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542 HERTZOG ET AL.

reliability. We recommend the 2 degree-of-freedom generalized test assessing loss
of fit when both slope-related random effects, the slope variance and intercept-
slope covariance, are fixed to 0. Statistical power to detect individual differences
in change is low to moderate unless the residual error variance is low, sample size
is large, and there are more than four measurement occasions. The generalized
test has greater power than a specific test isolating the hypothesis of zero slope
variance, except when the true slope variance is close to 0, and has uniformly
superior power to a Wald test based on the estimated slope variance.

A major goal of longitudinal research is the direct identification of interindividual
differences in intraindividual change (Baltes & Nesselroade, 1979; Hertzog &
Nesselroade, 2003; Wohlwill, 1991). Latent growth curve models (LGCMs)
expand on traditional repeated-measures analysis of variance by allowing one
to simultaneously model change in the means (fixed effects) and in the variance
and covariance of initial level and change (random effects; Bryk & Raudenbush,
2001; Duncan, Duncan, Strycker, Li, & Alpert, 1999; Laird & Ware, 1982;
McArdle & Epstein, 1987; Raykov, 1993; Rogosa & Willett, 1985; J. D. Singer
& Willett, 2003). Individual differences in rates of change are manifested as
reliable random effects in LGCM slopes.

There have been relatively few studies of the properties of LGCM significance
tests to detect individual differences in change, and the available evidence is
limited in scope (e.g., Pinheiro & Bates, 2000). Simulation studies of LGCMs
have typically focused on other questions, such as detecting mean slope dif-
ferences in multiple groups (Fan, 2003; Kim, 2005; Muthén & Curran, 1997).
Aware of the lack of criteria describing the limitations of LGCMs in assessing
random effects, we (Hertzog, Lindenberger, Ghisletta, & Oertzen, 2006) recently
evaluated the statistical power of bivariate LGCM to detect correlations of slopes
between two variables. Our simulation, which used the Satorra and Saris (1985)
approximation method, indicated that the power to detect slope covariances was
relatively low under a number of conditions, especially when the growth curve
reliability (GCR) was less than .90.

The present Monte Carlo simulation evaluates different methods of testing
for reliable slope variance in univariate LGCMs. We explicitly evaluate two
likelihood ratio tests, a 1 df specific variance test and a 2 df generalized variance
test. We also evaluate the behavior of the standard Wald test (the estimated slope
variance divided by its standard error of the estimate).

STATISTICAL MODEL

The simulation study is based on a simple linear LGCM for one variable, y,
measured longitudinally over time, t D 0; : : : ; T on i D 1; : : : ; N persons,
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POWER OF LATENT GROWTH CURVES 543

generating a data matrix yit. The growth curve model can be written as:

yit D “1InterceptYi C “2;tSlopeYi C ©Yit; (1)

where InterceptYi and SlopeYi are latent variables defining the individual in-
tercepts and slopes of the latent growth curve. A growth curve design matrix,
B, can be defined to have T rows, one for each occasion, and two columns,
“1 for the intercept and “2;t for the slope. Each column of B is a vector of
regression weights establishing the relation of occasions of measurement, t ,
to the growth curve. For the intercepts in column 1, all values are fixed at
1. Identification of the intercept at origin t.0/ is accomplished by fixing the
regression weight for the slope parameter at t.0/ to 0. For the purposes of this
article, the remaining weights for the slope are fixed and define a linear growth
curve for each individual on y (see McArdle & Epstein, 1987, and Rovine &
Molenaar, 2000, for discussion and alternative scalings of the growth curves).

The model can be used to derive expectations (across individuals i at times
t) for yit.

Defining E .yit/ D Myt;

Myt D MInterceptY C “2;t MSlopeY;
(2)

where “2;t is the corresponding element from the second column of B (the
weights that define the slope of the growth curve), MInterceptY is the mean
population intercept, and MSlopeY is the mean population slope. These two
parameters are commonly referred to as fixed effects in multilevel models for
LGCM.

Consistent with common practice in empirical applications of LGCM, we
assume that the errors, ©Yit, are distributed normally and are stochastically
independent of the latent intercepts and slopes, as well as independent of each
other. We also assume the errors have homogeneous variance across occasions,
denoted ¢2

©y.©Yit � N.0; ¢2
©y//. Hence the expectation for the covariance matrix

of the observed variables, †y, aggregating over individuals, is

†y D B‰ISB0 C ‚y; (3)

where ‰IS is the covariance matrix of the two latent growth curve parameters,
[InterceptY, SlopeY] and ‚y is a T �T diagonal matrix containing the homoge-
nous error variances, ¢2

©y, on its diagonal. The parameters in ‰IS and ‚y are
termed random effects in multilevel models.
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544 HERTZOG ET AL.

LONGITUDINAL DESIGN MODEL

We used the same longitudinal design model employed by Hertzog et al. (2006),
namely, a prospective single-cohort longitudinal design (Baltes, Reese, & Nes-
selroade, 1988; Schaie, 1977). We assume that a population of adults 50 years of
age have been measured on a variable generating linear age decline. We assume
simple random sampling from the population, followed by up to 19 longitudinal
retest observations on individuals at 2-year intervals.

Statistical power in any context depends on sample size, effect size, and the
chosen Type I error rate (Cohen, 1988). Our focus is on detecting slope variance,
so we varied the relevant slope-related parameters in ‰IS while holding the
variance of intercepts constant. We also systematically varied the sample size
and the number of longitudinal occasions that had been sampled to address a
fundamental longitudinal design question: How long must one measure samples
of a given size to have adequate power for detecting variance in change?

It is well known that random measurement error (unreliability) affects statis-
tical power, including tests of means, variances, correlations, and factor loadings
(e.g., Bollen, 1989; MacCallum, Widaman, Zhang, & Hong, 1999; Marcoulides,
1996). We expected that GCR would influence the power to detect individual
differences in change and correlations in change components. Hertzog et al.
(2006) demonstrated a substantial effect of GCR on power to detect nonzero
slope covariances in bivariate LGCM. GCR, that is, Œ¢2

yt � ¢2
©y�=¢2

yt , is defined
as the variance determined by the latent growth curve at each time t , divided
by the total variance of y. Error variances are assumed to be homogenous
over time, but the variance of y varies over t , because it carries the effects
of individual differences in slopes that vary with t . We scale the GCR in our
simulation design at time t.0/, study onset. The GCR has two components:
random measurement error in each variable and variability of the residuals for
the true scores of y around the linear regression functions of the latent growth
curve. Our simulation systematically varied the residual variance, ¢2

©y , as the
method of varying GCR.

Our LGCMs were scaled in proportional metric (McArdle, 1988; see Rovine
& Molenaar, 2000) so that change is expressed as a function of proportion
of growth from beginning to end of the longitudinal study. In terms of the
latent growth curve model, “2;0 D 0 and “2;19 D 0:95, with “.t/ increasing
by .05 units for each unit increase in t . The temporal units can be treated as
representing years, so that can we conceive of the simulation as representing
change from mean age 50 to mean age 69. However, the results we report here
can be translated into any temporal scale of measurement, as well as for variables
that grow instead of decline. Hence the results are generally applicable to any
univariate linear LGCM.
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POWER OF LATENT GROWTH CURVES 545

SIGNIFICANCE TESTING

In practice, one evaluates the hypothesis of individual differences in change by
testing whether the slope variance is reliably greater than zero. Three different
standard methods of testing this null hypothesis exist. Often, researchers use a
Wald test, in which the estimated variance is divided by its estimated standard
error to produce a statistic that is asymptotically a normal deviate (e.g., Bollen,
1989), and can be evaluated against a critical value at a specified Type I
error criterion. However, a likelihood ratio (LR) ¦2 test is generally considered
superior to the Wald test (e.g., Gonzalez & Griffin, 2001), especially for small
samples (Pinheiro & Bates, 2000; Raudenbush & Bryk, 2002).1 Two different LR
tests for the hypothesis of zero slope variance have been illustrated in treatments
of LGCM, a specific variance test and a generalized variance test. The specific
test involves isolating the restriction of zero slope variance. The generalized test
is based on the argument that any slope-related element of the covariance matrix
of the latent variables, ‰ IS, carries information about individual differences in
slopes. Hence, the generalized test evaluates whether all slope-related elements
of ‰ IS are equal to zero.

The elements of the covariance matrix of the latent variables, ‰ IS, are the
intercept variance, ¢2

I , the covariance of intercept and slope, ¢IS, and the variance
of slopes, ¢2

S . The specific variance test evaluates the null hypothesis:

H0: ¢2
S D 0 with 1 df I

the generalized variance test instead tests the following null hypothesis:

H0: ¢2
S D 0 and ¢IS D 0 with 2 df:

Hypothesis testing is accomplished by computing LR tests based on nested
models that isolate the restrictions of interest in each null hypothesis. The LR ¦2

test statistic generated from model comparisons on the data is evaluated against
a standard central ¦2 distribution, adopting some Type I error criterion. Here
we assume that the Type I error criterion is set at .05. There are three nested
models of interest here. M1 is a model with freely estimated mean intercept and
slope and with all three parameters in ‰IS freely estimated. M2 is a model that
restricts ¢IS D 0, and M3 is a model that restricts both ¢2

S D 0 and ¢IS D 0.
Then the difference in fit (�2LL) between M3 and M2 is a 1 df LR test of
the specific hypothesis that ¢2

S D 0, whereas the difference in fit between M3

1Our LR tests use full information maximum likelihood estimation. In small samples, restricted
maximum likelihood estimation may yield better accuracy in LR tests (e.g., Verbeke & Molenberghs,
2000), but we do not consider that estimation approach in this article.
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546 HERTZOG ET AL.

and M1 is a 2 df LR test of the generalized hypothesis that both slope-related
random components are zero. The generalized test uses the information in the
covariance of intercept and slope, but ignores the information carried in ¢2

I
because it is determined by stable individual differences and not by variance in
change. Although not all treatments of slope variance tests adopt this approach,
the generalized test is common in the mixed model literature (e.g., Pinheiro &
Bates, 2000), if only because specifying random effects for the LGCM slopes and
intercepts automatically generates a random effects covariance matrix involving
all three elements in some software packages (e.g., SAS PROC MIXED; Littell
Milliken, Stroup, & Wolfinger, 2006; see Verbeke & Molenberghs, 2000). Then,
computing differences in �2LL between the model with random slopes and
intercepts and a model with random effects for intercepts alone produces the
generalized test. On the other hand, the specific test is possible in structural
equation modeling (SEM) approaches to LGCM or in more flexible model
specifications using mixed model software. Because we believe the generalized
test to be the preferred test for slope variances, we emphasize its behavior in this
article, but also explicitly compare it with the specific variance test, especially
when varying the ¢IS parameter.

One reason for considering the generalized over the specific variance test is
that the distinction between the slope variance and the intercept-slope covariance,
although conceptually meaningful, is to an extent statistically arbitrary (Rovine
& Molenaar, 1998). Any choice of occasion for fixing a 0 basis element of “2;t

to identify the solution will redefine the intercept and slope without a loss of
fit to the model, but with a major change in the estimated intercept and slope
parameters and their interpretation. Given this scale equivalence or arbitrariness,
both slope variances and slope covariances can carry information about variance
in change. Moreover, onset of a study at t.0/ does not conform to onset of
the true growth process (as in the present example, where maturity prior to
age-related decline is achieved much earlier), arguing that the intercept carries
growth-related variance.

It is instructive to examine the expected values for the variances of y as
a function of LGCM parameters. At study onset, the variance of y at t.0/ is
composed of level variance and error variance; that is, ¢2

y0 D ¢2
I C ¢2

©y . These
two components are assumed invariant with respect to t . In LGCMs, changes in
variance over time are assumed to derive from ¢2

S and ¢IS. At any given time t ,

¢2
yt D ¢2

I C ¢2
©y C .t=T /2¢2

S C 2.t=T /¢IS: (4)

Likewise, the covariance of y at any two points in time t and t 0 is

¢yt;yt 0 D ¢2
I C 2Œ.t t 0/=T �¢IS C 2Œt t 0=T �¢2

S: (5)
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POWER OF LATENT GROWTH CURVES 547

The model predicts a quadratic expansion of the variance of ¢2
yt over time

constrained by the covariance of intercepts and slopes. Egression from the
mean will result for individuals if the covariance of initial level and change
is nonnegative (Nesselroade, Stigler, & Baltes, 1980; Raykov, 1993), creating
a fan-spread pattern of change. Conversely, a negative ¢IS will tend to reduce
the increase in observed variance. Note that in Model M2, specifying ¢IS D 0,
the expectations are simplified by dropping the covariance terms. For Model
M3, the expected values for ¢2

yt and ¢yt;yt 0 for all t reduce to ¢2
I C ¢2

©y and
¢2

I , respectively. Hence the power to detect nonzero slope variance for both the
specific and generalized tests depends on the degree to which the associated
LR test can detect a loss of fit to all sample variances and covariances by the
restricted model in M3 that constrains all variances and covariances of y to be
stationary over time, versus the unrestricted LGCM models that do not.

STATISTICAL POWER

Power in this context is the likelihood of rejecting the null hypothesis of zero
slope variance when the variance is in fact different from zero. Of course,
power varies as a function of effect size and sample size (which determine the
separation of the noncentral ¦2 distribution under the alternative hypothesis from
the central ¦2 under the null hypothesis) and the selected Type I error criterion
(which defines the area under the noncentral ¦2 distribution in the region of
rejection for the null hypothesis). Empirical power estimates in our study were
obtained by setting the Type I error criterion at .05, and then computing the
proportion of samples in which the observed LR ¦2 test statistic exceeded the
critical value of 3.84 for a 1 df test and the critical value of 5.99 for a 2 df test.

BOUNDARY CONDITIONS

Recently, Stoel, Garre, Dolan, and Wittenboer (2006) argued that special atten-
tion is needed for LR tests of boundary parameters, such as testing the null
hypothesis of zero slope variance in an LGCM. Typically, the LR test estimates
the probability that the sample data could have been drawn from a population
with a true zero slope variance, using a standard central ¦2 distribution under
the null hypothesis. Stoel et al. argued that individuals testing the hypothesis of
zero slope variance will treat inadmissible solutions (Heywood cases of negative
estimated slope variance) as instances counting for the null hypothesis, assuming
the true value is really zero. They therefore advocated an explicit mixture
distribution approach (Stram & Lee, 1994) to generate accurate critical values
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548 HERTZOG ET AL.

for the LR ¦2 test statistic. In the case of the generalized variance test, their
assumption was that the true distribution under the null hypothesis involved a
mixture ratio of 50:50 (admissible to inadmissible variance estimates), leading to
a mixture of equally weighted ¦2 distributions with 1 and 2 df (see also Verbeke
& Molenberghs, 2000). The practical implication is that one would use a critical
value of 5.14 versus the standard 2 df ¦2 distribution with a critical value of
5.99 for the generalized variance test. Note that the practical consequence of
using the mixture distribution is slightly higher power to correctly reject the
null hypothesis of no random effects in slopes.

Because the same adjustment in critical value would be used for all LR tests
in our simulation, use of the mixture distribution’s critical value would result
in a consistent increase in power (for LR tests not at ceiling or floor levels of
power). Hence use of the standard versus the mixture distribution approaches
would not alter conclusions about the effects of variations in LGCM parameter
values (e.g., GCR) on power of the generalized variance test. Hence we have
opted to report only empirical power estimates for the standard LR test, not one
based on the mixture distribution.

SIMULATION DESIGN

We used Monte Carlo methods to simulate tests of the null hypothesis of zero
slope variance with the specific and generalized variance tests while manipulat-
ing several variables we suspected would influence power. Our previous study
of the power of LGCM to detect slope covariances used the method of Satorra
and Saris (1985) to generate approximate power curves, and we showed these
approximations were very or quite satisfactory when validated against Monte
Carlo simulation results (Hertzog et al., 2006). In the present circumstances
(tests of slope variance) we evaluated the Satorra–Saris approximation. There
were errors of approximation for the Satorra–Saris approximation of the specific
variance test under the boundary restrictions created by Models M2 and M3 that
we deemed unacceptable.2 Hence we use only Monte Carlo simulation in this
article.

Table 1 summarizes the variables in our simulation design. Given the devel-
opmental frame of reference, our interest focused on evaluating power as the
number of longitudinal occasions builds. We generated simulated data points at
all 20 time points in the temporal epoch defined earlier, but we assumed that

2This is not an implicit criticism of Satorra and Saris (1985), who made it clear that their method
is an approximation that may result in significant errors of approximation under specific conditions.
In this case, the specific variance test requires �2LL comparisons between two models, M2 and M3,
that are both misspecified with respect to the true alternative hypothesis, which creates distortion in
the approximate noncentrality parameter estimate generated by their method.
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POWER OF LATENT GROWTH CURVES 549

TABLE 1

Simulation Design

1 Intercept mean (MInterceptY ) 50
2 Slope mean (MSlopeY) �20
3 Intercept variance (¢2

I ) 100
4 Correlation of intercept and

slope (¡IS)
�0.5 �0.25 0 0.25 0.5

5 Sample size 100 200 500 1000
6 Error variance (¢2

©y ) 1 10 25 100
7 Slope variance (¢2

S ) 50 25 0
8 Occasions of measurementa 0, 2, 4 0, 2, 4, 6 0, 2, 4, 6, 8 0, 2, 4; : : : ; 10 0, 2, 4; : : : ; 18 0 : : : 19

Note. The simulation design crossed sample size, variance of error (growth curve reliability), slope variance,
intercept–slope correlation, and occasions of measurement. The condition of slope variance of 0 was only crossed
with zero covariance of intercept and slope.

aTreated as a within-subjects factor.

the scientist would actually conduct a longitudinal assessment at every other
time point (i.e., t D 0; 2; 4; : : : ). We started with three-occasion data (0, 2,
4) and continued upward, and we also evaluated the results if all occasions of
measurement (including odd-numbered occasions) had been measured as a best
possible scenario for power for the temporal design.

Mean intercepts, mean slopes, and the intercept variance were held constant
across facets of the simulation design. Error variance was treated as homogenous
across all T occasions. Our general approach was to simulate the data with 3,000
replicates for each cell in the design in Table 1. We also conducted additional,
focused simulations that systematically varied certain parameter values in small
increments (¢2

S, GCR, and ¢IS) at selected values of sample size or other vari-
ables. The more fine-grained manipulation of slope variance effect sizes allowed
us to determine the shape of standard power curves and when those curves
reached a typical criterion for sufficient power (.80 according to the convention
suggested by Cohen, 1988). The manipulation of GCR checked on whether
the magnitude of error variance affects power, as it did for slope covariances
(Hertzog et al., 2006). The manipulation of intercept–slope correlations explored
differences in power of the specific and generalized variance test when nonzero
values of ¢IS contributed information to the generalized test. We also included
a condition with ¢2

S D 0 and ¢IS D 0 to evaluate Type I error for the three types
of tests.

The variables yt were scaled as T scores (M D 50, SD D 10) at t.0/,
and the linear growth curve parameters were scaled so as to be psychologically
plausible, based on prior longitudinal studies of adult cognitive development,
and statistically possible. Empirical studies indicate that variance in change is
small to moderate relative to variance in initial level (e.g., Hultsch, Hertzog,
Dixon, & Small, 1998; Lövdén et al., 2004; Rabbitt, Diggle, Smith, Holland, &
McInnes, 2001; Schaie, 2005; T. Singer, Verhaeghen, Ghisletta, Lindenberger,
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550 HERTZOG ET AL.

& Baltes, 2003). We therefore scaled change variance to be either 50 or 25 at
t(19), relative to the intercept variance of 100, to arrive at ratios of total change
over intercept variance of 1:2 and 1:4, respectively, values also used by Hertzog
et al. (2006). Observed variance ratios are generally smaller than 1:4, making it
even more difficult to detect individual differences in change. For this reason,
one of our supplemental simulations focuses on a continuous manipulation of
slope variance effect size.

Error variance, ¢2
©y, was set to 100, 25, 10, and 1, yielding GCRs of .50, .80,

.91, and .99, respectively at study onset, t(0). Close-to-perfect GCR (i.e., .99)
was included in the simulation to examine power under optimal measurement
conditions when deviations from linearity were also at a minimum.

METHOD

Monte Carlo Simulation

We developed a Monte Carlo simulation engine to evaluate the contribution
of the factors listed in Table 1 to the estimation and testing of parameters
from the LGCM (Oertzen & Ghisletta, 2007). The engine generates individual
scores based on LGCM population parameters by first generating samples of
two independent variates from a standard normal distribution. These variates are
then scaled, using the intercept and slope means and a Cholesky decomposition
of the covariance matrix of each variable’s intercept and slope scores. Taking
the predicted scores from the LGCM for each occasion of measurement and
adding stochastic error terms generated the full data matrix. Errors were com-
puted by sampling random normal deviates and rescaling to expected population
error variances. We simulated longitudinal sampling by selecting occasions of
measurement from this full set of 20 possible occasions, assuming 2-year test
intervals.

The simulation engine takes the raw data matrix for a given longitudinal
sampling frame and estimates the latent growth curve parameters using both
least-squares and full information maximum likelihood (FIML) estimation pro-
cedures. The FIML algorithm was programmed using first and second derivative
expressions for the raw data vector likelihood (with respect to the LGCM
parameters) obtained from Longford (1987) and Lange, Westlake, and Spence
(1976). We checked the simulation engine’s estimation algorithms by analyzing
the data for a few randomly selected samples with Mx (Neale, Boker, Xie, &
Maes, 1999), Mplus (L. K. Muthén & Muthén, 1998–2004), and our engine.
The results agreed in all cases.

For each model estimated, we computed and stored the �2 log likelihood
(�2LL) of the FIML solution for the freely estimated LGCM (M1) and the
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POWER OF LATENT GROWTH CURVES 551

two restricted models (M2 and M3). Finally, at each replication we used the
information matrix to compute asymptotic standard errors for the parameter
estimates. In particular, we formed a Wald test for the hypothesis of zero slope
variance as

z D estimated ¢2
S=estimated var .¢2

S/:5;

where var (¢2
S) is the asymptotic variance of estimate for ¢2

S taken from the
information matrix of the converged solution.

RESULTS

We first present detailed power curves for the generalized variance test. We then
report comparative results with the three standard tests (generalized variance
test, specific variance test, and Wald test). Finally, we consider results from
alternative critical values generated by a mixture distribution approach (Stoel
et al., 2006).

Statistical Power of the Generalized Variance Test

Figure 1 shows Monte Carlo power curves for the 2-df generalized variance
test as a function of varying the correlation of intercepts and slopes, ¡IS, from
�.995 to C.995 for the larger variance effect size. The models estimated the
unstandardized random effects, including the covariance of intercepts and slopes,
but we show the correlation of slopes in Figure 1 for ease of interpretation.
Curves for the smaller variance effect size were similar, with lower power, of
course, and hence are not shown here.

Each Figure 1 depicts a family of curves for different values of GCR at t(0):
(.50, .80, 91, .99). Power is a roughly quadratic function of ¡IS, with lower
power when the correlation is low and increasing as j¡ISj increases. The curves
appear to be symmetrical, but around approximately ¡IS D �:10, not ¡IS D 0.
Obviously, manipulating GCR had a dramatic effect on power to detect the slope
variances, generating curves that were fairly widely spread apart. When GCR
was .99, estimated power to detect variances in change is uniformly perfect,
even with four occasions of measurement. However, power drops dramatically
as GCR decreases. With four longitudinal occasions, GCR D .50, and the
smallest sample size (N D 100), power is .20 or below. Power exceeds the
often-mentioned benchmark of .80 (Cohen, 1988) for four occasions only when
GCR was .91 and N D 500. Power does increase monotonically as the number
of longitudinal occasions increases, as expected, and is higher for larger sample
sizes. Nevertheless, the relatively low power of the 2 df tests under many
conditions, especially when ¡IS was close to 0 and GCR < .91, is striking.
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FIGURE 1 Power curves for the generalized variance test to correctly reject the null hypothesis of zero slope variance as function of ¢IS (varying
on x-axis from �.995 to C.995). Data are plotted for three sample sizes (rows corresponding to N D 100, 200, and 500) and four longitudinal
designs (columns corresponding to 4, 5, 6, and 10 occasions of measurement). Separate curves within each panel correspond to GCR of .50, .80,
.91, and .99.
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POWER OF LATENT GROWTH CURVES 553

Figure 2 presents a different look at the power of the generalized variance test,
plotting manipulated GCR from .50 to .995 on the x-axis, with different numbers
of longitudinal occasions of measurement generating the family of curves within
each plot. These curves demonstrate the profound attenuating effect of low GCR
on power to detect slope variances. The middle column in Figure 2, with ¡IS D 0,
clearly generated lower power than the other two columns with ¡IS ¤ 0, as the
criterion of .80 was reached only when GCR was relatively high, or when the
number of longitudinal occasions was relatively large. When N D 100, power
exceeds .80 only when GCR > .90 unless there are six or more longitudinal
occasions. The picture is better when N D 500, but even then the power to
reject the hypothesis of zero slope variance is only .80 with four occasions and
GCR of .91. When intercept–slope correlations are �.50 or C.50, the situation
improves at least somewhat.

Figure 3 plots power curves for a continuous range of slope variance effect
sizes, ¢2

S , from near 0 to 100. The latter value represents a situation of equal

FIGURE 2 Power curves for the generalized variance test to correctly reject the null
hypothesis of zero slope variance as a function of GCR (varying on x-axis from .50 to
.995). Data are plotted for three sample sizes (N D 100, 200, and 500) and three slope-
intercept correlations (�.5, 0, .5). Separate curves within each panel correspond to number
of longitudinal occasions.
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FIGURE 3 Power curves for the generalized variance test to correctly reject the null hypothesis of zero slope variance as a function of slope
variance, ¢S2 (varying on x-axis from 0.05 to 100). Data are plotted for three sample sizes (N D 100, 200, and 500) and three slope-intercept
correlations (�.5, 0, .5). Separate curves within each panel correspond to GCR of .50, .80, .91, and .99.
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slope variance and intercept variance, which from our practical experience in
cognitive aging research would represent an extremely large effect size. The
families of curves within a panel represent different GCR values. When GCR
is near perfect, the power to detect a slope variance rises quickly above the
benchmark of .80 power with relatively small variance effect sizes (< 10, even
for only four occasions of measurement). However, when GCR is low (.50),
power to detect the slope variance is poor even at the largest effect sizes, unless
the number of occasions exceeds typical values in longitudinal designs (six or
more occasions of measurement).

Comparisons of Generalized, Specific, and Wald Tests

Type I error. We evaluated the behavior of the slope variance tests when
¢2

S D 0 and ¡IS D 0 using Monte Carlo simulation. Figure 4 shows the aggregate
behavior of the 2 df generalized variance test and the Wald test when the null
hypothesis of no individual differences in change is true, for GCR D .91 and
N D 100 (aggregated over all longitudinal occasions). The empirical distribution
of the LR test closely approximates a theoretical central ¦2 variable (cf. Pinheiro
& Bates, 2000). It did so because we did not impose any boundary restrictions
on the estimated slope variance parameters, which were allowed to be negative.
Results with the specific variance test were similar to the generalized test and
are not shown. The estimated Type I error rates in the simulation cells were
close to the specified .05 level for the two LR tests (M D :051). The Wald
test deviated slightly more from its expected value, making it somewhat liberal;
8% of the cases would have been rejected at a theoretical Type I error level
of 5%. We were using a two-tailed criterion and allowing rejection of the null

FIGURE 4 Comparison of generalized (2 df) variance test to its theoretical parent
cumulative ¦2 distribution (left panel) and of the Wald test of zero variance to its theoretical
parent, a cumulative normal distribution.
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556 HERTZOG ET AL.

hypothesis for extreme negative variances. Note that the proportion of negative
slope variance estimates (plotted on the x-axis of the Wald test plot) was about
.50, as expected.

Power. The substantial effect of intercept–slope correlations on power
shows indirectly that the 2 df test benefits from using both slope-related
parameters. However, this is not the full story. Our simulation also indicated
that manipulating ¡IS has an effect on the 1 df specific variance test.

Table 2 reports the average power for the three tests for ¢2
S D 25 (smaller

variance effect size) across different values of ¡IS with four and five longitudinal
occasions, averaging over GCR and N . These are the cells in which power was
most consistently not at floor or ceiling. There is a clear power advantage for
the generalized test, and inferior performance by the Wald test. Figure 5 plots
the power of the generalized variance (2 df) test, the specific variance (1 df) test,
and the Wald test for nine selected simulation cells to illustrate the patterns in
the data. The Wald test has lower power, overall, relative to the two LR tests.
Note also that the Wald test is not affected by the magnitude of ¡IS, whereas
the specific LR variance test is strongly affected by it. The specific variance test
shows roughly monotonic increases in power as ¡IS moves from �0.5 to C0.5.
The specific variance test actually manifests lower power than the Wald test
when ¡IS D �0:5 as long as power is not near ceiling or floor, and has lower
power when ¡IS D �0:25 for some cells. When ¡IS is equal or greater than 0, the
specific variance test has a considerable power advantage over the Wald test. In
contrast, the generalized variance test shows the slightly asymmetric U-shaped
power curve revealed in Figure 5, and has superior power to the Wald test for all
simulated values of ¡IS. The specific variance test is slightly superior in power
to the generalized variance test when ¡IS was very close to 0, but not otherwise.

TABLE 2

Average Power of Three Different Tests to Reject Null

Hypothesis of Zero Slope Variance for ¢2
S D 25

(Small Variance Effect Size)

¡IS Generalized Test Specific Test Wald Test

�0.5 0.60 0.33 0.40
�0.25 0.44 0.36 0.40

0 0.41 0.44 0.41
0.25 0.54 0.52 0.41
0.5 0.68 0.60 0.40

Note. Data are taken from four-occasion and five-occasion
cells, averaged over GCR growth curve reliability and sample size.
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POWER OF LATENT GROWTH CURVES 557

FIGURE 5 Comparison of statistical power for the generalized variance (2 df) test, specific
variance (1 df) test, and Wald test of the null hypothesis of zero slope variance as a function
of slope-intercept correlation for two sample sizes (N D 100 and 200) and two different
longitudinal epochs (four and six occasions).

DISCUSSION

Effects of GCR on Statistical Power

A major result from this simulation is the profound effect of GCR on the power
of all of the variance tests, including the generalized test. These results closely
resemble effects of GCR on the power to detect slope correlations in a bivariate
LGCM (Hertzog et al., 2006). When GCR was essentially perfect, the power
to detect slope variance was excellent with only three longitudinal occasions
of measurement. When GCR was only .50, power was not satisfactory until
one had 10 longitudinal occasions of measurement for the smaller sample sizes.
The variance effect size plots in Figure 3 demonstrated conclusively that power
was low to detect large slope variances when GCR was below .91, even with
a sample size of 500 and five occasions of measurement. We believe that most
applied longitudinal researchers would be surprised to learn of the low power
to detect slope variances in LGCMs under the conditions we simulated here,
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558 HERTZOG ET AL.

particularly because GCRs have not been emphasized as an important feature
of LGCM in typical applications.

LGCM parameter estimates are disattenuated for random measurement error
(Bollen, 1989).3 However, this does not imply elimination of the influence of ran-
dom measurement error—as one component of GCR—on statistical inferences
regarding the LGCM parameters. Multiple-indicator LGCM (McArdle, 1988;
Sayer & Cumsille, 2001) should in principle minimize effects of measurement
error on statistical power to detect slope variances. Multiple indicator models
remove stochastic measurement errors in the observed variables from GCR,
estimating them in separate variance components. The GCR in a multiple-
indicator model reflects only deviations from linearity in the growth curve for
latent variables (latent residual variance around the linear regression line). Given
the poor statistical power to detect slope variances with GCR < .91, these
results suggest that use of multiple indicators could in principle greatly enhance
statistical power to detect individual differences in change when they do exist.

Longitudinal studies often involve small samples, limited numbers of occa-
sions, less-than-perfect GCR, and nonrandom sample attrition over time. We
believe, therefore, that the results reported here indicate that investigators will
often fail to detect slope variances when they exist. Furthermore, this simulation
treats the basic LGCM assumptions as true (i.e., there is a universal linear
functional form of growth, errors are homoscedastic, statistically independent
of latent change, and uncorrelated with each other over time, virtually zero
attrition, etc.). The effects of violating these statistical assumptions on power to
detect individual differences in change are currently unknown. It is possible that
power is even lower under certain conditions (e.g., failure to properly specify a
nonlinear functional form of growth).

The Generalized Test Yields Better Power

The results of this simulation indicate that the 2 df generalized variance test is
clearly preferable to either the specific variance test or the Wald test. Although
the specific variance test has slightly better power than the generalized test when
¡IS D 0, it has lower power otherwise and is influenced by the magnitude of
¡IS—even though the specific test nominally accounts for the covariance by
nested LR tests that isolate ¢2

S . Given that it is generally unlikely that the slope–
intercept correlation is very close to zero in a given population, the generalized
test will usually give better results, in terms of power to detect the nonzero
slope variance. Moreover, the generalized test avoids the problem of shift in the

3We do not report these results to save space, but the mean parameter estimates in our
simulation were good approximations to the true parameter values, implying appropriate corrections
for measurement error by the LGCM.
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magnitudes of ¢IS and ¢2
S as a function of choice of scaling the latent growth

curve (Rovine & Molenaar, 1998). The Wald test had lower power than the
generalized LR test of slope variance. This finding reinforces arguments in the
mixed model literature that the generalized LR test, not the Wald test, should
be used for hypothesis testing on random effects (e.g., J. D. Singer & Willett,
2003; Snijders & Boskers, 1999). Ironically, the apparent benefit of the Wald
test in this simulation—that it is invariant with respect to the manipulation of
¡IS—is offset by the fact that it can be affected by placement of identification
constraints in a given model, including scaling of the growth curve (Gonzalez &
Griffin, 2001). However, the 1 df specific variance test actually had lower power
than the Wald test when ¡IS < �:25. Considering all these factors, only the
generalized variance test can be recommended as a routine approach to testing
for individual differences in change.

Boundary Conditions and Mixture Distributions

As noted earlier, we evaluated results without using mixture distribution critical
values (Stoel et al., 2006). Elsewhere, we (Oertzen, Ghisletta, Lindenberger, &
Hertzog, 2007) have suggested that the mixture distribution recommended by
Stoel et al. (2006) represents only one of the alternatives to the standard LR test,
with the others being governed by alternative rationales for handling Heywood
cases. Stoel et al. did not explicitly evaluate the degree of benefit on statistical
power from using the mixture distribution approach. Oertzen et al.’s (2007)
simulation results indicate that use of modified Type I error criteria through
mixture distributions provides a modest power advantage over the standard tests
reviewed here, in keeping with the fact that the only difference between the
standard and mixture distribution tests is a more liberal Type I error criterion
(smaller critical value for the ¦2 test statistic) invoked by the mixture distri-
bution approach. Most important for the results of this simulation, the power
benefit of the mixture distribution approach for LR tests was additive to the
factors evaluated in this study (e.g., GCR). Hence our conclusions about factors
influencing power are unaffected by which type of Type I error criterion one
uses, the standard LR critical value or a mixture-distribution adjusted value.

A practical problem with a mixture distribution method is that one cannot nec-
essarily rely on a priori assumptions about mixture distribution weights because
sample sizes in longitudinal studies may be sufficiently far from asymptotic as
to affect the empirical likelihood of inadmissible solutions. Instead one needs
to simulate the expected frequency of negative slope variance estimates when
the null hypothesis is true for a given longitudinal design (Oertzen et al., 2007;
Stoel et al., 2006). Many users, therefore, may opt to avoid the simulation and
simply use the unadjusted LR tests we evaluate here, even though greater power
could be achieved through a mixture distribution approach. Given the low power
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560 HERTZOG ET AL.

to detect slope variances in many conditions, our results suggest that the pain
of conducting the extra simulation to generate the proper mixture-distribution
critical value may be worth the small gain in power one realizes in the process.

Limitations

This simulation has a number of limitations. We did not evaluate violations
of statistical assumptions, nor did we fully explore the universe of possible
combinations of LGCM parameter values. For instance, we did not evaluate the
consequences of choice of scaling on power to detect slope variances. It is often
the case that mixed model analysts prefer to center the time (or age) variable
in an LGCM rather than to define it to be zero at time t(0) as was done in this
simulation. We do not yet know the consequences of such scaling choices for
the statistical power of the 2 df generalized LR test.

Furthermore, there are a number of other change-related models and appli-
cations we have not evaluated, such as the introduction of exogenous covariates
that predict LGCM random effects, or more complicated models that build off
the basic LGCM but add dynamic regression coefficients, such as McArdle’s bi-
variate dual-change score model (e.g., McArdle et al., 2002). Ghisletta, McArdle,
Oertzen, Hertzog, and Lindenberger (2005) reported preliminary results suggest-
ing good power to detect dynamic lagged regression effects in the bivariate dual-
change score model (which are defined as fixed, not random, effects). Hence,
one should not overgeneralize our findings to the statistical power of other
classes of developmental models for detecting change-related parameters. Such
issues remain open empirical questions that can and should be explored in new
studies.

The linear LGCM we have simulated is an increasingly common application
in developmental psychology (e.g., Duncan et al., 1999; J. D. Singer & Willett,
2003). Users of this technique should be wary of accepting the null hypothesis
of no random effects in change unless they conduct post hoc power analyses
to ensure their study had adequate power to detect plausible variance effect
sizes in a given content domain. At minimum, researchers should calculate
estimates of GCR in their study and evaluate whether it is sufficiently low
to raise concerns about power to detect random effects, which could be done
to a crude approximation from the simulation results provided in this study.
Generically, our simulation indicates that GCR values under .90 are potentially
problematic. Longitudinal design decisions can and should be based on a Monte
Carlo simulation (which is readily available in Mplus; see also L. K. Muthén &
Muthén, 2002) to generate a priori power estimates to guide longitudinal design
decisions. Such simulations are also critical for determining weights for use of
different mixture distributions testing more complex hypotheses as well (Stoel
et al., 2006). Our study reinforces the importance of explicitly considering the
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statistical power of tests for LGCM parameters when designing longitudinal
studies focused on individual differences in change.
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