI-LGCM as a frequently used model
which is important for many longitudinal studies. To compare the relative effect of the
latent residual and measurement error on power, we consider the total variance of one
measurement, which is the effective error from equation (1) plus the latent residual
(see Appendix). This sum allows us to investigate the relative effect of two sources of
residual variance.

In a second step, we compare the relative influence of indicators against the
number of measurement occasions in the MI-LGCM, i.e., how often the variable of
interest has been measured longitudinally in a fixed time-span. To do this, we integrate
equation (1) into an equation given by von Oertzen (2010) that computes the effective
error of a linear LGCM; the corresponding mathematical derivations can be found in the
Appendix. The result allows us to compare how many measurement occasions can be
saved if each construct is measured by multiple indicators while keeping the compared
models power equivalent, i.e., while keeping the power of a test against a hypothesis
involving the latent variables of the MI-LGCM constant. Note that although we
exemplify the power here with a specific LR test (namely, a test on variance of slope),
von Oertzen (2010) showed that an analogous result can be obtained for all other LR
tests in this MI-LGCM.

3. Simulation model

We applied equation (1) to the specific problem of estimating power to detect a
variance of slope in a linear LGCM. If it can be shown analytically for a family of LGCMs
that they are power equivalent, power only needs to be computed for one of the LGCMs.
Specifically, two LGCMs from that family that use two different sets of indicators with
the same effective error given by equation (1) will always yield the same power for an LR
test against a hypothesis of zero variance.

In the following, we estimated statistical power in a linear LGCM for four instances of
the set of parameter variations explored more fully by Hertzog et al. (2008). The model
is given in Figure 1. The target variable is observed at five occasions of measurement,
with factor loadings of the slope increasing from 0 to .4 in steps of .1. All means are fixed
to 0. The variance of the intercept is set to 100, and the variance of the slope to 50. The
covariance of intercept and slope was set either to 25.36, which corresponds to a
correlation of .5, or to 0. The simulated test population consists of N ¼ 200 or 500
observations.

The latent score determined by the growth process of the variable in the model
is measured by multiple indicators. Hence, each measurement has two sources
of variance in addition to its latent score: a normally distributed residual variance that
is common to all indicators, and a measurement error that is independently
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distributed and of equal variance for each indicator. Both of these sources were
manipulated in some conditions to validate the accuracy of the analytical trans-
formations (see Table 1). We verified these transformations in a Monte Carlo simu-
lation on an MI-LGCM with 10,000 repetitions, using the engine introduced by von
Oertzen, Ghisletta, and Lindenberger (2010).

For all further power values given in this paper, we made use of the fact that if power
is known as a function of GCR, equation (1) allows one to compute all different
variations of MI-LGCMs with the same effective error variance. Figure 2, adapted from
Hertzog et al. (2008), provides the power to reject the null hypotheses of zero slope
variance, using an LR test with two degrees of freedom and a 5% significance criterion.
The test compares the full model to a nested model with the slope variance and the
intercept–slope covariance fixed at zero.3 Each function plots power as a function of
GCR. Each panel has a family of power curves for different numbers of occasions of
measurement, and the different panels manipulate the intercept–slope correlation and
sample size. The thick lines within four of the panels of Figure 2 designate four power
curves we used to evaluate the trade-offs in power as a function of the number of
indicators, latent residual and measurement error. We replicated each power value with
10,000 repetitions of a Monte Carlo simulation, yielding the same power values within
the precision of the simulation.

4. Results

4.1. Latent residual versus measurement error
To compare the influence of both residual variance sources with a fixed number of
indicators, and also to check on the accuracy of the power equivalence transformations,
we compared results from the reformulated model to actual simulations of a set of
possible models. The results are shown in Table 1. The number of indicators was fixed
to three, all with a factor loading of 1.0 and identical measurement error variance. The
error variance is given in the first column, and the latent residual variance is shown in
the second. These two values were varied systematically to compare a variety of
different residual variances and measurement error variances. The sum of these two
variances is the basis for the GCR (i.e., the ratio of all variance which is not part of the
growth process to the total residual variance) of a single indicator at the first
measurement occasion (column 3). The effective error, i.e., the error that a single-
indicator model with identical power would have, computed using equation (1), is given
in column 4. The estimated power to reject a hypothesis of zero slope variance in
columns 6–9 is given for two different intercept–slope correlations (0 and .5) and two
sample sizes (N ¼ 200 and 500).

As predicted by the analytical equation, lines with identical effective error are indeed
power equivalent, i.e., generate equal power, to the level of precision afforded by the
simulation (within a margin of 1.3 percentage points). For example, compare lines 4, 11,
and 13, in which three models with an effective error of 20.33, but with different

3 This LR test is at a boundary of the parameter space. Stoel, Garre, Dolan, and Wittenboer (2006) argue for a
mixture distribution test in general practice for such cases; Savalei and Kolenikov (2008) give reasons against
this suggestion. When following Stoel et al. (2006), all power values in the sequel would be slightly higher.
Importantly, though, the relative contribution of the indicators would still be unchanged, and all subsequent
results in this paper remain the same.
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constellations of measurement error variance and latent residual variance, produce
approximately the same estimated power to detect the slope variance in all four
conditions (power values in all four lines are close to 0.57, 0.93, 1.0, and 1.0,
respectively).

To reiterate, the effective error is independent of the actual model that is used and
would be identical for other models, for instance group comparisons or dual change
score models, or any other model with normally distributed measurement error. For
different pairs of values of latent residual and measurement error with identical effective
error, the power for a test against any given hypothesis on the latent parameters of these
models would have the same value. What this value is depends on the actual given
model, but when comparing different combinations between latent residual and
measurement error, the model and the test are irrelevant (cf. Dolan et al., 2004;
Hancock, 2006; von Oertzen, 2010).

Figure 3 shows the increase in power (scaled as the proportion of simulated cases
when the null hypothesis is correctly rejected) for detecting slope variance with
increasing number of indicators for the same reliability of a single indicator at the first
measurement occasion, partitioned into different proportions of latent residual and
measurement error. The four panels correspond to two different correlations r of
intercept and slope (0 and .5) and two different sample sizes (N ¼ 200 and 500). Note
that only the thick curves in Figure 2 were used (i.e., just one series of univariate LGCM

Intercept/slope correlation = –.5 Intercept/slope correlation = 0 Intercept/slope correlation = .5

1
20 20

20

20 20 20

20 20 20

10 10

10

10 10

10

10 10 10

N
 =

 1
00

 P
ow

er 0.8

0.6

0.4

0.2

0

1

N
 =

 2
00

 P
ow

er 0.8

0.6

0.4

0.2

0

1

N
 =

 5
00

 P
ow

er 0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

0.5 0.6 0.7 0.8

Growth curve reliability Growth curve reliability Growth curve reliability

0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

3 3 3

3
3

3

3

3

3

4 4
4

4
4

4

4

4

4

5 5
5

5
5

5

5

5

5

6 6

6

6
6

6

6

6

6

Figure 2. The power of a test to reject the null hypothesis of zero slope variance as a function of

GCR, as reported by Hertzog et al. (2008). The data are plotted for three sample sizes (N ¼ 100,

200, and 500) and three different intercept–slope correlations (2 .5, 0, and .5). The curves in each

panel correspond to different number paper are shown as of longitudinal occasions. The four

situations used in this thick curves. (Figure adapted from Hertzog et al., 2008).
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simulations per panel) to create the full set of values crossing residual and measurement
error values. Every possible partitioning of residual variance could be derived using
equation (1).

It can be seen that if the total residual variance is comprised solely of indicator
measurement error (the highest curve in each panel), power quickly rises to an
asymptote of 1.0 with an increasing number of indicators per measurement. If on the
other hand the total residual variance is completely comprised of the latent residual
(the lowest curve in each panel), multiple indicators do not increase the power to
detect the variance of slope. The middle curve in each panel shows a mixed case
where half of the residual variance is latent, the other half due to measurement error.
Power here also increases to an asymptote, but one that is below 1.0. To be precise,
the asymptote is the power value of a model with the latent residual variance as total
residual variance. Note that the same qualitative picture emerges from all four
situations given, but that in situations where power was high to begin with (e.g.,
N ¼ 500 and r ¼ :5), the beneficial effect of adding more indicators is accordingly
less pronounced.
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Figure 3. Power to detect a slope variance of 50 at an intercept variance of 100, using five

measurements occasions (weights from 0.0 to 0.4, in steps of 0.1). Power is given for four different

situations, crossing two values for intercept–slope correlation (r ¼ 0 and .5) and two sample sizes

(N ¼ 200 and 500). The x-axis gives the number of indicators at each measurement occasion. The

error of one indicator at the first measurement occasion is fixed to 80 (reliability .55) in all three

curves, but differently partitioned on residual at the latent level of the model and the measurement

error at each indicator. While the curves with no latent residual quickly rise to an asymptote of

perfect power in all four panels, the curves with all residual variance in the latent residual are

unaffected by increasing the numbers of indicators. The middle curve in all four panels

corresponds to a residual variance of 40 and measurement error of 40, and rises less quickly to a

lower asymptote.
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Figure 4 gives three-dimensional power plots for the four base curves selected from
Figure 2. These plots examine a full range of jointly manipulated residual variance and
measurement error variance for each base model that has been simulated, applying
equation (1). The x- and y-axes show the latent residual and the measurement error
specific to each indicator, respectively. The z-axis shows the power to detect a variance
of slope in the LGCM described above. Power is at 1.0 in the upper left corner where
both residual variance sources are zero and monotonically drops when either residual
variance source is increased. Yet, the decrease is steeper when increasing the latent
residual (right face) than when increasing measurement error (left face). The actual
power values in the front left face of each panel in Figure 4 were estimated by a Monte
Carlo simulation. Then, using equation (1), all other values of the three–dimensional
space were computed from that.

The iso-power lines, that is, the lines between measurement error and latent
residual that give the same power in all panels of Figure 4, are all linear (cf. Figure 5).
While the actual power values are dependent on the parameters of the specified
LGCM, the structure of the iso-power lines in Figure 5 is independent of the underlying
model; they may correspond to different power values, but they will still be linear with
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Figure 4. Power to detect variance of slope in an LGCM with three indicators of the same

reliability, for two values of intercept–slope correlation (r ¼ 0 and .5) and two sample sizes

(N ¼ 200 and 500). The x-axis in each panel shows the latent residual, i.e., the variance at the

latent intercept common to all three indicators, while the y-axis shows the variance of the

measurement error at each indicator. Note that in all four panels, the iso-powers are always straight

lines with a slope of 23.
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a slope of 23 (minus the number of indicators per measurement), as can be seen from
equation (1). In other words, regardless of the model underlying the constructs, a
decrease in residual variance is always three times better than an equal decrease in
measurement error if three indicators of equal quality are used to measure the
construct, which means that in order to balance an increase in residual variance, a
three times greater decrease in measurement error must be achieved.

For an illustration of the effect of the number of indicators on the plots in Figure 4,
the interested reader may access www.powerequivalence.com. On this website there is
an interactive Excel spreadsheet where the reader may specify a number of indicators
and observe how Figures 4 and 5 change accordingly.

4.2. Selecting indicators in a longitudinal design
As shown, increasing the number of indicators has benefits for statistical power in
LGCMs. Nevertheless, the practical issue from a design perspective is in choosing which
indicators to use, considering the costs of implementing different measurement
schemes. We demonstrate a simple use of equation (1) which is generic to all multiple-
indicator models. This approach complements the procedures for a priori power
calculations using goodness-of-fit indices recommended by MacCallum et al. (2006),
while additionally addressing a specific design question.

As an example, assume a researcher wants to design a longitudinal study with five
occasions of measurement to investigate a training effect using a single indicator with
a measurement error variance of 10 units, at a resource cost of $100 per participant
and measurement occasion. As an alternative, four other indicators could be used in
any combination to measure the same underlying construct. Among these, one has an
error variance of 15 and costs of $30 per participant and measurement, while the
other three have an error variance of 30 and costs of $20 per participant and
measurement occasions.
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As can be seen in Table 1, the initial design then would have a power of
approximately 97% (third line, with a slight correction because of the measurement
error). The total monetary costs would be 200 £ 5 £ $100 ¼ $100;000. Equation (1)
shows that identical power can be achieved by using the three indicators with identical
error variance of 30:

1
1
30 þ

1
30 þ

1
30

¼ 10: ð2Þ

This corresponds to line 9 in Table 1. The costs would then reduce to
200 £ 5 £ 3 £ $20 ¼ $60;000. In fact, again the same power is reached by using the
indicator with medium reliability together with one of the least expensive indicators:

1
1
30 þ

1
15

¼ 10: ð3Þ

The costs for this third possible study design are 200 £ 5 £ ð$20þ $30Þ ¼ $50;000.
All three possible designs have exactly the same power to detect the covariance

between intercept and slope, but differ by a factor of 2 with respect to the financial
costs of the study. Moreover, other factors, such as higher risk of drop-out and greater
retest effects, can be considered when applying this method.

4.3. Multiple indicators versus measurement occasions
An important decision when planning a longitudinal study involves finding the best
compromise between the number of occasions of measurement and the number of
indicators at each measurement occasion. Assume a researcher wants to investigate
whether there is a non-zero variance of slope in a cognitive training programme. For
example, assume that in the population, the slope is uncorrelated with the intercept,
and its variance is half the size of the intercept variance (e.g., as before, 100 and 50
units). Assume further that the initial study design has six measurement occasions using
four indicators at each occasion, each indicator with an error variance of 20, and a
negligible latent residual. In this situation, we estimated the power to be 99%.

The Appendix demonstrates how equation (1) can be combined with results from
von Oertzen (2010) to analytically describe how many indicators must be chosen for a
given number of observations to get the same power as in the original study design.
Figure 6 shows the graph of this equation. Note that theoretically the number of
indicators and the number of observations can take any non-negative real value, but
since in practice these are positive integers, the circles denote points with integer values
for the number of indicators. With four indicators, we need 6 measurement occasions to
get a power of 0.99, as already mentioned. This corresponds to a total of 24 tests for each
participant. With three indicators, we get the same power with 9 measurement
occasions; this corresponds to 27 tests in total, so this study design with the same power
will presumably be more expensive. Only 2 indicators are necessary to get the same
power with 15 measurement occasions (30 tests in total), and with a single-indicator
design, 31 occasions would be necessary to get the same power. The design with the
fewest measurements per participant uses 4 measurement occasions with 5 indicators,
which gives a total of only 20 tests per participant. Note that the advantage is
presumably even stronger, since administering multiple tests at a single session is usually
cheaper in terms of resources than administering a single test over multiple sessions.
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Note, though, that this illustration assumes identically reliable, unbiased, and
congeneric indicators, which may not be available.

Figure 7 illustrates the interaction of measuring more often and using more
indicators against power. The three panels correspond to the same proportions of latent
residual and measurement error as in Figure 3, again assuming a constant total residual
variance for a single indicator. Figure 7a shows power assuming that the total residual
variance is entirely a measurement error and the latent construct has no residual. In this
case, power is strongly affected by adding more indicators. With five indicators,
power starts at 70% even with only two occasions, quickly rising to maximum power.
In Figure 7b the total residual variance is equally split between measurement error and
latent residual. Multiple indicators still have a clearly visible effect, but much less strong
than in Figure 7a; for five indicators, power is hardly increased for two measurement
occasions, and still below 90% for 20 measurements. In Figure 7c, measurement error is
assumed to be zero, while the latent residual is maximal. In this case, power is
unaffected by adding more indicators.

5. Discussion

Our results confirm earlier speculations (e.g., Hertzog et al., 2008) that adding
multiple indicators increases statistical power to detect variance of slopes in LGCMs.
Increasing the number of indicators is an important method available to the
investigator to ensure maximal power in a given applied research setting. The cost is
merely added complexity to the analysis, forcing the use of a multiple-indicator SEM to
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estimate the LGCM. This is obviously a small cost relative to the benefit of increased
power when adding indicators of the latent variable to the model. Hence, we
recommend the use of multiple-indicator designs when the model to be applied is an
LGCM.

The analytical generality of equation (1) implies that the same principle applies to
tests for covariances of slopes in a bivariate LGCM. We validated this by some
simulations omitted from this paper. With fixed sample size, GCR, and effect size, adding
multiple indicators will increase statistical power up to the maximum implied by a GCR
of .99 (Hertzog et al., 2006). As noted in that paper, power to detect correlated change
between two variables is often disappointing when GCR is below .90, but is often
excellent when GCR approaches asymptote, even for small effect sizes. If it there are
substantial deviations of the measurements from the latent score of the variables,
thereby producing a substantial amount of measurement error variance, then the
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Figure 7. Power to detect variance of slope in an LGCM plotted against number of indicators per

occasion and number of measurement occasions in a fixed time-span. Power values are given for

N ¼ 200 participants, intercept variance s2
L ¼ 100, slope variance (effect size) s2

S ¼ 50, no

intercept–slope covariance, and total residual variance of 80. Part (a) shows the power for a

measurement error of 80 and no latent residual. In (c) the indicators have no measurement error,

but the residual of the latent construct is 80. Part (b) is the intermediate case with a measurement

error of 40 and a latent residual of 40.
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investigator can avoid low-power problems by adding more indicators to the model.
This inference assumes, of course, that one can find multiple congeneric indicators for
the latent variable.4 Furthermore, in applied research settings other critical design
aspects need consideration (e.g., drop-out, retest effects, learning).

These findings resolve the apparent inconsistency that power to detect slope
correlations in single-indicator LGCMs in Hertzog et al. (2006, 2008) was often low
when the number of occasions was three, but that studies using two occasions of
measurement with multiple indicators produced significant correlations of change
slopes using the latent difference-score model (McArdle & Nesselroade, 1994; for
representative empirical results, see Hertzog, Dixon, Hultsch, & MacDonald, 2003; Raz
et al., 2005). The greater power in the latent difference score models can now be
understood as a consequence of using multiple rather than single indicators to define
latent variables.

The investigator interested in estimating power a priori for MI-LGCM applications
can do so by using available statistical software to generate a simulated solution for a
given set of parameters. This approach can be accomplished using Mplus (Muthén &
Muthén, 2002) or other structural equation modelling software programs. The analytical
technique demonstrated in this paper can be used to select an appropriate number of
indicators. Methods introduced by von Oertzen (2010) can be used analogously for
other study design parameters.

A strength of the method used in this paper is that it transfers directly to more
complicated models that may be a better approximation to aggregate development
functions, including nonlinear LGCMs (e.g., McArdle, Ferrer-Caja, Hamagami, &
Woodcock, 2002). Clearly the benefits of an MI-LGCM over its univariate counterparts
are a strong motivation for considering the structural equation approach to LGCMs
(Curran, 2003; Rovine & Molenaar, 2000) when random effects are at the heart of the
research question of interest.

A major problem in multivariate research is that researchers often design studies
without sufficient attention to the power to detect conceptually important statistical
parameters, as well as precision of estimation and probability of replication (Maxwell,
Kelley, & Rausch, 2008). MacCallum et al. (2006) have shown that it is possible to use
goodness-of-fit statistics to estimate a priori power for a model to detect a researcher-
defined loss of fit that may be practically meaningful. This approach is useful and
important, and is possibly used too infrequently.

Our results regarding the trade-off between density of time-based sampling
(number of measurement occasions) and number of indicators help to show another
dimension of how power can be increased. Large numbers of indicators help to
decrease the effect of measurement error, but they are not effective in reducing the
latent residual variance. Our results show that denser measurement, in contrast, can
reduce the effect of the latent residual. Whether to choose more indicators or rather
fewer indicators but denser measures is hence dependent on the way the residual
variance is distributed between latent residual and measurement error. Appreciation of
this fact, combined with the use of the techniques illustrated in this paper, can aid in
optimizing the power of a longitudinal design to detect random effects in change,

4 For other considerations regarding the selection of good multiple indicators, see Little, Lindenberger, and
Nesselroade (1999).
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provided that the researcher is willing to make informed guesses about the reliability of
target measures and the lability of the growth processes under study.
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Appendix

Measurement error and latent residual
For K indicators of identical reliability,5 i.e., with regression weight 1 and variance s2,
equation (1) simplifies to s2=K . If the residual variance s2

res of the latent variable
measured by these indicators is not zero, this latent residual must be added to the
effective error, so that in total the effective error is given by

s2
eff ¼ s2

res þ
s2

K
: ðA1Þ

Solving this equation for s2 yields

s2 ¼ 2Ks2
res þ Ks2

eff ðA2Þ

which shows that for constant power, s2 and s2
res form a line of slope 2K, as shown in

Figure 5.

Number of indicators and number of measurement occasions
As an example of power equivalent models, von Oertzen (2010) gives the following
equation for the effective error to perform a test of the variance of slope in a linear
LGCM:

s2
eff U

12Ms2
E ðM þ 1Þs2

L þ s2
E

! "

T 2ðM þ 1Þ 2ð2M þ 1Þs2
E þ ðM þ 1ÞðM þ 2Þs2

L

! " : ðA3Þ

Here, T is the total observation time over all measurements, M is the number of
measurement occasions in this time-span in addition to the baseline test, s2

L is the

5 In classical test theory (Lord & Novick, 1968), indicators with these properties are termed parallel forms.
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variance of the intercept, and s2
E the homogeneous error variance of each measurement

occasion. Covariance between intercept and slope is assumed to be zero. Hence, this
equation allows us to describe the data quality for an LR test on slope variance for
different numbers of occasions. As can be seen, reducing M (i.e., fewer observations in
the same time interval) increases the effective error. To see how this effect can be
balanced by adding more indicators of identical reliability, we substitute s2

E with the
right-hand side of equation (A1), assuming s2

res ¼ 0:

s2
eff ¼

12M s2

K ðM þ 1Þs2
L þ s2

K

! "

T 2ðM þ 1Þ 2ð2M þ 1Þ s2

K þ ðM þ 1ÞðM þ 2Þs2
L

! " : ðA4Þ

To find out how many indicators are needed for a known number of measurement
occasions, we solve this equation for K:

s2
eff ¼

12Ms2 KðM þ 1Þs2
L þ s2

! "

T 2ðM þ 1ÞK 2ð2M þ 1Þs2 þ KðM þ 1ÞðM þ 2Þs2
L

! " ; ðA5Þ

, 0 ¼ K 2 T 2s2
effðM þ 1Þ2ðM þ 2Þs2

L

! "

þ K 2T 2s2
eff ðM þ 1Þð2M þ 1Þs2 2 12MðM þ 1Þs2s2

L

! "
2 12Ms4: ðA6Þ

, K ¼
6Ms2

L 2 T 2s2
effð2M þ 1Þ

! "
s2

T 2s2
effs

2
LðM þ 2ÞðM þ 1Þ

^
s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12Ms2

Lð3MsL þ ð12MÞT 2s2
effÞ þ T 4s4

effð2M þ 1Þ2
p

T 2s2
effs

2
LðM þ 2ÞðM þ 1Þ

: ðA7Þ

In our example, numerical values were M ¼ 5, T ¼ 5, s2
L ¼ 100, s2 ¼ 20, K ¼ 1.

Following equation (A4), to achieve a reasonable power of .9, the effective error must be
s2
eff ¼ 121=431 in this situation. Substituting all numerical values with the exception of

M into equation (A7) yields

K ¼ 20204M 2 242^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
209107304M 2 þ 5123624M þ 29282

p

605ðM þ 2ÞðM þ 1Þ
ðA8Þ

This equation was used to plot the graph in Figure 6.
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