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Researchers often statistically control for means when examining individual or age-associated differences
in variances, assuming that the relation between the 2 is linear and invariant within and across individuals
and age groups. We tested this assumption in the domain of working memory by applying variance-
heterogeneity multilevel models to reaction times in the n-back task. Data are from the COGITO study,
which comprises 101 younger and 103 older adults assessed in over 100 daily sessions. We found that
relations between means and variances vary reliably across age groups and individuals, thereby contra-
dicting the invariant linearity assumption. We argue that statistical control approaches need to be replaced
by theoretical models that simultaneously estimate central tendency and dispersion of latencies and
accuracies and illustrate this claim by applying the diffusion model to the same data. Finally, we note that
differences in reliability between estimates for means and variances need to be considered when
comparing their unique contributions to developmental outcomes.
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The importance of investigating intraindividual variability has
been acknowledged in psychology for over half a century. From
the very beginning, researchers hypothesized that intraindividual
fluctuations in behavior may (a) be separable from measurement
error, (b) differ in magnitude between individuals, and (c) predict
other psychological phenomena (Fiske & Rice, 1955). Taking a
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multivariate perspective, Cattell (1952) called for a broadening of
theoretical concepts, research designs, and analysis methods to
include structured relations among constructs within persons (Nes-
selroade, 1984). Combining these ideas with lifespan develop-
mental conceptions, Nesselroade (1991) underscored the impor-
tance of incorporating concepts of short-term variability in
theories and studies of long-term change. Further calls for
including idiographic perspectives in investigations of psycho-
logical and developmental mechanisms have been made (Bors-
boom, Mellenbergh, & van Heerden, 2003; Molenaar, 2004;
Molenaar & Campbell, 2009).

Following these calls, researchers have begun to conduct em-
pirical studies that examine the commonalities and the differences
between the structures representing within-person variations and
the structures representing between-person differences (for re-
views, see Hultsch & MacDonald, 2004; Lindenberger & von
Oertzen, 2006). In the domain of cognitive functioning, a few
empirical studies have invested the effort of testing many individ-
uals over many trials and occasions to compare interindividual and
intraindividual variability. Intraindividual variability in cognitive
performance can be investigated for different domains of cognitive
functioning (e.g., perceptual speed, episodic memory, or working
memory), at different time scales (e.g., responses on single trials or
performance means on daily testing occasions), and using different
measures of performance (e.g., accuracy and reaction time). Be-
cause the empirical part of this article is on the relation between
intraindividual means (iM) and intraindividual standard deviations
(iSD) of reaction times (RT), the following literature review fo-
cuses on intraindividual RT variability.
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Empirical Findings

Across the adult lifespan, intraindividual trial-to-trial variability
in RT performance increases for many tasks. This finding has been
consistently reported across different research designs, such as
comparisons between younger and older age groups (e.g., Anstey,
Dear, Christensen, & Jorm, 2005), continuous age-related differ-
ences from younger to older adulthood (e.g., Li et al., 2004;
Williams, Hultsch, Strauss, Hunter, & Tannock, 2005), and lon-
gitudinal changes (Deary & Der, 2005; Fozard, Vercruyssen,
Reynolds, Hancock, & Quilter, 1994; MacDonald, Hultsch, &
Dixon, 2003).

Several studies investigated age differences in intraindividual
RT variability on the basis of characteristics of RT distributions.
These studies investigated either iSDs (e.g., Shammi, Bosman, &
Stuss, 1998), quantiles of RT distributions (e.g., Salthouse, 1993),
parameters of statistical distribution functions (e.g., the ex-
Gaussian function; Spieler, Balota, & Faust, 1996; West, Murphy,
Armilio, Craik, & Stuss, 2002), or parameters of theoretical pro-
cess models that were fitted to the RT distributions (e.g., Ratcliff,
Thapar, & McKoon, 2006a).

Regarding variability in cognitive performance at the day-to-day
level, exceptionally little is known. A handful of studies have
investigated variability in accuracy across testing sessions in mem-
ory performance (Hertzog, Dixon, & Hultsch, 1992; Li, Aggen,
Nesselroade, & Baltes, 2001), paper-and-pencil tests of cognitive
abilities (Allaire & Marsiske, 2005), and perceptual-motor perfor-
mance measures (Nesselroade & Salthouse, 2004). Only very few
studies have examined daily variations in RT measures (e.g.,
Rabbitt, Osman, Moore, & Stollery, 2001; Ram, Rabbitt, Stollery,
& Nesselroade, 2005; Sliwinski, Smyth, Hofer, & Stawski, 2006).

Antecedents of intraindividual variability in cognitive perfor-
mance are likely to differ across time levels (e.g., seconds, min-
utes, hours, days, and years; cf. Martin & Hofer, 2004; Schaie,
1962) and across the course of skill acquisition (Li, Huxhold, &
Schmiedek, 2004). With respect to lower level variability observed
within shorter time ranges (e.g., single responses emitted in the
second range), more basic cognitive mechanisms may play a
prominent role, such as neuromodulatory processes regulating the
efficiency of decision making (e.g., Li, Lindenberger, & Sikstrom,
2001; Ratcliff et al., 2006a). At the day-to-day level, external
disturbances like stressful events (Sliwinski et al., 2006) and
top-down influences like motivational aspects might come to the
fore (Brose, Schmiedek, Lovdén, Molenaar, & Lindenberger,
2009). External disturbances and motivational factors may influ-
ence the amount of lower level variability by lowering the reli-
ability of processing in the cognitive system or increasing the
likelihood of attentional lapses. Conversely, lower level variability
may statistically impinge upon the amount of observed day-to-day
variability because daily performance is calculated as the mean of
a limited number of (blocks of) trials, so that trial-to-trial variabil-
ity is partly conserved in those means (cf. Rabbitt et al., 2001).
Finally, longitudinal analyses suggest individual differences in
developmental changes observed over years and decades share
some of their etiology with variations in neural efficiency observed
at the level of seconds (Lovdén, Li, Shing, & Lindenberger, 2007).

Processes related to skill acquisition may also transform the
amount and conceptual meaning of intraindividual variability.
Different cognitive abilities are known to differentially contribute

to overall performance (e.g., Ackerman & Cianciolo, 2000), and
these shifts in contribution may also influence intraindividual
variability. Intraindividual variability and changes therein may
reflect changes in strategies (Siegler, 1994) or flag a transition
from one system state to another (e.g., Bassano & Van Geert,
2007; van der Maas & Molenaar, 1992). In cognitive aging re-
search, some findings indicate that practice may indeed influence
the quality (e.g., Allaire & Marsiske, 2005) and quantity (e.g., Ram
et al., 2005) of intraindividual variability.

The Relation of Intraindividual Means and SDs

A common finding in most of the studies cited above is that age
differences in RT variability, or longitudinal age-related and
practice-related changes in RT variability, parallel those observed
for RT means; RT variability increases with age and decreases
with practice, but so does mean performance. Furthermore, iMs
and iSDs mostly show strong positive correlations across individ-
uals (e.g., Jensen, 1992). This has led researchers to call for and
employ statistical controls for RT means when investigating indi-
vidual and age differences in intraindividual RT variability. Two
approaches are common. First, the coefficient of variation (CV;
e.g., Guilford, 1956) is used to control for RT means by simply
dividing iSDs by iMs. Second, regression analyses can be used to
partial out RT means when investigating relations of iSDs to other
variables (e.g., Salthouse & Berish, 2005). Both of these ap-
proaches are based on the assumption that the relation between
iMs and iSDs is (a) linear and (b) invariant across time and
individuals (cf. Wagenmakers, Grasman, & Molenaar, 2005). In
this article, we demonstrate that both of these assumptions can be
violated in empirical studies.

First, we summarize recent analyses of the relation of RT means
and SDs. Because these are primarily based on variations across
task conditions, we extend this discussion to variations across
individuals and repeated measurement occasions. Second, we in-
troduce variance heterogeneity models that allow direct investiga-
tion of the relation of iMs and iSDs and age-related differences
therein. Third, we report a data set from the COGITO Study
suitable for testing the invariant linearity assumption for younger
and older adults and show that the assumption does not hold for
this data set. Fourth, on the basis of this finding, we argue against
the use of control techniques based on the invariant linearity
assumption. Instead, we recommend the use of cognitive process
models that express individual and age-based differences in the
relation between central tendency and dispersion in terms of sub-
stantively interpretable parameter estimates. Using a simplified
version of the diffusion model, we demonstrate with the data from
the COGITO Study how such an approach can lead to insights
about the mechanisms underlying age differences in the relation of
iMs and iSDs. Fifth, because the relation between individual
differences in iMs and iSDs is of interest in cognitive aging
research contexts where both measures are used to predict certain
criterion variables (e.g., dementia), we close with a discussion of
the problem of differential reliabilities of iMs and iSDs, because
this is another issue of practical relevance in cognitive aging
research. In sum, although cognitive aging research is marked by
a growing interest in understanding developing individuals as
dynamic systems (Nesselroade, 1991), the field in general has
typically treated intraindividual variability as complementary to
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mean performance. In this article, we demonstrate and apply
methodology that allows for answering questions about age dif-
ferences and the processes underlying them by simultaneously
modeling means and variances and their relations in both accura-
cies and latencies.

Is the Relation Between Means and Variances in Reaction
Times Linear?

Recently, the relation of mean RT and RT SDs across experi-
mental task conditions has been investigated thoroughly by
Wagenmakers and Brown (2007). They assembled three kinds of
evidence to support a “law” of a linear relation of RT means and
SDs. First, they summarized empirical findings showing good fit
of linear functions that predict RT SDs with RT means across
conditions of several experiments. Second, they showed that the
relation between means and SDs of popular descriptive RT distri-
butions, like the shifted Weibull or log-normal functions, is exactly
or approximately linear if mapped out as a function of parameters
related to task difficulty. Third, they demonstrated that important
theoretical models for RT data, like Logan’s instance theory
(Logan, 1988) or Ratcliff’s diffusion model (Ratcliff, 1978), pre-
dict linear relations of RT means and SDs.

Because the diffusion model has been successfully applied to
aging data (e.g., Ratcliff et al., 2006a) and used in the empirical
part of this article, it is introduced in some detail here. The
diffusion model aims to explain data from two-choice RT exper-
iments in a comprehensive way, including accuracy information as
well as the shapes of RT distributions for correct and wrong
responses. This is achieved by assuming a model for the decision
process that involves several theoretically meaningful parameters.
First, the quality of evidence accumulation during the decision
process, called drift rate, is central. It describes how quickly
information is accumulated in a random walk-like diffusion pro-
cess that progresses from a starting point toward one of two
response boundaries, one for correct and one for wrong responses.
Large drift rates indicate fast accumulation of evidence; that is, an
efficient decision process. The second central parameter of the
model characterizes the carefulness of responding. This more
strategic aspect of response behavior is implemented by differ-
ences in the distance between the response boundaries, called
boundary separation. Wider boundary separation means more
conservative responding because more evidence needs to be accu-
mulated before a boundary is reached and a response is initiated.
Still another parameter is nondecision time, combining peripheral
sensory and motor aspects of the decision process. Advanced
applications of the diffusion model also include additional param-
eters for variability of the central parameters across trials (see
Ratcliff & Rouder, 1998).

As shown by Wagenmakers and Brown (2007), the parameter
characterizing task difficulty (i.e., drift rate) can be used to explain
the linear relation of means and SDs across task conditions. If only
drift rate varies from one condition to the other, a linear relation of
means and SDs results, because drift rate affects both the mean and
the variance of the resulting RT distribution in a way that variance
increases with the mean to the power of two. The resulting linear
relation holds for the whole range of boundary separation values
observed in empirical studies. Because variation in drift rates can
also be used to characterize individual and age differences in the

efficiency of decision processes, this relation has the potential to
explain the linearity of iMs and iSDs across people. If people not
only differ in drift rates, however, but also in other parameters of
the diffusion model, predictions for the relation of iMs and iSDs
become more complex. The relation is not generally linear for
differences in boundary separation (Wagenmakers et al., 2005) or
nondecision time (Wagenmakers & Brown, 2007). Also, if people
differ in conservatism of responding—an assumption not difficult
to defend, particularly for different age groups—then the relation
between iMs and iSDs does not have to be linear across individ-
uals.

If the relation between iMs and iSDs across many repeated
occasions is of interest, then practice-related changes in the diffu-
sion model parameters also become an issue. Empirical evidence
shows that all central diffusion model parameters can change with
practice (Ratcliff, Thapar, & McKoon, 2006b). If nondecision
times reduce with practice, as the motor aspects of responding are
becoming more automatized and fluent, then the change influences
iMs only but not iSDs, thereby distorting the linear relation be-
tween the two. As shown by Segalowitz and Segalowitz (1993),
skill acquisition can indeed lead to changes in CVs; that is, to
differential changes of iMs and iSDs.

To sum up, antecedents of intraindividual variability can be
different depending on which time scale is analyzed, they can
change with practice and with the selection of strategies, and they
may differ across individuals and age groups. Such differences in
the antecedents of intraindividual variability can also lead to
differences in the relation of iMs and iSDs. Hence, the relation
between RT means and SDs cannot safely be assumed to be linear
and invariant across individuals and age groups and therefore
needs to be investigated empirically.

Modeling the Relation of Means and Variances in
Reaction Times

Mean performance can be calculated for each single time unit at
a given level of time. However, iSDs need to be calculated across
several of the time units at the time level of analysis. For example,
at the time level of daily occasions, mean performance can be
calculated separately for each day. However, to compute iSDs
using conventional methods, performance of several days has to be
binned before iSDs can be calculated. This reduces the time
resolution for iSDs and potentially also influences their interpre-
tation.

In the context of multilevel or mixed models (e.g., Snijders &
Bosker, 1999), elegant and efficient methods for overcoming this
problem and investigating relations between iM and iSD have been
developed (e.g., Hoffman, 2007). These models (sometimes called
location-scale models, dispersion models, or models with hetero-
geneous variances) do not require binning of the data because they
model the expected variance at any time point. Although more
than one time point is needed to calculate an SD, statistical
expectancies for the amount of variance can be formulated for a
single time point, and those expectancies can be further modeled as
functions of mean performance or other predictor variables.

Two classes of models of this kind are power of means (POM)
models and log-linear variance heterogeneity models. POM mod-
els assume that the expected variance at a certain time point is a
power function of the mean at this time point, for example,
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62 = bilX,|", (1)

where 6121» is the expected variance of person i on occasion j,)A(,-j is
the expected mean performance for person i on occasion j (which
might result from any linear of nonlinear model for mean perfor-
mance), 0, is the exponent of the power function for person i, and
&, is an additional (person-specific) scaling factor for the relation
of mean performance and variance. In the case of a common linear
relation of iMs and iSDs, the estimated exponent would need to be
2 for all persons. In addition, the scaling factor would have to be
equal across persons to assure comparable steepness of the linear
function relating iMs and iSDs.

The alternative log-linear models (Harvey, 1976) assume an
exponential relation of means and variance; for example,

6',2, — ¢e(Bl)i+BliX1/)' (2)

Here, the expected variance is an exponential function of a linear
term, which in addition to expected mean performance might also
include other additional predictor variables. These models there-
fore allow investigating different models for mean performance
and for variability around it, thereby providing a versatile tool for
investigating many theoretical questions in research on intraindi-
vidual variability. Both the POM and the log-linear models can be
implemented in simplified versions that include only two param-
eters for all persons, one for the nonlinear relations between means
and variances, and a scaling factor. In the POM model, the power
exponent captures the nonlinearity of the relation of iMs and iSDs,
whereas the scaling factor defines the steepness of the slope. Mean
RTs of zero are associated with zero variance. Similarly, the
coefficient B, in the exponent term (in the following also simply
called exponent) of the log-linear model captures the acceleration
of the functional relation between iMs and iSDs. The coefficient
B, can also be interpreted as a scaling factor because
belPortBiXi = 40P o(B1iXi) Thig parameter can therefore be used to
capture individual and group differences in the steepness of the
functions. It also influences the predicted amount of intraindividual
variance at mean RTs of zero. Because mean RTs virtually cannot be
zero, and if they were, variance would have to be zero as well, the
estimated intercept of be® is not directly interpretable. However, the
property of the log-linear model of having an intercept allows for
larger amounts of baseline variance at some empirical minimum of
observed mean RTs than is possible for the POM model.

The COGITO Study

In the empirical part of this article, longitudinal data from the
COGITO Study are used. The central aim of the COGITO Study
was to investigate different levels of intraindividual variability of
cognitive functioning from a multivariate perspective (Linden-
berger, Li, Lovdén, & Schmiedek, 2007). To this end, samples of
101 younger and 103 older adults came to lab rooms in central
Berlin, Germany, to work on a comprehensive battery of comput-
erized cognitive ability tests for an average of 100 daily sessions.
The cognitive test battery comprised a total of 12 tests for the
ability constructs of perceptual speed, episodic memory, and work-
ing memory, each operationally defined with tasks from verbal,
numerical, and figural-spatial content domains. To be able to keep
task difficulty constant across the 100 daily sessions without

producing floor or ceiling effects, presentation times of the epi-
sodic and working memory tasks were set to fixed individualized
values on the basis of time—accuracy functions fitted to pretest
performance data. For the present investigation, we are using one
of the working memory tasks, a spatial version of the n-back
paradigm (e.g., Cohen et al., 1997), which combines the need for
continuous updating of several items to be kept in working mem-
ory with the requirement of rapid two-choice decisions for each
item, thereby producing RT information as one dependent vari-
able. We use this data to (a) report descriptive findings on age
differences in intraindividual RT variability observed at the day-
to-day level; (b) investigate, with POM and log-linear models,
whether the parameters describing the relation of iMs and iSDs
differ across age groups and across individuals within age groups;
and (c) query whether diffusion model parameters estimated sep-
arately for each participant and occasion can provide explanations
for the predicted age differences in the relation of iMs and iSDs.

Method
Participants and Procedure

Participants were recruited through newspaper advertisements,
word-of-mouth recommendation, and flyers distributed in univer-
sity buildings, community organizations, and local stores. The
advertisements addressed people interested in practicing cognitive
tasks for 4—-6 days a week for a period of about 6 months.
Allowances were mentioned, but no detail was given about the
amount. It took several steps to get included in the study. First, in
telephone interviews, interested persons were given information
about the study, and we checked whether requirements for study
participation, in particular time investment, could be met. Potential
candidates for participation were then called back and invited to
join a 1-hr “warm-up” group session to get more information about
the study. General aims of the study were explained and detailed
information on incentives was given. The digit-symbol substitu-
tion test and a questionnaire on sociodemographic variables were
administered. Individuals could assign themselves to the study
after the end of this session. Participants underwent 10 days of
pretests held in group sessions (2.0-2.5 hr); they included a large
number of self-report questionnaires, instruction to and behavioral
testing with tasks included in the daily protocol, and a number of
covariates and transfer tasks. During the longitudinal phase, par-
ticipants scheduled daily sessions (1.0—1.5 hr) on an individual
basis on up to 6 weekdays (including Saturdays) per week. Par-
ticipants worked on the tasks individually in rooms with three to
six work places. At the end of each session, participants got
feedback on their performance on all tasks, including average
accuracies and RTs. They could get printouts of these results to
take home. At posttest, another 10 group sessions (1.5-2.0 hr)
were conducted with repeated administration of the pretest cogni-
tive tasks and additional self-report measures.

The final sample included 101 younger (51.5% women; age:
20-31, M = 25.6, SD = 2.7) and 103 older (49.5% women; age:
65-80, M = 71.3, SD = 4.1) adults who did an average of 101
sessions during an average total time of 192 days.

The Spatial 3-Back Task

In each daily session, participants worked on four trials of the
spatial 3-back task. In each trial, a sequence of 39 black dots
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appeared at varying locations in a 4 X 4 grid. Participants had
to respond and indicate whether each dot was in the same
position as the dot three steps earlier in the sequence (green key
on a button box) or not (red key). Participants were instructed
to respond as quickly and accurately as possible. Dots appeared
at random locations with the constraints that (a) 12 items were
targets; (b) dots did not appear in the same location at consec-
utive steps; (c) exactly three items each were 2-, 4-, 5-, or
6-back lures (i.e., items that appeared in the same position as
the items 2-, 4-, 5-, or 6 steps earlier). The first three items in
each sequence were not used in the analyses because they could
never be targets. Presentation rate for the dots was individually
adjusted on the basis of pretest performance. This was done by
keeping the presentation time of the dots constant at 500 ms but
varying the interstimulus intervals (ISIs). Eighty-two younger
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and 27 older adults were assigned to the fastest (ISI 500 ms),
eight younger and 16 older adults to the intermediate (ISI 1,500
ms), and 11 younger and 60 older to the slowest (ISI 2,500 ms)
possible presentation rate.

Before beginning the longitudinal phase, participants had al-
ready practiced the spatial 3-back task for 12 blocks for each of
four different presentation rates (500 ms, 1,500 ms, 2,500 ms, and
3,500 ms) in one pretest session.

Data Analysis Methods

Given that the goal of the analyses was to investigate intra-
individual variability at the day-to-day level, it was necessary to
account for slower trends in the data. Figure 1 shows average
trends of RT iMs, RT iSDs, and accuracies, indicating that for
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Figure 1.

Mean trends of reaction time (RT) intraindividual means (iMs; in seconds; solid lines), RT

intraindividual standard deviations (iSDs; in seconds; broken lines), and accuracies (proportion correct; dotted

lines). A: Younger adults. B: Older adults.
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both age groups, performance improved across the testing ses-
sions. Individual trends for several individuals did not show
continuous improvements and therefore could not be captured
sufficiently well with theoretical learning curves, such as ex-
ponential functions, but exhibited more complex patterns of
intraindividual changes. Therefore, we decided to describe
mean performance changes with penalized radial spline
smoothing functions as implemented in SAS PROC GLIMMIX
(SAS Institute, 2006). With this semiparametric method, trends
are not fitted separately to each individual’s time series but to
all individuals simultaneously, using a mixed model approach,
with individual differences in the functions captured by random

A

effect parameters (Ruppert, Wand, & Carroll, 2003). Predicted
values can be created using best linear unbiased prediction
methods (see Ruppert et al., 2003; and Appendix A). Visual
inspection of these predicted trends together with the observed
data indicated that even the more deviant patterns of intraindi-
vidual change were captured sufficiently well with this ap-
proach. Examples of observed mean RTs and trends fitted with
this method for one younger and one older adult are shown in
Figure 2, whereas fitted trends for the whole samples of
younger and older adults are shown in Figure 3. As a compar-
ison approach, exponential learning curve functions were fitted
separately to each individual’s time series and residuals ana-
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Figure 2. Examples of individual trends fitted with the penalized radial spline smoothing method for one
younger and one older adult with individual exponents of the power-of-means (POM) function close to the group
mean. Dots = observed mean reaction times (RTs) for each daily session; line = fitted trend. A: One younger
participant with POM exponent = 3.69. B: One older participant with POM exponent = 2.45.
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lyzed in the same way as the residuals from spline smoothing
(see Appendix B for the model and results).

POM and log-linear variance heterogeneity models were fitted
with SAS PROC MIXED (Littell, Milliken, Stroup, Wolfinger, &
Schabenberger, 2007) with the LOCAL = EXP() function for the
log-linear and the LOCAL = POM() function for the POM
models, using the predicted values from the fitted spline and
exponential functions as the model of mean performance. The
corresponding residuals that resulted from subtracting the fitted
functions from the raw data were plugged into the models as
dependent variables. The alpha level for statistical significance
was set to p = .05.

50

60 20 100 110

Session

Individual reaction time (RT) trends as predicted by semiparametric spline smoothing functions. A:

Results

Results are organized in three sections. First, we report results
from the mean trend fitting and descriptive findings on age differ-
ences of intraindividual variability around these mean trends.
Second, we present results from fitting the two variance-
heterogeneity models, the POM and log-linear models, and age
differences in the parameters describing the relation between iMs
and iSDs. Third, the EZ diffusion model (Wagenmakers, van der
Maas, & Grasman, 2007) is fitted to individuals’ response RT data
to arrive at estimates of diffusion model parameters for each
participant and occasion. These parameters are then used for
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interpreting the observed age differences in the relation of iMs and
iSDs.

Mean Trends and Day-to-Day Variability

Mean trends as captured by the penalized spline functions are
shown in Figure 3. ISDs were calculated by subtracting these
predicted values from observed mean RTs for each session and
calculating individual SDs for the residuals. On average, these
iSDs were larger for older adults, M(iSD) = 44 ms, SD(iSD) = 29
ms, than for younger adults, M(iSD) = 29 ms, SD(iSD) = 26 ms.
This age group difference in intraindividual RT variability was
significant, #(202) = 3.84, p < .05. When individual trends were
fitted with exponential functions, a comparable pattern emerged.
iSDs based on residuals from such functions were also signifi-
cantly larger for older than for younger adults: younger adults,
M@GSD) = 34 ms, SD@GISD) = 30 ms; older adults, M(iSD) = 54
ms, SD(ISD) = 36 ms; #(202) = 4.32, p < .05.

Variance Heterogeneity Models

POM model: Group fits. Results for fitting the POM model to
the group data are shown in Table 1 and Figure 4. The baseline
model, which assumes just one overall function, common for both
age groups, for the relation of iMs and iSDs, led to an estimated
power exponent of 2.27. This implies a close-to-linear relation of
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iMs and iSDs (Figure 4A). If we had adopted this model, results
would have been interpreted as nicely supporting the purported
law of a linear relation of iMs and iSDs. However, when param-
eters of the POM model were allowed to vary across age groups
(Figure 4B—C), it became evident that model fit improved consid-
erably and reliably. Specifically, when the parameters were al-
lowed to differ across groups, the minus 2 log-likelihood (—2LL)
decreased by 2,086 units with just two additional parameters,
Ax*(2) = 2,086, p < .05. The resulting functions for the two
groups were radically different (Figure 4C). Whereas the function
for the older group continued to be fairly linear but shallower than
for the baseline model, the function for the younger group had an
exponent much larger than two and therefore deviated from the
assumption that the relation between iMs and iSDs is governed by
a linear function.

POM model: Individual fits. The POM model was also fitted
separately to each individual’s time series of predicted iMs and
iSDs. This was possible without estimation problems for all per-
sons. The cumulated —2LL over these individual fits was —86,462.
The difference in —2LL to the model with group specific param-
eters was 7,049, which is highly significant given the difference in
number of parameters (404). Therefore, individuals differed con-
siderably in their relations between iMs and iSDs. As apparent in
Figure 5, these functional relations were shallower and much more
heterogeneous for the older group. Age group differences were

Table 1
Results From Fitting POM and Log-Linear Variance Heterogeneity Models

Variable POM Log-linear

Baseline

Exponent 2.27 4.11
Scaling factor 0.00924 0.00020
Number of parameters 2 2
Model fit (—2LL) —71,326 —75,991

Exponent (younger)
Exponent (older)
Scaling factor
Number of parameters
Model fit (—2LL)

Different exponents for age groups

2.25 6.53
2.45 4.55
0.00954 0.00011
3 3
—717,398 —177,651

Different exponents and scaling factors for age groups

Exponent (younger)
Exponent (older)
Scaling factor (younger)
Scaling factor (older)
Number of parameters
Model fit (—2LL)

4.03 10.95
1.89 3.20
0.07831 0.00002
0.00570 0.00027
4 4
—79.413 —79,308

Different exponents and scaling factors for individuals

M (SD) M (SD)
Exponent (younger) 3.67 (2.59) 11.49 (8.96)
Exponent (older) 2.59 (3.71) 4.35(6.91)
Scaling factor (younger) 24.2739 (212.0834) 0.00066 (0.0027)
Scaling factor (older) 0.4106 (3.0380) 0.04329 (0.2740)
Number of parameters 408 408
Model fit (—2LL) —86,462 —88,082

Note. POM = power of means.
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Figure 4. Estimated functions relating intraindividual reaction time (RT) means (iM; in seconds) to intrain-
dividual RT standard deviations (iSD; in seconds) based on: (a) power-of-mean variance heterogeneity models
(Panels A, B, and C); (b) log-linear variance heterogeneity models (Panels D, E, and F). A and D: Baseline
models. B and E: Models with age-group-specific exponents. C and F: Models with age-group-specific
exponents and scaling factors. Solid lines = younger adults; broken lines = older adults. Functions reach beyond
the observed data range, as the fastest RT means were 179 ms for younger and 213 ms for older adults.

significant for exponents, #202) = 2.41, p < .05, but not for
scaling factors, #202) = 1.14.

Log-linear model: Group fits. Results for fitting the log-linear
variance heterogeneity model parallel those for the POM model:
Allowing the exponents and scaling factors to differ between age
groups strongly improved fit, and older participants on average
showed a shallower relation between iSDs and iMs than younger
participants (see Table 1 and Figure 4D-F). The two models
differed in the sense that the log-linear functions were more
strongly bent and suggested greater baseline variability at mini-
mum levels of mean RT for the older group. Keep in mind,
however, that RTs around 200 ms represent an extrapolation
beyond observed data for most of the older participants.

Log-linear model: Individual fits. The log-linear model was
also fitted separately to each individual’s data. Again, this was
possible without estimation problems for each person. The cumu-
lated —2LL was —88,082, a highly significant improvement over
the group model (—2LL difference = 8,774; df = 404). Plots
of the individual functions, which are not shown here, indicated
that the individual fits of the log-linear model were very similar to
the fits obtained with the POM model. Again, age group differ-
ences were significant for exponents, #(202) = 6.38, p < .05, but
not for scaling factors, #(202) = —1.56.

In addition to models based on residuals from spline-smoothing
trends, all of the analyses reported in this section were also carried

out for residuals that were based on individually fitted exponential
functions. In this manner, trends that deviate from the theory-
consistent exponential and operate on a slower frequency than
days are preserved in the residuals. Results for these more inclu-
sive definitions of intraindividual variability were very similar to
the findings reported above (see Appendix B).

Diffusion Model

To explore potential reasons for the large differences in the
relations between iMs and iSDs, both between age groups and
across individuals within age groups, the response time data from
each participant and each daily session were parameterized in
terms of the diffusion model. The main rationale for conducting
these analyses derived from the consideration that the relative
contribution of reductions in nondecision times to the overall
speedup of responding with practice was greater in older adults
than in younger adults. Nondecision time refers to sensory and
motor aspects of responding and does influence iMs but not iSDs,
which means that reductions in nondecision times could equally
lead to shallower iM—iSD functions. In sum, then, the objective of
the diffusion model analyses was to test the hypotheses for the
observed age differences in the relations between iM and iSD that
older adults showed greater reductions in nondecision times than
younger adults.
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Figure 5. Functions relating intraindividual reaction time (RT) means (iM; in seconds) to intraindividual RT
standard deviations (iSD; in seconds) based on the power-of-means variance heterogeneity model fitted
separately to each individual’s time series data. A: Younger adults. B: Older adults.

Estimation of the full diffusion model with all variability pa-
rameters was not possible because the number of responses per
daily session (i.e., 4 X 36 responses) was too small. Therefore, we
used the simplified EZ approach to diffusion modeling (Wagen-
makers et al., 2007). The EZ approach has been successfully
applied to data sets with a small number of RTs (e.g., Schmiedek,
Oberauer, Wilhelm, Siif3, & Wittmann, 2007). EZ calculates the
three central parameters of the diffusion model—drift rate (v),
boundary separation (a), and nondecision time (7er)—directly
from average accuracy and the mean and variance of correct RTs
in closed form. RTs shorter than 300 ms were excluded before
parameter calculation (cf. Ratcliff, Thapar, & McKoon, 2004).
Figure 6 shows average trends for younger (Panel A) and older
adults (Panel B). Apparently, younger adults improved more on

drift rates whereas older adults showed a stronger reduction in
nondecision time. Boundary separation was relatively stable for
both groups.

Within-person linear regressions of nondecision time on session
number were calculated to estimate the improvements of nonde-
cision time across the 100 days of training to test the hypothesis
that older adults might reduce their nondecision times more
strongly than younger adults. The average regression weight of
nondecision time on session number, indicating reductions in
nondecision time, was larger for older adults, 3 = —.0010, SE =
.0001, than for younger adults, 3 = —.0004, SE = .00005. The
difference between the two regression weights was reliable,
1(202) = 5.55, p < .05. The observed age group difference in the
exponent of the POM model could be partly explained by individ-
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Figure 6. Mean trends of diffusion model parameters estimated with the EZ diffusion model. v = drift rate
(solid lines); @ = boundary separation (broken lines); Ter = nondecision time (dotted lines). A: Younger adults.

B: Older adults.

ual differences in the reductions of nondecision time. When en-
tering both age group and the regression weights from the within-
person regressions of nondecision time on session number in a
between-person regression analysis with the POM exponent as
dependent variable, the effect of reductions in nondecision time
was significant, F(1,201) = 4.00, p < .05, reducing the age group
difference to a nonsignificant value, F(1, 201) = 2.35. It seems
that larger reductions in nondecision time in the older group are at
least contributing to the explanation of observed individual differ-
ences in the relation between iMs and iSDs. Because age differ-
ences in the relations between iMs and iSDs could partly be
explained by age differences in reductions of Ter, we investigated
whether conducting our analyses (spline smoothing and fitting of
variance heterogeneity models) on mean decision time (i.e., mean

RT minus Ter) rather than mean RT would reduce the observed
age differences in the POM exponents. This turned out to be the
case. Functions were much shallower and more similar across the
two age groups.’

Discussion

In this article, we explore individual differences in the relation
between central tendency and dispersion of working-memory re-
lated reaction times, with an emphasis on group differences be-
tween younger and older adults. For this purpose, we fitted two

! We thank Eric-Jan Wagenmakers for suggesting this kind of analysis.
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different multilevel variance heterogeneity models, POM and log-
linear, to estimate age-group differences as well as individual
differences within age group in the relations between iM and iSD.
At first sight, the fitted overall POM function looked like another
demonstration of a linear relation between iMs and iSDs, as its
exponent was fairly close to the value of two. However, model fits
increased dramatically when parameter heterogeneity between age
groups and among individuals within age groups was permitted.
By analogy, ignoring this heterogeneity and reverting to the group
model with a “one-size-fits-all” exponent is as prohibited as as-
suming a material-invariant coefficient of linear thermal expansion
o for materials as different as diamond (o = 1), gold (a = 14), and
rubber (e = 77). Thus, researchers investigating age-group and
individual differences in iSDs who attempt to control for individ-
ual differences in iMs by using statistical control procedures that
assume an invariant linear relation between iM and iSD risk biased
and misleading results. Specifically, the use of the CV as well as
the use of linear statistical control techniques such as partial
correlations or multiple regression analysis is dubious if heteroge-
neity exists in the relation between iMs and iSDs. Hence, we argue
that findings from past research on age differences in iSD that have
been obtained with methods positing invariant linearity between
iM and iSD need to be interpreted with caution.

To overcome the impasse created by the apparent inappropri-
ateness of standard linear control techniques, we demonstrated the
utility and versatility of two complementary approaches for mod-
eling heterogeneity in the relations between iMs and iSDs in
different groups and different individuals. The first approach is to
explicitly model the relation between iMs and iSDs with variance
heterogeneity models of the kind used here. Whereas POM models
allow us to directly investigate how much the data deviate from a
linear function, as the linear relation between iMs and iSDs is
contained in the POM model as a special case, log-linear models
as implemented in PROC MIXED have the potential to explore
and test models predicting the amount of intraindividual variability
with time-invariant and time-varying predictor variables in parallel
to models for mean performance. It is therefore possible to model
different antecedents for mean performance and intraindividual
variability around it (cf. Hoffman, 2007)—a highly advantageous
option for many interesting research questions. Taking these ideas
one step further, recent methodological developments even allow
us to model interindividual differences in the amount of intraindi-
vidual variability as random effects (in so-called random scale
models; Hedeker, Mermelstein, & Demirtas, 2008).

The second approach proposed here is to attempt to explain the
relation between iMs and iSDs with theoretical process models.
We showed how one prominent process model for two-choice
decision tasks, the diffusion model, can be used to better under-
stand observed age differences in the relations between iMs and
iSDs. In short, we found that relative to younger adults, older
adults’ improvements in overall RT were more strongly deter-
mined by improvements in sensory and motor aspects of respond-
ing, as estimated by the nondecision time parameter of the diffu-
sion model. Changes in nondecision time exclusively influence
iMs and thereby lower the slope of the iM—iSD function—in this
case, selectively for older adults. Performance on the n-back task,
with its requirement of constantly updating the contents of work-
ing memory, likely involves a complex set of processes that
potentially includes binding, inhibition, and reliance on familiarity

information (Schmiedek, Li, & Lindenberger, 2009). Practice-
induced improvements on this task can be considerable (Li,
Schmiedek, Huxhold, Rocke, Smith, & Lindenberger, 2008). As
the results reported here indicate, the mechanisms underlying the
observed improvements in accuracy and RT could involve changes
in several processes, including improvements in nondecision time.
However, most important for improvements in both accuracy and
RT are improvements in drift rate. These may originate from
stronger representations of the current target position that the
current stimulus needs to be compared with, which in turn might
result from more reliable updating operations, stronger bindings of
spatial to temporal positions, better unbinding or inhibition of no
longer relevant stimuli, or combinations of the above.

In this article, we question the use of statistical control tech-
niques that assume invariance of relations between iM and iSD
across age groups and individuals and urge researchers to explic-
itly model these relations at the levels of age groups and individ-
uals. In doing so, we follow recent calls to test the ergodicity
assumption (Molenaar, 2004), which states that the structure of
between-person differences matches the structures of within-
person variability. We were able to show that the relations between
iMs and iSDs of working-memory related reaction times are non-
ergodic. As the within-person relations between iMs and iSDs
differed reliably and widely across people, the roughly linear
relation of between-person differences in means and standard
deviations tells us close to nothing about the functional relations
between means and standard deviations within a given person.
Therefore, any standardization or calibration of iSDs in terms of
their between-person relation to iMs will result in indices that fail
to describe, explain, or predict within-person processes, such as
performance differences across experimental conditions or
practice-induced improvements.

Hence, the marked heterogeneity in the functional relations
between iMs and iSDs suggests that a surrogate approach, in which
between-person variability is taken as a proxy for within-person
variability, is not tenable. Instead, process models of RT variability
need to be tested at the within-person level. One could be tempted
to argue that the divergence of between-person and within-person
findings is mainly due to practice-induced changes of the under-
lying processes, so that studies investigating individual and age
differences in mean and variability measures with much smaller
amounts of practice (e.g., within a single session) might be less
affected by these issues. This is only the case, however, to the
degree that individual differences without experimental practice
are not also determined by pre-experimental individual differences
affecting relevant processing parameters. It could well be that
numerically identical CV are observed in two different individuals,
but that the two CV come about by entirely different constellations
of drift rate, boundary separation, and nondecision time, even
before experimental practice affects them, rendering this value
uninformative about underlying mechanisms.

We hasten to add that the accurate representation of within-
person processes is only one of several goals of behavioral re-
search. In clinical settings, for instance, the prediction of group
membership (e.g., dementia status) may be more important. Here,
issues of explanation and prediction primarily arise at the between-
person level, and the modeling of within-person relations is less
relevant. In these instances, it may make sense to control for
individual differences in iMs to probe the incremental validity of
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iSDs, assuming that the two show a linear and positive correlation
at the between-person level.

Reliability of iMs and iSDs

If testing incremental validity of iSD over IM at the between-
person level is the goal, one needs to pay close attention to another
methodological issue: the reliability of iMs and iSDs as measures
of interindividual differences (Schmiedek, 2006). When iMs and
iSDs that were computed on the basis of the same given number of
occasions (or trials, or items) compete against each other in a
regression analysis predicting a criterion variable of interest, the
relative size of the regression weights for the two predictor vari-
ables as well as the corresponding amounts of incremental vari-
ance explained will be influenced by the relative reliabilities of
iMs and iSDs. If one of the two is more reliable, then this does put
the competitor at a disadvantage.

According to classical test theory, reliability is the ratio of true
to observed variance, and observed variance is the sum of true and
error variance. Thus, iMs and iSDs will have the same reliability
(for a given number of occasions) if the ratio of error to true
variance is the same for both. Whereas the relative amounts of true
variance have to be determined empirically, the relative amounts
of error variance can be derived analytically. Statistical textbooks
tell us that the standard error of a standard deviation is .707 times
as large as the standard error of the mean (e.g., McNemar, 1962,
p. 78). This implies that for a given number of occasions, the error
variance of an iSD will only be half (.707> = .50) as large as the
error variance of an iM. Whereas this general formula does not
apply to very small numbers of occasions, it is easy to show with
simulations that the error variance of a standard deviation is
always smaller than that of the mean (see Figure 7). Regarding the
amount of error variance due to sampling a few occasions out of a
population of occasions, iSDs are therefore, surprisingly perhaps,
at an advantage in comparison to iMs.?

However, reliability does also depend on the relative amount of
true variance, which cannot be determined analytically. Thus, the
question of whether iMs or iSDs have comparable reliabilities
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Figure 7. Ratio of the error variance for estimating a standard deviation
to the error variance for estimating a mean given a certain number of
observations (N).
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Figure 8. Empirical ratios of between-person standard deviations of
intraindividual means (iMs) versus intraindividual standard deviations
(iSDs) from published studies (circles, Salthouse, Nesselroade, & Berish,
2006; triangles, Lecerf, Ghisletta, & Jouffray, 2004; squares, Salthouse &
Berish, 2005; crosses, Nesselroade & Salthouse, 2004). If the ratio is larger
than the square root of 2 (area above diagonal line), the reliability of
intraindividual means is larger than the reliability of intraindividual stan-
dard deviations.

boils down to an empirical question. It is easy to derive that if the
observed between-person SD of iMs is more than V2 as large as the
observed between-person SD of iSDs, then the iMs have higher
reliability than the iSDs. An overview of the ratios of between-
person SDs in iMs and iSDs from published studies shows that this
generally seems to be the case (see Figure 8).

Error variances of both iMs and iSDs reduce with increasing
numbers of occasions, so that the corresponding reliabilities con-
verge relatively quickly. For large numbers of occasions, differ-
ences in reliability will influence results only very little. For small
numbers of occasions, however, careful attention needs to be paid
to the issue of reliability before drawing any conclusions about the
relative predictive validities of iMs and iSDs.

Outlook

Research on cognitive aging is marked by a growing interest in
intraindividual variability (e.g., Hultsch & MacDonald, 2004; Lov-
dén et al., 2007; MacDonald, Nyberg, & Béickman, 2006; Ratcliff
et al., 2006b). This interest moves the field closer to an under-
standing of developing individuals as dynamic systems (e.g., Nes-
selroade, 1991). To move even further in this direction, intraindi-
vidual variability should no longer be conceived as a supplement

2 The simulation presented here was based on the assumption of nor-
mally distributed variability. For nonnormal distributions the ratio of the
SEs of iMs and iSDs might change. For example, using a skewed ex-
Gaussian distribution, this ratio is greater than one for all numbers of
observations. For such distributions, it therefore seems that estimating iSDs
is more difficult than in normally distributed cases. We thank an anony-
mous reviewer for pointing out that the distribution of the variables might
play an important role here.
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of mean performance. Rather, central tendency and dispersion
should be treated as equally important characteristics of develop-
ing cognitive systems. The diffusion model implements this ap-
proach by simultaneously modeling means and variances in both
accuracies and latencies. In the future, the current emphasis on
means and variances may be complemented by methods and
theories that retain the temporal structure of the data (see Newell,
Mayer-Kress, & Liu, 2009). In either case, theoretical process
models fitted to individual data will play a prominent role in this
process, as they provide mechanistic explanations of individual
differences and age-related changes in the relations among multi-
ple dimensions of behavior.
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Appendix A

Penalized Radial Spline Smoothing With Mixed Models

Before being submitted to the variance heterogeneity models,
observed data were fitted with the penalized radial spline
smoothing method as proposed by Ruppert, Wand, and Carroll
(2003) and implemented in SAS PROC GLIMMIX (SAS Insti-
tute, 2006). The radial spline smoothing method is based on the
model

K
Y, = Euki(t — Ky e (A1)
=1

where Y, is the observed mean RT of participant i in session ¢
and the (t — k), are a set of radial basis functions (¢ — k, if t >
K,; 0 otherwise) with k knots k,. Knots are chosen based on a
k-d tree procedure, which partitions the space of all observa-
tions (number of individuals times number of sessions) until all
partitions contain at most b observations. This number b is
called “bucket size” and controls the number of knots. The
residuals e;, are assumed to be distributed normally with vari-
ance o2. The u,, are the regression weights for the ith individual

and kth knot. These weights are not estimated directly; rather
their total variance (across individuals and knots) is estimated
as a random variance parameter o> in a mixed model (see
Ruppert et al., 2003, Chapter 4). This way, the amount of
smoothing, which depends on the variance of the u,,, is auto-
matically chosen by the usual maximum likelihood estimation
procedures of mixed models. The smoothing parameter \ is
implicitly determined by N> = o2/02 and thereby the same
across individuals. Intercept and linear trend are included as
fixed effects in the model. Fitted trends for individuals can be
derived from best linear unbiased predictors (BLUPSs) of the
unobserved u,;, which can be created as standard output from
mixed models.

In the presented analyses, this mixed model spline smoothing
approach was fitted separately to the younger and older samples,
which resulted in the selection of 17 knots for both age groups.
Additional analyses conducted for the combined sample resulted in
virtually indistinguishable fitted functions.

The SAS code for these analyses is shown in Figure Al.

proc glimmix data=nback_rt noclprint maxopt=100;

sessionNr=sessionNr/100;
nb_mrt=nb mrt/10000;
t=sessionNr;

by agegrp;

class id;

model rt = sessionNr /dist=normal solution;

random t /solution

*rescale session variable to improve estimation;
*rescale dependent variable to improve estimation;

*define fixed effects and
distribution of residuals;
*define spline smoother;

Figure Al.

type=rsmooth subject=id

knotmethod=kdtree (bucket=1000 knotinfo treeinfo);
output out= nback rt pred spline pred(blup)=p_rt; *save BLUPs;
nloptions tech=trureg; *choose optimization technique;

SAS code for radial spline smoothing method as implemented in SAS PROC GLIMMIX.
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Appendix B

Results for Variance Heterogeneity Models When Individual Trends Were Fitted With
Exponential Functions

Table B1
Results From Fitting POM and Log-Linear Variance Heterogeneity Models

Variable POM Log-linear

Baseline
Exponent 2.29 4.11
Scaling factor 0.01373 0.00029
Number of parameters 2 2
Model fit (—2LL) —69,515 —68,054
Different exponents for age groups
Exponent (younger) 2.28 6.33
Exponent (older) 242 4.58
Scaling factor 0.01411 0.00017
Number of parameters 3 3
Model fit (—2LL) —69,547 —69,292
Different exponents and scaling factors for age groups

Exponent (younger) 3.95 10.98
Exponent (older) 1.88 3.12
Scaling factor (younger) 0.10190 0.00003
Scaling factor (older) 0.00878 0.00045
Number of parameters 4 4
Model fit (—2LL) —71,255 —71,097

Note. Separate fits for individuals are not reported because parameter estimation was not successful for too

many individuals. POM = power of means.

As an alternative to the spline smoothing method, individual trends
were also fitted separately for each individual using the three-

parameter exponential function
Y,=a+ gel 7V, (B1)

with Y, being the observed RT mean at session ¢, a the asymp-
tote parameter, g the gain parameter, and r the rate parameter of

proc nlin data=nback rt;
by id;

parms asymp=200 gain=500 rate=.3;
model rt = asymp + gain*exp(-rate* (sessionnr-1));
output out = nb rt pred exp predicted=epr nb rt;

Figure B1.

the exponential function (e). Individual functions were fitted
using a least-square procedure as implemented in SAS PROC
NLIN. Predicted values from these fitted functions and residual
variability around them were used to define mean performance
and intraindividual variability in the variance heterogeneity
models shown in Table B1. The SAS code for these analyses is
shown in Figure B1.

*starting values;
*exponential model;
*save predicted values;

SAS code for least-square procedure as implemented in SAS PROC NLIN.
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