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What's in a Sample? A Manual for Building
Cognitive Theories

Gerd Gigerenzer

PREVIEW

How do you build a model of mind? I discuss this question from the point of
view of sampling. The idea that the mind samples information - from mem-
ory or from the environment — became prominent only after researchers
began to emphasize sampling methods. This chapter provides a toolbox
of potential uses of sampling, each of which can form a building block
in a cognitive theory. In it I ask four questions: who samples, why, what,
and how.

Who: In the social sciences (in contrast to the natural sciences), not only
researchers sample, but so do the minds they study. Why: [ distinguish two
goals of sampling, hypotheses testing and measurement. What: Researchers
can sample participants, objects, and variables to get information about
psychological hypotheses, and minds may sample objects and variables to
get information about their world. How: I distinguish four ways to sample:
(i) no sampling, (ii) convenience sampling, (iii) random sampling from a
defined population, and (iv) sequential sampling. These uses of sampling
have received unequal attention. The prime source of our thinking about
sampling seems to be R. A. Fisher’s small-sample statistics, as opposed to
the use of random sampling in quality control, the use of sequential sam-
pling, and the use of sampling for measurement and parameter estimation.
I use this legacy to identify potentials of sampling in adaptive cognition
that have received little attention.

In his Opticks, Isaac Newton (1952/1704) reported experiments with
prisms to demonstrate that white light consists of spectral colors. Newton
did not sample, nor was he interested in means or variances. In his view,
good experimentation had nothing to do with sampling. Newton was not
antagonistic to sampling, but he used it only when he thought it was ap-
propriate, as in quality control. In his role as the master of the London
Royal Mint, Newton conducted routine sampling inspections to determine
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whether the amount of gold in the coins was too little or too large. Just
as in Newton’s physics, experimentation and statistics were hostile rivals
in nineteenth-century physiology and medicine. The great experimenter
Claude Bernard used to ridicule the use of samples; his favorite example
was that it is silly to collect the urine of one person, or of even a group
of persons, over a twenty-four-hour period, because it is not the same be-
fore and after digestion, and averages are reifications of unreal conditions
(Gigerenzer et al., 1989, p. 129). When B. F. Skinner demonstrated the ef-
fects of reinforcement schedules, he used one pigeon at a time, not two
dozen. Although Skinner did not sample pigeons, William Estes (1959)
pointed out that his theory assumed that his pigeons sampled information
about the consequences of their behavior.

These cases illustrate some of the perplexing faces of sampling. What
is in a sample? Why coins but not prisms or urine? Why did we come
to believe that sampling and experimentation are two sides of the same
coin, whereas Newton, Bernard, and Skinner did not? Why did Skinner
not sample pigeons but assume that pigeons sample information? In this
chapter, I try to put some order into the puzzling uses and nonuses of
sampling. In the introduction to this volume, Fiedler and Juslin distin-
guished various forms of cognitive sampling, such as internal versus ex-
ternal sampling (e.g., memory versus the Internet), and the unit size of the
objects of sampling. In contrast, I will focus on the evolution of the ideas of
sampling — from the statistical toolbox to theories of mind. The selection of
tools that ended up in cognitive theories and those that did not is in part
historical accident. For instance, the tools that researchers happened to be
familiar with had the best chances of being selected. What I hope to achieve
with this chapter is not a complete taxonomy of sampling tools, but rather
a view into the toolbox that can help in rethinking the possibilities of sam-
pling and in using the toolbox creatively when building theories of mind.
I will proceed to answer the question “What's in a sample?” by asking who
samples, what, why, and how?

WHO SAMPLES?

I begin with the observation that the answer to the question of who sam-
ples information is different in the cognitive sciences than in the fields
from which statistical sampling theory actually emerged —astronomy, agri-
culture, demographics, genetics, and quality control. In these noncogni-
tive sciences, the researcher alone may sample (Figure 11.1). For instance,
an astronomer may repeatedly measure the position of a star, or an agri-
cultural researcher may fertilize a sample of plots and measure the aver-
age number of potatoes grown. Sampling concerns objects that are mea-
sured on some variable. Why would that be different in the cognitive
sciences?
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objects variables

FIGURE 11.1. The structure of the potential uses of sampling in the noncognitive
sciences. Researchers may sample objects (such as electrons) to measure these on
variables (such as location and mass).

In the cognitive sciences (in contrast to the natural sciences), there are
two “classes” of people who can engage in sampling: researchers and the
participants of their studies (Figure 11.2). Whether and how researchers
draw samples is generally seen as a methodological question. Whether
and how researchers think that the minds of their participants engage in
sampling of information is treated as a theoretical question. The labels
“methodological” and “theoretical” suggest that both questions are unre-
lated and should be answered independently. After all, what do theories
of cognitive processes have to do with the methods to test these theories?

I do not believe that these two issues are generally independent of each
other. My hypothesis is that there is a significant correlation (not a one-
to-one relation) in cognitive psychology between researchers’ sampling
practices and the role of sampling in their theories of mind. This hypothesis
is an extension of my work on the tools-to-theories heuristic. The general
thesis is twofold (Gigerenzer, 1991, 2000):

1. Discovery: New scientific tools, once entrenched in a scientist’s daily
practice, suggest new theoretical metaphors and concepts.

2. Acceptance: Once proposed by an individual scientist (or a group),
the new theoretical concepts are more likely to be accepted by the
scientific community if their members are also users of the new tool.

Note that Sigmund Freud, L. P. Pavlov, and the Gestalt psychologists, as
well as the “father” of experimental psychology, Wilhelm Wundt, did not
sample participants, and sampling played no role in their theories of mind.

I researcherj
[ } 1
objects Iparticipantsl | variables l
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FIGURE 11.2. The structure of the potential uses of sampling in the cognitive sci-
ences. Researchers may sample stimulus objects, participants, or variables, and
their participants may themselves sample objects and variables.
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All this changed after the unit of investigation ceased to be the individ-
ual person, and instead became the group mean —a process that started in
the applied fields such as educational psychology (Danziger, 1990). Harold
Kelley (1967), for instance, who used sampling and Fisher’s analysis of vari-
ance to analyze his data, proposed that the mind attributes a cause to an
effect in the same way, by sampling information and an intuitive version of
analysis of variance. The community of social psychologists who also used
analysis of variance as a routine tool accepted the theory quickly, and for a
decade it virtually defined what social psychology was about. In contrast,
R. Duncan Luce (1988) rejected routine use of analysis of variance as “mind-
less hypothesis testing in lieu of doing good research” (p. 582), and his the-
ories of mind differed as a consequence. For instance, being familiar with
the statistical tools of Jerzy Neyman and Egon S. Pearson and their doc-
trine of random sampling, Luce (1977) proposed that the mind might draw
random samples and make decisions just as Neyman-Pearson theory does.

In summary, I propose that if researchers sample, they are likely to as-
sume in their theories that the mind samples as well. If they do not, their
view of cognitive processes typically also does notinvolve sampling. More-
over, the specific kind of sampling process that researchers use is likely to
become part of their cognitive theories.

WHAT’'S IN A SAMPLE?

In the cognitive sciences, the object of sampling can be threefold: partic-
ipants, objects, and variables (Gigerenzer, 1981). Researchers can sample
participants, stimulus objects, or variables. Today, participants are sam-
pled habitually, objects rarely, and variables almost never. In addition, the
minds under study can sample objects and variables. In cognitive theo-
ries, minds mostly sample objects, but rarely variables. This results in five
possible uses of sampling in psychology (Figure 11.2).

My strict distinction between the cognitive and noncognitive sciences is
an idealization; in reality there are bridges. The astronomers’ concern with
the “personal equation” of an observer illustrates such a link. Astronomers
realized that researchers had systematically different response times when
they determined the time a star travels through a certain point. This led to
the study of astronomers’ personal equations, that is, the time that needed
to be subtracted to correct for their individual reaction times. In this sit-
uation, the object of sampling was both the researchers and their objects,
such as stars (Gigerenzer et al., 1989).

WHY SAMPLING?

I distinguish two goals of sampling: hypotheses testing and measurement.
Take significance tests as an example, where a sample statistic—such as t or
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F —is calculated. In the early nineteenth century, significance tests were al-
ready being used by astronomers (Swijtink, 1987). Unlike present-day psy-
chologists, astronomers used the tests to reject data (so-called outliers), not
to reject hypotheses. At least provisionally, the astronomers assumed that a
hypothesis (such as normal distribution of observational errors around the
true position of a star) was correct and mistrusted the data. In astronomy,
the goal was precise measurement, and this called for methods to identify
bad data. In psychology, researchers trusted the data and mistrusted the
hypotheses; that is, the goal became hypothesis testing, not measurement,
following the influence of Fisher.

Hypothesis testing and measurement are concepts taken from statistical
theory, and the obvious question is whether they are also good candidates
for understanding how the mind works. Whatever the right answer may
be, hypothesis testing has been widely assumed to be an adaptive goal of
cognition, including in numerous studies that tried to show that people
make systematic errors when testing hypotheses. Note that measurement
has not been as extensively considered and studied as a goal of cognition
(with some exceptions, such as the work of Brunswik, 1955), which is con-
sistent with the fact that researchers tend to use their sampling tools for
hypothesis testing rather than measurement.

HOW TO SAMPLE?

Sampling is not sampling. I distinguish four ways of how to sample, be-
ginning with the nonuse of sampling.

Study Ideal Types, Not Samples

Newton thought that the science of optics was close to mathematics, where
truth can be demonstrated in one single case, and he loathed researchers
who replicated his experiments. Similarly, the most influential psycholo-
gists made their fame by studying one individual at a time. Freud’s Anna
O., Wundt’'s Wundt (the “father” of experimental psychology served as
experimental subject), Pavlov’s dog, Luria’s mnemonist Shereshevski, and
Simon’s chess masters are illustrations. They represent ideal types, not av-
erages. They may also represent distinct individual types, such as brain
patients with specific lesions. Note that the ideal type approach does not
mean that only one individual is studied. There may be several individ-
uals, such as Freud’s patients or Skinner’s pigeons. The point is that the
fundamental unit of analysis is N = 1, the singular case.

It is of a certain irony that Fisher’s only psychological example in his
influential Design of Experiments (1935) concerns the analysis of a Lady who
claimed that she could tell whether the tea fusion or the milk was poured
first into a cup of tea. This single-case study of extraordinary sensory
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abilities did not become the model for experimental research. Fisher
sampled objects, not participants, as in Figure 11.1. Psychologists gener-
ally interpreted his methodology to be about sampling participants, not
objects.

In his seminal book Constructing the Subject, Danziger (1990) argues that
the reason why American psychologists turned away from studying in-
dividuals in the 1930s and 1940s and embraced means as their new “sub-
ject” had little to do with the scientific goals of our discipline. In contrast,
this move was largely a reaction to university administrators’ pressure on
professors of psychology to show that their research was useful for ap-
plied fields, specifically educational research, which offered large sources
of funding. The educational administrator was interested in questions such
as whether a new curriculum would improve the average performance of
pupils, and not in the study of the laws of the individual mind. Danziger
provides detailed evidence that sampling of participants started in the
applied fields but not in the core areas of psychology, and in the United
States rather than in Germany, where professors of psychology were not,
at that time, under pressure to legitimize their existence by proving their
practical usefulness. Some of these differences still prevail today: Social
psychologists tend to sample dozens or hundreds of undergraduates for
five to ten minutes, whereas perceptual psychologists tend to study one or
a few participants, each individually and for an extended time.

Convenience Samples

In the 1920s, Ronald A. Fisher (1890-1962) was chief statistician at the agri-
cultural station in Rothamsted. Before Fisher, agricultural researchers had
little sense for sampling. For instance, in the mid-nineteenth century, the
British agriculturist James F. W. Johnston tried to determine which fertil-
izer was the best for the growth of turnips. He fertilized one plot, which
yielded 24 bushels, and compared this result with those from three plots
without fertilizer, which respectively yielded 18,21, and 24 bushels of grain.
Johnston understood that turnips naturally show up to 25% variation from
plot to plot and that the average difference of about 10% that he observed
was therefore not indicative of a real improvement. What Johnston did not
understand was the importance of sample size — that this variability be-
comes less and less important as the number of plots on which the average
is based increases (Gigerenzer et al., 1989, chapter 3).

Fisher’s major contribution was to unite the rival practices of scientific
experimentation and statistics. From Newton to Bernard to Skinner, this
connection, as mentioned, had not existed. Fisher turned the two rival
practices into two sides of the same coin, introducing randomized trials
to agriculture, genetics, and medicine. By way of parapsychology and ed-
ucation, his ideas also conquered experimental psychology. The marriage
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between statistics and experimentation also changed statistics, from the
general emphasis on large samples to Fisher’s small-sample statistics. The
idea of basing inferences on small samples — as in the typical experiment —
was highly controversial. The statistician Richard von Mises (1957, p. 159)
predicted that “the heyday of small sample theory ...is already past.” It
was not past, however; Fisher prevailed.

Fisher’s position emphasized some aspects of sampling — sample size,
significance, and random assignment — and left out others. Most impor-
tantly, the concept of random sampling from a defined population had
no place in Fisher’s (1955) theory. Fisher's samples were not randomly
drawn from a defined population. There was no such population in the
first place. A sample whose population is not known is called a convenience
sample. Fisher's liberal interpretation of how to sample became entrenched
in psychology: The participants in psychological experiments are seldom
randomly sampled, nor is a population defined.

Fisher did not think that convenience samples are a weakness. He held
thatin science there is no known population from which repeated sampling
can be done. In a brilliant move, Fisher proposed to view any sample
as a random sample from an unknown hypothetical infinite population. This
solution has puzzled many statisticians: “This is, to me at all events, a most
baffling conception”(Kendall, 1943, p. 17). However, Fisher’s ideas about
sampling were not the last word. Fisher had two powerful rivals, both of
whom he detested.

Random Samples

The earliest quasi-random sampling procedure I know of is the trial of the
Pyx (Stigler, 1999). The trial is a ceremony that goes back to the Middle
Ages, the final stage of a sampling inspection scheme for the control of the
quality of the London Royal Mint’s production. The word Pyx refers to
the box in which the sample of coins was collected, to determine whether
the coins were too heavy or too light and contained too much or too little
gold. As mentioned before, Newton served as master at the Royal Mint
from 1699 until his death in 1727. The same Newton who did not use sam-
pling for scientific experimentation supervised sampling for the purpose
of quality control. The trial of the Pyx employed a form of sampling that is
different from a convenience sample. It used a random sample drawn from
a defined population, the total production of the Mint in one or a few years.

In the twentieth century, hypotheses testing that used random sam-
pling from a defined population was formalized by the Polish statistician
Jerzy Neyman and the British statistician Egon S. Pearson, the son of Karl
Pearson. In their theory of hypotheses testing, one starts with two hy-
potheses (rather than one null hypothesis) and the probabilities of the two
possible errors, Type I and Type II, from which the necessary sample size



246 Gerd Gigerenzer

is calculated. A random sample is then drawn, after which one of the two
hypotheses is accepted, and the other is rejected (in Fisher’s scheme, the
null can only be rejected, not accepted). Neyman and Pearson believed
that they had improved the logic of Fisher’s null hypothesis testing. Fisher
(1955) did not think so. He thought that those who propose sampling ran-
domly from a defined population and calculating sample size on the basis
of cost-benefit trade-offs mistake science for quality control. He compared
the Neyman-Pearsonians to Stalin’s five-year plans, that is, to Russians
who confuse technology with producing knowledge.

Sequential Sampling

A third line of sampling is sequential sampling, which had the status of a
military secret during World War IT and was later made public by Abraham
Wald (1950). In comparison to Fisher’s and Neyman and Pearsons’s the-
ories, sampling is sequential, not simultaneous. Whereas the sample size
in Neyman-Pearson tests is fixed, calculated from a desired probability of
Type I and Type II error, there is no fixed sample size in sequential sam-
pling. Rather, a stopping criterion is calculated on the basis of the desired
probabilities of Type I and Type Il errors, and one continues to sample until
itis reached. Sequential sampling has an advantage: It generally results in
smaller sample sizes for the same alpha and power. Fisher was not fond
of sequential sampling, for the same reasons that he despised Neyman-—
Pearson’s theory. Although sequential sampling can save time and money,
researchers in psychology rarely know and use it.

Which of these ideas of sampling have shaped psychological methods
and theories of mind? I will now discuss each of the five possibilities for
sampling in Figure 11.2.

DO RESEARCHERS SAMPLE PARTICIPANTS?

Do psychologists use individuals or samples as the unit of analysis? In the
nineteenth and early twentieth centuries, the unit of analysis was clearly
the individual. This changed in the United States during the 1920s, 1930s,
and 1940s, when experimental studies of individuals were replaced by the
treatment group experiment (Danziger, 1990). The use of samples of indi-
viduals began in the applied fields, such as education, and spread from
there to the laboratories. The strongest resistance to this change in research
practice came from the core of psychological science, perceptual research,
where to the present day one can find reports of individual data rather
than averages. Nonetheless, sampling participants has largely become the
rule in psychology, and its purpose is almost exclusively hypothesis test-
ing, or more precisely, null hypothesis testing. The use of samples for the
measurement of parameters is comparatively rare.
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How do researchers determine the size of the sample? Psychologists
generally use rules of thumb (“25 in each group might be good enough”)
rather than the cost-benefit calculation prescribed by Neyman and
Pearson. For instance, Cohen (1962) analyzed a volume of a major journal
and found no calculation of sample size depending on the desired proba-
bilities of Type [ and Type 1l errors. When Sedlmeier and Gigerenzer (1989)
analyzed the same journal twenty-four years later, nothing had changed:
Sample size was still a matter of convenience, and as a consequence, the
statistical power was embarrassingly low — a fact that went unnoticed.

Do researchers draw random samples of participants from a defined
population? Experimental studies in which first a population is defined,
then a random sample is drawn, and then the members of the sample are
randomly assigned to the treatment conditions are extremely rare (e.g.,
Gigerenzer, 1984). When is sequential sampling of participants used? Vir-
tually never. In summary, when researchers sample participants, they have
perfectly internalized Fisher’s ideas about sampling — except that, as al-
ready mentioned, Fisher sampled objects, not participants.

This almost exclusive reliance on convenience samples and Fisher’s anal-
ysis of variance creates many of the problems that other uses of sampling
tried to avoid. Researchers do not know the power of their tests; measuring
constants and curves does not seem to be an issue; they waste time and
money by never considering sequential sampling; and when they conclude
that there is a true difference in the population means, nobody knows what
this population is.

Why sample participants and analyze means if there is no population
in the first place? Why not analyze a few individuals? In 1988, I spent a
sabbatical at Harvard and had my office next to B. F. Skinner’s. I asked
him over tea why he continued to report one pigeon rather than averag-
ing across pigeons. Skinner confessed that he once tried to run two dozen
pigeons and feed the data into an analysis of variance, but he found that
the results were less reliable than with one pigeon. You can keep one pi-
geon at a constant level of deprivation, he said, but you lose experimental
control with twenty-four. Skinner had a point, which W. Gosset, the in-
ventor of the f test, made before: “Obviously the important thing. . .is to
have a low real error, not to have a ‘significant’ result at a particular sta-
tion. The latter seems to me to be nearly valueless in itself” (quoted in
Pearson, 1939, p. 247). The real error can be measured by the standard de-
viation of the measurements, whereas a p value reflects sample size. One
can get small real errors by increasing experimental control, rather than by
increasing sample size. Experimental control can reveal individual differ-
ences in cognitive strategies that get lost in aggregate analyses of variance
(e.g., Gigerenzer & Richter, 1990; Robinson, 1950).

In summary, psychologists’ sampling of participants follows Fisher’s
convenience samples. Alternative sampling procedures are practically
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nonexistent. I believe that it is bad scientific practice to routinely use conve-
nience samples and their averages as units of analysis. Rather, the default
should be to analyze each individual on its own. This allows researchers
to minimize the real error, to recognize systematic individual differences,
and - last but not least - to know one’s data.

DO RESEARCHERS SAMPLE OBJECTS?

Fisher made no distinction between the analysis of participants and ob-
jects. Do researchers sample stimulus objects in the same way they sample
participants? The answer is “no”: The classic use of random sampling for
measurement in psychophysics has declined, and concern with sampling
of objects is rare compared with sampling of participants.

In the astronomer’s tradition, the use of random sampling for measure-
ment is the first major use of sampling in psychophysics. In Fechner’s
work, samples were used to measure absolute and relative thresholds.
In Thurstone’s (1927) law of comparative judgment, an external stimulus
corresponds to an internal normal distribution of subjective values, and a
particular encounter with the stimulus corresponds to a randomly drawn
subjective value from this distribution. The goal of repeated presentation
of the same stimuli is to obtain psychological scales for subjective quan-
tities. As Luce (1977) noted, there is a close similarity between the math-
ematics in Thurstone’s law of comparative judgment and that in signal
detection theory, but a striking difference in the interpretation. Thurstone
used random variability for measurement, whereas in signal detection the-
ory the mind is seen as an intuitive statistician who actively samples ob-
jects (Gigerenzer & Murray, 1987). The use of sampling for measurement
has strongly declined since then, owing to the influence of Stevens and
Likert, who promoted simple techniques such as magnitude estimation
and rating scales that dispensed with the repeated presentation of the same
stimulus. A tone, a stimulus person, or an attitude question is presented
only once, and the participant is expected to rate it on a scale from, say,
one to seven. Aside from research in perception and measurement theory,
sampling of objects for the purpose of measuring subjective values and
attitudes has been largely driven out of cognitive psychology (see, e.g.,
Wells & Windschitl, 1999).

As a consequence, Egon Brunswik (e.g., 1955) accused his colleagues
of practicing a double standard by being concerned with the sampling of
participants but not of stimulus objects. He argued that “representative”
sampling of stimuli in natural environments is indispensable for studying
vicarious functioning and the adaptation of cognition to its environment.
For Brunswik, representative sampling meant random sampling from a
defined population. In a classic experiment on size constancy, he walked
with the participant through her natural environment and asked her at
random intervals to estimate the size of objects she was looking at.
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Like Fechner and Thurstone, Brunswik was concerned with measure-
ment, but not with the construction of subjective scales. He understood
cognition as an adaptive system and measured its performance in terms of
“Brunswik ratios” (during his Vienna period, e.g., for measuring size con-
stancy) and later (while at Berkeley) by means of correlations. He was not
concerned with repeated presentations of the same object, nor with random
sampling from any population, but with random sampling of objects from
a natural population. Brunswik was influenced by the large-sample statis-
tics of Karl Pearson. Pearson, who invented correlation statistics together
with Galton, was involved in an intense intellectual and personal feud with
Fisher. The clash between these two towering statisticians replicated itself
in the division of psychology into two methodologically opposed camps:
the large-sample correlational study of intelligence and personality, using
the methods of Galton, Pearson, and Spearman, and the small-sample ex-
perimental study of cognition, using the methods of Fisher. The schism
between these two scientific communities has been repeatedly discussed
by the American Psychological Association (e.g., Cronbach, 1957) and still
exists in full force today. Intelligence is studied with large samples; think-
ing is studied with small samples. The members of each community tend
not to read and cite what the others write. Brunswik could not persuade
his colleagues from the experimental community to take the correlational
statistics of the rival discipline seriously. His concept of representative
sampling died in the no-man’s land between the hostile siblings. Even
after the Brunswikian program was revived a decade after Brunswik died
(Hammond, 1966; Hammond & Stuart, 2001), the one thing that is hard to
find in neo-Brunswikian research is representative sampling.

But does it matter if researchers use random (representative) sampling
or a convenience sample that is somehow selected? The answer depends
on the goal of the study. If its goal is to measure the accuracy of perception
or inaccuracy of judgment, then random sampling matters; if the goal is
to test the predictions of competing models of cognitive mechanism, ran-
dom sampling can be counterproductive, because tests will have higher
power when critical items are selected (Rieskamp & Hoffrage, 1999). For
claims about cognitive errors and illusions, the sampling of stimulus ob-
jects does matter (Gigerenzer & Fiedler, 2004). Research on the so-called
overconfidence bias illustrates the point.

In a large number of experiments, participants were given a sample of
general knowledge questions, such as “Which city has more inhabitants,
Hyderabad or Islamabad?” Participants chose one alternative, such as
“Islamabad,” and then gave a confidence judgment, such as “70%,” that
their answer was correct. Average confidence was substantially higher
than the proportion correct; this was termed “overconfidence bias” and
attributed to a cognitive or motivational flaw. How and from what popula-
tion the questions were sampled were not specified in these studies. As the
story goes, one of the first researchers who conducted these studies went
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through almanacs and chose the questions with answers that surprised
them. However, one can always demonstrate good or bad performance,
depending on what items one selects. When we introduced random sam-
pling from a defined population (cities in Germany), “overconfidence bias”
largely or completely disappeared (Gigerenzer, Hoffrage, & Kleinbolting,
1991). The message that one of the most “stable” cognitive illusions could
belargely due to researchers’ sampling procedure was hard to accept, how-
ever, and was debated for years (e.g., by Griffin & Tversky, 1992). Finally,
Juslin, Winman, & Olsson (2000) published a seminal review of more than
100 studies showing that “overconfidence bias” is practically zero with ran-
dom sampling, but substantial with selected sampling (for a discussion of
sampling in overconfidence research, see also Klayman et al., this volume;
Hoffrage & Hertwig, this volume).

In summary, whereas sampling of participants has become institution-
alized in experimental psychology, sampling of stimulus objects has not.
Except for a few theories of measurement, which include psychophysics
and Brunswik’s representative design, it is not even an issue of general
concern.

DO RESEARCHERS SAMPLE VARIABLES?

Now we enter no-man’s land. Why would a researcher sample variables,
and what would that entail? Few theories in psychology are concerned
with how the experimenter samples the variables on which participants
judge objects. One is personal construct theory (Kelly, 1955). The goal of the
theory is to analyze the “personal constructs” people use to understand
themselves and their world. George Kelly’s emphasis on the subjective
construction of the world precludes the use of a fixed set of variables, such
as a semantic differential, and imposition of it on all participants. Instead,
Kelly describes methods that elicit the constructs relevant for each person.
One is to present triples of objects (such as mother, sister, and yourself),
and to ask the participant first which of the two are most similar, then what
it is that makes them so similar, and finally what makes the two different
from the third one.

Unlike when sampling participants and objects, situations in which a
population of variables can be defined are extremely rare. In Kelly’s at-
tempts to probe individual constructs, for instance, the distinction be-
tween convenience samples and random or representative samples ap-
pears blurred. If the goal of the research is to obtain statements about
the categories or dimensions in which people see their world, then
the researcher needs to think of how to sample the relevant individual
variables.

I turn now to theories of how minds sample. According to our scheme,
minds can sample along two dimensions: objects and cues (variables).
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DO MINDS SAMPLE OBJECTS?

The idea that the mind samples objects to compute averages, variances, or
test hypotheses only emerged after the institutionalization of inferential
statistics in psychology (1940-1955), consistent with the tools-to-theories
heuristic (Gigerenzer & Murray, 1987). From Fechner to Thurstone, proba-
bility was linked with the measurement of thresholds and the construction
of scales of sensation, but not with the image of the mind as an intuitive
statistician who draws samples for cognitive inferences or hypothesis testing.
One of the first and most influential theories of intuitive statistics was sig-
nal detection theory (Tanner & Swets, 1954), which transformed Neyman-
Pearson theory into a theory of mind.

There seem to be two main reasons for this late emergence of the view
that the mind actively engages in sampling, The first is described by tools-
to-theories: Only after a combination of Fisher’s and Neyman-Pearson’s
statistical tools became entrenched in the methodological practices of psy-
chologists around 1950 did researchers begin to propose and accept theidea
that the mind might also be an intuitive statistician who uses similar tools
(Gigerenzer, 1991). The second reason is the influence of Stanley S. Stevens,
who rejected inferential statistics (Gigerenzer & Murray, 1987, chapter 2).
For instance, in the first chapter of his Handbook of Experimental Psychology,
Stevens (1951) included a section entitled “probability” (pp. 44—47), whose
only purpose seems to be to warn the reader of the confusion that might
result from applying probability theory to anything, including psychology.
He was deeply suspicious of probabilistic models on the grounds that they
can never be definitely disproved. Like David Krech and Edwin G. Boring,
Stevens stands in a long tradition of psychologists who are determinists at
heart.

Yet many current theories in cognitive and social psychology still do
not incorporate any models of sampling. Consistent with this omission,
most experimental tasks lay out all objects in front of the participants and
thereby exclude information search in the first place. This tends to create
cognitive theories with a blind spot for how people sample information
and when they stop. This in turn creates a blind spot for the situations in
which the mind does and does not sample, including when there might be
evolutionary reasons to rely only on a single observation.

When Is It Adaptive Not to Sample?

Although Skinner did not sample pigeons, as mentioned before, his view
about operant conditioning can be seen as a theory of information sam-
pling. Specifically, this interpretation is invited by his variable reinforce-
ment schedules, where an individual repeatedly exhibits a behavior (such
as pecking in pigeons and begging in children) and samples information
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about consequences (such as food). Skinner’s laws of operant behavior
were designed to be general-purpose, that is, to hold true for all stimuli
and responses. This assumption is known as the equipotentiality hypoth-
esis. Similarly, when Thorndike found that cats were slow in learning to
pull strings to escape from puzzle boxes, he concluded that learning oc-
curs by trial and error, and he hoped that this would be a general law of
learning. If all stimuli were equal, minds should always sample informa-
tion to be able to learn from experience. The assumption that all stimuli
are equal is also implicit in many recent versions of reinforcement learning
(e.g., Erev & Roth, 2001). Consider William Estes, who was one of the first
to formulate Skinner’s ideas in the language of sampling;:

All stimulus elements are equally likely to be sampled and the probability of a
response at any time is equal to the proportion of elements...that are connected
to it....On any acquisition trial all stimulus elements sampled by the organism
become connected to the response reinforced on that trial. (Estes, 1959, p. 399)

Is the assumption of the equivalence of stimulus objects in sampling
correct? Are there stimulus objects that an organism does not and should
not sample? John Garcia is best known for his challenge of the equipo-
tentiality hypothesis. For instance, he showed that in a single trial, a rat
can learn to avoid flavored water when it is followed by experimentally
induced nausea, even when the nausea occurs two hours later. How-
ever, the same rat has great difficulty learning to avoid the flavored water
when it is repeatedly paired with an electric shock immediately after the
tasting:

From the evolutionary view, the rat is a biased learning machine designed by natu-
ral selection to form certain CS-US [conditional stimulus — unconditional stimulus)
associations rapidly but not others. From a traditional learning viewpoint, the rat
was an unbiased learner able to make any association in accordance with the general
principles of contiguity, effect, and similarity. (Garcia y Robertson & Garcia, 1985,
p- 25)

The evolutionary rationale for one-trial learning as opposed to sampling
stimulus objects is transparent. Learning by sampling and proportionally
increasing the probability of response can be dangerous or deadly when
it comes to food, diet, and health. To avoid food poisoning, an organism
can have a genetically inherited aversion against a food, or a genetically
coded preparedness to learn a certain class of associations in one or a few
instances.

Genetically coded preparedness shows that sampling cannot and should
not be an element of all cognitive processes. Rather, whether an organism
samples (a so-called bottom-up process) or does not (a top-down process)
largely depends on the past and present environmental contingencies. A
mind can afford to learn some contingencies, but not all — sampling can
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be overly dangerous. One-trial learning amply illustrates the adaptive na-
ture of cognitive processes, which codes what will be sampled and what
will not.

Convenience Sampling

One class of models developed after the inference revolution assumes that
the mind samples information to test hypotheses, just as researchers came
to do. Consider the question of how the mind attributes a cause to an
event, which has been investigated in the work of Piaget and Michotte. In
Michotte’s (1963/1946) view, for instance, causal attribution was a con-
sequence of certain spatio-temporal relationships; that is, it was deter-
mined “outside” the mind and did not involve inductive inference based
on samples of information (see also Chater & Oaksford, this volume). After
analysis of variance became institutionalized in experimental psychology,
Harold Kelley (1967) proposed that the mind attributes a cause to an event
just as researchers test causal hypotheses: by analyzing samples of covari-
ation information and calculating F ratios (F for Fisher) in an intuitive
analogy to analysis of variance. Note that the new ANOVA mind used the
tests for rejecting hypotheses while trusting the data, parallel to the way
researchers in psychology use ANOVA. If Kelley had lived a century and a
half earlier, he might have instead looked to the astronomers’ significance
tests. As pointed out earlier, the astronomers assumed (at least, provision-
ally) that the hypothesis was correct but mistrusted the data. If this use of
sampling had been taken as an analogy, the mind would have appeared to
be expectation-driven rather than data-driven.

Kelley’s causal attribution theory illustrates how Fisher's ANOVA was
used to model the mind’s causal thinking, assuming that the mind uses
convenience samples for making inductive inferences about causal hy-
potheses.

As clear as the distinction between convenience and random sampling
is in statistical theory, it is less so in theories that assume that the mind
samples objects. Is the sample of people a tourist encounters on a trip
to Beijing a random sample or a convenience sample? It may depend on
whether the tour guide has planned all encounters ahead, or whether the
tourist strolls through the city alone, or whether the tour guide has picked
a random sample of Beijing tenth-graders to meet with.

Random Sampling

Psychophysics has been strongly influenced by Neyman-Pearson theory.
Under the name of signal detection theory, it became a model of how
the mind detects a stimulus against noise or a difference between two
stimuli, and it replaced the concepts of absolute and relative thresholds.
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Neyman’s emphasis on random sampling from a defined population, as
in quality control, became part of the cognitive mechanisms. For instance,
Luce (1977; Luce & Green, 1972) assumed that a transducer (such as the
human ear) transforms the intensity of a signal into neural pulse trains
in parallel nerve fibers, and the central nervous system (CNS) draws a
random sample of all activated fibers. The size of the sample is assumed
to depend on whether or not the signal activates fibers to which the CNS
is attending. From each fiber in the sample, the CNS estimates the pulse
rate by either counting or timing, and these numbers are then aggregated
into a single internal representation of the signal intensity. In Luce’s theory,
the mind was pictured as a statistician of the Neyman and Pearson school,
and the processes of random sampling, inference, decision, and hypotheses
testing were freed of their conscious connections and seen as unconscious
mechanisms of the brain.

Sequential Sampling

The former First Lady, Barbara Bush, is reported to have said, “I mar-
ried the first man I ever kissed. When I tell this to my children they just
about throw up” (quoted in Todd & Miller, 1999). Is one enough, just as
in Garcia’s experiments, or should Barbara Bush have sampled more po-
tential husbands? After Johannes Kepler’s first wife died of cholera, he
immediately began a methodological search for a replacement. Within two
years, he investigated eleven candidates and finally married Number 5, a
woman who was well educated but not endowed with the highest rank
or dowry. Are eleven women a large enough sample? Perhaps too large,
because the candidate Number 4, a woman of high social status and with
a tempting dowry, whom friends urged Kepler to choose, rejected him for
having toyed with her too long (Todd & Miller, 1999). Swiss economists
Frey and Eichenberger (1996) asserted that people do not sample enough
when seeking a mate, taking the high incidence of divorce and marital
misery as evidence. In contrast, Todd and Miller (1999) argued that given
the degree of uncertainty — one never can know how a prospective spouse
will turn out — the goal of mate search can only be to find a fairly good
partner, and they showed that under certain assumptions, Kepler’s sample
was large enough.

Mate search is essentially sequential for humans, although there are
female birds that can inspect an entire sample of males lined up simulta-
neously. Since sequential sampling has never become part of the statistical
tools used by researchers in psychology, one might expect from the tools-
to-theories heuristic that minds are not pictured as performing sequential
sampling either. This is mostly, but not entirely, true.

Cognitive processes that involve sequential sampling have been mod-
eled in two different ways: optimizing models and heuristic models. Op-
timizing models are based on Abraham Wald’s (1950) statistical theory,
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which has a stopping rule that is optimal relative to given probabilities of
Type I and Type II errors (e.g., Anderson, 1990; for a discussion of optimal
stopping rules see Busemeyer & Rapoport, 1988). Many of these models
have been applied to psychophysical tasks, such as judging which of two
lines is longer. In the case of a binary hypothesis (such as line A or B; marry
or not marry), the basic idea of most sequential models is the following:
A threshold is calculated for accepting one of the two hypotheses, based
on the costs of the two possible errors, such as wrongly judging line A as
larger, or wrongly deciding that to marry is the better option. Each rea-
son or observation is then weighted and sampling of objects is continued
until the threshold for one hypothesis is met, at which point the search is
stopped and the hypothesis is accepted. These models are often presented
as as-if models, whose task is to predict the outcome rather than the process
of decision making, although it has been suggested that the calculations
might be performed unconsciously.

Heuristic models of sequential sampling assume an aspiration level
rather than optimization. Their goal is to model the process and the out-
come of judgment or decision making. For instance, in Herbert Simon’s
(1955, 1956) models of satisficing, a person sequentially samples objects
(such as houses or potential spouses) until encountering the first one that
meets an aspiration level. In Reinhard Selten’s (2001) theories of satisficing,
the aspiration level can change with the duration of the sampling process.

Can sequential sampling ever be random? In statistical theory, the an-
swer is yes. One draws sequentially from a population, until the stopping
rule applies. In the case of mental sampling, it is much harder to decide
whether a sequential search process should count as random. Consider,
for instance, a satisficer who sequentially encounters potential spouses or
houses until finding one that exceeds her aspiration level. In most cases,
the sequential sample will be a convenience sample rather than a random
sample from a defined population.

The relative rarity of sequential sampling in models of the mind goes
hand in hand with experimenters’ preference for tasks that do not provide
an opportunity for the participants to sample objects: All objects are al-
ready displayed in front of the participant. Few experiments address the
following questions: (i) When does the mind sample simultaneously ver-
sus sequentially? (ii) Is there an order in sequential search, that is, is the
search random or systematic? (iii) How is sequential search stopped, that
is, what determines when a sample is large enough?

DOES THE MIND SAMPLE VARIABLES?

Satisficing refers to a class of heuristics that apply to situations in which
an aspiration level is given and the objects or alternatives are sampled se-
quentially. Alternatively, the objects can be given and the variables (cues,
reasons, or features) need to be searched. Examples include choosing
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between two job offers (paired comparison) and classifying patients as
high-risk or low-risk (categorization). As I mentioned, cognitive theories
that model how minds sample objects are few, but those that model how
minds sample variables are even rarer. For instance, models of similarity
generally assume that the variables (features, cues, etc.) are already given
and then postulate some way in which individual features are combined to
form a similarity judgment — city block distance and feature matching are
illustrations of this. However, in everyday situations, the features are not
always laid out in front of a person but need to be searched for, and since
there is typically a large or infinite number of features or cues, cognition
may involve sampling features. Sampling cues or features can occur inside
or outside of memory (e.g., on the Internet).

Unlike for sequential sampling of objects, there seem to be no optimiz-
ing models but only heuristic models for sampling of variables. There are
two possible reasons. First, it is hard to think of a realistic population of
variables, in contrast to a population of objects. Two job candidates, for
instance, can vary on many different cues, and it is hard to define a popu-
lation of cues. Second, the large number of cues makes optimizing models
such as Bayes’s rule or full classification trees computationally intractable,
because the number of decision nodes increases exponentially with the
number of cues in a full tree. Thus, even optimizing models need to use
heuristic simplifications, as in Bayesian trees (Martignon & Laskey, 1999).

Heuristic models of sequential sampling include two major classes: one-
reason decision making and tallying. Each heuristic consists of a search
rule that specifies the direction of sampling, a stopping rule that speci-
fies when sampling is terminated, and a decision rule. “Take the Best”
(Gigerenzer & Goldstein, 1996) is an example of a heuristic that employs
ordered search and one-reason decision making.

Take the Best

1. Search by validity: Search through cues in order of their validity.
Look up the cue values of the cue with the highest validity first.

2. One-reason stopping rule: If one object has a positive cue value (1)
and the other does not (0 or unknown), then stop the search and
proceed to Step 3. Otherwise exclude this cue and return to Step 1.
If no more cues are found, guess.

3. One-reason decision making: Predict that the object with the positive
cue value (1) has the higher value on the criterion.

The validity of a cue i is defined as v; = R;/P;, where R; = number of
correct predictions by cue i, and P; = number of pairs where the values
of cue i differ between objects. “Take The Best” typically samples a small
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number of cues. Now consider an example for a tallying heuristic, which
relies on adding but not on weighing (or order).

Tallying

1. Random search: Search through cues in random order. Look up the
cue values.

2. Stopping rule: After m(1 < m < M) cues, stop the search and deter-
mine which object has more positive cue values (1), and proceed to
Step 3. If the number is equal, return to Step 1 and search for another
cue. If no more cues are found, guess.

3. Tallying rule: Predict that the object with the higher number of pos-
itive cue values (1) has the higher value on the criterion.

Here M refers to the total number of cues and m refers to the number of
cues searched for.

The literature discusses various versions of tallying, such as unit-weight
models in which all cues (m = M) or the m significant cues are looked up
(Dawes, 1979; Einhorn & Hogarth, 1975). Unlike as-if models, which pre-
dict outcomes only, these models of heuristics predict process and outcome
and can be subjected to a stronger test. A discussion of these and similar
heuristics and the situations in which they are accurate can be found in
Gigerenzer et al. (1999) and Gigerenzer & Selten (2001).

In summary, cognitive sampling of cues or features is a process that has
been given little attention. Just as for sampling of objects, heuristic models
exist that formulate stopping rules to determine when such a sample is
large enough.

WHAT’'S IN A SAMPLE?

Shakespeare has Juliet ask; “What’s in a name?” What is in a name un-
covers what the name means to us, and by analogy, what is in a sample
reveals what sampling means to us. The taxonomy proposed in this chapter
distinguishes two subjects of sampling (experimenter versus participant),
two purposes of sampling (measurement versus hypotheses testing), three
targets of sampling (participants, objects, and variables), and four ways of
how to sample (N = 1, i.e., no sampling; convenience sampling; random
sampling; and sequential sampling). As in Brunswik’s representative de-
sign, these dimensions do not form a complete factorial design; for instance,
participants do not sample participants. Among the logically possible uses
of sampling, some are realized in practice, whereas others are not or are
realized only by a minority. Is the resulting picture of the actual uses and
nonuses of sampling one of chaos, orderly chaos, or reasonable choice? Is
the overreliance on Fisher’s convenience sampling in methodology a good
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or bad thing, and is the relative neglect of sequential sampling in both
methodology and cognitive theories reasonable or unreasonable? Why is
so little attention paid to the mind’s sampling of features?

Whatever the reader’s evaluation is, a toolbox can open one’s eyes to
the missed opportunities or blind spots of sampling. There may be other
paths to a toolbox of methods for sampling; the present one has a delib-
erate bias toward the evolution of the various ideas of sampling and the
intellectual inheritance we owe to competing statistical schools. This his-
torical window allows us to understand the current patchwork of sampling
in both methodology and theory along with the possibilities of designing
new theories of mind that overcome the historical biases we inherited.

References

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Erlbaum.

Brunswik, E. (1955). Representative design and probabilistic theory in a functional
psychology. Psychological Review, 62, 193-217.

Busemeyer, J. R., & Rapoport, A. (1988). Psychological models of deferred decision
making. Journal of Mathematical Psychology, 32, 91-134.

Chater, N., & Oaksford, M. (2005). Mental mechanisms: Speculations on human
causal learning and reasoning. In K. Fiedler & P. Juslin (Eds.), Information sampling
and adaptive cognition. Cambridge, UK: Cambridge University Press.

Cohen, J. (1962). The statistical power of abnormal-social psychological research:
A review. Journal of Abnormal and Social Psychology, 65, 145-153.

Cronbach, L. J. (1957). The two disciplines of scientific psychology. American Psy-
chologist, 12, 671-684.

Dangziger, K. (1990). Constructing the subject: Historical origins of psychological research.
Cambridge, UK: Cambridge University Press.

Dawes, R. M. (1979). The robust beauty of improper linear models in decision
making. American Psychologist, 34, 571-582.

Einhorn, H. J., & Hogarth, R. M. (1975). Unit weighting schemes for decision mak-
ing. Organizational Behavior and Human Performance, 13, 171-192.

Erev, I, & Roth, A. E. (2001). Simple reinforcement learning models and recip-
rocation in the prisoner’s dilemma game. In G. Gigerenzer & R. Selten (Eds.),
Bounded rationality: The adaptive toolbox (pp. 215-231). Cambridge, MA: MIT
Press.

Estes, W. K. (1959). The statistical approach to learning theory. In S. Koch (Ed.),
DPsychology: A study of science (Vol. 2, pp. 380-491). New York: McGraw-Hill.

Fisher, R. A. (1935). The design of experiments. Edinburgh: Oliver and Boyd.

Fisher, R. A. (1955). Statistical methods and scientific induction. Journal of the Royal
Statistical Society, Series B, 17, 69-78.

Frey, B. S., & Eichenberger, R. (1996). Marriage paradoxes. Rationality and Society, 8,
187-206.

Garcia v Robertson, R., & Garcia, J. (1985). X-rays and learned taste aversions:
Historical and psychological ramifications. In T. G. Burish, S. M. Levy, & B. E.
Meyerowitz (Eds.), Cancer, nutrition and eating behavior: A biobehavioral perspective
(pp- 11-41). Hillsdale, NJ: Lawrence Erlbaum.



What's in a Sample? A Manual for Building Cognitive Theories 259

Gigerenzer, G. (1981). Messung und Modellbildung in der Psychologie [Measurement
and modeling in psychology]. Munich: Ernst Reinhardt (UTB).

Gigerenzer, G. (1984). External validity of laboratory experiments: The frequency-
validity relationship. American Journal of Psychology, 97, 185-195.

Gigerenzer, G. (1991). From tools to theories: A heuristic of discovery in cognitive
psychology. Psychological Review, 98, 254-267.

Gigerenzer, G. (2000). Adaptive thinking: Rationality in the real world. New York:
Oxford University Press.

Gigerenzer, G., & Fiedler, K. (2004). Minds in environments: The potential of an ecolog-
ical approach to cognition. Manuscript submitted for publication.

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models
of bounded rationality. Psychological Review, 103, 650-669.

Gigerenzer, G., Hoffrage, U., & Kleinbglting, H. (1991). Probabilistic mental models:
A Brunswikian theory of confidence. Psychological Review, 98, 506-528.

Gigerenzer, G., & Murray, D. J. (1987). Cognition as intuitive statistics. Hillsdale, NJ:
Lawrence Erlbaum.

Gigerenzer, G., & Richter, H. R. (1990). Context effects and their interaction with
development: Area judgments. Cognitive Development, 5, 235-264.

Gigerenzer, G., & Selten, R. (Eds.) (2001). Bounded rationality: The adaptive toolbox.
Cambridge, MA: MIT Press.

Gigerenzer, G., Swijtink, Z., Porter, T., Daston, L., Beatty, J., & Krliger, L. (1989). The
empire of chance. How probability changed science and everyday life. Cambridge, UK:
Cambridge University Press.

Gigerenzer, G., Todd, P. M., & the ABC Research Group (1999). Simple heuristics that
make us smart. New York: Oxford University Press.

Griffin, D. & Tversky, A. (1992). The weighing of evidence and the determinants of
confidence. Cognitive Psychology, 24, 411-435.

Hammond, K. R. (1966). The psychology of Egon Brunswik. New York: Holt, Rinehart
& Winston.

Hammond, K. R., & Stewart, T. R. (Eds.) (2001). The essential Brunswik: Beginnings,
explications, applications. New York: Oxford University Press.

Hoffrage, U., & Hertwig, R. (2005). Which world should be represented in repre-
sentative design? In K. Fiedler & P. Juslin (Eds.), Information sampling and adaptive
cognition. Cambridge, UK: Cambridge University Press.

Juslin, P, Winman, A., & Olssen, H. (2000). Naive empiricism and dogmatism in
confidence research: A critical examination of the hard-easy effect. Psychological
Review, 107, 384-396.

Kelley, H. H. (1967). Attribution theory in social psychology. In D. Levine (Ed.),
Nebraska symposium on motivation (Vol. 15, pp. 192-238). Lincoln: University of
Nebraska Press.

Kelly, G. A. (1955). The Psychology of personal constructs. New York: Norton.

Kendall, M. G. (1943). The advanced theory of statistics (Vol. 1). New York: Lippincott.

Klayman, J., Soll, J., Juslin, P, & Winman, A. (2005). Subjective confidence and the
sampling of knowledge. In K. Fiedler & P. Juslin (Eds.), Information sampling and
adaptive cognition. Cambridge, UK: Cambridge University Press.

Luce, R. D. (1977). Thurstone’s discriminal processes fifty years later. Psychometrika,
42, 461-489.

Luce, R. D. (1988). The tools-to-theory hypothesis. Review of G. Gigerenzer and D. .
Murray, “Cognition as intuitive statistics”. Contemporary Psychology, 32, 151-178.



260 Gerd Gigerenzer

Luce, R. D., & Green, D. M. (1972). A neural timing theory for response times and
the psychophysics of intensity. Psychological Review, 79, 14-57.

Martignon, L., & Laskey, K. B. (1999). Bayesian benchmarks for fast and frugal
heuristics. In G. Gigerenzer, P. M. Todd, & the ABC Research Group, Simple
heuristics that make us smart (pp. 169-188). New York: Oxford University Press.

Michotte, A. (1963). The perception of causality. London: Methuen. (Original work
published 1946.)

Newton, I. (1952). Opticks: Or a treatise of the reflections, refractions, inflections and
colours of light. New York: Dover. (Original work published 1704.)

Pearson, E. S. (1939). “Student” as statistician. Biometrika, 30, 210-250.

Rieskamp, J., & Hoffrage, U. (1999). When do people use simple heuristics and
how can we tell? In G. Gigerenzer, P. M. Todd, & the ABC Research Group,
Simple heuristics that make us smart (pp. 141-167). New York: Oxford University
Press.

Robinson, W. (1950). Ecological correlation and the behavior of individuals.
American Sociological Review, 15, 351-357.

Sedlmeier, P, & Gigerenzer, G. (1989). Do studies of statistical power have an effect
on the power of studies? Psychological Bulletin, 105, 309-316.

Selten, R. (2001). What is bounded rationality? In G. Gigerenzer & R. Selten (Eds.),
Bounded Rationality: The adaptive toolbox (pp. 13-36). Cambridge, MA: MIT Press.

Simon, H. A. (1955). A behavioral model of rational choice. Quarterly Journal of
Economics, 69, 99-118.

Simon, H. A. (1956). Rational choice and the structure of environments. Psychological
Review, 63, 129-138.

Stevens, S. 5. (Ed.) (1951). Handbook of experimental psychology. New York: Wiley.

Stigler, 5. M. (1999). Statistics on the table: The history of statistical concepts and methods.
Cambridge, MA: Harvard University Press.

Swijtink, Z. G. (1987). The objectification of observation: Measurement and statisti-
cal methods in the nineteenth century. In L. Kriiger, L. Daston, & M. Heidelberger
(Eds.), The probabalistic revolution, Vol. I Ideas in history (pp. 261-285). Cambridge,
MA: MIT Press.

Tanner, W.F, Jr.,, & Swets, ]. A. (1954). A decision-making theory of visual detection.
Psychological Review, 61, 401-409.

Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34,
273-286.

Todd, P. M., & Miller, G. F. (1999). From pride and prejudice to persuasion: Satis-
ficing in mate search. In G. Gigerenzer, P. M. Todd, & the ABC Research Group,
Simple heuristics that make us smart (pp. 287-308). New York: Oxford University
Press.

von Mises, R. (1957). Probability, statistics, and truth. London: Allen and Unwin.
(Original work published 1928.)

Wald, A. (1950). Statistical decision functions. New York: Wiley.

Wells, G. L., & Windschit], P. D. (1999). Stimulus sampling and social psychological
experimentation. Personality and Social Psychology Bulletin, 25, 1115-1125.



