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Introduction

The complexity of the cognitive system makes powerful metaphors such as the proba-
bilistic mind and the Bayesian brain appealing on the one hand, but limited on the
other. The trick is to not only harness their productivity, but also recognize their limits.
One problem confronting the notion of the probabilistic mind and the accompanying
‘quiet probabilistic revolution’ is the apparent intractability of rational probabilistic
calculation (Chater et al., 2006b, p. 293). Rational probabilistic models, however, are
not typically interpreted as algorithmic or mechanistic theories but functional level
theories used to establish connections between observed behavior, a rational principle
of inductive inference, and the structure of the environment. These correspondences
tell us when the cognitive system is performing well and, to varying degrees, are used
to suggest that human behavior is consistent with rational principles of inductive
inference. From an algorithmic standpoint, how should these empirical findings be
interpreted?

The distinction between functional and algorithmic level theories has its roots in
what is now termed the rational analysis of cognition, an adaptationist program
which aims to understand the structure and function of the cognition system as an
adaptive response to the challenges posed by the environment (Marr, 1982; Shepard,
1987; Anderson, 1990; Oaksford & Chater, 1998). While working on a purely functional
level, the tractability problem is in one sense irrelevant given that no commitment is
made to a mechanistic level interpretation, but in another sense, unsatisfactory.
Indeed, a principle objective of the rational analysis of cognition is to narrow down
candidate algorithmic level theories by establishing empirically determined perform-
ance criteria. If the grand prize in cognitive science is uncovering both why minds do
what they do and how they do it, then the productivity and scope of the metaphor
would ideally extend to the process level.

Can the notion of the probabilistic mind be seamlessly extended to the algorithmic
level, or there exist unmovable barriers to reconciling rational probabilistic models
with plausible mechanisms of mind? We will examine these questions by considering
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the metaphor of the probabilistic mind from an alternative adaptationist perspective,
and one that views much of human inductive inference as relying on an adaptive tool-
box of simple heuristics (Gigerenzer et al., 1999; Gigerenzer & Selten, 2001 ). Unlike
the notion of the probabilistic mind, the metaphor of the adaptive toolbox is rooted
to an algorithmic level hypothesis, which proposes that adaptive behavior, and inductive
inference in particular, is in large part the result of an interaction between processing
simplicity and ecological context. This view leads to the notion of ecological rationality.
Here, the cognitive system is viewed as adapted to the relevant aspects of its environ-
ment to the extent that it achieves good enough solutions using the limited resources
it has available, rather than attempting to find optimal ones. On this view, organisms
do not optimize but satisfy (Simon, 1996}, which makes the notion of adaptive suc-
cess for the organism—its ecological rationality—inseparably tied to an algorithmic
level analysis.

What barriers, if any, stand between a synthesis of the study of ecological rationality
and functional level probabilistic models? First, we consider the role of rationality and
optimality in framing the study of cognition, and examine how these concepts repre-
sent key points of divergence between the study of ecological rationality and rational
analysis. Second, we examine the consequences of the intractability of optimal proba-
bilistic calculation, and propose that the statistical problem known as the bias/variance
dilemma arises as a consequence, and represents a significant and often overlooked
dimension of the functional problem facing the cognitive system (Geman et al., 1992).
The bias/variance dilemma brings into focus a connection between estimation error,
ecological context, and the properties of learning algorithms. Therefore, in addition, it
has the potential to bridge functional level models, simple heuristics, and the notion of
ecological rationality. Ultimately, the adaptationist perspective should encompass both
functional and algorithmic level analyses. Our guiding concern will be the understand-
ing how these two levels of analysis can be aligned.

The rational and the psychological

We will focus on the problem of inductive inference. Given some sequence of obser-
vations, an organism makes a successful inductive inference to the extent that it
selects a hypothesis, which is probable (Tenenbaum & Griffiths, 2001a), predictive of
future observations (Anderson, 1991b, p. 479), or one which leads to a succinct recod-
ing of past observations (Chater & Vitdnyi, 2003). Thus, prediction, probability, and
coding length are fundamentally related concepts which point to the essence of the
rational problem of inductive inference (Li & Vitdnyi, 1997). Although the formal
instantiation of these concepts can lead to slight inconsistencies, we will not consider
these inconsistencies here (Vitdnyi & Li, 2000; Griinwald, 2005). Next, it is worth
setting out what role rational principles can play when used to examine, evaluate, and
ultimately frame the problem of inductive inference facing biological organisms.

Functional and algorithmic level explanations

Rational principles can be used to construct functional level models of cognition.
When used in this way the objective is to understand to what extent human behavior
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coincides with rational expectation, and to what extent rational principles ‘point to
deep functional reasons why our minds work the way that they do’ (Tenenbaum &
Griffiths, 2001b, p. 776). This level of abstraction dispenses with the need to specify how,
in mechanistic terms, data are processed to yield behavior. Viewing the organism as a
black box, ‘the structure of such a theory is concerned with the outside world rather
than what is inside the head’ (Anderson, 1991a, p. 410). In contrast, an algorithmic
level model aims to provide a mechanistic account of how the organism processes
data in order to address the task. Such a model is algorithmic in the sense that it
describes the steps required to transform inputs to outputs such that these steps could
plausibly be implemented on some form of computing machinery.

In part, the rational analysis of cognition seeks functional level models in order to
alleviate some of the problems in arriving at mechanistic accounts: ‘If we know that
behavior is optimized to the structure of the environment and we also know what the
optimal relationship is, then a constraint on mental mechanisms is that they must
implement that optimal relationship’ (Anderson, 1991b, p. 471). The idea is that
mechanistic theorizing does not typically center on adaptationist assumptions, but
rather aims to fit ‘the facts at hand’, those potentially second order effects which may
arise as a consequence of the deeper and more concisely articulated problem of being
adapted to the structure of the environment.

We will critically examine rational principles of inductive inference as appropriate
concepts with which to explain adaptive cognition. Probabilistic notions of rationality
and optimization, as analytic tools, should be uncontroversial. They are theory neu-
tral. But as concepts used to characterize and explain cognition we question their
validity. Without doubt, a range of opinion exists on the extent to which the metaphor
of the probabilistic mind refers to a purely functional theory concerned with a behav-
ioral perspective on cognition, a normative theory implying that deviation from
rational expectation reflects irrationality or maladaptation, or to a deeper property
impacting on how, in mechanistic terms, the cognitive system actually processes data.
To examine these perspectives, it will prove useful to distinguish between the notion
of the probabilistic mind in the broad sense and in the narrow sense.

The probabilistic mind in the broad sense

What we will refer to as the broad sense of the metaphor is the familiar one from
rational analysis, where a strict separation between function and process is main-
tained. Here, a functional model, beyond setting behavioral constraints on candidate
mechanisms, remains mute on how these outcomes are arrived at. This perspective is
broad given that it leaves the door open to a wide range of possible mechanisms capa-
ble of producing the observed behavior. For example, when Tenenbaum and Griffiths
(2001b) state that ‘we do not assert that any of our statistical calculations are directly
implemented, either consciously or unconsciously, in humans minds, but merely that
they provide reasons why minds compute what they do’ (p. 776), they are clearly
adopting a strict analytic separation between functional level and process level expla-
nations. The strength of this approach rests on the range of settings in which a close
fit between a model of the environment, the rational principle, and the behavioral
findings are established. These findings catalog instances of the cognitive system
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performing well, sometimes to the degree that the observed behavior is interpreted as
optimal (Griffiths & Tenenbaum, 2006a).

When used in this way, a rational principle, such as Bayesian statistics, ‘provides a
principled framework for understanding human inductive successes and failures, by
specifying exactly what a learner is and is not justified in concluding given certain
assumptions about the environment’ (Tenenbaum & Griffiths, 2001b, p. 776).
Correspondences such as these, where human behavior coincides with rational expec-
tation, represent important empirical findings because they indicate that the cognitive
system has performed extremely well, under the assumption that the rational principle
provides an appropriate notion of success. A tentative conclusion might then be that,
to one degree or another, the mind behaves as if it were Bayesian. Knill and Pouget
(2004), for instance, remark on the ‘myriad ways in which human observers act as
optimal Bayesian observers’ (p. 712). The strength of this viewpoint—the implied
ability of the cognitive system to ‘act Bayesian’—rests on the range of settings in
which this finding holds, and the degree to which they imply that the cognitive system
is maladaptive, or irrational, in the cases when it fails.

The issues of failure and maladaptation are problematic. After all, poor rational per-
formance in one context could reflect an extremely well measured trade off for good
performance in another. For the organism, the most effective deployment of limited
processing resources for addressing the problems posed by the environment may well
result in such a trade off being made. Clearly, the separation of the functional problem
from the processing problem involves an idealization. Although idealizations can be
productive, the come at a price. After all, if a Bayesian rational analysis is interpreted as
‘specifying exactly what a learner is and is not justified in concluding’ (Tenenbaum &
Griffiths, 2001b, p. 776), and human behavior deviates from what is justified as result
of a processing trade off, should this response be considered as irrational, reflecting a
maladaptation? For instance, if a slightly less probable hypothesis is chosen over a
more probable one, to what extent would this reflect a failure if such a choice can be
arrived at far quicker and by using significantly fewer processing resources?

From a strictly functional level perspective, this argument makes little sense since
the notions of adaptation and rationality are typically separated from issues of pro-
cessing, and hence resource usage. Although Anderson’s original formulation of the
rational analysis of cognition considered the role of processing limitations in constrain-
ing the optimal response function, and productive examples of such considerations
exist in, for example, the rational analysis of memory (Schooler & Anderson, 1997;
Schooler, 1998), the role of processing limitations are often neglected. For the prob-
lem of inductive inference the impact of processing limitations are arguably harder to
integrate, and what Anderson (1991b) referred to as the ‘true Achilles heel of the
rationalist enterprise’ (p. 473) has been largely sidestepped in recent work. In the dis-
cussion to come we will discuss how constraints on processing change the functional
problem quite significantly. This is why, from our perspective, an appropriate notion
of adaptive success and rationality for biological organisms should take into account
the contributors to function other than mere outcomes, they should also consider
how these outcomes are achieved, and therefore extend to the algorithmic level
(Simon, 1996; Todd & Gigerenzer, 2003).
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The probabilistic mind in the narrow sense

What we will refer to as the narrow sense of the metaphor of the probabilistic mind
are those interpretations which, to varying degrees, make a projection from the func-
tional level description to an algorithmic level explanation. Ranging from speculative
proposals, which consider the ‘in principle’ possibility, to full theoretical projection,
this stronger interpretation considers probabilistic calculation as a potentially valid
algorithmic level concept. Current opinion varies on if and when such an extension is
justified. Certain forms of low level perception are viewed as the kinds of information
processing problems for which this extension is likely to be valid, giving rise to pro-
posals such as the ‘Bayesian coding hypothesis’, the idea that probability distributions
may be neurally coded and rationally processed (Knill & Pouget, 2004). For other
forms of cognition, and especially higher-level cognitive tasks such as decision mak-
ing, the question is treated as an open one in need of exploration (Chater et al.,
2006a). The fly in the ointment for the probabilistic mind in the narrow sense is the
fact that rational calculation—the direct use of rational principles as processing
principles—tends to be computationally intractable for anything but trivial problems.
We will tackle this issue at greater length in the coming discussion, but in the interests
of completeness, it is worth pointing out that the boundary between functional level
and algorithmic level theories is, for us at least, not always clear.

For instance, when considering the role of compression, an interpretation of the
rational principle of induction by minimum description length (MDL), Feldman
(2003) argues that ‘the neglect of complexity in concept learning has stemmed from
the ascendancy of exemplar theories’ (p. 227) and ‘human learning involves a critical
element of compression or complexity minimization that is not present in exemplar
models’ (p. 230). Such an argument contrasts exemplar models (an algorithmic level
theory) with the minimization of coding length (a functional level rational principle),
and casts doubt on the former as a result of not conducting the explicit rational calcu-
lation implied by the latter. In a given setting, the inferences made by the exemplar
model could in principle be consistent with those suggested by the rational principle
but, obviously, arrived at without any form of explicit complexity minimization.
Unless one views the minimization of coding length as a valid processing principle,
such a comparison appears questionable. Fass and Feldman (2003), in a similar vein,
consider that ‘while it is premature to conclude that humans construct anything like
the two part code [...], it seems likely that they employ some closely related complex-
ity minimization principle’ Such a view implies that, to one degree or another, the
cognitive system is itself applying the rational principle (the two part code interpreta-
tion of MDL, or something close to it). At the very least, there appears to be an
implicit belief that organisms have the ability to perform something approaching
rational calculation as if ‘the machinery of probability and information theory’
existed (Movellan & Nelson, 2001, p. 691).

Summary: from tools to metaphors

Our distinction between the metaphor of the probabilistic mind in the broad sense and
in the narrow sense is an attempt to mark out degrees of projection of the analytic
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tools of probability and information theory to theories of the cognitive system itself
(Gigerenzer, 1991). We accept that such a coarse grained distinction will miss some
subtleties, but the distinction remains an important one. The broad sense of the
metaphor is in large part an issue of degrees of idealization, and the theoretical price
one is willing to pay for abstracting from the algorithmic level. The narrow sense of
the metaphor is more of a technical issue, which we consider next by contrasting our
own view of an adaptive toolbox with some of the specific features of the rational
analysis of cognition.

The optimal and the psychological

An essential step in the rational analysis of cognition is to find the optimal response
function. But to what degree does the goal of understanding the cognitive system as
being adapted to problems presented by the environment require the notion of opti-
mality? Is optimality merely an analytic tool for setting a performance benchmark, or
a processing assumption made in order to support the metaphor of the probabilistic
mind? For the broad sense of the metaphor, ‘the optimal behavior function is
an explanatory tool, not part of an agent’s cognitive equipment’ (Chater et al., 2003,
p- 70). For the narrow sense of the metaphor the role of optimality is problematic, as
optimization as a cognitive processing principle is questionable from a tractability
perspective. Until now, we have separated the issues of rationality and optimality
because rational principles can be used without invoking the notion of optimality
during the analytic process, as a feature of metaphor, or as an assumed property of the
organism.

Adaptationism without optimality

Rational principles are required in order to say anything of substance about the suc-
cess of the organism, or any model of the organism. After all, some normatively justi-
fied metric is required in order to inform the task of gauging success. Gauging
success, on the other hand, does not require knowledge of the optimal solution.
Furthermore, using a rational principle to inform an adaptationist analysis does not
mean that optimality or rationality, when used in a broader sense, will necessarily be
productive concepts with which explain the function and internal workings of the
organism. To illustrate the point, two uses of a rational principle need to be distin-
guished. Functional models in rational analyses define an optimal benchmark against
which behavior is judged, and something to be approached to varying degrees of
approximation by the organism. Here, the rational principle is used as an absolute
measure of function. Although the principle itself may well be interpreted as an
approximate measure of function, it nevertheless sets a benchmark, and is absolute in
this sense. Rational principles can also be used as model selection criteria, where com-
peting processes are evaluated on their ability to perform the task adequately. Here,
the rational principle is used as a relative measure of function. The optimal solution
does not need to be known when a rational principle is used in this way.

For example, it is standard practice in machine learning to use Bayesian statistics, the
MDL principle, or cross validation to assess the functional performance of learning
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algorithms in the absence of knowledge of the optimal response (Hastie et al., 2001).
Our analysis of simple heuristics, and how they perform in comparison to models
carrying out more intensive forms of processing, relies on the use of rational princi-
ples as model selection criteria. Processes are viewed as performing better or worse
than each other, rather than optimally or sub-optimally. On finding that a simple
heuristic outperforms several intensive forms of processing model in a given ecologi-
cal context, we examine the degree to which the simple heuristic is ecologically
rational, and view it as a potentially interesting instance of how processing simplicity
can be used to exploit the structure of the environment. Because we view cognitive
processes as satisficing processes, which seek good enough inferences rather than
optimal ones, there is no need to invoke the notion of optimality in order to assess
this hypothesis (see also Vicente & Wang, 1998 for a similar perspective). We have no
objection to using knowledge of the optimal solution to inform this process, but for
many problems that we consider determining the optimal response is infeasible
(Martignon & Laskey, 1999).

Comparing this approach to the practices of rational analysis, Chater and Oaksford
(1999, p. 59) view our approach as being ‘at least in the spirit of an optimality
approach’. To clarify this issue, we view knowledge of the optimal response—when it
can be reliably identified—as potentially useful knowledge, but not necessarily a use-
ful concept with which to characterize cognitive processing, and certainly not a
requirement for carrying out an adaptationist analysis. Indeed, often the significant
difficulties in deriving the optimal response can restrict the problems one considers to
‘toy world’ settings lacking the complexity of the natural contexts faced by the organ-
ism. Thus, the methodological priority of identifying the optimal response can be a
hindrance, particularly as it presupposes full and certain knowledge of the problem
being considered.

In contrast, Chater and Oaksford (1999), argue that ‘the need to explain the success
of cognition means that, even if they are currently unavailable, deriving optimal solu-
tions will remain a desideratum. Using Marr’s analogy, ignoring this step of a rational
analysis would be like trying to understand why birds can fly without a theory of
aerodynamics. (p. 59). Trying to understand the cognitive system from an adaptation-
ist perspective without some normatively justified metric of success informing the
analytic process, we agree, is likely to obscure the question. In this respect, rational
principles should inform the analytic process to the extent that they provide a con-
vincing model of functional success. But the same cannot be said for the role of opti-
mality in adaptationism, both in our approach and, as others have argued, in Marr’s
(Gilman, 1996).

Optimizing processes and the problem of computational
intractability

If the objective is to describe the behavior of an organism by comparing it to an opti-
mal benchmark, then optimality is used as analytic tool only, with no commitment to
the possibility or likelihood of optimal processing being a viable proposition. In the
absence of an algorithmic level theory an optimal benchmark will often be the only
non-arbitrary reference point available. However, if adherence to the optimal solution
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is taken to reflect or imply an optimizing process, then one must seriously consider if
such a process provides a psychologically plausible and computationally tractable
solution to the problem. This is why we view theories that consider optimization as a
viable process level concept as often involving questionable idealizations that are
likely to obscure the essence of the problem. Yet, on the other hand, all processes are
optimal given a sufficiently contrived and narrow processing context.

The study of algorithms is often the study of approximating methods. Artificial
intelligence, for example, usually concerns itself with the study of problems for which
the optimal solution is either intractable or uncomputable (Simon, 1956; Reddy,
1988; Russell & Norvig, 1995). For the problem of inductive inference, ideal forms of
rational calculation are uncomputable (Solomonoff, 1964; Li & Vitdnyi, 1997; Hutter,
2005). In more restricted and realistic settings, inductive inference using Bayesian
belief networks can quickly become intractable even when one relaxes the objective to
approximate Bayesian reasoning (Cooper, 1990; Roth, 1995; Dagum & Luby, 1993).
Statistical machine learning, which provides a significant source of insight and moti-
vation for those examining probabilistic cognition, is chiefly the study of approxima-
tion and, as Bishop (2006) points out, ‘for many models of practical interest, it will be
infeasible to evaluate the posterior distribution or indeed compute expectations with
respect to this distribution’ (p. 461) and ‘in such situations, we need to resort to
approximation schemes’ (p. 462). Thus, even when the inference problem is reduced
to quite restricted settings, tractable algorithms capable of yielding optimal rational
outcomes remain illusive. Identifying the optimal solution for a specific problem by
analytic means is often beyond reach, a task, which is significantly less tricky than
specifying a tractable algorithm capable of arriving at the optimal solution for such
problems in general.

Dealing with error: the bias/variance dilemma

How can a functional model suggest certain kinds of mechanisms and not others? In
order to help the induction problem—the problem of identifying process level theo-
ries which can explain the adaptive success of the cognitive system—assumptions
about the algorithmic level are required. In order to provide traction on the induction
problem, how theory-specific do these assumptions have to be? Rather than making
specific assumptions about the algorithmic layer, the issue we turn to now points to
how quite a general formalization of the processing problem can be used to narrow
down the kinds of process capable of approaching the significant performance
requirements set by rational analyses of cognition.

The assumptions we start with are very general ones concerning the anatomy of
inductive processes, and how they can be viewed as performing search over a model
class. In this setting, the statistical problem of the bias/variance dilemma can then be
used to narrow down the kinds of search procedures and model classes that will be
successful in certain contexts (Geman et al., 1992). Ultimately, we will argue that the
contexts of interest in cognition, where good performance from sparse data appears
to be a hallmark, point to the reduction of variance, or equivalently, the objective of
imposing stability on the learning map, as fundamental problems to be overcome by
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cognitive processes. Simple heuristics, the processing model on which our research
program is based, will ultimately be shown to address this objective. By framing the
problem in terms of the bias/variance dilemma, bounded rationality can be given a
statistical interpretation and justification, which has previously been lacking
(Brighton, 2007).

The anatomy of an inductive process

All inductive processes can be formalized as maps from sequences of observations to
hypotheses drawn from a hypothesis space. An observation is a pair composed of an
input and an output. A particular environment can be thought as a joint probability
distribution on an observation space, such that the combination of the two determine
how likely each observation will be. We will sometimes refer to this environmental
setting in terms of a target function, where the target function defines the form of rela-
tionship between inputs and outputs occurring in the environment. The task of the
learning algorithm is to process sequences of observations in order to induce a
hypothesis. The hypothesis space of the algorithm can also be viewed as a model class.
A model is simply a parameterized family of hypotheses, were each hypothesis is a
fully specified conditional probability distribution. A model class represents the set of
models that the algorithm induces over.

Function and the bias/variance dilemma

Organisms process sequences of observations, samples of the target functions govern-
ing the environment. Inductive inference is the task of identifying the systems of reg-
ularity that govern this environment, given only these samples. An organism well
adapted to this task should not be judged solely on its ability to perform well on a sin-
gle sample. For example, the Bayes optimal classifier—as a process—is optimal only
in the sense that it optimal on average. Other processes will outperform it if the sam-
pling assumptions are violated. When estimating the mean predictive accuracy over
many samples of the target function, the mean error of the algorithm can always be
decomposed into three terms:

Error = Irreducible Error + Bias + Variance. * (1)

Irreducible error is noise, and sets an upper bound on the achievable predictive accu-
racy. The remaining error can be decomposed and controlled through the design of
the learning algorithm. This decomposition results in two terms, bias and variance
(see Geman et al., 1992, Bishop, 1995, and Hastie et al., 2001 for derivations and fur-
ther discussion). Across samples, bias is the difference between the mean predictions
of the algorithm and the target function. Variance is the expected squared deviation
about this mean, and arises because different hypotheses are likely to be induced for
different samples of the target function.

The bias/variance dilemma.

The potential for an algorithm to achieve low bias will depend on how well it can
approximate the underlying target function. General purpose processing methods,
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such as the nearest neighbor classifier and decision tree inductive algorithms, excel at
achieving low bias by inducing over model classes with little, if any, restrictions on the
functional form of the models. Consequently, a serious problem stands in the way of
these methods, and nonparametric! methods in general, as being adequate process
models of inductive inference. When the training sample is small, in the sense that it
provides sparse coverage of the observation space, there is likely to be a potentially
significant variance component to the error. Generally speaking, the smaller the size
of the training sample, the higher the variance.

To combat the problem of high variance, restrictions on the model class are needed
in order to impose stability on the learning map. But clearly, by restricting the model
class the method will then suffer from high bias for certain classes of target function.
To achieve accurate predictions across samples requires that a process must strike a
good balance between reducing bias and reducing variance. Whether or not a process
achieves a good balance depends entirely on context. Without stating the class of tar-
get functions likely to be encountered, practically nothing can be said about how well
a process will achieve this balance when data are limited. This problem is known as
the bias/variance dilemma (Geman et al., 1992). All inductive processes can be
thought of as making a bet, not only on what kinds of target function the environ-
ment will present, but also the likely degree of exposure to these target functions.

Sparse exposure and the context of induction

When functioning in a natural environment, the bias/variance dilemma will pose a
significant problem for the organism: complete exposure to the systems of regularity
occurring in the environment is typically not possible, observations are limited and
often costly, and inductive inference is most pressing when there is a need to general-
ize to unseen cases. Indeed, the remarkable effectiveness of the cognitive system is
seen as remarkable precisely because good inferences appear to be made despite
sparse exposure to the underlying regularities (Tenenbaum et al., 2006; Griffiths &
Tenenbaum, 2006b, p. 130).

Importantly, the notion of the bias/variance dilemma was originally motivated by
the need to account for these phenomena, and align mechanistic accounts with stud-
ies of cognition which propose that ‘the brain is a proof of existence of near-optimal
methods that do not require prohibitively large training samples’ (Geman et al., 1992,
p- 46). The chief conclusion arising from this work is that, from a processing perspec-
tive, ‘off the shelf’ nonparametric methods such as feed-forward neural networks,
nearest neighbor methods, and decision tree induction algorithms, fail as adequate
responses to the bias/variance dilemma when data are limited. Without customiza-
tion, they induce over ostensibly unrestricted model classes, a perspective which
‘teaches us all too little about how to solve difficult practical problems’ and ‘does not

' Nonparametric methods are those which make minimal assumptions about the functional
form of the data generating model (Geman et al., 1992; Bishop, 2006).
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help us out of the bias/variance dilemma for finite-size training sets.” (Geman et al.,
1992, p. 45).

The bias/variance dilemma implies that general purpose learning, in natural con-
texts of sparse exposure, is unachievable in any meaningful sense because tractable
processes will suffer from error, and the degree of error is likely to vary significantly
depending on the content and size of the training sample. Furthermore, it narrows
down the kinds of processing strategies capable of meeting levels of performance sug-
gested by rational analyses, and stresses the need to understand the context of induc-
tion. More generally, as soon as an organism makes inferences from impoverished
data, the variance component of error becomes critical, and one must, to one degree
or another, abandon the objective of nonparametric inference. The substantive ques-
tion now is how this can be done.

Ecologically rational processing

A decomposition of the inference task, and the cognitive system more generally, is
often viewed as necessary on grounds of computational tractability (Barrett &
Kurzban, 2006; Samuels, 2005) and biological plausibility (Gallistel, 2000). For
instance, skepticism toward the tractability of global Bayesian updating can be par-
tially alleviated by updating on a within module basis, leading to the idea that one can
‘jettison the goal of being globally Bayesian and instead assume only that each module
is Bayesian itself” (Kruschke, 2006, p. 681). But once the black box is opened, on what
basis should its contents be organized? For the problem of inductive inference, the
bias/variance dilemma suggests that processes induce over constrained model classes
in order to impose stability on the learning map, and hence reduce variance.
Therefore, decomposition is not merely driven by issues of tractability, but is perhaps
more fundamentally driven by issues of function.

We now attempt to tie together the general form of the relationship between func-
tional level analyses, simple heuristics, and the bias/variance dilemma in order to say
something about an alignment between ecological focus and processing simplicity.
Our hypothesis is that constraints on cognitive processing can align a process with the
structure of the environment. An extreme, but nevertheless entirely plausible conse-
quence of this hypothesis is that conducting less processing is just as likely to reduce
variance than conducting more processing. This explains why heuristics ‘work’,
adding a statistical interpretation for why the mind might ‘operate via a set of heuris-
tic tricks, rather than explicit probabilistic computations’ (Chater ez al., 2006a, p. 290).
Our objective now is to say something about how the retreat from the objective of
general purpose nonparametric inference can proceed and be given cognitive-ecological
guidance.

Simple heuristics for the bias/variance dilemma

To flesh out our argument we will briefly examine the simple heuristic Take The Best
(Gigerenzer & Goldstein, 1996) but frame it in different terms than previously used
(see Brighton, 2007, for details). Take The Best is a cognitive process model for mak-
ing inductive inference on the paired comparison task, where the problem is to rank
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two objects on their unobserved criterion values. This is a specific form of supervised
concept learning. Training observations are pairs of objects, along with feedback on
which object scores higher on the criterion. In an induction phase, Take The Best
orders the cues by their validity. In the decision phase, it searches for the first cue in
the order that discriminates between the two objects, and uses this cue alone to make
a prediction. Validity is naive measurement of a single cue, and simply captures the
accuracy of the inferences made by this cue alone when inferring the rank of objects.
By referring to Take The Best as simple, we are referring to the fact that it ignores con-
ditional dependencies between cues when selecting a hypothesis, and does not weigh
and add cues when making inferences.

The performance and analysis of take the best.

Take The Best often outperforms linear regression models and other simple heuristics
over a wide range of environmental contexts (Czerlinski et al., 1999). Using a more
reliable model selection criterion than that used by Chater et al. (2003), Brighton
(2007) shows, contrary to their findings, that Take The Best frequently outperforms a
range of neural network, decision tree induction, and exemplar models. In short, Take
The Best provides a good illustration of how performing less processing can lead to
improved performance in natural environments. Understanding the environmental
conditions under which Take The Best, and other simple heuristics, can outperform
more computationally intensive methods is the next question.

When viewed in terms of bias/variance dilemma previous work focusing on this
question can be seen as identifying conditions for low bias. Conditions for low bias tell
us when an algorithm has the ability to closely approximate the target function given
a large enough training sample. For example, the non-compensatory environments,
those which have rapid decay in cue validities, point to the cases when Take The Best will
perform as well as a linear model (Martignon & Hoffrage, 1999, 2002; Katsikopoulos &
Martignon, 2006). But matching the performance of another linear model under
these conditions is only guaranteed when there is a sufficiently large training sample
to saturate the observation space and, crucially, such arguments offer no explanation
for the fact that Take The Best can outperform a number of linear and nonlinear models.
In short, previous analyses of when and why simple heuristics perform well do not
consider the very statistical property which confers the performance advantage
(Brighton, 2007).

Context sensitive induction.

To frame the performance of Take The Best in terms of the bias/variance dilemma, we
will consider two further processing models, and two environments which will elicit
drastically different relative performance between the models. The first (natural)
environment is the often-studied German city environment (Gigerenzer & Goldstein,
1996; Chater et al., 2003). The second (synthetic) environment is an instance of
the more general class of non-compensatory environments, where cue validities
decrease rapidly as a function of their rank (Martignon & Hoffrage, 1999, 2002). The
two further models we consider are the well known decision tree induction algorithm
CART (Breiman, Friedman, Olshen, & Stone, 1994), and a variant of Take The Best
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(labeled here as TTB.CV) which carries out the additional computations required to
assess conditional dependencies between cues, and then ranks cues by conditional

validity (Martignon & Hoffrage, 1999).

These two methods reflect two useful points for comparison. First, the model class
of Take The Best is nested with respect to the model class of CART, since Take The
Best is itself a decision tree induction algorithm, inducing trees with restricted func-
tion form. Second, the model class of Take The Best is identical to that of TTB.CV.
The two methods differ only in how they perform search in order to select the cue
order. Now, Figure 9.1(a) plots the predictive accuracy of Take The Best and these two
models as a function of sample size for the German city population environment.
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Fig. 9.1. A model comparison of Take The Best (labeled TTB), CART, and a variant of
Take The Best which orders cues by conditional validity (labeled TTB.CV). Plot (a) com-
pares the predictive accuracy of the models as function of sample size for the German
city population task. Plot (b) compares the models in a synthetic non-compensatory
environment. Plots (c) and (d) shows the average Levenschtein distance between
induced cue orders as a function of sample size. Cue order stability predicts predictive

accuracy very closely.
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Predictive accuracy is estimated using cross-validation. Take The Best significantly
outperforms both methods across the majority of sample sizes. Second, Figure 9.1(b)
shows the same comparison for the non-compensatory environment. Now the other
methods outperform Take The Best across the majority of sample sizes. These two
environments illustrate how the performance of the process is determined not only by
the environment, but also the size of the learning sample. Why is this?

Using search to control variance and stability.

When considering the contribution of bias and variance, Take The Best will tend to
outperform a model with a richer models class, such as CART, as a result of reducing
variance, since any function Take The Best can approximate, CART can too. But Take The
Best is also able to outperform TTB.CV, which has an identical model class. This point
illustrates that controlling variance is not simply a matter of placing restrictions on the
model class, but can also arise as a consequence of restricting search (Mitchell, 1982;
Domingos, 1999). To illustrate the point, the structural stability of the cue orders
induced by Take The Best and TTB.CV can be measured directly, and their dependence
on sample size and connection to accuracy clarified. For the German city population
environment, Figure 9.1(c) shows how the structural stability of the cues orders—here
measured as the mean Levenshtein (1966) distance? between induced cue orders—
predicts almost exactly the relative difference in predictive accuracy of Take The Best
and TTB.CV. Notice how CART and TTB.CV perform almost identically.

Figure 9.1(d) shows the same comparison for the non-compensatory environment.
Again, stability reflects predictive accuracy: Take The Best performs well to the extent
that it imposes stability on the learning map, and hence reduces variance (Turney,
1995; Poggio et al., 2004). One way of thinking about the sensitivity of a cognitive
process to the contents of particular samples of the environment is to view this insta-
bility as reflecting a failure to ignore accidental, unsystematic, and therefore unpredic-
tive regularities. If a process ignores these accidental regularities and truly focuses on
systematic ones, then differences in the content of samples of the target function
should not matter too much. Crucially, the determining factor in imposing stability is
not the model class itself, but how search is conducted over the model class. By per-
forming less processing and ignoring conditional dependencies between cues, the
ecological focus on the ability to achieve stability can be shifted from the synthetic
non-compensatory environment (where TTB.CV excels) to the natural German city
population environment (where Take The Best excels).

The implications of the bias/variance dilemma
for processes and priors

When the variance component of error is the major source of error, the relation-
ship between the properties of the process and the environment is not so clear. In this

2 Levenshtein distance is the minimum number of additions, deletions, and substitutions
required to transform one string into another. By interpreting cue indices as symbols,
Levenshtein distance provides a distance measure between any two cue orders.
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situation, assumptions made on the part of the process and their relationship to the
structure of the environment can have a strong positive impact on performance,
despite a clear mismatch between the two. For instance, many years of sustained interest
in the naive Bayes classifier is due to the fact that it can perform surprisingly well
despite the assumptions made during processing being explicitly violated by the
underlying target function (Domingos & Pazzani, 1997; Friedman, 1997; Kuncheva,
2006). With respect to a given process, findings such as these indicate that environ-
mental conditions for low bias can be orthogonal to the conditions for low variance.

From a probabilistic perspective, given full knowledge of the regularities and proba-
bilities governing the environment, and therefore a good model of the hypothesis space
and the prior, Bayes optimal inference defines the rational outcome. On accepting that
a tractable mechanistic instantiation of this process will be approximate, the variance
component of error enters the picture and must be controlled in order to approach
rational outcomes. Or, from an MDL perspective, the model in the model class, which
reduces the stochastic complexity of the observed data to the greatest extent is the
rational choice (Rissanen, 1997; Griinwald, 2005). Given that an exhaustive search
through the model class will be infeasible, the use of heuristic search in order to
approximate this choice is required. Again, a tractable mechanistic instantiation of the
rational process will lead to variance when the performance of the process is measured
for different samples of the target function (e.g., the mean compression rate).

For the organism, variance about this mean is important. It reflects the sensitivity
of the inductive process to the particular contents of the samples. As soon as approxi-
mation is the name of the game, the bias/variance dilemma has to be tackled. The
greater the sparsity of exposure to the environment, the more critical this problem
becomes. And, this is clearly a statistical problem contributing to the functional success
of the organism, since the inductive performance of the organism should not be highly
sensitive to different potential encounters (different samples) of the environment. Given
that processes are approximate, and not optimal, a significant part of the essence of
inductive inference arises due to the realities of resource bounded computation
(Simon, 1996). On this view, the issue of cognitive limitations, and how they may
serve a functional role by helping to reduce variance, becomes a significant source of
further questions. If the rational analysis of cognition and the associated development
of the probabilistic view on cognition are to be reconciled with mechanistic accounts,
then these issues need to be confronted.

For example, does the bias/variance dilemma imply that for different likely degrees
of exposure to the environment, different hypothesis spaces and priors are required to
control variance? Thus, on asking where the priors come from, does the bias/variance
dilemma play a role? Furthermore, if an analysis of the structure of the environment
can only be loosely connected to the assumptions required on the part of the process,
does this represent a barrier to reconciling Bayesian analyses with process level
accounts? More generally, machine learning and artificial intelligence are often viewed
as a rich source of ideas for furthering the probabilistic view on cognition, but to what
extent do these disciplines focus on problems with an essentially different character?
Large samples, a focus on nonparametric inference, and little concern for cognitive
plausibility may represent a counterproductive source of inspiration (Geman et al.,
1992). These are some of the questions that need to be addressed.

203
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Summary and conclusion

The notion of probabilistic mind and the study on functional level rational models
has been described as the ‘the most exciting and revolutionary paradigm to hit cogni-
tive science since connectionism’ (Movellan & Nelson, 2001, p. 691). The benefits
of this approach are often presented relative to the common practices of cognitive
science, which suggest ‘a ragbag of arbitrary mechanisms, with arbitrary performance
limitations’ (Chater & Oaksford, 1999, p. 63). It points to a dichotomy between
purposive and mechanistic explanation, with the implication that one faces a choice
between an adaptationist perspective relying on rational models abstracted from
the algorithmic level, or a mechanistic one with limited prospects of informing pur-
posive explanation (Anderson, 1991b; Chater & Oaksford, 1999). Although this
dichotomy is to a certain extent an accurate reflection of current practices, is such an
explicit distinction beneficial?

The study of ecological rationality and the adaptive use of simple heuristics is an
adaptationist program, which in contrast to the proposed dichotomy, is rooted to an
algorithmic level hypothesis. Rather than using the concepts of rationality and opti-
mization to theorize about how the cognitive system might be adapted to its environ-
ment, the notion of ecological rationality addresses how good enough solutions can
be found with limited processing resources. Here, the basis on which the cognitive
system is judged to be adapted to its environment takes into account the specifics of
processing, and how the limited resources available to the cognitive system are har-
nessed to achieve adaptive cognition. In this way, the objective of understanding
adaptive cognition need not sacrifice our understanding of the realities of processing.
Can these two orientations, which clearly share deep commonalities, be aligned? We
have taken work on functional level analyses as providing a valuable insight: They
indicate that human level performance and current approaches to cognitive process-
ing and artificial intelligence do not match, in the sense that human performance sets
an extremely high standard yet to be achieved reliably by computational models.
Something beyond minor repair to existing processing metaphors may be required in
order to bring them closer.

The bias/variance dilemma is all about the inevitabilities of error, and points to a
fundamental connection between performance and ecological context. It suggests that
cognitive mechanisms must effectively reduce variance in order to address the kind of
inductive inference problems of interest to cognitive science, which typically involve
considerable degrees of accuracy despite sparse exposure to the environment. We
showed how the simple heuristic Take The Best confers function by exploiting the
connection between processing simplicity, the structure of the environment, and vari-
ance reduction. In this sense, we have sought a connection between the rational prob-
abilistic models of cognition and simple heuristics: simple heuristics offer a form of
processing model that the cognitive system could rely on in order to reduce the vari-
ance component of error. Variance will inevitably arise given the extreme implausibil-
ity of optimal rational calculation and the need to generalize despite sparse exposure
to the environment. Machine learning tends to address this problem by performing
more processing (Schapire, 1990; Breiman, 1996). We suspect that the cognitive
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system does not have this option, and instead tackles the problem by performing less
processing.

From an algorithmic perspective the mind achieves adaptive behavior to varying
degrees depending on ecological context. Rational principles are to a certain extent
required to substantiate this view, but as the centerpiece to a metaphor, or the guiding
principle of a paradigm, we believe they obscure something of the essence of cogni-
tion. As with all metaphors, one pays some kind of a price. The price one pays clearly
depends on the problem, and the kind of answers one is looking for. For us, the why
question—why the cognitive system behaves as it does, and the how question—how it
does it—should not be separated. Indeed, we would find it deeply surprising to find
that evolution had overlooked the use of simple processing solutions as way of adapt-
ing the organism to the environment using limited resources. Examining the cogni-
tive system using principles divorced from the impact of processing may, on this view,
be a heavy price to pay.
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