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Where new auxiliary means become fruitful for research in a certain
domain, it is a frequently occurring phenomenon that the auxiliary
means are sometimes also confused with the subject matter.

Dayf$ man, wo neue Hilfsmittel fiir die Forschung innerbalb eines bes-
timmten Gebietes fruchtbar werden, gelegentlich auch einmal das
Hilfsmittel mit der Sache verwechselt, ist ja eine oft genug vorkom-
mende Erscheinung.

—(Wundt, 1921, Vol. I, p. 148; translated by T. Sturm)

Scientiﬁc inquiry is often divided into two great domains: (a) the
context of discovery and (b) the context of justification. Philosophers,
logicians, and mathematicians claimed justification as a part of their ter-
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ritory and dismissed the context of discovery as none of their business,
or even as “irrelevant to the logical analysis of scientific knowledge”
(Popper, 1935/1959, p. 31). Concerning discovery, there still remains a
mystical darkness where imagination and intuition reigns, or so it is
claimed. Popper, Braithwaite, and others ceded the task of an investiga-
tion of discovery to psychology and, perhaps, sociology, but few psy-
chologists have fished in these waters. Most did not care or dare.

Inductivist accounts of science, from Bacon to Reichenbach and the
Vienna School, often focus on the role of data but do not consider how
the data are generated or processed. Neither do the anecdotes about
discoveries, such as Newton watching an apple fall in his mother’s or-
chard while pondering the mystery of gravitation; Galton taking shelter
from a rainstorm during a country outing when discovering correlation
and regression toward mediocrity; and the stories about Fechner,
Kekulé, Poincaré, and others, which link discovery to beds, bicycles, and
bathrooms. These anecdotes report the setting in which a discovery oc-
curs, rather than analyzing the process of discovery.

The question “Is there a logic of discovery?” and Popper’s
(1935/1959) conjecture that there is none have misled many into as-
suming that the issue is whether there exists a logic of discovery or only
idiosyncratic personal and accidental reasons that explain the “flash of
insight” of a particular scientist. However, formal logic and individual
personality are not the only alternatives (Nickles, 1980). The process of
discovery can be shown to possess more structure than thunderbolt
guesses but less definite structure than a monolithic logic of discovery
of the sort for which Hanson (1958) searched. The present approach
lies between these two extremes.

In this chapter, we argue that, in part, the generation of new theories
can be understood by a tools-to-theories heuristic. This proposed heuris-
tic (not logic) of theory development makes use of various tools of justifi-
cation that have been used by scientific communities. By tools we mean
both analytical and physical instruments that are used to evaluate given
theories. Analytical tools can be either empirical or nonempirical. Exam-
ples of analytical methods of the empirical kind are tools for data process-
ing, such as statistics; examples of the nonempirical kind are normative
criteria for the evaluation of hypotheses, such as logical consistency. Ex-
amples of physical tools are measurement instruments, such as clocks.

The main goal of this chapter is to show that some tools can provide
metaphors that become concepts for psychological theories. We will dis-
cuss the heuristic role, as well as the possibilities and problems, of two
tools developed during, as it has been called retrospectively, the cogni-
tive revolution in the American psychology of the 1960s: inferential sta-
tistics and the digital computer. The cognitive revolution was more than
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an overthrow of behaviorism by mental concepts. Mental concepts have
been continuously part of scientific psychology, even coexisting with
American behaviorism during its heyday (Lovie, 1983). The cognitive rev-
olution did more than revive the mental; it changed its meaning. The two
new classes of theories that emerged, and partially overlapped, pictured
the mind as an “intuitive statistician” or a “computer program.”

This chapter is structured as follows. First, we outline how tools inspire
new theories, both on an individual level and on the level of a scientific
community (Section I). Second, we sketch the possible value for the pres-
ent explanatory approach for a critical evaluation of theories (Section II).
After this, we analyze in greater detail the two examples of inferential statis-
tics (Section III) and the digital computer (Section IV). We close with a re-
consideration of the issue of the generation of psychological theories
(Section V). In doing so, we aim to show how ongoing psychological re-
search sometimes can, and should, integrate considerations concerning its
history and philosophy, rather than outsourcing them to other disciplines.

I. TOOLS, METAPHORS, AND THEORY
DEVELOPMENT

Conceiving the mind in terms of scientific tools may seem strange. How-
ever, understanding aspects of mental life in such ways might be rooted
in our common-sense thinking or in our intellectual history.

For instance, before psychology was institutionalized as a discipline
in the latter half of the 19th century, many investigations of our sensory
capacities could be found in astronomical and optical writings. Investi-
gations of human capacities were often driven by methodological needs
of other sciences, and so the senses of human beings were viewed as in-
struments functioning more or less properly (Gundlach, 1997, 2007).
The astronomer Tobias Mayer developed a series of what we would
characterize as psychophysical experimental analyses of visual acuity, al-
though his main goal was to develop a “science of errors” (Mayer, 1755;
Scheerer, 1987). He aimed at an investigation of the weaknesses of our
eyes, comparing their role with that of the instruments used in the ob-
servation of heavenly bodies. When Johann Heinrich Lambert tried to
measure the intensity of light, he complained that there did not yet exist
a photometer comparable to the thermometer in the theory of heat.
Hence, the eye had to be used as the measuring device, despite its famil-
iar limitations (Lambert, 1760/1892). Much talk of a “sensory appara-
tus” derives from such contexts; nowadays, this is ordinary, largely
innocent talk, hardly recognizable in its metaphorical origins. Rhetori-
cians speak of “dead metaphors” here—a misleading metaphor itself,
because the metaphors are better characterized as alive, although they
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are no longer noticed as such. These metaphors inform and shape the
content of the terms we take to be as literally referring. The same can be,
and often is, true in scientific theories. As W. V. O. Quine (1978) said,
metaphors are “vital ... at the growing edges of science” (p. 159). It
would be thus a mistake to ignore or prohibit the use of scientific tools
for trying to conceive the mind in new ways.

To at least some extent, such a successful transfer of meaning is possi-
ble only if one does not understand the functioning of metaphors in tra-
ditional ways. It has often been claimed that metaphors work in one
direction only, as when the metaphor “Achill is a lion” is teased out to give
“Achill is like a lion in the following regards ...” This functioning of meta-
phor is didactical rather than heuristical; its goals are more understand-
ing and teaching than research and discovery. However, metaphors
frequently involve an interaction between the terms that are explained
metaphorically and the metaphorical terms themselves, by which various
meanings are picked out, emphasized, later on rejected, and remem-
bered again. Both our understanding of what was originally referred to
metaphorically and the metaphorical expressions are reshaped (Black,
1962; Draaisma, 2000, chap. 1). Such interaction is especially possible in
the long-term developments of science and language. However one
thinks of the functioning of metaphors in general, the interaction theory
is adequate for the heuristically useful metaphors in science.

Not all scientific tools can play this heuristic role for science in gen-
eral or for psychology in particular. The simple pieces of round white
paper that were used in the Paris Academy in the 17th century to pro-
duce the impression of the blind spot in the visual field did never sup-
port the generation of new concepts of vision (Mariotte, 1668); neither
did the early apparatuses used to experimentally present and measure
the temporal persistence of visual sensations (D’Arcy, 1765; Sturm, in
press), and so on, for many later psychological tools such as the simple
weights used by E. H. Weber and G. T. Fechner in their psychophysio-
logical experiments, the Hipp chronoscope in reaction time measure-
ment, or, more recently, instruments for visual imaging such as positron
emission tomography or functional magnetic resonance imaging.

But the tools-to-theories heuristic applies for various innovative the-
ories within psychology (Gigerenzer, 1991). For instance, Smith (1986)
argued that Tolman’s use of the maze as an experimental apparatus
transformed Tolman’s conception of purpose and cognition into spatial
characteristics, such as cognitive maps. Similarly, he argued that Clark L.
Hull’s fascination with conditioning machines shaped Hull’s thinking of
behavior as if it were machine design. The tools-to-theories heuristic
also applies, as we will argue, in the cases of inferential statistics and
digital computer programs.
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The tools-to-theories heuristic is twofold:

1. Generation of new theories: The tools a scientist uses can suggest
new metaphors, leading to new theoretical concepts and principles.

2. Acceptance of new theories within scientific communities: The
new theoretical concepts and assumptions are more likely to be
accepted by the scientific community if the members of the com-
munity are also users of the new tools.

This heuristic explains not the discovery but the generation or devel-
opment of theories (theoretical concepts and claims). Talk of discovery
tends to imply success (Arabatzis, 2002; Curd, 1980; Papineau, 2003;
Sturm & Gigerenzer, 2006), but it should be treated as an open question
whether theoretical notions and assumptions inspired by scientific
tools might have led to good research programs or not. For a similar rea-
son, we speak here not of justification but of acceptance. A scientific
community might be justified from its own current point of view in ac-
cepting a theory, but such acceptance might later be found to be in need
of further revision.

A highly difficult question is that of how, as it is claimed in Step 1,
tools can begin to be used as new metaphors. How is a new theoretical
concept, as inspired by a tool, originally generated in a scientist? We
think that it is important to note here that it is not tools simpliciter that
suggest new concepts, but the way a tool is used. When tools of justifica-
tion are used metaphorically to conceptualize the mind, a new, deviant
use of the tools comes into play. Such a deviant use becomes possible if
the scientist has a practical familiarity with a tool. A sophisticated under-
standing of the tool is not necessary. A scientist who knows how to suc-
cessfully apply a given method to analyze his data may start to compare
other systems with the functioning of his tool and then to interpret
these systems in terms of the tool. Some such psychological processes
should play a role, and they are themselves in need of a better explana-
tion: Are there highly general principles or mechanisms that guide all
such processes of theory generation? Or is the nature of these processes
more strongly constrained by the specific tools that are used as meta-
phors, and the psychological phenomena that are conceptualized
thereby? Surely such an explanatory task is too complex to be fully ad-
dressed here. We wish to emphasize that, first, it is the practical familiar-
ity with the tool that can inspire a new metaphor. Second, it is important
that even the ordinary use of a tool—its use for the justification of em-
pirical claims or for the evaluation of a general hypothesis—is not al-
ways one and the same. Methods of statistical inference, for instance,
have been used for various purposes and in various ways: For example,
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one might use methods of statistical inference to test hypotheses, or to
check the data. It is important to clarify which of these options have also
entered the cognitive theories of human thought and behavior that
were developed on the background of the metaphor of the mind as an
intuitive statistician. This general point applies to the case of the
metaphor of mind as computer as well. We return to this later.

II. THE CRITICAL VALUE OF AN EXPLANATION
OF THEORY GENERATION

Within the class of tools that can play a metaphorical role, some are
better suited for this than others, much as some metaphors in general
can be better than others. Once this is recognized, it becomes clear that
the tools-to-theories heuristic may be of interest not only for an a poste-
riori understanding of theory development, or for a psychology of sci-
entific creativity (e.g., Gardner, 1988; Gruber, 1981; Tweney, Dotherty,
& Mynatt, 1981). It may also be useful for a critical understanding of
present-day theories and for the development of new alternatives. We
shall illustrate this by three closely related topics: the justification of
these theories; the realistic interpretation of these theories; and the
complex relation between theory, data, and tools.

First, let us go back to the distinction between discovery and justifi-
cation. It is important here not to view it as a distinction between dif-
ferent processes, let alone processes of a specific temporal order: First
comes discovery, then justification. We should rather emphasize that
there are different types of questions we can ask with regard to scien-
tific propositions. For any given claim p, we can always ask “Is p justi-
fied?” This question differs in principle from the question “How did
someone come to accept that p?” (Hoyningen-Huene, 1987;
Reichenbach, 1938; Sturm & Gigerenzer, 2000).

Hans Reichenbach and other adherents of the discovery—justification
distinction often assume that the critical task of evaluating a scientific
claim can be pursued quite independently of knowledge about the ori-
gins of that claim. This is why defenders of the distinction hardly found
it necessary to pursue research about what brings about new discover-
ies. Here we disagree. It seems plausible that sometimes a good criti-
cism of a theoretical assumption will profit from such knowledge, if not
be impossible without it. The reason for this claim is the following: The
heuristic function of tools in theory generation involves a metaphorical
transfer of meaning. Metaphorical transfer of meaning from one context
to another is often advantageous, but it can also include losses. S. Freud
famously compared the relation between the two systems of percep-
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tion—consciousness and memory to the Wunderblock or “mystic writing
pad.” On such a pad, consisting of a wax layer, a wax sheet, and a trans-
parent celluloid paper, one can erase text by simply pulling the paper
free of the wax layer. When one pulls the paper, however, at a deeper
level a trace of what had been written is stored. Freud also pointed out
that, unlike our capacity of memory, the pad cannot reproduce the
erased text from inside (Draaisma, 2000). Metaphors emphasize some
aspects and leave others out. Especially in cases of the more successful
metaphors in science, such partiality can easily be forgotten. The more
aware we become that there has been, and continues to be, a use of
tools in the development of theoretical concepts or assumptions, the
better we can take care of the pitfalls contained in influential theoretical
concepts and assumptions.

Second, the tools-to-theories explanation of theory generation has
caused some worries among realistically inclined philosophers. Thus, it
has been maintained that tools have been merely necessary conditions
of the generation and the factual acceptance of the theories that we will
discuss:

How can cognitive scientists possibly be tracking the truth, if they can be
persuaded to believe given theories by institutional developments which
have no apparent connection with the subject matter of those theories?
... Itwould indeed be damning if the institutional developments in ques-
tion were sufficient to determine theory acceptance. But their being nec-
essary leaves it open that other factors might also have been necessary,
and in particular proper empirical support might have been necessary
too. (Papineau, 2003, pp. 146-147)

Such worries are inspired by debates about realism and antirealism in
the philosophy of science (see Hacking, 1983; Kitcher, 1993, chap. 5;
Papineau, 1996). Here it is important to see, first, that we keep up the
traditional distinction between discovery and justification in a certain
sense. From the fact that the generation of the new theories is to be (in
part) explained on the basis of the tools-to-theories heuristic, it does not
follow that the theories are correct. A main goal of this chapter is to
make psychologists aware of where crucial new ideas of the cognitive
revolution came from and that these origins are by no means innocent.
Second, the view that theoretical models were inspired by certain meth-
odological tools by no means implies that the models must be incorrect
either. The explanation of the development of new theories leaves open
the question of whether they “map” an independent reality or whether
the claims of the theory are true or correct.

This reply leads to the crucial worry. The debates between scientific
realism and antirealism mainly concern the meaning of theoretical
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terms and statements. Can terms such as “electron” or “DNA” be inter-
preted realistically? That is, do they refer to mind-independent objects
and properties? And can the statements in which such terms occur be
true or false in the same way in which more mundane observational
statements, such as “The cat is on the mat,” can be, or are they simply ef-
ficient instruments of prediction and explanation of the phenomena?

There are no simple answers to such questions. We should hardly be
surprised if it is an open question whether current theories of cognitive
science can be understood realistically. We should also resist the as-
sumption that one either has to be a scientific realist tout court or one
has to accept antirealism. One may defend a realistic interpretation of,
say, electron without thereby being a realist with regard to all theoretical
parts of the various sciences. The difficult task is to identify criteria for a
realistic interpretation and to show that these criteria apply.

As cited earlier, Papineau (2003) suggested that the relevant cognitive
theories might have been accepted not only because scientists were fond
of their tools but also because there was proper empirical support. How-
ever, that is much too simplistic. We argue later in this chapter that some
types of empirical evidence were possible only because the theories were
already assumed to be correct, and so the reference to empirical evidence
needs additional qualifications at least. Also, some alternative theories of
cognitive processing (e.g., different statistical models) can make some
data virtually disappear. Stated generally, talk of proper empirical support
cannot do the real job. It might also lead to a merely instrumentalist,
antirealistic interpretation of the theoretical concepts and claims.

In fact, the defense of a realistic interpretation of any particular the-
ory depends on more complex arguments and is itself a matter of piece-
meal, long-term research. Typical kinds of arguments that support
realism about a given theory involve extrapolation, as when micro-
scopic phenomena are legitimately understood in terms of macroscopic
phenomena; or circumstantial evidence, which may be illustrated by
the case of the quite heterogeneous discoveries in support of an
atomistic theory of matter. In physical and chemical theories of matter
of the 18th and 19th centuries it was found out independently that sub-
stances react in fixed numerical proportions; that solid bodies must be
viewed as structures of elements that do not allow for arbitrary combi-
nations, a fact that excluded theories of matter as a continuous entity;
that the number of particles in a chemical substance could be deter-
mined by Avogadro’s number, and so on. Such heterogeneous discover-
ies supported a realistic understanding of the term “atom,” but this was
a hard-fought-for achievement (Kriiger, 1981). Knowing the origins of
some theoretical concepts better might help us to think critically about
such issues and reflect whether such criteria apply: Is it, or is it not, a le-
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gitimate extrapolation to view some aspects of thought and behavior in
terms of information processing or statistics? Is there any circumstantial
evidence for this theoretical vocabulary?

One might try to avoid such difficult problems by biting the antirealistic
bullet. Is it not better to view the theoretical concepts and claims of cogni-
tive psychology as “mere” constructs or as “as-if” models? One may do so,
but there is a price to be paid here. For instance, we mentioned earlier that
behaviorists did use a mentalistic vocabulary. However, for them
mentalistic terms did not really refer to intervening variables that are cru-
cial for a cognitivist approach to the explanation of psychological phenom-
ena. Only the latter approach takes seriously the view that mental states
play real causal roles. Empiricists within current psychology who wish to
treat talk of information processing or of the mind as a computer as merely
a model or as merely metaphorical face a similar problem. Their explana-
tions remain on a purely empirical level of generalization, at the risk of be-
ing mere redescriptions instead of real explanations. One takes a step back
if one does not try to substantiate the pretensions of the cognitive revolu-
tion. Again, however, even a moderate realism about cognitive theories
cannot be hoped for if one has not critically reflected where theoretical
concepts came from, how they have spread over the scientific community,
and what their possible problems and limitations are.

Third, the generation of theories through tools leads to possibly prob-
lematic relations between theory, data, and tools which should be high-
lighted in advance. The familiar theory-laden ness of data and instruments
already questions simple views about the relation between theory and data
(Figures 14-1 and 14-2). Now; the fact that certain theories are inspired by
the tools scientists favor makes things even more difficult, because scien-
tists are rarely aware of the metaphorical origins, and possible pitfalls, of
their theories. Neither are they always clear that their favorite tools, theo-
ries, and data might be supporting one another, in ways that leave other,
and perhaps more fruitful, research directions out of sight (see Fig. 14-3).

We do not claim that the circularity indicated in Figure 14—3 must al-
ways occur, or that its problems cannot be avoided. On the other hand,

Theories

support or refute
PP Figure 14-1. The standard view of

the relation among tools, data, and
theories. According to this view, sci-
entific instruments can be used to
produce data, which are then used

Data to support or refute theories, in a
neutral or unbiased way.

Tools produce
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Figure 14-3. The possibly circularity among tools, theories, and data.
Theoretical concepts and claims are often inspired by the scientists’ favor-
ite research tool, theories are not supported or tested by theory-neutral
data, and tools tend to favor certain data and to leave others out. If that is
so, do then tools, theories, and data justify one another in a circular or
self-vindicating way?

we do not see any general procedure for solving the problems. The best
thing seems to be to learn from historical case studies and to make sci-
entists aware of the potentially circular relation among tools, theories,
and data. This said, we turn to the two tools that have turned into psych-
ological theories: (a) inferential statistics and (b) the digital computer.

III. COGNITION AS INTUITIVE STATISTICS

In American psychology, the study of cognitive processes was sup-
pressed in the early 20th century by the allied forces of operationalism
and behaviorism. The operationalism and the inductivism of the Vienna
School, inter alia, paved the way for the institutionalization of inferen-
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tial statistics in American experimental psychology between 1940 and
1955 (Gigerenzer, 1987a; Toulmin & Leary, 1985). In experimental psy-
chology, inferential statistics became almost synonymous with the sci-
entific method. Inferential statistics, in turn, provided a large part of the
new concepts for mental processes that have fueled the cognitive revo-
lution since the 1960s. Theories of cognition were cleansed of terms
such as restructuring and insight, and the new mind has come to be
portrayed as drawing random samples from nervous fibers, computing
probabilities, calculating analyses of variance, setting decision criteria,
and performing utility analyses.

After the institutionalization of inferential statistics, a broad range of
cognitive processes were reinterpreted as involving intuitive statistics.
For instance, W, P Tanner and his coworkers assumed in their theory of
signal detectibility that the mind “decides” whether there is a stimulus
or only noise, just as a statistician of the Neyman-Pearson school de-
cides between two hypotheses (Tanner & Swets, 1954). In his causal at-
tribution theory, Harold H. Kelley (1967) postulated that the mind
attributes a cause to an effect in the same way as behavioral scientists
have come to do, namely, by performing an analysis of variance
(ANOVA) and testing null hypotheses. These influential theories show
the breadth of the new conception of the “mind as an intuitive statisti-
cian” (Gigerenzer & Murray, 1987).

Three points need to be argued for in closer detail here. First, the de-
velopment of theories based on the conception of the mind as an intu-
itive statistician caused discontinuity in theory rather than being merely
a new, fashionable language. Second, there was an inability of research-
ers to accept the conception of the mind as an intuitive statistician be-
fore they became familiar with inferential statistics as part of their daily
routine. Third, we will show how the tools-to-theories heuristic can
help us to see the limits and possibilities of current cognitive theories
that investigate the mind as an intuitive statistician.

Discontinuity in Cognitive Theory Development

The spectrum of theories that model cognition after statistical inference
ranges from auditory and visual perception to recognition in memory,
and from speech perception to thinking and reasoning. The discontinu-
ity within cognitive theories can be shown in two areas: (a) stimulus de-
tection and discrimination and (b) causal attribution.

What intensity must a 440-Hz tone have to be perceived? How much
heavier than a standard stimulus of 100 gm must a comparison stimulus
be in order for a perceiver to notice a difference? How does one under-
stand the elementary cognitive processes involved in those tasks,
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known today as stimulus detection and stimulus discrimination? Since
Herbart (1816), such processes have been explained by using a thresh-
old metaphor: Detection occurs only if the effect an object has on our
nervous system exceeds an absolute threshold, and discrimination be-
tween two objects occurs if the excitation from one exceeds that from
another by an amount greater than a differential threshold. Weber’s and
Fechner’s laws refer to the concept of fixed thresholds, Titchener
(1896) saw in differential thresholds the long-sought-after elements of
mind (he counted approximately 44,000), and classic textbooks such as
Brown and Thomson’s (1921) and Guilford’s (1954) document
methods and research.

Around 1955, the psychophysics of absolute and differential thresh-
olds was revolutionized by the new analogy between the mind and the
statistician. W, P Tanner and others proposed a theory of signal detect-
ability (TSD), which assumes that the Neyman—Pearson technique of
hypothesis testing describes the processes involved in detection and
discrimination. Recall that in Neyman—-Pearson statistics two sampling
distributions (hypotheses H,and H,) and a decision criterion (whichisa
likelihood ratio) are defined, and then the data observed are trans-
formed into a likelihood ratio and compared with the decision crite-
rion. Depending on which side of the criterion the data fall, the decision
“reject Hyand accept H,” or “accept H, and reject H,” is made. In straight
analogy, the TSD assumes that the mind calculates two sampling distri-
butions, for “noise” and “signal plus noise” (in the detection situation),
and sets a decision criterion after weighing the cost of the two possible
decision errors (Type I and Type II errors in Neyman-Pearson theory,
now called false alarms and misses). The sensory input is transduced
into a form that allows the brain to calculate its likelihood ratio and, de-
pending on whether this ratio is smaller or larger than the criterion, the
participant says “No, there is no signal” or “Yes, there is a signal.” Tanner
(1965) explicitly referred to his new model of the mind as a Neyman-—
Pearson detector and, in unpublished work, his flow charts included a
drawing of a homunculus statistician performing the unconscious
statistics in the brain (Gigerenzer & Murray, 1987, pp. 43-53).

The new analogy between mind and statistician replaced the old con-
cept of a fixed threshold by the twin notions of observer’s attitudes and
observer’s sensitivity. Just as the Neyman—Pearson technique distin-
guishes between a subjective part (e.g., selection of a criterion depend-
ent on cost-benefit considerations) and a mathematical part, detection
and discrimination became understood as involving both subjective
processes, such as attitudes and cost-benefit considerations, and sen-
sory processes. Swets, Tanner, and Birdsall (1964, p. 52) considered this
link between attitudes and sensory processes to be the main thrust of
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their theory. The analogy between technique and mind made new re-
search questions thinkable, such as “How can the mind’s decision crite-
rion be manipulated?” A new kind of data even emerged: Two types of
errors—false alarms and misses—were generated in the experiments,
just as the statistical theory distinguishes two types of error. The devel-
opment of TSD was not motivated by new data; instead, the new theory
motivated a new kind of data. In fact, in their seminal article, Tanner and
Swets (1954) admitted that their theory “appears to be inconsistent
with the large quantity of existing data on this subject,” and they
proceeded to criticize the “form of these data” (p. 401).

The Neyman-Pearsonian technique of hypothesis testing was subse-
quently transformed into a theory of a broad range of cognitive pro-
cesses, ranging from recognition in memory (e.g., Murdock, 1982;
Wickelgreen & Norman, 1966) to eyewitness testimony (e.g.,
Birnbaum, 1983) and discrimination between random and nonrandom
patterns (e.g., Lopes, 1982).

The second example concerns theories of causal reasoning. Albert
Michotte (1946/1963), Jean Piaget (1930), the Gestalt psychologists,
and others had investigated how temporal-spatial relationships be-
tween two or more visual objects, such as moving dots, produced phe-
nomenal causality. For instance, research participants were made to
“perceive” that one dot launches, pushes, or chases another. After the
institutionalization of inferential statistics, Harold H. Kelley (1967) pro-
posed in his attribution theory that the long-sought laws of causal rea-
soning are in fact the tools of the behavioral scientist: R. A. Fisher’s
ANOVA. Just as the experimenter has come to infer a causal relationship
between two variables from calculating an ANOVA and performing an F
test, the man in the street infers the cause of an effect by unconsciously
doing the same calculations. By the time Kelley developed the new met-
aphor for causal inference, about 70% of all experimental articles
already used ANOVA (Edgington, 1974).

The theory was quickly accepted in social psychology; Kelley and
Michaela (1980) reported more than 900 references in 10 years. The vi-
sion of the Fisherian mind radically changed the understanding of
causal reasoning, the problems posed to the participants, and the expla-
nations looked for. Here are a few discontinuities that reveal the
fingerprints of the tool.

1. ANOVA needs repetitions or numbers as data to estimate vari-
ances and covariances. Consequently, the information presented to
the participants in studies of causal attribution consists of informa-
tion about the frequency of events (e.g., McArthur, 1972), which
played no role in either Michotte’s or Piaget’s work.
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2. Whereas Michotte’s work still reflects the broad Aristotelian
conception of four causes (see Gavin, 1972), and Piaget (1930) distin-
guished 17 kinds of causality in children’s minds, the Fisherian mind
concentrates on the one kind of causes for which ANOVA is used as a
tool (similar to Aristotle’s “efficient cause™).

3. In Michotte’s view, causal perception is direct and spontaneous
and needs no inference, as a consequence of largely innate laws that
determine the organization of the perceptual field. ANOVA, in con-
trast, is used in psychology as a technique for inductive inferences
from data to hypotheses, and the focus in Kelley’s attribution theory is
consequently on the data-driven, inductive side of causal perception.

The last point illustrates that the specific #se of a tool, that is, its prac-
tical context, rather than merely its mathematical structure, can also
shape theoretical conceptions of mind. What if Harold Kelley had lived
150 years earlier than he did? In the early 19th century, significance tests
(similar to those in ANOVA) were already being used by astronomers
(Swijtink, 1987). However, they used their tests to reject data, so-called
“outliers,” and not to reject hypotheses. At least provisionally, the as-
tronomers assumed that the theory was correct and mistrusted the data,
whereas the ANOVA mind, following the current statistical textbooks,
assumes the data to be correct and mistrusts the theories. So, to our
19th-century Kelley, the mind’s causal attribution would have seemed
expectation driven rather than data driven: The statistician homunculus
in the mind would have tested the data and not the hypothesis.

Before the Institutionalization of Inferential Statisties

There is an important test case for the present hypothesis: (a) that famil-
iarity with the statistical tool is crucial to the generation of correspond-
ing theories of mind and (b) that the institutionalization of the tool
within a scientific community can strongly further the broad acceptance
of those theories. That test case is the era before the institutionalization
of inferential statistics. Theories that conceive of the mind as an intuitive
statistician should have a very small likelihood of being discovered and
even less likelihood of being accepted. The two strongest tests are cases
where (a) someone proposed a similar conceptual analogy and (b)
someone proposed a similar probabilistic (formal) model. We know of
only one case each, which we will analyze after defining first what is
meant by the term éinstitutionalization of inferential statistics.
Statistical inference has been known for a long time. In 1710, John
Arbuthnot proved the existence of God using a kind of significance test;
as mentioned earlier, astronomers used significance tests in the 19th



14. TOOLS = THEORIES = DATA? K 319

century; G. T. Fechner’s statistical text Kollektivmasslebre (1897) in-
cluded tests of hypotheses; W. S. Gosset (using the pseudonym “Stu-
dent”) published the ¢ test in 1908; and Fisher’s significance testing
techniques, such as ANOVA, as well as Neyman—Pearsonian hypothesis
testing methods, have been available since the 1920s (see Gigerenzer et
al., 1989). Bayes’s theorem was known since 1763. Nonetheless, there
was little interest in these techniques in experimental psychology
before 1940 (Rucci & Tweney, 1980).

By 1942, Maurice Kendall (1942) could comment on the statisticians’
expansion: “They have already overrun every branch of science with a
rapidity of conquest rivaled only by Attila, Mohammed, and the Colo-
rado beetle” (p. 69). By the early 1950s, half of the psychology depart-
ments in leading American universities offered courses on Fisherian
methods and had made inferential statistics a graduate program re-
quirement. By 1955, more than 80% of the experimental articles in lead-
ing journals used inferential statistics to justify conclusions from the
data (Sterling, 1959), and editors of major journals made significance
testing a requirement for the acceptance of articles submitted (e.g.,
Melton, 1962).

The year 1955 can be used as a rough date for the institutionalization
of the tool in curricula, textbooks, and editorials. What became institu-
tionalized as the logic of statistical inference was a mixture of ideas from
two opposing camps, those of R. A. Fisher, on the one hand, and Jerzy
Neyman and Egon S. Pearson (the son of Karl Pearson) on the other.

Genesis and Early Rejeetion of the Analogy

The analogy between the mind and the statistician was first proposed
before the institutionalization of inferential statistics, in the early 1940s,
by Egon Brunswik at Berkeley (e.g., Brunswik, 1943). As Leary (1987)
showed, Brunswik’s probabilistic functionalism was based on a very un-
usual blending of scientific traditions, including the probabilistic
worldview of Hans Reichenbach and members of the Vienna School,
and Karl Pearson’s correlational statistics.

The important point here is that in the late 1930s Brunswik changed
his techniques for measuring perceptual constancies, from calculating
(nonstatistical) Brunswik ratios to calculating Pearson correlations,
such as functional and ecological validities. In the 1940s, he also began
to think of the organism as “an intuitive statistician,” but it took him sev-
eral years to spell out the analogy in a clear and consistent way
(Gigerenzer, 1987b).

The analogy is this: The perceptual system makes inferences from its
environment from uncertain cues by (unconsciously) calculating corre-
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lation and regression statistics, just as the Brunswikian researcher does
when (consciously) calculating the degree of adaptation of a perceptual
system to a given environment. Brunswik’s “intuitive statistician” was a
statistician of the Karl Pearson school, like the Brunswikian researcher.
Brunswik’s intuitive statistician was not well adapted to the psychologi-
cal science of the time, however, and the analogy was poorly
understood and generally rejected (Leary, 1987).

Brunswik’s analogy came too early to be accepted by his colleagues of
the experimental discipline; it came before the institutionalization of
statistics as the method of scientific inference, and it came with the
“wrong” statistical model: correlational statistics. Correlation was an in-
dispensable method not in experimental psychology but in its rival dis-
cipline, known as the Galton-Pearson program or, as Cronbach (1957)
put it, the “Holy Roman Empire” of correlational psychology. The
schism between the two disciplines had been repeatedly taken up in
presidential addresses before the American Psychological Association
(Dashiell, 1939; Cronbach, 1957) and had deeply affected the values
and the mutual esteem of psychologists (Thorndike, 1954). Brunswik
could not succeed in persuading his colleagues from the experimental
discipline to consider the statistical tool of the competing discipline asa
model of how the mind works. Ernest Hilgard (1955), in his rejection of
Brunswik’s perspective, did not mince words: “Correlation is an
instrument of the devil” (p. 228).

Brunswik, who coined the metaphor of “man as intuitive statistician,”
did not survive to see the success of his analogy. It was accepted only after
statistical inference became institutionalized in experimental psychology
and with the new institutionalized tools rather than (Karl) Pearsonian sta-
tistics serving as models of mind. Only in the mid-1960s, however, did in-
terest in Brunswikian models of mind emerge (e.g., Brehmer & Joyce,
1988; Hammond, Stewart, Brehmer, & Steinmann, 1975).

Probabilistic Models Without the “Intuitive Statistician”

Although some probabilistic models of cognitive processes were ad-
vanced before the institutionalization of inferential statistics, they were
not interpreted using the metaphor of the mind as intuitive statistician.
This is illustrated by models that use probability distributions for per-
ceptual judgment, assuming that variability is caused by lack of experi-
mental control, measurement error, or other factors that can be
summarized as experimenter ignorance. Ideally, if the experimenter
had complete control and knowledge (e.g., Laplace’s superintelli-
gence), all probabilistic terms could be eliminated from the theory
(Laplace 1814-1951, p. 1325). This does not hold for a probabilistic
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model that is based on the metaphor. Here, the probabilistic terms
model the ignorance of the mind rather than that of the experimenter;
that is, they model how the “homunculus statistician” in the brain
comes to terms with a fundamental uncertain world. Even if the experi-
menter had complete knowledge, the theories would remain probabil-
istic, because it is the mind that is ignorant and needs statistics.

The key example is L. L. Thurstone, who in 1927 formulated a
model for perceptual judgment that was formally equivalent to the
present-day TSD. However, neither Thurstone nor his followers recog-
nized the possibility of interpreting the formal structure of their model
in terms of the intuitive statistician. Like TSD, Thurstone’s model had
two overlapping normal distributions, which represented the internal
values of two stimuli and which specified the corresponding likeli-
hood ratios, but it never occurred to Thurstone to include the con-
scious activities of a statistician, such as the weighing of the costs of the
two errors and the setting of a decision criterion, in his model. Thus,
neither Thurstone nor his followers took—with hindsight—the small
step to develop the “law of comparative judgment” into TSD. When
Duncan Luce (1977) reviewed Thurstone’s model 50 years later, he
found it hard to believe that nothing in Thurstone’s writings showed
the least awareness of this small but crucial step. Thurstone’s percep-
tual model remained a mechanical, albeit probabilistic, stimulus-re-
sponse theory without a homunculus statistician in the brain. The
small conceptual step was never taken, and TSD entered psychology
by an independent route.

To summarize: There are several kinds of evidence for a close link be-
tween the institutionalization of inferential statistics in the 1950s and
the subsequent broad acceptance of the metaphor of the mind as an in-
tuitive statistician: (a) the general failure to accept, and even to under-
stand, Brunswik’s intuitive statistician before the institutionalization of
the tool, and (b) the case of Thurstone, who proposed a probabilistic
model that was formally equivalent to one important present-day the-
ory of intuitive statistics but was never interpreted in this way.

Limitations and Possibilities of Current Research Pro@rams

How can the preceding analysis be of interest for the evaluation of cur-
rent cognitive theories? One has to recognize that tools like statistics are
not theoretically inert. They come with a set of assumptions and inter-
pretations that may be smuggled, in Trojan horse fashion, into the new
theories and research programs. Tools may have the advantage of open-
ing new conceptual perspectives or making us see new data, but they
may also make us blind in various ways.
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There are several assumptions that became associated with the statis-
tical tool in the course of its institutionalization in psychology, none of
them being part of the mathematics or statistical theory proper. The first
assumption can be called “There is only one statistics.” Textbooks on
statistics for psychologists (usually written by nonmathematicians) gen-
erally teach statistical inference as if there existed only one logic of infer-
ence. Since the 1950s and 1960s, almost all texts teach a mishmash of R.
A. Fisher’s ideas tangled with those of Jerzy Neyman and Egon S.
Pearson, but without acknowledgment. The fact that Fisherians and
Neyman—Pearsonians could never agree on a logic of statistical infer-
ence is not mentioned in the textbooks; neither are the controversial is-
sues that divide them. Even alternative statistical logics for scientific
inference are rarely discussed (Gigerenzer, 1993). For instance, Fisher
(1955) argued that concepts such as Type Il error, power, the setting of a
level of significance before the experiment, and its interpretation as a
long-run frequency of errors in repeated experiments, are concepts in-
appropriate for scientific inference—at best, they could be applied to
technology (his pejorative example was Stalin’s). Neyman, for his part,
declared that some of Fisher’s significance tests are “worse than use-
less” (because their power is less than their size; see Hacking, 1965, p.
99). Textbooks written by psychologists for psychologists usually pres-
ent an intellectually incoherent mix of Fisherian and Neyman-
Pearsonian ideas, but a mix presented as a seamless, uncontroversial
whole (Gigerenzer et al., 1989, chaps. 3 and 6).

This assumption that “statistics is statistics is statistics” reemerges at
the theoretical level in current psychology (Gigerenzer, 2000). For in-
stance, research on so-called “cognitive illusions” assumes that there is
one and only one correct answer to statistical reasoning problems. As a
consequence, other answers are considered to reflect reasoning fallacies.
Some of the most prominent reasoning problems, however, such as the
cab problem (Tversky & Kahneman, 1980, p. 62), do not have just one an-
swer; the answer depends on the theory of statistical inference and the as-
sumptions applied. Birnbaum (1983), for example, showed that the
“only correct answer” to the cab problem claimed by Tversky and
Kahneman, based on Bayes’s rule, is in fact only one of several reasonable
answers—different ones are obtained, for instance, if one applies the
Neyman-Pearson theory (Gigerenzer & Murray 1987, chap. 5).

A second assumption that became associated with the tool during its
institutionalization is that “there is only one meaning of probability.” For
instance, Fisher and Neyman-Pearson had different interpretations of
what a level of significance means. Fisher’s was an epistemic interpreta-
tion; that is, that the level of significance tells us about the confidence we
can have in the particular hypothesis under test, whereas Neyman’s was a
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strictly frequentist and behavioristic interpretation that claimed that a
level of significance tells us nothing about a particular hypothesis but
about the long-run relative frequency of wrongly rejecting the null hy-
pothesis if it is true. In textbooks, these alternative views of what a proba-
bility (e.g., level of significance) could mean are generally neglected—not
to speak of the other meanings, subjective and objective, that have been
proposed for the formal concept of probability (Hacking, 1965).

Many of the so-called cognitive illusions were demonstrated using a
subjective interpretation of probability, specifically, asking people about
the probability they assign to a single event. When instead researchers
began to ask people for judgments of frequencies, these apparently sta-
ble reasoning errors—the conjunction fallacy and the overconfidence
bias, for example—Ilargely or completely disappeared (Gigerenzer,
2000, chap. 12; 2001). Untutored intuition seems to be capable of mak-
ing conceptual distinctions of the sort statisticians and philosophers
make, such as between judgments of subjective probability and those of
frequency (e.g., Cohen, 1986; Lopes, 1981; Teigen, 1983). These results
suggest that the important research questions to be investigated are
“How are different meanings of ‘probability’ cued in every-day lan-
guage?” and “How does this affect judgment?” rather than “How can we
explain the alleged bias of ‘overconfidence’ by some general deficits in
memory, cognition, or personality?”

To summarize: Assumptions entrenched in the practical use of statis-
tical tools—which are not part of the mathematics—can re-emerge in re-
search programs on cognition, resulting in severe limitations in these
programs. This could be avoided by pointing out these assumptions,
and this may even lead to new research questions.

IV. MIND AS COMPUTER

prelnistory

The relation between conceptions of the mind and the computer has
had a long history, involving an interaction among social, economical,
mental, and technological contexts (see Gigerenzer, 2003). Here, we
concentrate on the period of time since the cognitive revolution of the
1960s when the computer, after becoming a standard laboratory tool in
this century, was proposed and, with some delay, accepted, as a model
of mind. In particular, we focus on the development and (delayed) ac-
ceptance of Herbert Simon and Allen Newell’s brand of information
processing psychology (Newell & Simon, 1972).

The invention of the first modern computers, such as the ENIAC and
the EDVAC at the University of Pennsylvania during and after the second
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world war, did not lead immediately to a view of the mind as a computer.
There were two groups drawing a parallel between the human and the
computer, but neither used the computer as a theory of mind. One
group, which tentatively compared the nervous system and the com-
puter, is represented by the mathematician John von Neumann
(1903-1957). The other group, which investigated the idea that ma-
chines might be capable of thought, is represented by the mathematician
and logician Alan Turing (1912-1954). Von Neumann, known as the fa-
ther of the modern computer, wrote about the possibility of an analogy
between the computer and the human nervous system. He thus drew the
comparison on the level of the hardware. Turing (1950), in contrast,
thought the observation that both the digital computer and the human
nervous system are electrical, is based on a “very superficial similarity” (p.
439). He pointed out that the first digital computer, Charles Babbage’s
Analytical Engine, was purely mechanical (as opposed to electrical) and
that the important similarities to the mind are in function, or in software.

Turing discussed the question of whether machines can think rather
than the question of whether the mind is like a computer. Thus, he was
looking in the opposite direction than psychologists were going the
cognitive revolution and, consequently, he did not propose any theo-
ries of mind. He argued that it would be impossible for a human to imi-
tate a computer, as evidenced by humans’ inability to perform complex
numerical calculations quickly. He also discussed the question of
whether a computer could be said to have a free will, a property of hu-
mans (many years later, cognitive psychologists, under the assumptions
that the mind is a computer and that computers lack free will, pondered
the question of whether humans could be said to have one). And, most
famously, the famous Turing test is about whether a machine can imitate
a human mind, but not vice versa.

Turing (1969) anticipated much of the new conceptual language and
even the very problems Newell and Simon were to attempt, as we will
see. With amazing prophecy, Turing suggested that many intellectual is-
sues can be translated into the form “find a number 7 such that ...”; that
is, that “search” is the key concept for problem solving, and that White-
head and Russell’s (1935) Principia Mathematica might be a good start
for demonstrating the power of the machine (McCorduck, 1979, p. 57).
Still, Turing’s work had practically no influence on artificial intelligence
in Britain until the mid-1960s (McCorduck, 1979, p. 68).

Newell’s and Simon’s New Coneeption: Meaning and Genesis

Babbage’s mechanical computer was preceded by human computers
performing highly limited tasks of calculation. Similarly, Newell and



14. TOOLS = THEORIES = DATA? Kk 325

Simon’s first computer program, the Logic Theorist (LT), was preceded
by a human computer. Before the LT was up and running, Newell and
Simon reconstructed their computer program out of human compo-
nents (namely, Simon’s wife, children, and several graduate students),
to see if it would work. Newell wrote up the subroutines of the LT pro-
gram on index cards:

To each member of the group, we gave one of the cards, so that each
person became, in effect, a component of the LT computer program—
asubroutine—that performed some special function, or acomponent
of its memory. It was the task of each participant to execute his or her
subroutine, or to provide the contents of his or her memory, when-
ever called by the routine at the next level above that was then in
control.

So we were able to simulate the behavior of the LT with a computer con-
sisting of human components ... The actors were no more responsible
than the slave boy in Plato’s Meno, but they were successful in proving
the theorems given them. (Simon, 1991, p. 207)

As in Babbage’s engine, the essence of the functioning of the LT is a di-
vision of labor—each human actor requiring little skill and repeating
the same routine again and again. Complex processes are achieved by
an army of workers who never see buta little piece of the larger picture.

However, there is an important difference between Babbage’s me-
chanical computer and Simon’s LT (and their human precursors).
Babbage’s engine performed numerical calculations; Simon’s computer
matched symbols, applied rules to symbols, and searched through lists of
symbols—what is now generally known as symbol manipulation.

An important precondition for the view of mind as a computer is the
realization that computers are symbol manipulation devices, in addi-
tion to being numerical calculators: As long as computers are viewed
as being restricted to the latter, and as long as mental activities are seen
as more complex than numerical calculation, it is hardly surprising
that computers are not proposed as a metaphor for the mind. Newell
and Simon were among the first to realize this. In interviews with
Pamela McCorduck (1979, p. 129), Allen Newell recalled, “I've never
used a computer to do any numerical processing in my life.” Newell’s
first use of the computer at RAND corporation—a prehistoric card-
programmed calculator hooked up to a line printer—was calculating
and printing out symbols representing airplanes for each sweep of a
radar antenna.

The symbol-manipulating nature of the computer was important to
Simon because it corresponded to some of his earlier views on the na-
ture of intelligence:
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The metaphor I'd been using, of a mind as something that took some
premises and ground them up and processed them into conclusions,
began to transform itself into a notion that a mind was something
which took some program inputs and data and had some processes
which operated on the data and produced output. (cited in
McCorduck, 1979, p. 127)

It is interesting to note that 20 years after seeing the computer as a
symbol manipulating device, Newell and Simon came forth with the ex-
plicit hypothesis that a physical symbol system is necessary and suffi-
cient for intelligence.

The LT generated proofs for theorems in symbolic logic, specifically,
the first 25 or so theorems in Whitehead and Russell’s (1935) Principia
Matbematica. It even managed to find a proof more elegant than the
corresponding one in the Principia.

In the summer of 1958, psychology was given a double dose of the
new school of information-processing psychology. One was the publica-
tion of the Psychological Review article “Elements of a Theory of Hu-
man Problem Solving” (Newell, Shaw, & Simon, 1958). The other was
the Research Training Institute on the Simulation of Cognitive Processes
at the RAND institute, which we discuss later.

The Psychological Review article is an interesting document of the
transition between the view that the LT is a tool for proving theorems in
logic (the artificial intelligence view) and an emerging view that the LT is
a model of human reasoning (the information-processing view). The
authors go back and forth between both views, explaining that “the pro-
gram of LT was not fashioned directly as a theory of human behavior; it
was constructed in order to get a program that would prove theorems in
logic” (Newell, Shaw, & Simon, 1958, p. 154) but later that LT “provides
an explanation for the processes used by humans to solve problems in
symbolic logic” (Newell et al., 1958, p. 163). The evidence provided for
projecting the machine into the mind is mainly rhetorical. For instance,
the authors spend several pages arguing for the resemblance between
the methods of LT and concepts such as set, insight, and hierarchy,
described in the earlier psychological literature on human problem
solving.

In all fairness, despite the authors’ claim, the resemblance to these
earlier concepts as they were used in the work of Karl Duncker,
Wolfgang Kéhler, and others, is slight. It is often a useful strategy to hide
the amount of novelty and claim historical continuity. When Tanner and
Swets, 4 years earlier, also in Psychological Review, proposed that an-
other scientific tool, Neyman—Pearsonian techniques of hypothesis test-
ing, would model the cognitive processes of stimulus detection and
discrimination, their signal detection model also clashed with earlier
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notions, such as the notion of a sensory threshold. Tanner and Swets
(1954, p. 401), however, chose not to conceal this schism, explicitly stat-
ing that their new theory “appears to be inconsistent with the large
quantity of existing data on this subject.” There is a different historical
continuity in which Simon and Newell’s ideas stand: the earlier Enlight-
enment view of intelligence as a combinatorial calculus. What was later
called the “new mental chemistry” pictured the mind as a computer
program:

The atoms of this mental chemistry are symbols, which are combinable
into larger and more complex associational structures called /lists and
list structures. The fundamental “reactions” of the mental chemistry use
elementary information processes that operate upon symbols and sym-
bol structures: copying symbols, storing symbols, retrieving symbols, in-
putting and outputting symbols, and comparing symbols. (Simon, 1979,
p- 63)

This atomic view is certainly a major conceptual change in the views
about problem solving compared with the theories of Kohler,
Wertheimer, and Duncker. But it bears much resemblance to the combi-
natorial view of intelligence of the Enlightenment philosophers.’

The different physical levels of a computer led to Newell’s cognitive
hierarchy, which separates the knowledge-level, symbol-level, and regis-
ter-transfer levels of cognition. As Arbib (1993) pointed out, the seriality
of 1971-style computers is actually embedded in Newell’s cognitive
theory.

One of the major concepts in computer programming that made its
way into the new models of the mind is the decomposition of complex-
ity into simpler units, such as the decomposition of a program into a hi-
erarchy of simpler subroutines, or into a set of production rules. On this
analogy, the most complex processes in psychology, and even scientific
discovery, can be explained through simple subprocesses (Langley,
Simon, Bradshaw, & Zytkow, 1987).

The first general statement of Newell and Simon’s new vision of mind
appeared in their 1972 book, Human Problem Solving. In this book, the
authors argue for the idea that higher level cognition proceeds much
like the behavior of a production system, a formalism from computer

'The new view was directly inspired by the 19th-century mathematician George Boole
who, in the spirit of the Enlightenment mathematicians such as Bernoullis and Laplace, set out
to derive the laws oflogic, algebra, and probability from what he believed to be the laws of hu-
man thought (Boole, 1854/1958). Boole’s algebra culminated in Whitehead and Russell’s
(1935) Principia Mathematica, describing the relationship between mathematics and logic,
and in Claude E. Shannon’s seminal work (1938), which used Boolean algebra to describe the
behavior of relay and switching circuits (McCorduck, 1979, p. 41).
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science (and before that, from symbolic logic) that had never been used
in psychological modeling before:

Throughout the book we have made use of a wide range of organiza-
tional techniques known to the programming world: explicit flow con-
trol, subroutines, recursion, iteration statements, local naming,
production systems, interpreters, and so on .... We confess to a strong
premonition that the actual organization of human programs closely
resembles the production system organization. (Newell & Simon,
1972, p. 803)

We will not attempt to probe the depths of how Newell and Simon’s
ideas of information processing changed theories of mind; the common-
place usage of computer terminology in the cognitive psychological liter-
ature since 1972 is a reflection of this. It seems natural for present-day
psychologists to speak of cognition in terms of encoding, storage, re-
trieval, executive processes, algorithms, and computational cost.

New Eacperiments, New Data

New tools can transform the kinds of experiments performed and the
data collected. This happened when statistical tools turned into theo-
ries of mind, and a similar story is to be told with the conceptual change
brought about by Newell and Simon—it mandated a new type of experi-
ment, which in turn involved new kinds of subjects, data, and justifica-
tion. In academic psychology of the day, the standard experimental
design, modeled after the statistical methods of Ronald A. Fisher, in-
volved many subjects and randomized treatment groups. The 1958 Psy-
chological Review article uses the same terminology of design of the
experiment and subject but radically changes their meanings. There are
no longer groups of human or animal subjects. There is only one sub-
ject: an inanimate being named LT. There is no longer an experiment in
which data are generated by either observation or measurement. Exper-
iment takes on the meaning of simulation.

In this new kind of experiment, the data are of an unforeseen type:
computer printouts of the program’s intermediate results. These new
data, in turn, require new methods of hypothesis testing. How did
Newell and Simon determine whether their program was doing what
minds do? There were two methods. For Newell and Simon, simulation
was a form of justification itself: a theory that is coded up as a working
computer program shows that the processes it describes are, at the very
least, sufficient to perform the task, or, in the more succinct words of
Simon (1992), “A running program is the moment of truth” (p. 155).
Furthermore, a stronger test of the model is made by comparing the
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computer’s output to the think-aloud protocols of human participants.
Newell and Simon put their subject, the LT, as a coauthor of a paper sub-
mitted to the Journal of Symbolic Logic. Regrettably, the paper was re-
jected (as it contained no new results from modern logic’s point of
view), and the LT never tried to publish again.

The second dose of information processing (after the Psychological
Review article) administered to psychology was the Research Training
Institute on the Simulation of Cognitive Processes at the RAND institute,
organized by Newell and Simon. The institute held lectures and semi-
nars, taught IPL-IV (Information Processing Language-IV) program-
ming, and demonstrated LT, the General Problem Solver, and the EPAM
(Elementary Perceiver and Memorizer) model of memory on the RAND
computer. In attendance were some figures who would eventually de-
velop computer simulation methods of their own, including George
Miller, Robert Abelson, Bert Green, and Roger Shepard.

An early, but deceptive, harbinger of acceptance for the new infor-
mation-processing theory was the publication, right after the summer
institute, of Plans and the Structure of Bebhavior (Miller, Galanter, &
Pribram, 1960), written mostly by George Miller. This book was so
near to Newell and Simon’s ideas that it was at first considered a form
of theft, although the version of the book that did see the presses is
filled with citations recognizing Newell, Shaw, and Simon. Despite the
1959 dispute with Newell and Simon over the ownership and validity
of the ideas within, this book drew a good deal of attention from all of
psychology.

It would seem the table was set for the new information-processing
psychology; however, it did not take hold. Simon complained of the
psychological community who took only a cautious interest in their
ideas. Computers were not yet entrenched in the daily routine of
psychologists.?

2Another evidence for this view is that a similar development within the philosophy of mind
of the 1960s did not support the acceptance of the computer metaphor within the psychologi-
cal community either. Hilary Putnam’s articles on the status of psychological predicates, and
on the relevance of Turing's work for a better understanding of the relation between the mind
and the brain, became quickly influential among philosophers. In particular, Putnam’s work
explained a crucial weakness of mind-brain identity theories that had been quite widespread
during the 1950s. Putnam argued for a distinction between mind and brain in terms of the dif-
ference between software and hardware, thus showing that mental states can be realized in
quite different physical systems (Putnam, 1960, 1967a, 1967b, all reprinted in Putnam, 1975).
Such an abstract argument could influence the philosophical debate, because it was restricted
to a principled, ontological understanding of the mind-body relation. The new (computer)
functionalism was also quickly seen as a good basis for the autonomy of psychology in relation
to other sciences such as biology or neurophysiology. However, even this did not help the com-
puter metaphor to become more popular within psychology. Although the metaphor was avail-
able, and although it had started to do some fruitful work within a different community, the
psychological community remained reluctant or ignorant.
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No Familiar Tools, No Aeeeptanee

We take two institutions as case studies to demonstrate the part of the
tools-to-theories heuristic which concerns acceptance: (a) the Center
for Cognitive Studies at Harvard, and (b) Carnegie Mellon University.
The former never came to fully embrace the new information-process-
ing psychology. The latter did, but after a considerable delay.

George Miller, the cofounder of the Center at Harvard, was certainly a
proponent of the new information-processing psychology. Given
Miller’s enthusiasm, one might expect the center, partially under
Miller’s leadership, to blossom into information-processing research. It
never did. Looking at the Annual Reports of the center from 1963-1969,
we found only a few symposia or papers dealing with computer
simulation.

Although the center had a PDP—4C computer, and the reports antici-
pated the possibility of using it for cognitive simulation, as far as 1969 it
never happened. The reports mention that the computer served to run
experiments, to demonstrate the feasibility of computer research, and
to draw visitors to the laboratory. However, difficulties involved with
using the tool were considerable. The PDP saw 83 hours of use, on an
average week in 1965-1966, but 56 of these were spent on debugging
and maintenance. In the annual reports are several remarks of the type
“It is difficult to program computers ... Getting a program to work may
take months.” They even turned out a 1966 technical report called “Pro-
grammanship, Or How to Be One-Up On a Computer Without Actually
Ripping Out Its Wires.”

What might have kept the Harvard computer from becoming a meta-
phor of the mind was that the researchers could not integrate this tool
into their everyday laboratory routine. The tool turned out to be a
steady source of frustration. Simon (1979) took notice of this:

Perhaps the most important factors that impeded the diffusion of the
new ideas, however, were the unfamiliarity of psychologists with com-
puters and the unavailability on most campuses of machines and associ-
ated software (list processing programming languages) that were well
adapted to cognitive simulation. The 1958 RAND Summer Workshop,
mentioned earlier, and similar workshops held in 1962 and 1963, did a
good deal to solve the first problem for the 50 or 60 psychologists who
participated in them; but workshop members often returned to their
home campuses to find their local computing facilities ill-adapted to
their needs. (p. 365)

At Carnegie Mellon, Newell, Simon, a new information processing-
enthusiastic department head, and a very large National Institute of
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Mental Health grant were pushing “the new [information-processing]
religion” (H. A. Simon, personal communication, June 22, 1994). Even
this concerted effort failed to proselytize the majority of researchers
within their own department. This again indicates that entrenchment of
the new tool into the everyday practice was an important precondition
for the spread of the metaphor of the mind as a computer.

Aceeptance of Theory Follows Familiarity With Tool

In the late 1950s, at Carnegie Mellon, the first doctoral theses involving
computer simulation of cognitive processes were being written (H. A.
Simon, personal communication, June 22, 1994). However, this was not
representative of the national state of affairs. In the mid-1960s, a small
number of psychological laboratories were built around computers, in-
cluding Carnegie Mellon, Harvard, Michigan, Indiana, MIT, and Stan-
ford (Aaronson, Grupsmith, & Aaronson, 1976, p. 130). As indicated by
the funding history of National Institute of Mental Health grants for cog-
nitive research, the amount of computer-using research tripled over the
next decade: In 1967, only 15% of the grants being funded had budget
items related to computers (e.g., programmer salaries, hardware, sup-
plies); by 1975, this figure had increased to 46%. The late 1960s saw a
turn toward mainframe computers, which lasted until the late 1970s,
when the microcomputer started its invasion of the laboratory. In the
1978 Behavioral Research Methods & Instrumentation conference, mi-
crocomputers were the issue of the day (Castellan, 1981, p. 93). By
1984, the journal Bebavioral Research Methods & Instrumentation ap-
pended the word Computers to its title to reflect the broad interest in
the new tool. By 1980, the cost of computers had dropped an order of
magnitude from what it was in 1970 (Castellan, 1981, 1991). During the
last 20 years, computers have become the indispensable research tool
of the psychologist.

Once the tool became entrenched into everyday laboratory routine, a
broad acceptance of the view of the mind as a computer followed. In the
early 1970s, information-processing psychology finally caught on at
Carnegie Mellon University. Every Carnegie Mellon authored article in
the 1973 edition of the Carnegie Symposium on Cognition mentions
some sort of computer simulation. For the rest of the psychological
community, who were not as familiar with the tool, the date of broad ac-
ceptance was years later. In 1979, Simon estimated that, from about
1973 to 1979, the number of active research scientists working in the in-
formation processing vein had “probably doubled or tripled.”

This does not mean that the associated methodology became ac-
cepted as well. It clashed too strongly with the methodological ritual
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that was institutionalized during the 1940s and 1950s in experimental
psychology. We use the term ritual here for the mechanical practice of a
curious mishmash between Fisher’s and Neyman—Pearson’s statistical
techniques that was taught to psychologists as the sine qua non of scien-
tific method. Most psychologists assumed, as the textbooks have told
them, that there is only one way to do good science. However, their own
heroes—Fechner, Wundt, Pavlov, Kohler, Bartlett, Piaget, Skinner, and
Luce, to name a few—never had used this ritual, but some had used ex-
perimental practices that resembled the newly proposed methods used
to study the mind as computer.

pragmatics

Some have objected to this analysis of how tools turned into theories of
mind. They argue that the tool-to-theories examples are merely illustra-
tions of psychologists being quick to realize that the mathematical struc-
ture of a tool (e.g., ANOVA, or the digital computer) is precisely that of
the mind.

This repeats a simplistic version of realism we have already criticized
(see section IT). Now, we can add that the assumption that new theories
just happen to mirror the mathematical structure of the tool overlooks
the important pragmatics of a tool’s use (which is independent of the
mathematical structure). The same process of projecting pragmatic as-
pects of a tool’s use into a theory can be shown for the view of the mind
as a computer. One example is Levelt’s (1989) model of speaking. The
basic unit in Levelt’s model, which he calls the processing component,
corresponds to the computer programmer’s concept of a subroutine.
The model borrowed not only the subroutine as a tool but also the prag-
matics of how subroutines are constructed.

A subroutine (or subprocess) is a group of computer instructions,
usually serving a specific function, which is separated from the main
routine of a computer program. It is common for subroutines to per-
form often-needed functions, such as extracting a cube root or round-
ing a number. There is a major pragmatic issue involved in writing
subroutines that centers around what is called the principle of isolation
(Simon & Newell, 1986). The issue is whether subroutines should be
black boxes. According to the principle of isolation, the internal work-
ings of the subroutine should remain a mystery to the main program,
and the outside program should remain a mystery to the subroutine.
Subroutines built without respect to the principle of isolation are clear
boxes that can be penetrated from the outside and escaped from the in-
side. To the computer, of course, it makes no difference whether the
subroutines are isolated or not. Subroutines that are not isolated work
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just as well as those that are. The only difference is a psychological one.
Subroutines that violate the principle of isolation are, from a person’s
point of view, harder to read, write, and debug. For this reason, intro-
ductory texts on computer programming stress the principle of
isolation as the essence of good programming style.

The principle of isolation—a pragmatic rule of using subroutines—
has a central place in Levelt’s model, where the processing components
are “black boxes” and constitute what Levelt considers to be a definition
of Fodor’s notion of informational encapsulation (Levelt, 1989, p. 15).
In this way, Levelt’s psychological model embodies a maxim of good
computer programming methodology: the principle of isolation. That
this pragmatic feature of the tool shaped a theory of speaking is not an
evaluation of the quality of the theory. In fact, this pragmatic feature of
the subroutine has not always served the model well: Kita (1993) and
Levinson (1992) have attacked Levelt’s model at its Achilles heel—its
insistence on isolation.

Limitations and Pessibilities of Current Research programs

The computer metaphor has been so successful that many find it hard
to see how the mind could be anything else: to quote Philip John-
son-Laird (1983), “The computer is the last metaphor; it need never be
supplanted” (p. 10). Such a stunningly realistic attitude interpretation
overlooks that the computer metaphor, as every metaphor, has some
important limitations. They can be inferred from two main discrepan-
cies: First, human minds are much better at certain tasks than even the
most developed computer programs and robots; second, digital com-
puters are much better at certain tasks than human minds. Although
human minds are still much better in, say, pattern recognition, the un-
derstanding of emotion and expressions, or in the learning of fast in-
tentional bodily movement (as in sports), computer programs
succeed in complex arithmetical calculations (e.g., Churchland, 1995,
chap. 9). The important task is to understand why the differences ob-
tain.

Alan Turing predicted in 1945 that computers will one day play very
good chess; and others have hoped that chess programming would con-
tribute to the understanding of how humans think. Turin’s prediction
turned out to be correct, as shown by the famous defeat of world chess
champion Garry Kasparov against the IBM computer program Deep
Blue in 1997. The other hopes did not turn out to be correct, and this
signals one of the limitations of the computer metaphor.

Consider the different heuristics chess computers and human beings
use. Both have to use heuristics, because there is no way to fully com-
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pute all possible moves in order to figure out the best strategy to win a
given game. Both need to pursue intermediate goals that offer some
probability of leading to success if repeatedly achieved. The heuristics
computers and human beings use are different because they work on
different capacities. Deep Blue has the enormous power to go through
200 million operations every second and uses a relatively simple heuris-
tic to compute how good each of these moves is. Human chess experts
do not generate all these possible moves but use the capacity of spatial
pattern recognition, which is unmatched by any existing computer pro-
gram. Kasparov once said that he thinks only 4 or 5 moves ahead,
whereas Deep Blue can look ahead about 14 turns. Also, Herbert Simon
has tried to take the opposite direction of Turing’s suggestion, that is,
Simon and his colleagues interviewed human chess experts in order to
extract their heuristics and then implement them on chess computers.
These programs did not play very well, however. The heuristics used in
computer programs and in human minds are not identical.

The current alternative to the digital computer is connectionism, or
models of parallel distributed processing. These have various advan-
tages over traditional computer models, and they have important appli-
cations within artificial intelligence research. However, as models of the
mind they are not without limitations either. For instance, connection-
ist researchers have been unable to replicate so far the nervous system
of the simplest living things, such as the worm Caenorbabdis elegans,
which has 302 neurons, even though the patterns of interconnections
are perfectly well known (Thomas & Lockery, 2000; White, Southgate,
Thomson, & Brenner, 1986). We should not adopt, certainly not by now;
a realistic interpretation of the computer and connectionist models of
the mind.

Other objections have been advanced against the program of artificial
intelligence, but we are skeptical about these. For instance, John Searle
has advanced the argument that computer programs do not, and can-
not, realize true mentality. His argument is that they merely perform
syntactical operations upon symbols, whereas real minds additionally
possess a semantic understanding of symbols and symbolic operations
(Searle, 1984). Most critical in this argument is the unquestioned
assumption of a certain theory of meaning or intentionality. And there
are other skeptical arguments. They concern the question of whether,
say, computer algorithms can ever reveal the full mathematical capaci-
ties of human beings, or whether computers or artificial neural net-
works possess the phenomenal or qualitative features that accompany
many mental states, such as perceptions or feelings. What connects
these objections is that they are based on unquestioned intuitions
about human minds and computers or artificial neural networks
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(Churchland, 1995, chap. 9). To find out real differences between about
minds and computers (or artificial neural networks), we should not rely
on mere intuitions but instead try to empirically identify the various
heuristics used by them. Moreover, we must show how human (and
other living) minds differ not only in their functional architecture but
also in their physical architecture from computers and connectionistic
networks. We must work out how the software depends on the
hardware.

V. THE GENERATION OF THEORIES RECONSIDERED

The tools-to-theories heuristic is about scientists’ practice, that is, the
analytical and physical tools used in the conduct of empirical research.
This practice has a long tradition of neglect. The very philosophers who
called themselves logical empiricists had, ironically, no interest in the
empirical practice of scientists. Against their reduction of observation to
pointer reading, Kuhn (1970) has emphasized the theory-ladenness of
observation. Referring to perceptual experiments and Gestalt switches,
he wrote, “scientists see new and different things when looking with fa-
miliar instruments in places they have looked before” (p. 111). Both the
logical empiricists and Kuhn were highly influential on psychology (see
Toulmin & Leary, 1985), but neither view has emphasized the role of
tools and experimental conduct. Only recently have they been scruti-
nized more closely, both in the history of psychology and generally in
the history and philosophy of science as well (Danziger, 1985, 1987,
1990; Galison, 1987; Hacking, 1983; Lenoir, 1986, 1988). Without
being able to discuss such analyses here, it can be pointed out that they
have made it highly plausible that theory is often inseparable from in-
strumental practices.

Should we go on telling our students that new theories originate
from new data? If only because “little is known about how theories come
to be created,” as Anderson introduces reader to his Cognitive Psychol-
ogy (1980, p. 17)? On one widespread view, theories are simply “guesses
guided by the unscientific” (Popper, 1935/1959, p. 278). Against this, we
wish to emphasize that in order to understand the generation of theo-
ries appropriately, the familiar theory—data relation should be supple-
mented by a third factor: the use(s) of tools. Moreover, it cannot be
overemphasized that some guesses are better than others from the very
beginning. Even when rational evaluation of theories has not been
achieved, the question of which theories are plausible and serious can-
didates must have its own rationale. The tools-to-theories heuristic is
one possible answer, even if the metaphorical use of tools requires
continuous critical reflection.
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