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Abstract: The terms nested sets, partitive frequencies, inside-outside
view, and dual processes add little but confusion to our original analysis
(Gigerenzer & Hoffrage 1995; 1999). The idea of nested set was
introduced because of an oversight; it simply rephrases two of our
equations. Representation in terms of chances, in contrast, is a novel
contribution yet consistent with our computational analysis — it uses
exactly the same numbers as natural frequencies. We show that non-
Bayesian reasoning in children, laypeople, and physicians follows
multiple rules rather than a general-purpose associative process in a
vaguely specified “System 1.” It is unclear what the theory in “dual
process theory” is: Unless the two processes are defined, this
distinction can account post hoc for almost everything. In contrast, an
ecological view of cognition helps to explain how insight is elicited from
the outside (the external representation of information) and, more
generally, how cognitive strategies match with environmental structures.
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For many years researchers believed that people are “not Baye-

sian at all” (Kahneman & Tversky 1972, p. 450) and that “the gen-

uineness, the robustness, and the generality of the base-rate

fallacy are matters of established fact” (Bar-Hillel 1980,

p- 215). In 1995, however, we showed that Bayesian reasoning

depends on and can be improved by external representations

(Gigerenzer & Hoffrage 1995). This ecological approach led to

practical applications in medicine, law, and education; natural

frequency representations are now part of evidence-based medi-
cine, high-school mathematics textbooks, and cancer-screening
information brochures, helping people to understand risks

(Gigerenzer 2002; Hoffrage et al. 2000).

Our 1995 article was about the general question of how various
external representations facilitate Bayesian computations, not
about natural frequencies versus single-event probabilities, as
Barbey & Sloman (B&S) suggest. It contained four main predic-
tions (Gigerenzer & Hoffrage 1995, pp. 691-92):

Prediction 1: Natural frequencies (standard frequency formats)
elicit a higher proportion of Bayesian algorithms than standard
probability formats do.

Prediction 2: Short probability formats elicit a higher proportion
of Bayesian algorithms than standard probability formats do.
Prediction 3: Natural frequencies, whether in the standard or
short format, elicit the same proportion of Bayesian

algorithms.

Pre(%iction 4: Relative frequencies elicit the same (small)
proportion of Bayesian algorithms as standard probability
formats do.

These predictions follow from Equations 1 to 3 in Gigerenzer

and Hoffrage (1995). If information is presented in the standard

probability format or in normalized (relative) frequencies, then
the following computations are necessary (H = hypothesis,

D = data):

p(H|D)=p(H)p(D|H)/[p(H)p(D|H)+p(=H)p(D|(-H)] (1)

If information is instead represented in natural frequencies (stan-
dard or short format), then Bayesian computations reduce to:

p(H|D)=a/(a+D) (2)

Here, a and b are natural frequencies. If probabilities are
presented in short probability format, then the computations
reduce to:

p(H|D) =p(D&H)/p(D) (3)

B&S mistakenly present (i) experiments reporting facilitation
with probability representations (as in our Prediction 2) and
(ii) experiments finding no facilitation with relative frequencies
(exactly our Prediction 4) as if these were contradicting or going
beyond our position, without making any mention of our Predic-
tions 2, 3, and 4. The upshot is that the “nested set structure” expli-
cit in our Equations 2 and 3 — the observation that the numerator
is a subset of the denominator — is then presented as a new,
alternative explanation. The predictions in B&S’s Table 2 are
based on the erroneous idea that our computational analysis was
restricted to natural frequencies, as is the claim in their Table 1
that our computational analysis was only about a “cognitive



process uniquely sensitive to natural frequency formats.” In the
remainder of this comment, we will clarify the key ideas for the
reader.

What are natural frequencies? Our Figure 1 shows the
differences between natural and normalized frequencies. Natural
frequencies leave the naturally occurring base rates intact,
whereas normalized frequencies standardize these. Note, first,
that all natural frequencies have a “nested set structure” in the
sense that they simplify Bayesian computations, as defined in
Equation 2. Hence, when B&S talk of “natural frequency
formats that were not partitioned into nested set relations” (sect.
24, para. 2), these are not natural frequencies but instead
normalized frequencies. This conceptual confusion makes the
notion of nested sets appear as a different and broader
explanation when it in fact simply paraphrases Equation 2.
Second, natural frequencies refer to joint events, such as H&D
events, as shown by the four numbers at the bottom of
Figure 1-1. It is the structure of the entire tree that
distinguishes natural from normalized frequencies. In contrast,
an isolated frequency statement, represented by one single
branch in the tree (such as 10 out of 1,000), could be part of a
tree with natural frequencies, or normalized frequencies, or — if
there is no second variable — no tree at all. Therefore, it is
misleading to call the isolated statement “one of every 100
Americans will have been exposed to Flu strain X” (Table 5 of
the target article) a natural frequency, as B&S do. In the same
table caption, the relative frequency “33% of all Americans” is

1. Natural Frequencies

1,000 women
10 990
cancer no cancer
8 2 99 891
positive  negative positive  negative
3. Normalized Frequencies
1,000 women
10 990
cancer no cancer
----------------- Normalization ------------------
1,000 women 1,000 women
with cancer without cancer
800 200 10 990
positive  negative positive  negative

Figure 1 (Gigerenzer & Hoffrage).
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wrongly called a “single-event probability.” This incorrect use of
terms causes B&S to draw erroneous conclusions, such as that
“natural frequencies and single-event probabilities are rated
similarly in their perceived clarity, understandability ... [etc.]”
(sect. 2.10).

Next, the term “single-event probability” is irrelevant to our
computational analysis (see Equations 1-3). A single-event
probability can refer to at least three different concepts: a con-
ditional probability p(D|H), which makes Bayesian compu-
tations difficult (Prediction 1 and Equation 1), a joint
probability p(D&H), which makes Bayesian computations
easier (Prediction 2 and Equation 3), and a simple single-
event probability, such as a “30% chance of rain,” which has
nothing to do with Bayesian inference but invites misunder-
standings, because, by definition, no reference class is speci-
fied (Gigerenzer et al. 2005).

B&S’s distinction between a “natural frequency algorithm,”
“natural frequency heuristic,” and a “non-evolutionary natural
frequency heuristic” is emphatically not ours. We cannot see
how these would lead to different predictions, since in each
case the algorithm computes Equation 2. We recommend not
using the term heuristic for a version of Bayes’s rule, since a
heuristic, like a shortcut, ignores information. However, the
term heuristics applies to shortcuts that approximate Bayes’s
rule under specific conditions such as rare events, where they
lead to fast and frugal Bayesian reasoning (Table 1). Martignon
et al. (2003) analyzed the connection between natural frequency
trees and fast and frugal trees.

2. Chances

1,000 chances

N

10 990
cancer no cancer
8 2 99 891
positive  negative positive  negative

4. Conditional Probabilities

One woman

T

0.01 0.99
cancer no cancer

Normalization ------------------

One woman One woman
with cancer without cancer

0.8 0.2 0.1 0.9

positive  negative positive  negative

Natural frequencies, chances, normalized frequencies, and conditional probabilities. Note that

B&S’s “chances” are exactly the same numbers as natural frequencies and lead to identical computational demands (see Eq. 2).
Contrary to B&S’s interpretation, chances are not mathematical probabilities, since these cannot be normalized over the interval
[0,1] — otherwise, chances would no longer facilitate Bayesian computations. The fact that “chances” refer to a single event does not
transform them into mathematical probabilities: not all statements about singular events are probabilities. Normalized frequencies
are derived from natural frequencies by normalizing the base rate frequencies to some common number (here: 1,000), and
conditional probabilities normalize to the interval [0,1]. Note that our distinction is neither that between frequencies versus
probabilities nor that between natural frequencies versus single-event probabilities, as B&S suggest; we distinguish between natural
frequencies which facilitate Bayesian computations and normalized frequencies and conditional probabilities which do not.
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Table 1 (Gigerenzer & Hoffrage). Bayesian strategies and cognitive shortcuts for approximating Bayes rule. Based on the
experimental evidence in Gigerenzer and Hoffrage (1995, pp. 689—-691). n(D&H) is the natural frequency of DGH cases. We suggest
that Barbey & Sloman consider these rules as mechanisms for their System 2, to be interpreted as an adaptive toolbox rather than a

single, general-purpose calculus

Strategy/Shortcut Formal Equivalent

Conditions in which the shortcut is
ecologically rational

Conditional Probability Representation

Bayesian Strategy p(H)p(D | H) / [p(H)p(D | H
Rare-Event Shortcut pH)p(D | H) / [p(H)p(D | H
Big Hit-Rate Shortcut p(H)/Ip(H) +p(—H)p(D |—
Comparison Shortcut pH)p(D | H) / p(—H)(D |-
Quick-and-Clean Shortcut p(H)/p(D |—H)

Natural Frequency Representation
Bayesian Strategy
Comparison Shortcut
Pre-Bayes

n(D&H) /n(D&—H)

n(H)/[In(D&H) + n(D&—H)]

)+ p(—H)p(D |—H)]
+ (D |—H)] p(H) is rare and p(—H) thus approaches 1
H)| p(D | H) is very large approaches 1

p(D&—H) is much larger than p(D&H)
All 3 conditions above

n(D&H)/[n(D&H) + n(D&—H)]

n(D&—H) is much larger than n(D&H)
n(D&H) is close to n(H)

B&S repeatedly refer to our evolutionary argument that natural
sampling characterizes the way people learned individually in
human history. But we did not — nor can one — use this general
argument to derive Predictions 1 to 4 or the seven results reported
in our 1995 article; these derivations were based solely on a com-
putational analysis. The evolutionary perspective, however, pro-
vides a general framework for finding the right questions.
Instead of asking what cognitive deficits explain reasoning that
deviates from Bayes’s rule (such as an error-prone System 1),
the question should be how and why reasoning depends on the
external representation of information. An ecological framework
postulates that thought does not simply emerge inside the mind.
Every theory of reasoning needs to specify both cognitive strat-
egies and the environmental structures under which these strat-
egies work well (just as with the shortcuts in Table 1).

The “nested sets” explanation originated from an oversight.
The authors credited by B&S as the originators of the “nested
set theory” missed the distinction between natural and
normalized frequencies, and implied that we had predicted that
any kind of frequencies would facilitate reasoning. For instance,
Johnson-Laird et al. (1999, p. 81) stated: “In fact, data in the
form of frequencies by no means guarantee good Bayesian
reasoning,” and referred to a study reporting that normalized
frequencies showed no facilitation. Since mental models theory
cannot account for the facilitating effect of natural frequencies or
“chances” (we discuss this further on), Johnson-Laird et al.
introduced a “subset principle” identical to our 1995 Equation 2,
without mentioning its source, and presented it as an alternative
explanation to ours.

Macchi and Mosconi (1998) seem to have been the first who
confused natural frequencies with any kind of frequencies and
concluded that the facilitating effect is not due to “frequentist
phrasing” (which they mistook as our explanation) but to compu-
tational simplification (our explanation, which they proposed as
their alternative one). Like Johnson-Laird et al., Macchi (2000)
independently rediscovered the proper explanation, and distin-
guished between “partitive” and “non-partitive” representations,
where “partitive” — like the “subset principle” — is a new label for
Equations 2 and 3. Lewis and Keren (1999) promoted the same
confusion. In Gigerenzer and Hoffrage (1999), we pointed out
that we had actually tested Prediction 4 about relative frequen-
cies with 24 Bayesian problems in Experiment 2 of Gigerenzer
and Hoffrage (1995). Nevertheless, Evans et al. (2000) embraced
the same misconception, concluding that “we are not convinced
that it is frequency information pef se which is responsible for
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the facilitation™ (p. 200). All of these authors overlooked that
our predictions were not about frequencies per se.

To summarize, the “nested set theory” originated from an
oversight that reproduced itself like a meme through various
articles. It is identical to our Equations 2 and 3, rephrasing the
computational explanation we had proposed.

What is new about the “chances representation”? In our
1995 article, we tested two natural frequency representations,
three relative frequency representations, and three probability
representations. One of the probability representations had the
structure of Equation 1, another the nested structure defined by
Equation 3, and a third one demanded computations of in-
between complexity (Equation 4 in our article). Therefore, B&S’s
contention that “nested sets” would be more general than our
computational account — because it covers not only frequencies
but probabilities as well — ignores that we actually applied the
computational account to various probability representations.
Specifically, B&S present a “chances representation,” which
mimics the computational structure of natural frequencies
precisely (see our Fig. 1), but is verbally phrased in terms of a
single event. This representation is a new addition to the eight
representations we already tested, and it leads to the same
computational demands as in Equation 2. Hence, from our
computational analysis, the prediction is that “chances” facilitate
as well as natural frequencies because they involve exactly the
same computations (although the occasionally odd-sounding
wording may have a negative impact).

B&S call chances “single-event probabilities.” However, like
natural frequencies, these are not probabilities. Mathematical
probabilities have a range between 0 and 1. If chances were
expressed in this range, their facilitating effect would be gone
(like the conditional probabilities in Fig. 1). In the example B&S
give, one cannot express the chances “12 out of 967 as “1 out of
§” or .125, because chances are exactly like natural frequencies
in that they do not allow normalization. To summarize, “chances”
are the same numbers as natural frequencies and lead to the
same computational demands specified in Equation 2. The
“nested sets” notion does not seem to add anything further.

What processes underlie non-Bayesian judgments? B&S’s
answer is: the associative “System 1.” Yet we have taken a
closer look at non-Bayesian judgments and found that a
substantial proportion of them follow several rules rather than
one associative process. Specifically, 65% of all non-Bayesian
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Table 2 (Gigerenzer & Hoffrage). Six cognitive rules underlying non-Bayesian judgments. Values are percentages of people classified as
using a rule among all non-Bayesian judgments. The experiments with children (grades 4, 5, and 6) were conducted by Zhu &
Gigerenzer (2006), with laypeople (students with median age 21-22) by Gigerenzer & Hoffrage (1995), with medical students

(median age 25) by Hoffrage et al. (2000), and with physicians by Hoffrage & Gigerenzer (1998). Cognitive rules are reported here
for natural frequencies and conditional probabilities (standard format) only; for other representations and how rules depend on
representations, see the original studies. We suggest that Barbey & Sloman consider these rules as mechanisms for their System 1,
to be interrupted as an adaptive toolbox rather than a single, general-purpose associative process

Conditional Probabilities

Natural Frequencies

Formal Psychology Medical Psychology Medical
Cognitive Rule Equivalent Students  Students Physicians Children Students — Students Physicians
Joint occurrence p(H&D) 10.7 2.5 1.2 0.0 8.3 9.8 3.8
Fisherian (Sensitivity) p(D&H) 27.2 17.7 20.9 2.9 292.8 49 9.6
Positives Only p(D) 0.0 0.0 0.0 7.3 0.0 7.3 17.3
Pre-Bayes p(H) / [p(H&D) + p(— H&D)] 0.0 0.0 0.0 18.3 5.4 2.4 0.0
Likelihood p(D\H) — p(D|—H) 8.2 12.7 23.3 0.0 1.7 0.0 9.6
substraction (AR)
Base rate only p(H) 1.6 3.8 1.2 8.5 5.4 29.3 28.8
(Conservatism)
Other non-Bayesian 19.5 32.9 19.8 0.0 19.5 22.0 5.8
strategies
Not identified 32.7 30.4 33.7 63.1 36.9 24.4 25.0
Total of non-Bayesian 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(in %)

judgments across children, laypeople, and experts resulted from
applying a rule, and our Table 2 shows the six most frequent ones.
These rules allow for a better understanding of non-Bayesian
reasoning than does the notion of base-rate neglect due to
“System 1.” In fact, one of these rules, base-rate only
(conservatism), does not even entail base-rate neglect, but an
over-reliance on the base rate. Moreover, a strategy such as the
Fisherian one (or representativeness, which amounts to
calculating p-values) ignores more than the base rate, namely,
also p(D|-H). Ironically, when researchers use Fisher’s null
hypothesis tests to determine whether people follow Bayes’s
rule, they themselves use a non-Bayesian framework and
commit base-rate neglect. Does this mean that researchers’
“System 1”7 is in charge of hypothesis testing? In summary,
there is experimental evidence that a substantial proportion of
non-Bayesian judgments result from six rules; there is no
reason to ignore these results and invoke some unknown
general-purpose associative process instead.

What does the dual-processes notion explain?. Table 2
indicates that a handful of rules model non-Bayesian
judgments. In general, people rely on multiple cognitive rules
or heuristics, consciously or unconsciously, tending to switch
between these in an adaptive way. Models of these heuristics
and the environments in which they work have been published
(e.g., Gigerenzer 2004; Payne et al. 1993; Rieskamp & Otto
2006). What does a distinction between a “System 17 and
“System 2” add?

Sloman (1996a) proposed two systems of reasoning. Gigerenzer
and Regier (1996) responded that there is a certain amount of
slack in this distinction, that it collapses too many different
dichotomies, and that it needs be sharpened by overt reference
to explicit models of associative and rule-based processing.
Sloman (1996b) willingly admitted that he left room for further
precision and clarity in his dual-processes notion. Yet more than
ten years later, the notion is still vague. What is the mechanism

of “System 17: the delta rule, fuzzy set theory, fast and frugal heur-
istics, constrained neural networks, or something else? Since B&S
assume a general-purpose process, there should be only one. And
what is the nature of the rule-based system: first-order logic,
Bayes’s rule, signal-detection theory, or expected utility maximiza-
tion? It cannot be all of these, since they are not the same. What
do we gain from a dual-processes theory that does not develop a
theory about the two processes?

Talking of two systems has become popular in some quarters.
The “inside-outside view” is another case in point. According to
Kahneman and Lovallo (1993, p. 25), an inside view focuses on
“the case at hand,” whereas an outside view focuses “on the stat-
istics of a class of cases.” Yet this distinction is too crude. For
instance, it fails to predict the differential effect of natural
versus normalized frequencies (Prediction 4), given that both
invoke an “outside view,” as well as the differential effects of
various single-event representations, such as in Prediction 2,
which all invoke an “inside view.” B. F. Skinner asked us to
refrain from building theories of cognition and to treat the
mind as a black box. B&S’s dual-systems notion is dangerously
similar to two black boxes. What about replacing the two black
boxes by an adaptive toolbox that contains multiple heuristics
and logical tools?

Towards ecological rationality. In their title, B&S include the
term ecological rationality. We have introduced this term to refer
to the study of how cognitive processes map onto environmental
structures. The Bayesian algorithms and shortcuts are part of this
larger enterprise. It extends to heuristics that solve problems
ranging from categorization to choice to inference, and from
catching fly balls to making coronary care unit allocations or
moral judgments (Gigerenzer 2007; Gigerenzer et al. 1999).
The study of ecological rationality requires computational models
of cognitive processes, in order to predict where they fail and
succeed. It may actually help define the notion of dual processes
more precisely.
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