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Martin Lövdén ∗, Shu-Chen Li, Yee Lee Shing, Ulman Lindenberger
Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallée 94, D-14195 Berlin, Germany

Received 17 October 2006; received in revised form 6 April 2007; accepted 7 May 2007
Available online 17 May 2007

bstract

Neurocomputational modeling and empirical evidence suggest that losses in neuronal signaling fidelity cause senescent changes in behavior.
e applied structural equation modeling to five-occasion 13-year longitudinal data from the Berlin Aging Study (n = 447; age range at t1 = 70–102

ears) to test whether trial-to-trial reaction time variability in perceptual speed (identical pictures) antecedes and signals longitudinal decline
n levels of performance on perceptual speed (digit letter and identical pictures) and ideational fluency (category fluency). Higher trial-to-trial

ariability preceded and predicted greater cognitive decline in perceptual speed and ideational fluency. We conclude that trial-to-trial variability
ignals impending decline in cognitive performance, and that theories of neurocognitive aging need to postulate developmental cascades between
enescent changes in variability and central tendency.

2007 Elsevier Ltd. All rights reserved.
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The dynamics of change and its underlying mechanisms
re fundamental to the understanding of behavior, devel-
pment, and aging (Baltes, Reese, & Nesselroade, 1977;
ultsch & MacDonald, 2004; Li, Huxhold, & Schmiedek,
004a; Lindenberger & Oertzen, 2006; MacDonald, Nyberg,

Bäckman, 2006; Nesselroade & Boker, 1994). Nesselroade
1991) (see also Li, Huxhold et al., 2004; Li, Lindenberger et al.,
004) differentiated between two types of within-person change:
i) intraindividual change denotes relatively permanent alter-
tions that evolve slowly over relatively long-term time scales
e.g., months and years) and (ii) intraindividual variability (or,
nconsistency) denotes transient and rapid fluctuations that occur
ver shorter time scales (e.g., moments and days). This study

xamines dynamic relations between intraindividual changes at
hese long-term and short-term time scales. First, we model the
ongitudinal change trajectories of both intraindividual cogni-
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ive variability and of mean levels of performance in old and
ery old age. Second, we test whether short-term intraindividual
ariability antecedes and signals impending long-term cognitive
ecline.

Accumulating evidence suggests that short-term variability
n cognitive performance displays relatively stable between-
erson differences over time (Hultsch, MacDonald, Hunter,
evy-Bencheton, & Strauss, 2000; Rabbitt, Osman, Moore, &
tollery, 2001; Ram, Rabbitt, Stollery, & Nesselroade, 2005),
cross cognitive tasks (Fuentes, Hunter, Strauss, & Hultsch,
001; Hultsch et al., 2000), and across domains of function-
ng (Li, Aggen, Nesselroade, & Baltes, 2001). Behavioral or
euronal indicators point to higher variability in persons with
ementia (e.g., Hultsch et al., 2000), in schizophrenic patients
e.g., Winterer & Weinberger, 2004), and after brain injury
Stuss, Pogue, Buckle, & Bondar, 1994; West, Murphy, Armilio,
raik, & Stuss, 2002). Importantly, adult age-related increases

n cognitive variability have been observed cross-sectionally (Li,

uxhold et al., 2004; Li, Lindenberger et al., 2004; Spieler,
alota, & Faust, 1996; Williams, Hultsch, Strauss, Hunter, &
annock, 2005; but see Robertson, Myerson, & Hale, 2006;
hammi, Bosman, & Stuss, 1998) and longitudinally (Deary &
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er, 2005; Fozard, Vercruyssen, Reynolds, Hancock, & Quilter,
994; MacDonald, Hultsch, & Dixon, 2003). Moreover, individ-
als with greater variability perform less well on a wide variety
f cognitive tasks (Li, Aggen et al., 2001; Li, Lindenberger, &
ikstrom, 2001; Rabbitt et al., 2001; Rabbitt, 2000; Salthouse,
993), including measures of fluid intelligence and working
emory (Li, Aggen et al., 2001; Li, Lindenberger et al., 2001; Li,
uxhold et al., 2004; Li, Lindenberger et al., 2004; Schmiedek,
berauer, Wilhelm, Süss, & Wittman, in press; but see Allaire
Marsiske, 2005). Moreover, after controlling for central ten-

ency, cognitive variability still accounts for substantial amounts
f variance in dependent variables such as age (e.g., Hultsch,
acDonald, & Dixon, 2002; MacDonald et al., 2003; Williams

t al., 2005; but see Deary & Der, 2005; Salthouse, 1993), cog-
itive functioning (Li, Aggen et al., 2001; Li, Lindenberger et
l., 2001; Rabbitt, 2000; Ram et al., 2005; but see Salthouse &
erish, 2005), and disease (Strauss, MacDonald, Hunter, Moll,
Hultsch, 2002).
In an important study, MacDonald et al. (2003) reported age-

elated changes (over 6 years) in within-person reaction time
ariability for a group of individuals aged 75–89 years. Siz-
ble correlations between changes in variability and changes
n performance levels on tasks assessing working memory, per-
eptual speed, episodic memory, vocabulary, and reasoning were
bserved. In sum, cognitive intraindividual variability is a rela-
ively stable trait, vulnerable to neurological disease and aging,
elated to cognitive performance, and associated with decline in
ognitive functioning in old age (e.g., MacDonald et al., 2006).

Cognitive moment-to-moment variability has been linked to
he integrity of executive functions, working memory, and cog-
itive control (e.g., Stuss, Murphy, Binns, & Alexander, 2003;
est et al., 2002). For example, findings indicate that age-

elated increases in reaction time variability reside, in part, in
he slow end of the reaction time distribution (Hultsch et al.,
002; Schmiedek et al., in press; West et al., 2002; Williams
t al., 2005). These findings have been taken to suggest that
pecific processes related to cognitive control, such as atten-
ional lapses (Bunce, Warr, & Cochrane, 1993) and robustness
f maintenance of task context (e.g., Braver et al., 2001), are
nvolved in age differences in cognitive variability (Hultsch
t al., 2002; West et al., 2002; Williams et al., 2005; but see
chmiedek et al., in press). This line of reasoning is sup-
orted by pronounced age-related structural (e.g., Sullivan &
fefferbaum, 2006) and functional alterations (Buckner, 2004)

n the integrity of prefrontal cortex, an area of the brain that
upports cognitive control. Direct support for the link between
refrontal cortex and cognitive variability comes from functional
maging work showing an positive association between between-
erson differences in reaction time variability and brain activity
n bilateral middle frontal areas during a response inhibition
ask (Bellgrove, Hester, & Garavan, 2004). Also, psychiatric
athologies that affect cognitive control, such as schizophre-
ia, are associated with increased neuronal noise (e.g., Winterer
Weinberger, 2004). In sum, increased moment-to-moment
ariability is currently most strongly related to the prefrontal
ortex and cognitive control processes (e.g., MacDonald et al.,
006).
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A related line of theoretical work formally connects cognitive
ariability to increased neural noise originating from age-related
eduction in the efficacy of catecholaminergic, notably dopamin-
rgic, neuromodulation (Li, Brehmer, Shing, Werkle-Bergner, &
indenberger, 2006; Li & Lindenberger, 1999; Li, Lindenberger
t al., 2001). The model by Li et al. provided an integrated
ccount of deficient neuromodulation and several cognitive
ging phenomena. First, the model recounts and provides a for-
alism for earlier hypotheses that cognitive decline is driven

y increased information loss owing to increasing neural noise
Hendrickson, 1982; Welford, 1965), and specifically relates
ncreases in neural noise to reductions in dopamine trans-

itter content and binding functionality (Bäckman, Nyberg,
indenberger, Li, & Farde, 2006). Second, the model accounts

or findings that point to age-related decrease in the distinc-
iveness of cortical representations. For example, older adults
end to encode information less distinctively (Craik, 1983)
nd more variably (Mäntylä & Bäckman, 1990) than young
dults. Moreover, correlations among performances on differ-
nt cognitive tests increase in groups of older adults (Baltes &
indenberger, 1997; Li, Huxhold et al., 2004; Li, Lindenberger
t al., 2004). Recently, neuroimaging work has lent further
nd more direct empirical support for this notion (Park et al.,
004). In turn, less distinctive neural representations may pro-
uce more behavioral variability (see also Thaler, 2002). Li
t al. (Li & Lindenberger, 1999; Li, Lindenberger, & Frensch,
000; Li, Aggen et al., 2001; Li, Lindenberger et al., 2001; Li,
rehmer et al., 2006; Li, Oertzen, & Lindenberger, 2006; Li,
aveh-Benjamin, & Lindenberger, 2005; Li & Sikstrom, 2002;
i, Oertzen et al., 2006) have successfully modeled these, and
ther, cognitive aging phenomena by adjusting the gain param-
ter of the activation function of neural networks, simulating a
educed signal-to-noise ratio of neural information processing in
he aging brain that is attributable to deficient neuromodulation.

The reviewed strands of neurocomputational modeling
ork and empirical evidence have stimulated the speculation

hat decreasing processing fidelity, as captured by increasing
ithin-person reaction time variability, antecedes and signals

ognitive decline in late adulthood and old age (e.g., Eizenman,
esselroade, Featherman, & Rowe, 1997; Li & Lindenberger,
999; Lindenberger, Li, & Bäckman, 2006; cf. Van der Maas

Molenaar, 1992; Siegler, 1994). As Hultsch and MacDonald
2004) pointed out, the identification of increasing variability as
n early warning signal or, figuratively speaking, “canary in the
oal mine,” would carry significant clinical implications.

Accordingly, the main goal of this study was to examine
hether higher levels of intraindividual trial-to-trial reaction

ime variability signal subsequent negative longitudinal changes
n cognitive performance (see Fig. 1). To this end, we used a type
f structural equation model that is particularly amenable for
nvestigating temporal lead–lag dynamics between antecedents
nd outcomes of ontogenetic change. Specifically, we made use
f the dual change score model (DCSM) originally proposed by

cArdle and Hamagami (2001). The DSCM has been fruitfully

pplied to structurally analogous developmental hypotheses
Ferrer & McArdle, 2004; Ghisletta & de Ribaupierre, 2005;
hisletta & Lindenberger, 2003; Ghisletta & Lindenberger,
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ig. 1. Illustration of guiding prediction. Aging individuals with greater momen
ubsequent longitudinal decline in mean levels of functioning than individuals w

005; Ghisletta, Bickel, & Lövdén, 2006; Lövdén, Ghisletta,
Lindenberger, 2005; McArdle et al., 2004). The DCSM rep-

esents a dynamic extension of standard latent growth curve
odels (LGCM; Meredith & Tisak, 1990) or longitudinal multi-

evel models (Bryk & Raudenbush, 1987; for a comparison, see
indenberger & Ghisletta, 2004). Like the LGCM, the DCSM
stimates means and variances for the intercept (i.e., initial level)
nd slope (i.e., change) of a longitudinal time series at the latent
evel that are unbiased by measurement error. Residual terms
e.g., errors) are estimated simultaneously and separately. Unlike
he LGCM, the DCSM permits estimation of time-lagged (or
ynamic) relations between a variable’s level at one time point
nd its subsequent change. In its multivariate form, the model
llows for corresponding time-lagged associations between dif-
erent variables. In contrast to typical cross-lagged correlations
Rogosa, 1980), the multivariate extension of the DCSM permits
djustment for unequal reliabilities of the variables, separation of
ithin-variable and across-variable lead–lag effects, and direct

nd simultaneous modeling of the variables’ changes.
With the multivariate DCSM, we can empirically examine, in

precise manner, whether cognitive variability precedes and pre-
icts decline cognitive performance, and, importantly, we can pit
his hypothesis against the alternative that cognitive performance
recedes and predicts changes in cognitive variability. The data
sed in this study come from the Berlin Aging Study (BASE;
altes & Mayer, 1999), and refer to a total of 447 individuals
ged 70–102 years who were observed for up to five occasions
ver up to 13 years. Measures include trial-to-trial variability
n reaction time performance and typical indicators of cogni-
ive performance in old age (perceptual speed and ideational
uency).

Our analyses of this data set addressed two questions. First,
e examined whether changes in intraindividual (trial-to-trial)
ariability are associated with performance changes in mean
evels of perceptual speed and ideational fluency. Here, we

ttempt to replicate the findings from MacDonald et al. (2003).
econd, with bivariate DCSMs, we investigate lead–lag rela-

ions between within-person reaction time variability and the
easures of performance level. Thus, we extend the work of

t
i
a

(

oment process fluctuations at a given point in time are expected to show greater
uctuate less. Adapted from Lindenberger et al. (2006).

acDonald et al. by explicitly comparing the temporal order of
enescent changes in variability and central tendency.

. Method

So far, the interdisciplinary multi-session longitudinal BASE study has col-
ected longitudinal data over 13 years. The baseline assessment (t1) took place in
990–1993. The second assessment (t2) was conducted 1.95 years (SD = 0.71),
3 3.76 years (SD = 0.66), t4 5.53 years (SD = 0.79), t5 8.94 years (SD = 0.84),
nd t6 13.00 years (SD = 0.87) after t1, respectively. Only a reduced assessment
rotocol was completed at t2, therefore this assessment is not considered here.
etailed descriptions of the design, sample, procedures, and measures have been
ublished elsewhere (Baltes & Mayer, 1999; Lövdén, Ghisletta, & Lindenberger,
004). A brief description is provided below.

.1. Participants

To obtain the t1 sample, 1,908 individuals, drawn from the Berlin city
egistry, were approached. Initial response rate was 78% (n = 1,491) and, out
f those, 516 individuals completed a 14-session assessment protocol (age
ange = 70–103 years; M = 84.9 years; SD = 8.7). Selectivity analyses compar-
ng this t1 sample with the total parent sample showed that the t1 sample was
ositively selected on variables covering demographic, sensory, life history, and
ntellectual domains (Lindenberger et al., 1999). However, with the exception of
ementia prevalence, effect sizes were small (i.e., below 0.5SD). Furthermore,
ariances and covariances were only marginally influenced by selectivity. Thus,
he t1 sample was reasonably representative of the target population.

Out of these 516 individuals, 69 had severe vision problems preventing them
rom completing the normal cognitive measurement battery and consequently
acked data on trial-to-trial variability. Therefore, we included the remaining
47 participants only (age range = 70–102 years; M = 84.1 years; SD = 8.5).
xpressed over the SD of the total t1 sample (n = 516), this remaining sam-
le was not positively selected on other important dimensions of this study:
hronological age (0.1SD), ideational fluency (0.1SD), and vocabulary (0.0SD).

Longitudinal mean selectivity for the included measures was analyzed and
xpressed in an effect size metric (see Lindenberger, Singer, & Baltes, 2002),
ndicating the magnitude to which individuals that survived and participated
n t6 (n = 47) differed from the t1 sample (n = 447). Total selectivity at t6 for
easures assessed at t1 was 0.9SD for chronological age, 0.8SD for perceptual

peed, 0.9SD for ideational fluency, 0.5SD for vocabulary, and 0.3SD for trial-to-

rial variability. To the extent that selectivity is captured by the variables included
n the analyses, the estimation algorithm used in this study accounts for selective
ttrition when estimating the population parameters (see Section 1.3).

Based on age-specific cutoffs on the short mini-mental state examination
SMMSE; Klein et al., 1985), 118 of the participating individuals at t1 (total
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830 M. Lövdén et al. / Neurops

= 447), 51 at t3 (n = 191), 30 at t4 (n = 124), 16 at t5 (n = 78), and six at t6
n = 46) were identified as suspected dementia cases. The cutoff was 12 points
n the SMMSE for 70–84 year-olds and 11 points for older individuals. Based on
ndependent clinical diagnoses of dementia that were issued at t1 and t3 (using
tandard assessment procedures; Helmchen et al., 1999) these cutoffs resulted in
cceptable specificity (>72% for all subgroups, including younger and older men
nd women) and sensitivity (>63% for all subgroups; see Gerstorf, Herlitz, &
mith, 2006 for details). The way suspected dementia is handled in the analyses
re described in Section 1.3.

.2. Measures

Medical personnel or trained research assistants carried out all testing in
ndividual sessions at the participants’ place of residence. Data collection for
he cognitive measures was supported by a Macintosh SE/30 equipped with a
ouch-sensitive screen. The sessions lasted for an average of 90 min.

The complete longitudinal cognitive battery of BASE consists of two per-
eptual speed tasks (identical pictures and digit letter), two episodic memory
asks (memory for text and paired associates), two fluency tasks (categories and
ord beginnings), and two verbal knowledge tasks (vocabulary and spot-a-word;

ee Lindenberger, Mayr, & Kliegl, 1993; Lövdén et al., 2004, for details). For
his study we initially considered the performance measures from the full cog-
itive battery and trial-to-trial reaction time variability in the identical pictures
ask. All these measures were initially analyzed with univariate linear LGCMs
sing chronological age as a covariate (see Section 1.3). Because the main mul-
ivariate analyses estimate covariances between changes in different variables,
e selected, for this study, the measures that evinced significant interindividual
ifferences in change (i.e., slope) at the .05 level. This is due to the fact that
ariance in change is a prerequisite for estimating covariances among changes.
ased on this criterion, digit letter, categories, and trial-to-trial variability were

ncluded.
.2.1. Category fluency
For this ideational fluency task, participants named as many animals as

ossible within 90 s. Responses were tape-recorded. The performance measure
efers to the number of correct responses (i.e., no repetitions, right category, no
orphological variations).

d
t
m
s
e

ig. 2. Graphical representation of a univariate dual change score model (McArdle
quares, latent variables as circles, regressions as one-headed arrows, and variances
he triangle. Unlabeled paths are fixed to 1.
gia 45 (2007) 2827–2838

.2.2. Digit letter
This measure of perceptual speed corresponds closely to the well-known

igit symbol substitution of the WAIS. However, participants verbally named the
etters instead of writing symbols. The reason for this change was to minimize

otor demands. A template with digit–letter pairings was visible during the
ntire testing period. Each one of a total of 21 sheets contained six digits with
uestion marks beneath. Participants moved from left to right, naming the letters
orresponding to the digits. The dependent measure was the number of correct
esponses after 3 min.

.2.3. Trial-to-trial variability (identical pictures)
Our measure of trial-to-trial variability in cognitive performance is derived

rom a test of perceptual speed: the identical pictures. This measure was selected
ecause it was the only one for which reaction times were recorded for each of the
rials separately. A selection of items from the corresponding ETS test (Ekstrom,
rench, Harman, & Derman, 1976) was computerized and used for this test. For
ach item, a target figure in the upper part and five response alternatives in the
ower part of the screen were presented. Participants touched, as fast as possible,
he one alternative figure that corresponded to the target figure. Presentation of
he items terminated after 80 s. Thus, there were individual differences (within
nd across assessments) in the number of items each individual responded to.

Because the research community has not established a standard for calcu-
ating intraindividual trial-to-trial variability, we computed several variability

easures: (a) the intraindividual SD based on all available (correct) responses
or each individual and each assessment; (b) the intraindividual coefficient of
ariation (CoV; SD/M) based on all available (correct) responses for each indi-
idual and each assessment; (c) the intraindividual SD based on the first 10 trials
nly (incorrect responses treated as missing); (d) the CoV based on the first 10
rials only (incorrect responses treated as missing); (e) the intraindividual SD
fter the average effects of trial and chronological age were statistically partialed
ut from 10 trials of raw data (after imputation of missing values; cf. MacDonald
t al., 2003); and (f) the residual intraindividual SD based on all available raw

ata after statistically partialing out the mean. Before each of these computa-
ions, outliers in the raw data (<2%) were deleted. A comparison between the

ean RT for the first 10 trials (3,468 ms) and for the last 10 trials (3,540 ms)
uggested that no improvement occurred across trials. Thus, we found it unnec-
ssary to detrend the data for individual learning trends. The number of items

& Hamagami, 2001) as implemented here. Observed variables are depicted as
and covariances as two-headed arrows. Means and intercepts are indicated by
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as too few to allow for modeling the reaction time distribution with formal
odels.

All the intraindividual trial-to-trial variability measures provided converg-
ng main results. Therefore, we report only the analyses of the intraindividual
oV based on all available trials. The statistical models including this measure
roduced the most stable and robust solutions (i.e., no convergence problems
nd no improper estimates in any of the models applied). The 4-year (t1–t3)
est retest correlation for this measure was 0.34, indicating marginally decent
ower boundary of reliability. For simplicity and because all measures produced
omparable results, we refer to this measure as trial-to-trial variability.

.3. Statistical procedures

The data were analyzed with structural equation models, and specifically
ith a multivariate LGCM (Meredith & Tisak, 1990) and bivariate DCSMs

McArdle & Hamagami, 2001). The LGCM is, generally speaking, nested under
he DCSM. Therefore, we take the LGCM as starting point for describing the
CSM (see also Ferrer & McArdle, 2004; Ghisletta & de Ribaupierre, 2005;
hisletta & Lindenberger, 2003; Ghisletta & Lindenberger, 2005; McArdle &
amagami, 2001; McArdle et al., 2004).

Fig. 2 depicts a graphical representation of a univariate DCSM. We assume
atent values of x[t], where t is time of assessment, with 2 years between each (i.e.,
[1], . . ., x[8]). The observed variables X[t] were measured five times (i.e., t1, t3,
4, t5, t6), with approximately 4 years between t1 and t3, 2 years between t3 and
4, 4 years between t4 and t5, and 4 years between t5 and t6 (see Table 1). Thus,
ranslating the actual measurement intervals into the equal-intervals specified in
he models, the observed variables were measured at X[1], X[3], X[4], X[6], and
[8]. This equal-interval approach allows invariant scaling over the time series

see also Gerstorf, Lövdén, Rocke, Smith, & Lindenberger, 2007; Ghisletta &

indenberger, 2003; Ghisletta & Lindenberger, 2005; Lövdén et al., 2005). The
ariables x[t] are the standardized sums of the latent score at x[t − 1] plus the
ifference score �x[t], so that �x[t] translates into the error-free difference score
etween x[t − 1] and x[t] (McArdle & Nesselroade, 1994). The error term σ2

e is
ssumed to be normally distributed with a mean of zero and to neither change

a
t
a
p
a

able 1
escriptive statistics for measures included in the models

easure Time n

rial-to-trial variability (CoV) t1 443
t3 179
t4 118
t5 70
t6 40

ategories t1 447
t3 190
t4 124
t5 77
t6 46

igit letter t1 440
t3 172
t4 117
t5 67
t6 41

uspected dementia t1 447
t3 191
t4 124
t5 78
t6 46

ime-to-death t1 342
hronological age t1 447

ote: CoV = coefficient of variation. The second time of assessment (t2) was condu
espectively. Suspected dementia is coded as 10 and no suspected dementia as −10.
1 assessment providing the reference values. Time-to-death and chronological age ar
gia 45 (2007) 2827–2838 2831

ver time nor correlate with itself. The latent intercept x0 (i.e., the latent scores
t t1) and linear slope xS (i.e., the linear 2-year change scores) are anticipated
o account for the time series information. The means of the intercept and slope
μ0 and μS), their variances (i.e., σ2

0 and σ2
S), and their covariance ρS,0 are

stimated. These six parameters (μ0, μS,σ2
0 , σ2

S, ρ0,S, σ2
e ) are estimated in a

inear LGCM. The DCSM additionally allows for estimation of the dynamic
arameter β, denoting the effects of a score at x[t − 1] on the impending change
etween x[t − 1] and x[t]. The β’s are usually assumed time-invariant. With β

xed to zero, the DCSM is a linear LGCM.
Multivariate extensions of the LGCM and the DCSM are possible. A bivari-

te LGCM estimates two times the six parameters of each time series plus four
ovariances among the intercepts and slopes. The bivariate DCSM (BDCSM)
stimates four additional, dynamic, parameters: the two β’s of each time series
lus two corresponding inter-variable parameters, called γ’s, denoting the effect
hat a variable at t − 1 exerts on the coming change of the other variable (i.e.,
etween t − 1 and t). Fixing the β’s and γ’s to zero results in bivariate LGCM.
lternative hypotheses can be postulated by restricting the full BDCSM, which

stimates both inter-variable � parameters (model full coupling). Consider, for
xample, a BDCSM including trial-to-trial variability and categories perfor-
ance. Fixing the inter-variable γ parameter from level of variability to changes

n categories performance to zero would postulate a model in which categories
erformance predicts changes in variability, but not the other way round. Signif-
cant reductions in fit for this model as compared with the full coupling model

eans that variability significantly predicts changes in categories performance.
onversely, if fixing the γ parameter from level of categories performance to
ariability to zero results in reductions in fit, then categories performance reliably
recedes and predicts changes in variability.

Time-invariant covariates are implemented in the LGCM and the DCSM as
nfluencing the intercept x0 and the slope xS (and, via the slope, the �x[t]). In

ll analyses, we include two time-invariant covariates, chronological age and
ime-to-death. In addition, we include suspected dementia at each assessment
s influencing the corresponding observed cognitive variable. For example, sus-
ected dementia at t1 influenced the observed variable X[1], suspected dementia
t t3 influenced the observed variable X[3], and so fourth. The suspected demen-

M SD Skewness Kurtosis

50.0 10.0 0.6 1.0
51.1 9.3 0.8 0.8
50.0 8.8 0.7 0.5
49.3 8.5 0.5 0.9
49.3 9.2 1.0 2.0

50.0 10.0 0.4 0.0
52.5 10.3 0.0 0.0
54.2 11.0 0.2 −0.1
53.9 10.9 0.2 −0.6
52.0 11.8 −0.2 −0.3

50.0 10.0 −0.1 −0.6
52.8 9.5 −0.4 −0.2
53.4 9.5 −0.6 0.1
54.6 9.3 −0.9 1.0
50.9 8.4 −0.5 0.1

−4.7 8.8 1.1 −0.8
−4.7 8.9 1.1 −0.9
−5.1 8.6 1.2 −0.5
−5.9 8.1 1.5 0.2
−7.4 6.8 2.3 3.3

0.0 10.0 0.7 −0.1
0.0 10.0 0.1 −1.1

cted on average 1.95, t3, 3.76, t4, 5.53, t5, 8.94, and t6, 13.00 years after t1,
All other variables are standardized to the T-metric (M = 50; SD = 10) with the
e additionally centered.
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Table 2
Trivariate latent growth curve model: estimates (S.E) of means and variances
for trial-to-trial variability (CoV), categories, and digit letter, after statistically
controlling for the influence of time-to-death, chronological age, and suspected
dementia

Parameter Variability (CoV) Categories Digit letter

Intercept mean (μ0) 50.9* (0.5) 48.8* (0.4) 48.5* (0.4)
Intercept variance (σ2

0 ) 34.9* (6.7) 45.7* (4.9) 46.4* (4.2)
Slope mean (μS) 1.2* (0.2) −0.9* (0.2) −1.4* (0.2)
Slope variance (σ2

S) 1.4* (0.6) 1.6* (0.4) 1.5* (0.3)
Error variance (σ2

e ) 56.0* (4.4) 25.8* (2.1) 14.5* (1.2)
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Concerning relations to other variables, the decision to
832 M. Lövdén et al. / Neurops

ia variables were modeled unrelated to all other variables. In sum, the main
arameters of interest (the covariances, β’s, and γ’s) are statistically controlled
or the effects of chronological age, time-to-death, and suspected dementia.

We utilized AMOS 5.0 (Arbuckle & Wothke, 1999) and full information
aximum likelihood (FIML; Arbuckle, 1996). FIML can be used with incom-

lete data under the missing-at-random assumption (Schafer & Graham, 2002).
he procedure does not impute values but uses available information for esti-
ating parameters involving variables with missing values. According to the
issing-at-random assumption, the likelihood that a score on X is missing may

epend on other variables in the model but not on X itself. Note that a rela-
ionship between missingness and X emanating from a common association to
ther variables in the model is permissible, but no residual relationship between
issingness and X is allowed. Thus, FIML provide accurate estimates when the

ssumption is met by including satisfactory predictors of missingness. Here, the
rocedure is enhanced by including powerful predictors of longitudinal dropout
i.e., chronological age, time-to-death, suspected dementia, and cognitive perfor-
ance; Lindenberger et al., 2002). FIML, and related approaches, produce less

iased and more precise population estimates than other common procedures
o missing values (e.g., listwise deletion, regression imputation; e.g., Schafer &
raham, 2002).

With FIML comes a log-likelihood fitting function (−2LL) for the applied
odel and not a χ2 value.1 The difference between the −2LLs of nested models

s χ2 distributed with degrees of freedom equal to the difference in the number
f parameters. The corresponding χ2-test was used to compare nested models.
he alpha-level for all statistical decisions was 0.05.

. Results

Table 1 presents descriptive statistics. All variables, with the
xception of suspected dementia, were standardized (linearly
ransformed) to a T-score metric (M = 50; SD = 10), with the t1-
ssessment providing the reference distribution. Time-to-death
nd chronological age were additionally centered to a mean
f zero. All variables displayed acceptable distributions (i.e.,
kewness and kurtosis).

.1. Are changes in trial-to-trial variability associated with
hanges in cognitive performance levels?

We estimated a trivariate linear LGCM,2 including trial-to-
rial variability (CoV), digit letter, and categories. This model

xtracts the means and variances for the intercepts (i.e., t1-
cores) and the linear slopes (i.e., 2-year change scores) for
he three variables. Most importantly, the covariances among
he intercepts and slopes of the three variables are estimated. An

1 With FIML, a χ2 statistic and derivated indices could be calculated from the
ifference between the log-likelihood functions of the saturated (unrestricted)
odel and the restricted model (e.g., the applied DCSM). However, in the sat-

rated models the number of parameters is higher than the sample size and
herefore not enough information was available in the data to fit the saturated

odels. Thus, we report only the value of the function of log-likelihood. The
ack of the conventional fit indices for the models is not problematic because
he major focus is on the parameter estimates and differences between alterna-
ive models. In other words, the objectives are to extract parameter estimates of
nterest from the time series and to compare these estimates across alternative

odels (see Section 2).
2 Preliminary analyses also examined the orthogonal quadratic component of

he time series. Because the variance (i.e., the interindividual differences) in
hange was not significant for any of the four variables we could not address the
ssociations among quadratic changes, and thus the linear LGCM adequately
ddresses our research question.
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ote. CoV = coefficient of variation.
* p < 0.05.

nspection of the standardized covariances (i.e., the correlations)
mong the slopes addresses the question whether changes in
rial-to-trial variability are associated with changes in cognitive
erformance (digit letter and categories). Because the error vari-
nces are simultaneously and separately estimated, the estimates
f substantive interest are not biased by error. As outlined in Sec-
ion 1.3, we included time-to-death at t1, chronological age at t1,
nd suspected dementia as covariates. The −2LL (203, N = 447)
or this model, which estimated 72 parameters, was 22298.8.

Estimates of means and variances are reported in Table 2. All
lope means were significant, demonstrating average increases
n variability and declines in cognitive performance. The mean
inear 2-year change is greatest for digit letter (−1.4), followed
y trial-to-trial variability (1.2), and categories (−0.9). All slope
ariances were significant, indicating reliable between-person
ifferences in change.

Correlations among intercepts and slopes are reported in
able 3. Changes among the cognitive variables are highly cor-
elated. Most importantly, changes in trial-to-trial variability, as
ndicated by the CoV, are significantly associated with changes
n categories (−0.82) and digit letter (−0.68), indicating that
ncrements in within-person trial-to-trial variability are associ-
ted with decrements in cognitive performance.
nclude the covariates was supported. Older age significantly
redicted higher initial variability and lower initial cognitive

able 3
re changes in trial-to-trial variability (CoV) associated with changes in mean

ognitive performance?

arameter 1 2 3 4 5 6

. IC variability –

. IC categories −0.25a –

. IC digit letter −0.37a 0.63a –

. SL variability −0.55a 0.16 0.25 –

. SL categories 0.07 0.02 −0.11 −0.82a –

. SL digit letter −0.24 0.11 0.09 −0.68a 0.98a –

orrelations among intercepts (IC) and slopes (SL) of trial-to-trial variability,
ategories, and digit letter, after statistically controlling for the influence of time-
o-death, chronological age, and suspected dementia. Note: CoV = coefficient of
ariation; IC = intercept (i.e., scores at t1). SL = slope (i.e., 2-year linear change
cores). Variability = trial-to-trial variability. Significance testing refers to the
nderlying covariances.
a p = 0.05.
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erformance. Moreover, older age reliably predicted greater
ncrease in variability and stronger decreases in digit letter per-
ormance. Individuals in closer proximity to death had lower
nitial cognitive performance. Suspected dementia predicted
ower digit letter performance at t1 to t6, lower categories per-
ormance at t1 to t5, and higher trial-to-trial variability at t1
nd t6.

In summary, increases in trial-to-trial variability were
ssociated with decreases in cognitive performance, thereby
eplicating the findings from MacDonald et al. (2003).

.2. Is high trial-to-trial variability preceding and
redicting decline in cognitive performance levels?

We initially estimated two BDCSMs (full coupling model):
ne model included trial-to-trial variability (CoV) and cate-
ories and one included CoV and digit letter. Time-to-death,
hronological age, and suspected dementia were covariates.
ach of these models estimates four parameters that have infor-
ative value over and above the estimates from the multivariate
GCM. The estimates of the β parameters, one for each vari-
ble, reflect the dynamic influence of level of one variable on
he subsequent change of the same variable. The estimates of
he two γ parameters reflects the dynamic influence of level
f X on the subsequent change of Y and the influence of level
f the Y on the subsequent change of X, respectively. Thus,
he estimates of the γ parameters speak to the issue whether
igh trial-to-trial variability is preceding and predicting decline
n cognitive performance levels, or vice versa. The estimates
f the β and γ parameters for all BDCSMs are displayed in
able 4.

The −2LL (117, N = 447) for the model including trial-
o-trial variability (CoV) and categories, which estimated 53
arameters, was 18,472.2. The influence of variability on sub-
equent change of categories performance (γvariability→categories)
as negative (−0.84). The influence of categories on subsequent

hange of variability (γcategories→variability) was also negative but
eaker (−0.11). Fixing the γvariability→categories parameter to

ero resulted in a significant loss of fit, χ2(1, N = 447) = 11.3.
n contrast, fixing the γcategories→variability parameter to zero
esulted in negligible loss of fit, χ2(1, N = 447) = 0.1. Thus, the

esults indicate that higher trial-to-trial variability reliably pre-
edes and predicts greater 2-year negative decline in categories
erformance, whereas categories performance has negligible
nfluence on change in variability.

l
i
a
t

able 4
s high trial-to-trial variability (CoV) preceding and predicting decline in mean cogni

odel βvariability βmea

ariability–categories −0.04 (0.22) −0.2
ariability–digit letter 0.57 (0.32) −1.0
ariability–identical pictures −0.29 (0.21) −0.5

arameter estimates for bivariate dual change score models including statistical contro
ote: CoV = coefficient of variation. For the estimates of the γ parameters, significan
omparing a model fixing this parameter to 0 against the full coupling model (see Sec
etermined from their standard errors.
* p < 0.05.
gia 45 (2007) 2827–2838 2833

The −2LL (117, N = 447) for the model including trial-
o-trial variability (CoV) and digit letter, which estimated 53
arameters, was 17971.6. The estimate of the inter-variable
variability→digit letter parameter was negative (−1.30) and fix-

ng this parameters to zero resulted in a significant loss of
t, χ2(1, N = 447) = 25.3. The estimate of the inter-variable
digit letter→variability parameter was positive (0.60). Fixing this
arameter to zero resulted in less, but significant, loss of fit,
2(1, N = 447) = 9.0. Thus, the results from this model indicate

hat higher trial-to-trial variability reliably precedes and predicts
reater decline in digit letter performance. In contrast, higher
igit letter performance predicted greater subsequent 2-year
ncreases in variability.

One important follow-up question to these findings is whether
rial-to-trial variability in identical pictures performance is a

ore powerful predictor than the mean of identical pictures
erformance as observed over the same trials. To address this
ssue, we estimated two bivariate DCSM models, one including

ean reaction time of identical pictures and categories and the
ther involving mean reaction time and digit letter performance.
ime-to-death, chronological age, and suspected dementia were
ovariates. Note that mean reaction time for identical pictures
as not included in the LGCM because variance in change was
ot reliable for this measure. However, mean reaction time can be
ncluded in a BDCSM because the estimation of the most inter-
sting parameters (i.e., the γ’s) does not need variance in change
i.e., gammas and betas are fixed, not random, parameters; see
indenberger & Ghisletta, 2004). Importantly, in neither of these
odels did higher mean reaction time predict steeper subse-

uent decline in performance. The −2LL (117, N = 447) for
he model including mean reaction time and categories, which
stimated 53 parameters, was 17984.4. The estimate of the inter-
ariable γ identical pictures→categories parameter was non-significant
−0.04; χ2[1, N = 447] = 0.01). The estimate of the inter-variable
categories→identical pictures parameter was negative and significant
−0.92; χ2[1, N = 447] = 17.05). The −2LL (117, N = 447) for
he model including mean reaction time and digit letter per-
ormance, which estimated 53 parameters, was 17327.0. The
stimate of the inter-variable γ identical pictures→digit letter parame-
er was significant but positive (0.96; χ2[1, N = 447] = 12.83),
ndicating that higher reaction time in identical picture lead to

ess decrease in digit letter performance. The estimate of the
nter-variable γdigit letter→identical ictures parameter was negative
nd significant (−1.34; χ2[1, N = 447] = 39.56). Thus, if any-
hing, these follow up analyses indicate that mean reaction time

tive performance?

n γvariability→mean γmean→variability

8 (0.24) −0.84* (0.30) −0.11 (0.19)
1* (0.33) −1.30* (0.44) 0.60* (0.23)
8* (0.28) 0.97* (0.28) 0.31 (0.22)

l for the influence of time-to-death, chronological age, and suspected dementia.
ce testing refers to significance of the χ2 (df = 1) in nested model comparisons
tion 1.3 and Section 2). For the estimates of the β parameters, significance was
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n identical pictures is predicted by categories and digit letter
erformance, rather than the other way around.

To directly address the issue of the dynamic association
etween variability in reaction time or mean in reaction time,
e estimated a BDCSM including trial-to-trial variability and

he mean reaction time of identical pictures, with time-to-
eath, chronological age, and suspected dementia as covariates.
he last row of Table 4 displays the results from this model,
hich estimated 53 parameters with a −2LL (117, N = 447) of
8,087.6. The estimate of the γvariability→identical pictures param-
ter was positive (0.97) and significant, χ2(1, N = 447) = 19.0.
he estimate of the γ identical pictures→variability parameter (0.31)
as not significant, χ2(1, N = 447) = 1.2. Thus, higher variabil-

ty reliably predicts greater increases in reaction time, but not

he other way around.

To summarize, higher trial-to-trial variability in identical pic-
ures performance reliably precedes and predicts subsequent
ecline in categories, digit letter, and increase in mean reac-

ig. 3. Is high trial-to-trial variability (coefficient of variation, CoV) preceding
nd predicting decline in categories performance? Model implied means from a
ivariate dual change score model (full coupling model; McArdle & Hamagami,
001) for categories performance (A) and trial-to-trial variability (B) as function
f time of assessment and varied initial (t1) means (−0.5SD, estimated mean,
nd +0.5SD) of trial-to-trial variability (A) and categories (B). The figures show
hat lower initial trial-to-trial variability is associated with a less negative devel-
pment of categories performance (A), whereas the initial levels of categories
erformance have little impact on development of trial-to-trial variability (B).
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ion time. These effects are independent of the within-variable
ead–lag effects (i.e., theβ’s), suspected dementia status, chrono-
ogical age, and time-to-death. In contrast, mean performance
n identical pictures was not a potent predictor of subsequent
ecline in categories and digit letter.

In order to illustrate the take-home message, we first var-
ed the initial sample means (levels) of trial-to-trial variability
CoV) by half of a standard deviation (i.e., five T-scores up
nd down from the estimated initial mean) while keeping ini-
ial categories performance constant. Using estimates from the
ull coupling model,3 we then calculated the resulting implied
eans of categories performance. The results are displayed in
ig. 3A. As is evident in this figure, level of trial-to-trial vari-
bility has profound impact on subsequent changes in categories
erformance: a hypothetical individual with initial trial-to-trial
ariability of 0.5SDs above the mean and with initial mean cat-
gories performance is expected to decline substantially more
n categories performance than a hypothetical individual with
ower variability.4 In contrast, varying initial categories perfor-

ance has negligible impact on the trajectories of variability
Fig. 3B).

. Discussion

In line with MacDonald et al. (2003), we observed a
trong association (rs = −0.82 and −0.68) between longitudi-
al changes in intraindividual reaction time variability on a
easure of perceptual speed and longitudinal changes in lev-

ls of performance in ideational fluency and perceptual speed.
n addition, and more importantly, our results reveal that greater
rial-to-trial variability in perceptual speed performance predicts
ooming changes in cognitive performance levels. In contrast,
ower cognitive performance levels have negligible influences
n subsequent 2-year changes in variability. These results are
ot confounded by within-variable dynamic effects, chrono-
ogical age, suspected dementia, and time-to-death. Together,
he findings substantiate the conjecture that cognitive intrain-
ividual variability constitutes a developmentally early flag for
mpending old-age changes in mean levels of cognitive perfor-

ance (Hultsch & MacDonald, 2004; Li & Lindenberger, 1999;
indenberger et al., 2006; cf. Van der Maas & Molenaar, 1992).

The main finding of a dynamic influence of variability on
ean cognitive performance levels is consistent with findings

ndicating that cognitive variability predicts chronological age
e.g., Hultsch et al., 2002), cognitive functioning (e.g., Hultsch et
l., 2000), and disease status (e.g., Fuentes et al., 2001; Hogan
t al., 2006; see Hultsch & MacDonald, 2004; MacDonald et

l., 2006, for reviews) independently of central tendency. How-
ver, the finding is inconsistent with recent results reported
y Salthouse and Berish (2005). In their cross-sectional study,

3 The formula for calculating the implied means for x[t] > x[1] is:
[t] = 1Xs + (1 + βx) × x[t − 1] + γy−xy[t − 1], when applied for a person of aver-
ge age, time-to-death, and suspected dementia status. For x[1] the mean equals
0.
4 Note that the scenario somewhat exaggerates the findings because initial

evel of variability and initial level of categories performance is correlated.
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ariance-partitioning techniques were applied to data from age-
eterogeneous (from young adulthood to old age) samples.
heir results showed that statistical control of mean perceptual
peed performance had greater attenuating effects on correla-
ions among variability (SD) in perceptual speed and cognitive
erformance levels than control of variability had on correlations
mong the mean and other cognitive performance levels. These
ndings were taken to indicate that, for explaining associations
etween age and cognitive variables, performance variability
ight be secondary to central tendency. The present study

learly differs from the Salthouse and Berish study in many
ays. For example, the current sample is considerably older.
lso, the analyses in the present study were conducted with

tructural equation modeling. Thus, the estimates of particular
ubstantive interest (i.e., the γ’s) are attenuated for differences in
eliability between variables. An alternative explanation of the
althouse and Berish findings, as pointed out by the authors,

s that variability measures have lower reliability than mea-
ures of central tendency, especially when the number of trials
s small (Schmiedek, 2006). If reliability differences are left
nconsidered and everything else being equal, variability mea-
ures will account for less variance in other measures than the
entral tendency. Moreover, the present results are based on
ongitudinal data, which, in contrast to cross-sectional data,
an reveal dynamic associations among variables. Finally, the
resent study investigated variability on the trial-to-trial level in
ontrast to variability across closely spaced occasions. Though
ested, these measures may capture different types of underlying
rocesses.

The present findings suggest that within-person cognitive
ariability deserves a more prominent position both in clini-
al settings and in theories of neurocognitive aging. In clinical
ettings, cognitive variability may serve as an early warning of
mminent cognitive decline and therefore carry important clin-
cal benefits (Hultsch & MacDonald, 2004; MacDonald et al.,
006). The findings also suggest that theories of neurocogni-
ive aging need to account for both age-related decline in mean
erformance and increases in cognitive variability, and need to
ncorporate assumptions about the developmental sequence, or
ascade, of changes in variability and central tendency.

Theories highlighting the role of cognitive control and the
ntegrity of the prefrontal cortex for age-related declines in
ognitive performance (e.g., Buckner, 2004; West, 1996) have
he potential to posit a developmental sequence for cognitive
hanges in variability and performance levels with advancing
ge. Marked and early structural (e.g., Raz et al., 2005) and func-
ional (Buckner, 2004) alterations in the integrity of prefrontal
ortex occur in healthy aging. Moreover, cognitive control pro-
esses supported by the prefrontal cortex are important for a wide
ange of cognitive functions. Importantly, cognitive variability in
everal different tasks might, to a high degree, reflect the integrity
f cognitive control processes, such as the extent of attentional
apses and reliability of context maintenance (Bellgrove et al.,

004; Bunce et al., 1993; Hultsch et al., 2002; MacDonald et
l., 2006; Stuss et al., 2003; West et al., 2002; Williams et al.,
005). Behavioral (Hultsch et al., 2002), clinical (Winterer &
einberger, 2004), and neuroimaging (Bellgrove et al., 2004)

m

h
a

gia 45 (2007) 2827–2838 2835

ork support this interpretation. Thus, intraindividual cognitive
ariability may constitute a sensitive marker of early decline in
ognitive control, which later will decline more substantially
nd cause widespread effects on cognitive functioning. In turn,
ognitive control may become increasingly important for various
ypes of cognitive abilities in old age, as suggested by, for exam-
le, the pattern of dedifferentiation in which various measures
f cognitive performance display increasing correlations among
ach other (e.g., de Frias, Lövdén, Lindenberger, & Nilsson, in
ress; Li, Lindenberger et al., 2004). Thus, category fluency and
igit letter mean performance, although perhaps best construed
s markers of verbal fluency and perceptual speed, may to a
reater extent depend on cognitive control in particular in old
nd very old age.

Theoretical models that are able to more directly relate
he effects of behavioral variability on behavioral longitudinal
ecline to the neural level may help to promote a more mechanis-
ic understanding of the present findings, and inform empirical
eurobiological research. As a precondition for making predic-
ions that correspond to the findings reported in this study, these

odels need to relate accuracy to latency, and variability to cen-
ral tendency, at both behavioral and neuronal levels of analysis.
n doing so, they need to recognize that variability itself, or neu-
onal noise, significantly contributes to the cortical dynamics
f neuronal signal transmission (Stein, Gossen, & Jones, 2005).
wo models, although currently not able to fully explain the
urrent finding (e.g., the temporal ordering of the influence of
ariability and longitudinal cognitive declines), seem especially
romising.

First, Li et al. (e.g., Li & Lindenberger, 1999; Li, Aggen et
l., 2001; Li, Lindenberger et al., 2001) have proposed a neu-
ocomputational framework that simulates senescent changes
n behavior as a function of age-related reductions in the effi-
acy of dopaminergic neuromodulation. According to the model,
eficient neuromodulation results in greater neuronal noise, and
lters the extent to which neural information processing can ben-
fit from noise tuning (e.g., stochastic resonance; Li, Brehmer
t al., 2006; Li, Oertzen et al., 2006). Importantly, this model
pecifies a direct link between variability and central tendency
n cognitive performance, as the model parameter used to simu-
ate age changes in dopaminergic neuromodulation affects both
he variability and central tendency (Li & Lindenberger, 1999;
i, Aggen et al., 2001; Li, Lindenberger et al., 2001). Given

hat age changes in dopaminergic neuromodulation have pro-
ounced effects on cognitive control and fluid intelligence (cf.
i, Brehmer et al., 2006), this model may provide a viable
tarting point for establishing a specific link between moment-
o-moment variability and subsequent longitudinal mean decline
t the neuronal level of analysis. For example, with the assump-
ion that the effects of manipulations of the gain parameter on
ariability is particularly tightly linked with dopaminergic mod-
lation of the integrity of prefrontal cortex’s cognitive control
unctions (e.g., Egan et al., 2001), temporal lead–lag association

ight be incorporated also within this framework.
Second, the diffusion model by Ratcliff and Rouder (1998)

as been successfully used to model adult age differences in
ccuracy and latency of simple cognitive tasks (e.g., Ratcliff,
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hapar, Gomez, & McKoon, 2004), and has recently been
xtended to predict individual differences in working memory
nd cognitive control (e.g., Schmiedek et al., in press; see also
atcliff, Schmiedek, & McKoon, submitted for publication).
imilar to the approach taken by Li and colleagues, the diffusion
odel directly links variability and central tendency in cognitive

erformance. Taken this together with the role played by diffu-
ion processes in modeling neural signaling (Smith & Ratcliff,
004), the modeling approach by Ratcliff and co-workers may
oint to neural mechanisms that cause senescent changes in the
ariability of perceptual decision making, and predict longitu-
inal decline.

In sum, research lines directly linking intraindividual cog-
itive variability to brain functions at the neuroanatomical and
eurochemical levels is clearly called for to improve understand-
ng the developmental dynamics between cognitive performance
nd variability in old age (see also MacDonald et al., 2006).
uch research might also shed light on whether intraindivid-
al cognitive variability is best conceived of as an agent (Li &
indenberger, 1999; Lindenberger & Oertzen, 2006) or a flag

Hultsch & MacDonald, 2004) of impending cognitive perfor-
ance changes in old age.
The validity of the present findings is conditional upon

everal statistical assumptions, such as sample homogeneity,
ata missing-at-random, and the equivalence of structural rela-
ions based on interindividual and intraindividual variance. The
esults must also be interpreted with the timescales in mind,
onsidering both intraindividual variability (i.e., trial-to-trial
uctuations) and intraindividual changes (i.e., 2-year changes).
n other words, the present findings may not generalize to other
imescales. In addition, our measure of intraindividual vari-
bility is admittedly suboptimal due to the limited amounts
f trials available. However, if anything, this is likely to work
gainst finding a dynamic influence of trial-to-trial variability
n performance levels. It should also be noted that cogni-
ive aging is clearly not fully described by a bivariate model.
n other words, we may have failed to model several vari-
bles that may play important roles in the association between
ariability and cognitive performance. Future studies should
xtend directional hypotheses to higher-order multivariate mod-
ls. Finally, given the high mean age of the sample, we do not
now whether the findings generalize to late middle adulthood
r early old age, when the first signs of longitudinal cognitive
ecline become manifest. Thus, the finding of developmental
rdering of variability and cognitive performance levels in old
ge and very old age clearly deserves attempts for replication and
xtension.

To conclude, we found that changes in trial-to-trial vari-
bility were associated with changes in cognitive performance
evels, and that higher trial-to-trial variability precedes and
redicts decline in cognitive performance in old age. Trial-
o-trial variability may constitute an early and clinically
elevant sign of coming changes in cognitive function-

ng. Theories of neurocognitive aging need to account for
enescent decline in both variability and central tendency,
nd for the developmental cascade between variability and
erformance.
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M. Lövdén et al. / Neuropsy

errer, E., & McArdle, J. J. (2004). An experimental analysis of dynamic
hypotheses about cognitive abilities and achievement from childhood to early
adulthood. Developmental Psychology, 40, 935–952.

ozard, J. L., Vercruyssen, M., Reynolds, S. L., Hancock, P., & Quilter, R.
E. (1994). Age differences and changes in reaction time: The Baltimore
longitudinal study of aging. Journals of Gerontology, 49, 179–189.

uentes, K., Hunter, M. A., Strauss, E., & Hultsch, D. F. (2001). Intraindi-
vidual variability in cognitive performance in persons with chronic fatigue
syndrome. Clinical Neuropsychologist, 15, 210–227.

erstorf, D., Herlitz, A., & Smith, J. (2006). Stability of cognitive sex differ-
ences in advanced old age: The role of education and attrition. Journal of
Gerontology: Psychological Sciences, 61, 245–249.
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