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CHAPTER 15

Mechanisms of ecological
rationality: heuristics and
environments that make

us smart

Peter M. Todd and Gerd Gigerenzer

15.1. Introduction: making
quick decisions well

A high fly ball comes down towards centre field.
Wind is blowing, the ball is spinning, and grav-
ity exerts its parabolic pull, but still the fielder
smoothly runs to make the catch. A diner con-
fronts two dishes at a new restaurant, ignores
the extensive menu descriptions and offer of
input from the waiter, and quickly decides to go
with the one she recognizes. A doctor just start-
ing a rotation in a different city assesses a man
brought to the emergency room, checks two
vital signs without consulting the banks of
sophisticated test machinery available, and
makes a fast assignment of the patient to the
operating room, saving a life.

Most of the decisions we make spring rela-
tively effortlessly from our minds. We make
snap judgments, jump to conclusions, choose
quickly—indeed, if a decision takes more than
minimal time and effort, it becomes worthy of
comment (and possibly aversive). And yet, our
frequent fast decisions end up working out
more often than not—the fielder catches the

ball, the diner chooses an acceptable meal, the
doctor saves her patient. We do not typically
need to gather a great amount of information
and process it extensively, as traditional maxims
of rationality would instruct us to do, before
successfully making up our minds. How are we
able to make adaptive choices in our more lim-
ited fashion?

The answer is that we can often draw on a col-
lection of simple “fast and frugal’ heuristics for
inference and choice that enable us to make
quick and accurate decisions using little infor-
mation {making them frugal) and little mental
computation (making them fast). These and
other mechanisms filling the mind’s adaptive
toolbox (Gigerenzer et al., 1999) can accomplish
their trick of good performance without high
information and processing demands because of
three main features. First, they are built on
evolved capacities that synthesize multiple envi-
ronmental features into single cues for decision
making, and simple building blocks that limit
how many cues are considered. Second, they
exploit the structure of information patterns in
the environment to let the world do some of
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their work, allowing the internal mechanisms to
be simpler and quicker. Third, their use of less
information enables heuristics to avoid overfit-
ting meaningless noise in the environment and
leads to better generalization to new situations.

Thus, the fielder is able to catch balls without
stopping to account for wind speed, drag, spin,
and the like by using a gaze heuristic that capitalizes
on our underlying evolved ability to track moving
objects and uses the angle of gaze between ball and
horizon as the only piece of information to guide
where to run (Raab and Gigerenzer, 2005). The
diner exploits only her pattern of systematic recog-
nition of some foods and not others to reason with
the recognition heuristic and conclude that those
dishes she recognizes are known to her because
they are more often talked about and hence proba-
bly tastier (Todd, 2000). And the doctor uses the
“Tuke The Best’ heuristic or decision tree to check
only those cues necessary to make a quick diagno-
sis, focusing on the most valid pieces of informa-
tion and ignoring the other possible tests that may
not generalize well from her previous experience
in another city (Gigerenzer et al., 1999).

In this chapter, we describe some of these sim-
ple heuristics that we believe the human mind
has evolved to use in particular circumstances,
and the pressures on decision making that may
have shaped the contents of the mind’s adaptive
toolbox. We begin by considering the notion of
bounded rationality—the assumption that
human cognition is constrained by limits of
some sort—and just which types of bounds have
been most important in cognitive evolution. We
then look at the components that our decision
mechanisms are built up from and examine how
they enable simple and fast choices to be made.
Next, we present four main classes of simple
heuristics that have been explored in depth:
ignorance-based heuristics, one-reason decision
mechanisms, elimination strategies, and satisfic-
ing search methods. Finally, we consider some of
the challenges facing the understanding of
simple heuristics and why they can work so well.

15.2. From bounded rationality
to ecological rationality

Traditional notions of unbounded rationality
have posited that the appropriate way to make

decisions is to gather all of the available infor-
mation, weight each piece appropriately accord-
ing to its importance for the current decision,
and combine all this weighted information in an
optimal fashion to find the option with the
greatest utility (Edwards and Fasolo, 2001);
furthermore, it is commonly assumed that
people behave as if they are maximizing their
utility in this way. But to make choices in most
common everyday contexts, real decision makers
must employ limited search for information and
limited processing of what they find, because
they have only a finite amount of time, knowl-
edge, attention, or money to spend on a particu-
lar decision (Todd, 2001). As such, people are
usually acting in accordance with what Herbert
Simon called bounded rationality—making deci-
sions within the bounds of time, information,
and computational ability that the task environ-
ment and human cognitive capacities impose on
us (Simon, 1990). The notion of unbounded
rationality, following the tenets of logic and
probability theory, is a convenient fiction for
constructing mathematical models of behaviour,
but to understand real human behaviour, we
must consider the actual bounded psychological
processes that guide our decision making.

But what are the most critical bounds on our
cognitive mechanisms? The usual assumption is
that human cognitive abilities are bounded by
the hard mental constraints of our limited
memory and information-processing power.
However, given sufficient adaptive pressure to
succeed in complex tasks, evolution could build
complex information-processing structures to
handle those tasks. That is, cognitive limitations
on memory and processing could be circum-
vented over the course of evolution, if the bene-
fit outweighs the cost. For instance, our ability to
store and retrieve information from memory
could be much greater, as the skills of
mnemonists attest (Luria, 1968). The amount of
information that can be held and processed in
working memory can be greatly increased
through practice (Ericsson and Kintsch, 1995).
And the processing of information itself could
be more rapid and sophisticated, as evidenced
both by the great processing power that the
visual system already possesses, and by the ability
of some individuals to solve complex problems
rapidly that most of us would find impossible
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(e.g. chess masters, or horse-race experts—see
Ceci and Liker, 1986). Thus, human cognitive
boundaries could have been extended, if that
had been adaptive for our ancestors. What then
did lead to our highly constrained decision
mechanisms in so many situations?

This typical assumption, that the constraints
bounding our rationality are internal ones such
as limited memory and computational power,
leaves out most of the picture—namely, the
external world and the constraints that it
imposes on decision makers. There are two par-
ticularly important classes of constraints that
stem from the nature of the world. First, because
the external world is uncertain—we never face
exactly the same situation twice—our mental
mechanisms must be robust, that is, they must
generalize well from old instances to new ones.
One of the best ways to be robust is to be simple,
for instance, by employing a mechanism
containing few parameters. As a consequence,
external uncertainty can impose a bound of
simplicity on our mental mechanisms.

Second, because the world is competitive and
time is short, our decision mechanisms must
generally be fast. The more time we spend on a
given decision, the less time we have available
for other activities, and the less likely we are to
outcompete our rivals in the endless arms race
of life. Because it takes time to find and assess
the informative cues or choice alternatives
(external in the world or internal in memory)
we need to make a decision; there is pressure to
base decisions on fewer cues. And even if the
search for more information could be accom-
plished quickly, it might not do the decision
maker much good: cues are often highly inter-
correlated (Brunswik, 1943), so that searching
for additional cues provides rapidly diminishing
returns in terms of useful data. Thus, to be fast,
we must minimize the information or alterna-
tives we search for in making our decisions. In
other words, the external world also constrains
us to be frugal in what we search for.

But the external world does not just impose
the bounds of simplicity, speed, and frugality on
us—it also provides the means for staying
within these bounds. A decision mechanism can
stay simple and robust by relying on some of its
work being done by the external world—that is,
by counting on the presence of certain useful

patterns of information in the environment.
Some observable cues are useful indicators of
particular aspects of the world, such as red
colour usually indicating ripe fruit. Our minds
are built to exploit such patterns and thereby
reduce the need for gathering and processing
extra information. As we will show in the fol-
lowing sections, heuristics that use just a little of
the patterned information and process it in sim-
ple ways can make decisions that are fast, accu-
rate, and adaptive. However, as research in both
evolutionary psychology and the heuristics-
and-biases programme has demonstrated, the
reliance on particular expected information
patterns can lead us astray if we are presented
with environments that violate our expectations
(such as environments where fatty foods are
readily obtained, or where the representative-
ness of the choices we encounter in a laboratory
setting are made to violate distributions familiar
from daily life). Adaptive behaviour emerges
just when the mechanisms of the mind are
properly matched to the (information) struc-
tures of the environment-—producing what we
call ecological rationality.

The importance of looking at the world to
understand the mind has long been appreci-
ated, though not very widely. Charles Darwin
held that environmental forces had shaped
human behaviour through natural selection,
leading to the modern call by evolutionary psy-
chologists to ook to our ancestral world for the
problems our mind is designed to solve. Egon
Brunswik, half a century ago, urged studying
the array of noisy cues available in the environ-
ment and how the mind adjusts its use of them,
like a husband and wife coming to mutual
agreement; Roger Shepard spoke of the mind
more as a mirror, reflecting long-standing phys-
ical aspects of the world such as the 24-hour
light~dark cycle (Brunswik, 1943; Shepard,
2001). Herbert Simon (1990) proposed the
metaphor of the mind and world fitting
together like the blades of a pair of scissors—
the two must be well-matched for effective
behaviour to be produced. In each case, looking
for structure in the world will help us find
corresponding structure in the mind, and
considering the latter without the former, like a
solitary husband or single scissor-blade, can
lead to much misapplied effort.
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Research on ecological rationality builds on
these foundations to create a framework for
understanding how patterns of information in
the world can be exploited by decision mecha-
nisms in the head to produce adaptive behav-
jour (Gigerenzer et al., 1999; Todd et al, in
press). Rather than studying how the mind may
employ or deviate from unbounded logical
rationality via domain-general, normatively
optimal reasoning systems, bounded ecological
rationality explores how the mind uses simple,
domain-specific decision heuristics that expect
the world to do some of the work in providing
useful structure for making choices. The fact
that there is structure to be relied on in the
world implies that the mind can get away with
using less extensive, though more problem-
specific, computations, leading to an emphasis
on studying simple, psychologically plausible
heuristics. In this view, a decision mechanism
cannot be deemed good or bad on its own—it is
only the match between a mechanism and an
environment in which it is employed that can be
assessed as yielding good or bad performance.
This notion of mind-world match is missing
from most logical and mathematical principles
of rationality and their corresponding theories
of cognition, which posit what is correct behav-
iour independent of any application domain.

How is ecological rationality possible? That is,
how can fast and frugal heuristics work as well
as they do and escape the trade-offs between dif-
ferent real-world criteria including speed and
accuracy? The main reason for their success is
that they make a trade-off on another dimen-
sion: that of generality versus specificity. While
internal criteria for the coherence of decisions
are very general—logical consistency, for
instance, can be applied to any domain—the
correspondence criteria that measure a heuris-
tic’s performance against the real world require
much more domain-specific solutions. What
works to make quick and accurate inferences in
one domain may well not work in another.
Thus, different environments can have different
specific fast and frugal heuristics that exploit
their particular information structure to make
adaptive decisions. But specificity can also be a
danger: if a different heuristic were required for
every slightly different decision-making environ-
ment, we would need an unworkable multitude

of heuristics to reason with, and we would not
be able to generalize to previously unencoun-
tered environments. Fast and frugal heuristics
can avoid this trap by their very simplicity,
which allows them to be robust in the face of
environmental change and enables them to
generalize well to new situations.

Robustness goes hand in hand with speed,
accuracy, and especially information frugality.
Simple heuristics can reduce overfitting (focus-
ing too much on the specific details in a particu-
lar data set) by ignoring the noise inherent in
many cues and looking instead for the ‘swamp-
ing forces’ reflected in the most important cues.
Thus, simply using only one or a few of the most
useful cues can automatically yield robust-
ness—more information, like more processing,
is not necessarily better (Hertwig and Todd,
2003). Furthermore, important cues are likely to
remain important. The informative relation-
ships in the environment are likely to hold true
when the environment changes. Because of this
pattern, fast and frugal heuristics that pay
attention to systematic informative cues while
overlooking more variable uninformative cues
can ride out environmental change without
suffering much decrement in performance.

The study of ecological rationality thus
requires analysing the structure of environ-
ments, the structure of heuristics, and the match
between them. The research programme pro-
posed by Gigerenzer et al. (1999) for studying
the simple ecologically rational heuristics that
humans and animals use involves (i) proposing
and specifying computational models of candi-
date simple heuristics, (ii} analysing the envi-
ronmental structures in which they perform
well, (iii) testing their performance in real-
world environments (often via computer simu-
lation), and (iv) determining whether and when
people really use these heuristics (both experi-
mentally in the laboratory and empirically in
the field). This process is similar to that pro-
posed for studying the Darwinian algorithms of
evolutionary psychology (Cosmides and Tooby,
1987). We now turn to the first step in this
process, exploring the components that go into
a proposed heuristic model, before considering
some specific heuristics and the ways they have
been tested in the further steps of this research
programime.
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15.3. Creating simple
heuristics from capacities
and building blocks

To study particular heuristics in detail, compu-
tational models must be developed that specify
the precise steps of information gathering and
processing that are involved in generating a
decision, allowing the heuristic to be instanti-
ated as a computer program. In particular, sim-
ple fast and frugal heuristics are made up of
building blocks that guide the search for alter-
natives, information, or both, stop that search,
and make a decision. But ‘below’ these building
blocks comes a foundation of evolved capacities
that provides many of the cues that the building
blocks (and heuristics) process. This evolved
foundation distinguishes human and other ani-
mal minds from artificial computational models
that focus on abstract information-processing
abilities.

15.3.1. Evolved capacities

The various simple heuristics that are built up
from building blocks and other nested heuristics
can all be thought of as making up part of the
adaptive toolbox: the collection of specialized
cognitive mechanisms that evolution has built
into the human mind for specific domains of
inference and reasoning (Gigerenzer et al., 1999;
see also Cosmides and Tooby, 1992; Payne et al.,
1993). The adaptive toolbox contains all manner
of psychological (as opposed to morphological
or physiological) adaptations. These include so-
called ‘lower-order’ perceptual and memory
processes that can be fairly automatic, such as
depth perception, auditory scene analysis, and
face recognition, as well as ‘higher-order’
processes that are based on the ‘lower’ processes
and can be at least partly accessible to con-
sciousness. Within the class of higher-order
mental processes fall fast and frugal heuristics
for decision making, which themselves often call
upon lower-order processes of cue perception
and memory.

The lower-order processes are typically
evolved capacities that operate quickly and
effortlessly to distill multiple pieces of informa-
tion from the environment or from memory
into more compact representations, often even
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single cues, that can be used in further decision
making. There are many of these capacities; here
we list just a few for illustration, grouping them
into rough classes. Among search capacities are
exploring (quasi-random search for informa-
tion), tracking (following a specific moving
object), and observing other people (vicarious
search). Memory capacities include recognition
(noticing that one has seen/heard/smelled an
object before), recall (when knowledge beyond
mere recognition comes to mind about an
encountered object), and forgetting (losing
information from memory). Learning capacities
cover, among other things, Pavlovian and oper-
ant conditioning (e.g. learning to avoid unpleas-
ant stimuli), preparedness (enabling one-trial
learning of evolutionarily important stimulus—
reaction associations), and imitation (copying
the behaviour of others). And basic evolved
social capacities, while perhaps not being lower-
order in the same sense (and themselves being
built on other primitives such as face recogni-
tion and memory for features of individuals),
may include reciprocal altruism and ability to
trust (cooperating with non-related others to
achieve a common goal), reputation memory
(ability to recall an individual’s relative score or
rank on a socially important trait), and group
identification (aligning one’s values and identity
to that of a group).

Lower-order  perceptual and memory
processes such as these are complex and difficult
to unravel, in part because they may make use of
massively parallel computations. No one has yet
managed to build a machine that recognizes
faces as well as a 2-year-old child. Now consider
a higher-order decision mechanism that makes
inferences based on these processes, the recogni-
tion heuristic mentioned earlier. This fast and
frugal heuristic uses recognition to make rapid
inferences about unknown aspects of the world:
for instance, food whose taste one recognizes is
probably safer than unrecognized food, and a
university whose name one has heard of proba-
bly provides a more prestigious education than
one whose name is unfamiliar. Although the
mechanisms of recognition memory may be
intricate and complex, the recognition heuristic
can be described as an algorithm just a few steps
long. We do not need to know precisely how
recognition memory works to describe a heuristic
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that relies on recognition. This example illus-
trates an apparently paradoxical thesis: higher-
order cognitive mechanisms can often be
modelled by simpler algorithms than can lower-
order mechanisms. This thesis is not new, hav-
ing been proposed in various forms over the
past century (e.g. by proponents of the
Wiirzburg school of psychology in the early
1900s—see Kusch, 1999). But it is central to the
discussion of when we should postulate simple
versus complex decision mechanisms in the
adaptive toolbox.

15.3.2. Building blocks

Our evolved capacities provide our decision
mechanisms with inputs distilled and compiled
from multiple environmental features. The deci-
sion mechanisms in the adaptive toolbox,
including simple heuristics, process those infor-
mation inputs through a series of steps that can
be characterized in many instances as three
types of building blocks: for guiding informa-
tion search, stopping that search, and making
the decision on the basis of the search results.

15.3.2.1. Building blocks for guiding search

Decisions must be made between alternatives,
and based on information about those alterna-
tives. In different situations, those alternatives
and pieces of information may need to be found
through active search. The building blocks for
guiding search, whether across alternatives or
information, are what give search its direction (if
it has one). For instance, search for cues can be
simply random, or in the order of some precom-
puted criterion related to their usefulness, or
based on a recollection about which cues worked
previously when making the same decision.
Search for alternatives can similarly be random
or ordered. Fast and frugal search-guiding prin-
ciples do not use extensive computations or
knowledge to figure out where to look next.

15.3.2.2. Building blocks for stopping searth

To fit within the temporal limitations of the
human mind, search for alternatives or infor-
mation must be terminated at some point.
Moreover, owing to the computational limita-
tions of boundedly rational agents, the method
for determining when to stop search should not

be overly complicated. For example, one simple
stopping rule is to cease searching for informa-
tion and make a decision as soon as the first cue
or reason that favours one alternative is found
(as embodied in one-reason decision making,
described below). This and other cue-based
stopping rules do not need to compute an opti-
mal cost-benefit trade-off for determining
when enough information has been found; in
fact, they need not compute any costs or benefits
at all. For search among alternatives, simple
aspiration-level stopping rules can be used (see
Section 15.4.4 below on satisficing search).

15.3.2.3. Building blocks for decision making

Once search has been guided to find the appro-
priate alternatives or information and has then
been stopped, a final type of building block
can be called upon to make the decision or
inference based on the results of the search.
These components can also be very simple and
computationally bounded. For instance, a deci-
sion or inference can be based on only one cue
or reason, whatever the total number of cues
found during search (as in the ignorance-based
and one-reason decision mechanisms). Such
single-cue decision making does not need to
weight or combine cues, and so no common
currency between cues need be determined.
Decisions can also be made through a simple
elimination process, in which alternatives are
thrown out by successive cues until only one
final choice remains (see Section 15.4.3 on elim-
ination heuristics).

15.3.3. Heuristics

These building blocks can be put together to
form a variety of fast and frugal heuristics.
Given that the mind is a biological rather than a
purely logical entity, formed through a process
of successive accrual, borrowing, and refinement
of components, it seems reasonable to assume
that new heuristics are built from the parts of old
ones, rather than from scratch (Pinker, 1998).
Following this assumption, two main methods
can be used to construct computational models
of fast and frugal heuristics: combining building
blocks and nesting existing heuristics. Building
blocks can be combined in multiple ways,
though not arbitrarily: for instance, a fast and



frugal heuristic for two-alternative choice that
stops information search at the first cue on
which the alternatives differ must also use a
decision principle based on one-reason decision
making. Whole fast and frugal heuristics can
themselves be combined by nesting one inside
another. As an example, the recognition heuris-
tic can also serve as the first step of one-reason
decision heuristics that draw on other capacities
beyond recognition, such as recall memory.
Recognition memory develops earlier than
recall memory both ontogenetically and evolu-
tionarily, and the nesting of heuristics can simi-
larly be seen as analogous to the addition of a
new adaptation on top of an existing one.

Heuristics are the most flexible of the con-
tents of the adaptive toolbox. This is because
the heuristics, not the evolved capacities or
building blocks, act directly on the environ-
ment and hence need to be adaptive and
adapted. The flexibility of a given heuristic
seems to be linked with the way it has entered
into the adaptive toolbox. Evolution leads to the
most inflexible heuristics, as the unconscious
inferences of the gaze heuristic and other per-
ceptual heuristics illustrate. Social and cultural
learning leads to more flexible use of heuristics,
applying them in different domains according
to what others have found to be useful. Finally,
individual learning, such as reinforcement
learning, seems to lead to the most context-
sensitive and rapidly adjusted use of heuristics
(Rieskamp and Otto, 2006), which is highly
dependent on the specific circumstances of the
learned task environment.

15.4. Four families of
simple heuristics

The decision-making building blocks just
described can be put together to form classes or
families of heuristics whose members are related
by the particular search, stop, or decision rules
they use. In this section we briefly introduce
four such families of heuristics (out of many
possible) covering decision situations that vary
in the amount of information available, the
number of options to choose between, and the
distribution of options in time or space. These
algorithmic models are intended to capture how
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real minds make decisions under constraints of
limited time and knowledge.

15.4.1. lIgnorance-based decision
mechanisms

One of the simplest forms of decision that can
be made is to select one option from two possi-
bilities, according to some criterion on which
the two can be compared. What simple cogni-
tive mechanisms can be used to make this type
of decision? This will depend on the amount
and type of information that is available in the
environment. If the only information available
is whether or not each possibility has ever been
encountered before, then the decision maker
can do little better than rely on his or her own
partial ignorance, choosing either recognized
options or unrecognized ones. For heuristics
applicable to such situations, their information-
search building block merely specifies that
recognition should be assessed for the alterna-
tives being compared; the search-stopping
building block limits consideration to this
recognition information alone; and the decision
building block indicates exactly how recogni-
tion information determines the final choice.
This ‘ignorance-based reasoning’ is embodied in
the recognition heuristic (Goldstein and
Gigerenzer, 1999, 2002), which uses the follow-
ing decision rule: when choosing between two
objects (according to some criterion), if one is
recognized and the other is not, then select the
former. For instance, Norway rats have evolved
to behave according to a rule of this type, prefer-
ring to eat things they recognize through past
experience with other rats (e.g. items they have
smelled on the breath of others) over novel
items (Galef, 1987).

Following the recognition heuristic will be
ecologically rational—that is, will yield correct
responses more often than would random
choice—in those decision environments in
which exposure to different possibilities is posi-
tively correlated with their ranking along the
decision criterion being used. Thus, the rats’
food preference copying presumably evolved
because the things that other rats have eaten
(i.e. recognized items) are more often palatable
than are random (unrecognized) items sampled
from the environment. Such useable correlations
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are likely to be present for species with social
information exchange where important envi-
ronmental objects are communicated and
unimportant ones are ignored, as well as for
species in environments where important envi-
ronmental objects are simply encountered more
often or earlier in life.

People have been shown to make decisions in
accordance with the recognition heuristic in
domains such as choosing the larger of two
cities, the deadlier of two diseases, or the more
successful of two sports teams (Goldstein and
Gigerenzer, 2002), where socially transmitted
information is indeed typically about items at
one end of the criterion range (large cities or
successful teams). Recent research has also
shown that people put considerable stock in the
value of recognition information for making
decisions, even being swayed more in a group
decision setting by colleagues who only recog-
nize one available option (and choose that
option on the basis of their recognition) than by
those who have more information and recognize
all available options (Reimer and Katsikopoulos,
2004). Situations in which the recognition
heuristic can be applied arise in daily life as well:
companies vie for name recognition among
consumers in the hope that this will guide their
purchase decisions (Borges et al., 1999). In fact,
in the modern environment, our recognition
memory has become rather easily manipulable
by the steady stream of media we are exposed to.
Whereas in ancestral environments, we would
only recognize people whom we had actually
encountered in person, television shows and
movies can now trick us into thinking the faces
we recognize belong to people we actually know
(Kanazawa, 2002). As a consequence, using the
recognition heuristic may no longer be ecologi-
cally rational in some settings, particularly those
where other agents aim to influence what we
recognize.

15.4.2. One-reason decision
mechanisms

Of course, we often have more information than
just recognition available for making our deci-
sions. What kinds of fast and frugal heuristics
are appropriate in situations like the following?
Imagine trying to decide between two restaurants

for taking a guest to dinner. The traditional and
normatively prescribed method would be to col-
lect all the information or cues that you know or
could find out about each restaurant, such as the
average meal cost, distance from home, and
amount of garlic in the dishes; then weight each
of these cues by its importance for this decision;
and finally combine all the weighted values for
each alternative to come up with a final total cri-
terion value for each. Whichever restaurant has
the higher final criterion value is the one to go to,
according to this weighted-additive approach to
computing the expected utility of the two
choices (Edwards and Fasolo, 2001).

A simpler and faster method is the following.
Consider a single cue for the two alternatives,
such as meal cost. Does this cue distinguish
between the restaurants? If it does, then stop
and choose the restaurant pointed to by the cue
(e.g. the cheaper one, or the more expensive
one, depending on if you want to conserve your
resources or impress the guest). If the first cue
does not distinguish between the alternatives,
then consider a second cue, such as distance.
If that cue distinguishes, then stop at this point
and go with the indicated choice (e.g. the nearer
restaurant). If not, consider a third cue, and so
on, stopping this search for cues at the first dis-
tinguishing one found and using that cue alone
to make the final decision. Mechanisms that
operate in this way are called ‘one-reason deci-
sion heuristics) because their final decision is
made on the basis of a single cue or reason alone
(Gigerenzer and Goldstein, 1999). A one-reason
decision heuristic works as follows.

1. Select a cue dimension using some search
building block and look for the correspon-
ding cue values of each option.

2. Compare the two options on their values for
that cue dimension.

3. If they differ, then stop (this is the stop-search
building block) and choose the option with
the cue value indicating a greater value on the
choice criterion (the decision building block).

4. If the options do not differ, then return to the
beginning of this loop (Step 1) to look for
another cue dimension.

Such a heuristic will often have to look up
more than one cue before making a decision,
but the simple stopping rule (in Step 3) ensures



that as few cues as possible will be sought, mini-
mizing the time needed for information search.
Furthermore, ultimately only a single cue will be
used to determine the choice, minimizing the
amount of computation that must be done.

To finish specifying a particular simple
heuristic of this type, we must also determine
exactly how cue dimensions are ‘looked for’ in
Step 1—that is, we must choose a specific infor-
mation search building block. For instance, the
Take The Best heuristic searches for cues in the
order of their validity—that is, their correlation
with the decision criterion, while the Minimalist
heuristic selects cues in a random order
(Gigerenzer and Goldstein, 1996, 1999). Again,
both stop their information search as soon as a
cue is found that allows a decision to be made
between the two options. Particular cue orders
will influence just how quickly and how
accurately a decision can be made. (The open
question of determining which cues and cue
order to use will be considered below.)

Despite (or often because of) their simplicity
and disregard for most of the available informa-
tion, these two fast and frugal heuristics can
make very accurate choices. A set of 20 environ-
ments was collected to test the performance of
these heuristics, varying in number of objects
and number of available cues, and ranging in
content from the German cities data set men-
tioned earlier to fish fertility to high-school
drop-out rates (Czerlinski et al., 1999). The
decision accuracies of Take The Best and
Minimalist were compared with those of two
more traditional decision mechanisms that use
all available information and combine it in
more or less sophisticated ways: multiple regres-
sion, which weights and sums all cues in an
optimal linear fashion, and Dawes’s Rule, which
counts up the positive and negative cues and
subtracts the latter from the former. The two
fast and frugal heuristics always came close to,
and often exceeded, the performance of the tra-
ditional algorithms when all were tested on the
data they were trained on (data fitting). This
surprising performance on the part of Take
The Best and Minimalist was achieved even
though they only looked through a third of the
cues on average (and only decided using one of
them), while multiple regression and Dawes’s
Rule used them all.
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The advantages of simplicity grew in the more
behaviourally important test of generalization
performance, where the decision mechanisms
were assessed on a portion of each data set that
they had not seen during training; in that case,
Take The Best outperformed all three other
algorithms by a clear margin. Thus, making
good decisions need not rely on the standard
rational approach of collecting all available
information and combining it according to the
relative importance of each cue—simply betting
on one good reason, even one selected at
random, can provide a competitive level of
accuracy in a range of environments. Just what
environments allow one-reason decision
mechanisms to excel—that is, what conditions
lead them to be ecologically rational—is still
being explored, but some are known: Take
The Best, for instance, seems to do well in
environments where cue validities are distributed
in a highly skewed fashion, with some cues
being much more useful than others
(Martignon and Hoffrage, 2002), and where
learning samples are small.

Not only are simple one-reason decision
mechanisms accurate and robust, they also cor-
respond to how people (and other animals)
make decisions in a variety of circumstances.
People use these fast and frugal algorithms in
environments that have the appropriate struc-
ture, even when they must first learn how the
environment is structured (Rieskamp and Otto,
2006). Heuristics such as Take The Best are also
particularly used where information is costly or
time consuming to acquire (Rieskamp and
Hoffrage, 1999; Bréder, 2000; Newell and Shanks,
2003), whether the costs come from searching
for cues in the environment or from searching in
memory (Broder and Schiffer, 2003).

There is a problem, though, in applying one-
reason decision strategies: how can we tell what
cues a heuristic should use, and in what order?
Take The Best’s validity-ordered cue search does
considerably better than Minimalist’s random
search—but how do we come to know a more-
or-less validity-ordered set of cues? In evolu-
tionarily important decision contexts like
choosing a mate or selecting something to eat,
we might have some built-in knowledge of valid
cues to use, such as facial symmetry or sweet taste.
But we are unlikely to have innately specified cues
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to use, for instance, in deciding between restau-
rants. For decisions like this in modern environ-
ments, people must learn what cues are most
useful or valid. This can be done through indi-
vidual experience using simple learning rules,
for instance, keeping an ordered list of possible
cues and moving a cue up in the list every time it
leads to a correct decision and down in the list
every time it fails (Dieckmann and Todd, 2004).
While such learning could happen relatively
quickly (i.e. with few learning trials), in some
cases people can arrive at a good cue order more
quickly by learning it socially from other deci-
sion makers, or through culturally transmitted
rules.

15.4.3. Heuristics for multiple-option
choices

When there are more than two options to
choose from, then more than a single binary cue
must typically be used to determine a single
choice. But here, too, in these situations of
multi-attribute decision making it is possible to
reach quick decisions using a minimal amount
of information, rather than gathering and com-
bining a large number of cues or attributes.
A fast and frugal approach to these decision situa-
tions is to use the process of elimination, as incor-
porated by Tversky (1972} in his Elimination
By Aspects (or EBA) choice mechanism. For
instance, if there are several restaurants to be
decided among, first select a cue (or aspect)
dimension somehow, and a way of using that
cue to discard some of the available options.
In the case of EBA, the cues are selected proba-
bilistically, and a threshold is set for determining
which options are eliminated from further
consideration, such as discarding all restaurants
that are more than 10 kilometres away. If there
are still multiple options left to be considered,
then select another cue and use it to eliminate
some more possibilities—such as all restaurants
not serving fish tonight. Proceed in this way,
using successive cues to whittle down the set of
remaining options, until only a single one
remains, which is the final choice. Tversky
found that this process describes well what peo-
ple do in these types of preferential choice tasks.

A similar elimination process can be used to
categorize objects or stimuli, where the task can

be conceived of as deciding which of several possi-
ble categories the object best fits into (Berretty
etal., 1999}, When information may be difficult to
come by, and decisions should be made quickly, a
fast and frugal categorization process can be
adaptive. Consider the situation of trying to
decide about another’s intentions as that person
approaches. Does this person want to greet me,
dance with me, or take my wallet? How can one
judge this, especially if the person is a stranger and
is not announcing any aims verbally or facially?
One way is to come to a quick first guess on the
basis of how the person is moving, that is, using
motion cues alone and an elimination process to
limit the number of cues considered, to make a
rapid yet accurate categorization (Blythe et al.,
1999; Barrett et al., 2005).

Estimation is another related task that can
also be performed accurately with few cues by a
simple algorithm that exploits environments
with a particular structure. The QuickEst
heuristic (Hertwig et al., 1999} is designed to
estimate the values of objects along some crite-
rion while using as little information as possible.
To estimate the criterion value of a particular
object, the heuristic looks through the available
cues or features in a criterion-determined order,
until it comes to the first one that the object
does not possess. At this point, QuickEst stops
searching for any further information and
produces an estimate based on criterion values
associated with the absence of the last cue.
QuickEst proves to be fast and frugal, as well as
accurate, in environments characterized by a
distribution of criterion values in which small
values are common and big values are rare
(a so-called ‘J-shaped’ distribution). Such
distributions characterize a variety of naturally
occurring phenomena including many formed
by accretionary growth (e.g. cities, some
businesses, etc.).

15.4.4. Satisficing heuristics
for sequential choices

The heuristics presented so far assume that all of
the possible options to be chosen between are
presently available to the decision maker. But a dif-
ferent strategy is called for when alternatives (as
opposed to information about the alternatives)
take time to find, appearing sequentially over an
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extended period. This is an important type of
decision to study, because sequential search is
ubiquitous, occurring whenever resources being
sought are distributed in time or space and so
cannot be considered (or at least not encoun-
tered) simultaneously. Searching for mates or
friends, houses or habitats, jobs, parking spaces,
shopping bargains, or restaurants to eat at all
involve sequential decisions of this sort. The
problem is that, whatever option you currently
have available—for instance, the restaurant that
you are standing in front of—another possibly
better option could become available in the
future, so how can you decide when to stop
searching and stick with the current (or some
previous) option?

In this type of choice task, a fast and frugal
reasoner need not (only) limit information
search, but (also) must have a stopping rule for
ending the search for alternatives themselves.
Here, Herbert Simon’s (1955, 1990) notion of a
satisficing heuristic is applicable: an aspiration
level is set for the selection criterion being used,
and the search for alternatives is stopped as soon
as the aspiration is met. Simple mechanisms can
be used to set the aspiration level in the first
place, such as checking the first few alternatives
and taking the best value seen in that set as the
level to beat in further search (Todd and Miller,
1999). The trick here is to balance the desire for
a short, fast and frugal search on the one hand
(achieved by checking as few initial alternatives
as possible), against the need for enough infor-
mation about the potential alternatives to set an
appropriate aspiration level on the other hand
(achieved by checking as many initial alterna-
tives as possible). People seem relatively adept at
striking this kind of balance (Seale and
Rapoport, 1997; Dudey and Todd, 2002).

But many sequential choice problems involve
an added complication: they are two-sided,
which means the searchers are being searched by
others at the same time, and choice must there-
fore be mutual. Job applicants must select their
employer and be selected in return; men and
women on the marriage market must both
decide to take the plunge together. This addi-
tional challenge can be solved by the searchers
learning their own value or rank position within
their pool of fellow searchers and using this self-
knowledge to determine how high they should

aim their search aspirations (Kalick and
Hamilton, 1986), rather than merely setting an
aspiration level based on the values of a small
sample of available options, as in the one-sided
approaches covered above. Todd and Miller
(1999) presented a range of simple heuristics
that do just this, for instance, heuristics for
learning one’s mate value through the accept-
ances and rejections encountered during an
adolescent dating period or more generally a
phase 1 search period. These heuristics, like the
one-sided mechanisms already mentioned, can
perform well with little search, quickly learning
appropriate aspiration levels based on the
searcher’s own quality. Evidence for their use
can be obtained both via population-level
demographic measures (Todd et al., 2005a) and
in laboratory experiments of sequential dating.

15.5. The challenge ahead for
ecological rationality

Studying ecological rationality as the fit between
structures in information-processing mecha-
nisms in the mind and structures in informa-
tion in the world gives us three things to focus
on: the mind (decision heuristics), the world
(information patterns), and how they can
match. As we have shown in this chapter, the
heuristics that have been studied so far cover a
wide range of possible types of choice tasks that
people face, such as choosing one option from
two or more, or finding a good option from a
sequence of alternatives. However, another way
to think of the organization of the adaptive tool-
box is in terms of content domains, such as
heuristics for finding food or for choosing mates
(Todd, 2000). Some of the same sorts of heuris-
tics (e.g., satisficing mechanisms for sequential
search) are, as indicated earlier, likely applied in
multiple domains (e.g., in mate search and habi-
tat search), so it will be beneficial to explore the
adaptive toolbox from both the decision task and
the content domain perspectives, combining
cognitive psychology approaches with evolu-
tionary psychology (Todd et al., 2005).

To discover more about the tools in the
mind’s toolbox, we should also proceed in two
additional directions. Delving downward, we
need to expand our understanding of the set of
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building blocks and deeper evolved abilities
(e.g., the capacity for recognition or for trust)
that can combine to create decision mecha-
nisms. Connecting upward, we must consider
how the adaptive toolbox of heuristics for
inference and preference ties in with other cog-
nitive, memory, perceptual, and motor systems
to produce adaptive behaviour (as has been done
in implementing the recognition heuristic
within a broader cognitive modelling frame-
work, ACT-R—see Schooler and Hertwig, 2005).

As indicated in earlier examples, researchers
have also started to put together a vocabulary
for describing environment structures, for
instance, in terms of cue validities and distribu-
tions of objects. But this effort is still largely
incomplete and disconnected. Useful ways to
describe psychologically relevant aspects of spa-
tial structure, temporal patterns, and social
environments must still be developed, or
imported from other disciplines. And the differ-
ent sources of environment structure—long-
term physical and biological aspects of our
world, social environments composed of other
people, cultural and institutional structures cre-
ated by others to influence us, and emergent
patterns arising from the interactions of popu-
lations of individuals each following their own
decision heuristics—must all be mapped out
and placed in a coherent framework so that
their commonalities and differences can be
made evident.

The greatest challenge remains in tying the
two types of structure, mental and environmen-
tal, together. Heuristics often lead to correct
answers, but sometimes lead to errors, as
emphasized in the heuristics-and-biases
research tradition (Kahneman et al., 1982); the
work ahead needs to focus on when, where and
why they succeed or fail—their ecological
rationality. This is only possible if we have pre-
cise models of these heuristics, as in terms of the
building blocks described earlier. Uncovering
the ecological rationality of particular decision
mechanisms can be a matter of predicting their
performance based on how well their specific
building blocks fit to certain information pat-
terns, and then testing them via experimenta-
tion, simulation, or mathematical analysis in
different environments. However, explaining
why a heuristic matches some environments and

not others largely remains a conundrum at the
centre of ongoing research (Todd et al., in press).
The adaptive processes of evolution, learning,
and culture have shaped human minds to be
ecologically rational, relying on simple decision
heuristics that confer the twin advantages of
speed and accuracy in particular environments
bearing exploitable patterns of information.
Individuals can certainly be led to use heuristics
in inappropriate environments and conse-
quently make errors in reasoning, but this serves
to show the boundaries of a mechanism’s eco-
logical rationality, rather than its irrationality.
When mind and world fit together, the evolved
capacities, building blocks, and simple heuris-
tics in our adaptive toolbox can guide us to
make good choices in a fast and frugal manner.
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