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Abstract

Human electroencephalogram (EEG) consists of complex aperiodic oscillations that are assumed to indicate underlying neural dynamics such as
the number and degree of independence of oscillating neuronal networks. EEG complexity can be estimated using measures derived from nonlinear
dynamic systems theory. Variations in such measures have been shown to be associated with normal individual differences in cognition and some
neuropsychiatric disorders. Despite the increasing use of EEG complexity measures for the study of normal and abnormal brain functioning, little
is known about genetic and environmental influences on these measures. Using the pointwise dimension (PD2) algorithm, this study assessed
heritability of EEG complexity at rest in a sample of 214 young female twins consisting of 51 monozygotic (MZ) and 56 dizygotic (DZ) pairs.
In MZ twins, intrapair correlations were high and statistically significant; in DZ twins, correlations were substantially smaller. Genetic analyses
using linear structural equation modeling revealed high and significant heritability of EEG complexity: 62-68% in the eyes-closed condition, and
46-60% in the eyes-open condition. Results suggest that individual differences in the complexity of resting electrocortical dynamics are largely
determined by genetic factors. Neurophysiological mechanisms mediating genetic variation in EEG complexity may include the degree of structural

connectivity and functional differentiation among cortical neuronal assemblies.
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Neural activity underlying cognition and behavior is character-
ized by a high degree of functional differentiation and, at the
same time, functional integration achieved through rapid bind-
ing of spatially distributed and functionally specialized neuronal
groups [32]. To some extent, these fundamental properties of
large-scale brain dynamics are reflected in the electroencephalo-
gram (EEG) recorded from the scalp. The EEG results from the
summation of postsynaptic activity of a large number of spatially
distributed but functionally connected and interacting cortical
neurons and neuronal assemblies. Accordingly, the EEG time
series has a complex structure reflecting the complexity of the
underlying neural generators [16,26]. A greater number of inde-
pendent processes contributing to the EEG results in a greater
complexity of EEG time series [18]. EEG complexity may reflect
the number of states of a system resulting from the interaction
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among its elements, with higher complexity reflecting a larger
number of separable oscillatory networks [32].

In recent years, cortical oscillations have been increasingly
viewed from the perspective of nonlinear dynamic systems the-
ory, which investigates complex, aperiodic systems capable
of self-organization [9,26]. The behavior of complex systems
can be quantified with dimensionality measures that reflect the
degree of their dynamic complexity [16,26]. In the case of EEG,
complexity refers to the dimension of the reconstructed state-
space attractor of the EEG time series. Simulation studies have
shown that the correlation dimension of finite time series gen-
erated by multiple oscillators monotonously increases with the
number of oscillators, suggesting that dimensional complexity
of the EEG can be indicative of the number of independently
oscillating neuronal networks in the cortex that give rise to the
EEG signal [18]. Dynamic complexity may be associated with
competition among neuronal cell assemblies that do not settle
at a common frequency [17,18]. The question whether dimen-
sional complexity represents a measure of nonlinear dynamics,
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that is, chaotic behavior of underlying neuronal populations, is
still a matter of discussion [26,31]. Mathematically, the behavior
of nonlinear dynamic systems cannot be expressed as a linear
function of its descriptors and does not obey the principle of
superposition (e.g., the system is not equal to the sum of its
parts). In this sense, a nonlinear system contains information
not captured by linear autoregressive processes and is thus, dif-
ferent from a (linear) stochastic system with unlimited degrees
of freedom. However, regardless of whether EEG is strictly
nonlinear or not, EEG complexity measures can provide use-
ful information about the dimensionality of underlying neuronal
dynamics.

Measures of EEG complexity vary systematically within indi-
viduals as a function of functional state, for instance, as a result
of task manipulation. Generally, complexity appears to be higher
in tasks requiring greater diversity of neural representations,
that is, concurrent activation of multiple associative neural net-
works that oscillate at different frequencies [17,19,28]. In con-
trast, structured tasks requiring selective and focused attention
result in lower complexity, presumably reflecting suppression
of redundant activity [17,19,28]. Individual differences in EEG
complexity correlate with differences in cognitive functioning
such as general intelligence [2], suggesting that EEG complexity
is a trait-like measure that is indicative of important individual
differences in brain dynamics.

It also has been suggested [5] that dysregulation of a
fine-tuned balance between chaotic and non-chaotic neuronal
dynamics underlying behavior can be an important factor in var-
ious forms of psychopathology. This hypothesis has received
increasing support by evidence indicating significant abnor-
malities in regional or global EEG complexity in patients
with neuropsychiatric disorders compared to controls. Exam-
ples include Alzheimer’s disease [12,13], Parkinson’s disease
[22,31], schizophrenia [8,15,25], post-traumatic stress disorder
[7], and mania [4]. The clinical and diagnostic utility of complex-
ity measures in these and related contexts remains to be explored.

In sum, EEG complexity is a promising indicator of neu-
ronal dynamics that may contribute to a better understanding
of the mechanisms underlying both normal and abnormal brain
function. In particular, disturbed cortical oscillatory dynamics as
reflected in dimensionality measures may serve as a biological
marker of functional brain abnormalities in some neuropsychi-
atric disorders.

The relative roles of genetic and environmental factors in
the etiology of individual differences in EEG complexity are
not known. If EEG complexity was found to be heritable, it
may prove to be a useful indicator of genetically transmitted
characteristics of cortical dynamics. Thus, the purpose of this
study was to estimate the relative contribution of genetic fac-
tors to individual variability in EEG complexity (heritability)
using quantitative EEG recordings from twins. The classical
twin approach based on the comparison of monozygotic (MZ)
and dizygotic (DZ) twins provides a powerful tool for parti-
tioning genetic and environmental sources contributing to the
phenotypic variation in a quantitative trait [27]. To the best of
our knowledge, this is the first study to estimate heritability of
the EEG’s dynamic complexity.

Research participants were 214 young adult female twins
including 51 MZ and 56 DZ pairs (age 18-28 years, M=21.7,
S.D. =2.8) recruited from the general population through a twin
registry. Individuals with a history of serious head trauma,
known diagnoses of neurological disorders, or currently using
psychoactive medication were excluded. Zygosity was deter-
mined using a standard interview administered to both twins.
The reliability of zygosity diagnosis by questionnaire has been
demonstrated in previous studies [14]. In addition, interviews
with parents and blood test data were available for about 15%
of the pairs. All experiments involving humans were conducted
in accordance with the Declaration of Helsinki. The study was
approved by Washington University Institutional Review Board,
and informed consent was obtained from all participants.

The resting EEG recording was performed twice during the
experimental session that also included other psychophysiolog-
ical paradigms described elsewhere. Participants were seated
in a recliner chair and instructed to take a comfortable posi-
tion, relax, sit still and avoid major movements and muscle
tension. Each resting recording consisted of four 1-min EEG
segments recorded with eyes closed or open in an alternating
sequence (EC-EO-EC-EO). During the eyes-open condition,
the participant was instructed to maintain her gaze on the blank
computer screen and to avoid major eyes and head movements.
The EEG was recorded from 19 scalp locations according to
the 10-20 system using an elastic cap with silver-chloride elec-
trodes (Quik-Cap, Neuroscan, Inc.) and a ground electrode on
the forehead, with high- and low-pass filters set at 0.05 and
70 Hz, respectively. The left mastoid served as reference, and
an averaged mastoid reference was digitally computed off-line
using the right mastoid recording as a separate channel. The EEG
signal was digitized at a rate of 1000 samples per second. A cor-
rection for ocular artifacts such as blinks and saccades present in
the eyes-open condition was performed using a regression pro-
cedure [29]. After screening for other artifacts (movement, poor
electrode contact, electromyographic activity) the EEG signals
were subjected to further analyses. However, no clinical evalua-
tion of EEG recordings was performed and no further exclusions
were made based on possible EEG abnormalities.

The pointwise correlation dimension (PD2) was calculated
using the Dataplore software package (Datan Software and
Analysis GmbH, Teltow, Germany). For the estimation of PD2,
this package uses Skinner’s [30] algorithm and computes the
PD2 based on the following formula: PD2(i) =1og C(r, i)/log(r),
with the pointwise correlation integral computed as:

=
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PD2 returns the dimension of an attractor of the reconstructed
time series, thereby yielding a measure of the system’s dynamic
complexity. The PD2 algorithm rejects unsuitable estimates that
donot result in linear scaling or clear convergence during dimen-
sionality determination and is therefore, well-suited to examine
non-stationary time series, and is applicable to EEG and other
biological signals (reviewed in [9]). Others [20] have suggested
that the PD2 algorithm is more accurate than other algorithms
used to estimate the correlation dimension, such as D2 [11]
and the pointwise scaling dimension D2i or PWSD [10], which
assume data stationarity.

Time series were reconstructed with an embedding dimension
of 24 and a time delay of 8 ms. The choice of this embedding
dimension was guided by the following considerations: if the
embedding dimension is too low, the phase space of the recon-
structed time series cannot be fully unfolded [11]; if the dimen-
sion is too high, it will amplify the effects of high-dimensional
noise. Preliminary analyses of data using different settings indi-
cated that the number of estimated dimensions began to saturate
at this point. Thus, the embedding dimension of 24 appeared
sufficiently close to an optimal representation of the dynamic
properties of the time series under investigation. The time delay,
or tau value, was determined by the first minimum in the auto-
correlation function of the time series according to common
practice [9]. This procedure effectively prevents high correlation
between consecutive data points and leads to a more realistic
reconstruction of the phase space and correspondingly better
determination of the system’s dynamic properties. Scanning res-
olution or skip interval was equal to 64, that is, the PD2-value
was calculated for each 64-th sample as a moving reference point
in the sequence. PD2 was calculated for artifact-free 8192 ms
EEG segments (8192 data points) and then averaged over the 125
determined PD2 values in the sequence. Three such artifact-free
segments were selected from each of the two 1-min segments
in each of the two resting recordings. Thus, a total of 12 seg-
ments were used to characterize each of the two conditions (eyes
closed versus eyes open) in each subject (three segments x two
1-min segments x two recordings), except for six participants
in the restl condition and nine subjects in the rest2 condition,
who contributed fewer segments due to artifacts. EEG analyses
were performed blindly with respect to the subjects’ zygosity
status.

Since preliminary analyses indicated strong positive corre-
lations among PD2 measures at individual electrodes, a data
reduction was performed using principal component analysis on
PD2 measures derived from all 19 electrodes. Individual scores
on the first principal components were used in further analy-
ses as a global measure of EEG complexity, in addition to PD2
measures for individual electrodes.

To estimate the relative contribution of genetic and environ-
mental sources to the total phenotypic variance of the PD2 mea-
sures (heritability), we performed a biometrical genetic analysis
using a model-fitting approach that has become standard in twin
genetic research [24,27]. Analysis of the population distribu-
tions of PD2 measures in different cortical areas indicated that
they were reasonably close to normal. Intrapair twin correlations
and variance—covariance matrices were computed separately for

MZ and DZ twins. Linear structural equation models were fit-
ted to empirical variance—covariance matrices using the Mx
package specifically developed to model genetically informa-
tive data [23]. These models assume that phenotypic variance
arises from the following factors: additive genetic influences
(A), non-additive genetic influences (D) or environmental influ-
ences shared by family members (C), and individually unique
(unshared) environmental influences (E). Path coefficients cor-
responding to these factors were estimated using maximum
likelihood statistics, and a X2 statistic was used to assess the
goodness-of-fit of each model, where low X2 values indicate
a good fit. In addition, different models were compared using
Akaike’s information criterion (AIC, computed as x2 —2d.f)
that provides a combined measure of goodness-of-fit and parsi-
mony of a given model. The model with the lowest AIC (i.e.,
largest negative) was considered best fitting. Heritability was
estimated as the percentage of the total variance of the trait
attributable to genetic factors; in addition, asymmetric 95% con-
fidence intervals of the estimate were computed. A detailed
description of the model-fitting approach and assessment of
heritability can be found elsewhere [24,27]. Since regional dif-
ferences in the results of genetic analyses were minimal, results
are presented for the most representative electrode locations Fz,
Cz, and Pz (frontal, central, and parietal midline electrodes,
respectively) as well as for the PCA-based global PD2 measure.

Average PD2 values and their dependence on condition (eyes
closed versus eyes open) were similar to those described in
a previous study using the same PD2 estimation algorithm
for the analysis of magnetoencephalographic (MEG) record-
ings [21], suggesting that the PD2 measure is indicative of
some fundamental properties of neuronal cortical dynamics that
may generalize across measurement methods. The first principal
component accounted for 62.8% of the total variance of the PD2
measures, with positive loadings of measures from all electrode
locations. Analysis of variance showed no significant differences
between MZ and DZ twins with respect to means and variances
of the PD2 measures and age. A visual inspection of the EEGs
with the lowest and highest 10% of PD2 values did not sug-
gest that extreme PD2 values reflected clinically abnormal EEG
patterns.

Intrapair correlations computed for MZ twins were signifi-
cant for all PD2 measures, ranging from 0.46 to 0.69. In contrast,
DZ twin correlations were substantially lower and only about
half of them were statistically significant. On average, DZ cor-
relations were about half as large as MZ correlations, suggesting
a genetic influence.

A formal genetic analysis performed using linear structural
equation modeling showed significant effects of additive genetic
factors on all PD2 measures. The AE model including additive
genetic (A) and individual environmental (E) factors showed a
good fit for all measures with significant twin correlations. For
some of the measures, MZ correlations were less than twice the
corresponding DZ correlations, suggesting a possible contribu-
tion of shared environmental factors. However, the inclusion of
the shared environmental component (C) did not lead to a sig-
nificant improvement of fit, and the confidence intervals for the
estimate of C included zero. Since it is standard in model-fitting
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Table 1

Twin intrapair correlations and estimates of genetic and environmental variance components for PD2 scores

Trait Mean =+ S.D. vz (n=51) rpz (n=56) a* (95% CI) €% (95% CI) w2 df.=4) p AIC

PD eyes closed
Fz 5.39 + 44 64" 29" .62 (.44-.75) .38 (.25-.56) 2.80 .59 —5.20
Cz 537 + 43 69 35" 68 (.52-.79) 32 (21-.48) 77 94 —7.23
Pz 5.29 + 49 65" 43" .65 (.50-.76) .35 (.24-.50) 1.44 .84 —6.56
Factor 1 00+ 1.0 64 33" .65 (.48-.76) .35 (.24-.52) .59 .96 —7.41

PD eyes open
Fz 5.58 + .46 50" 24 48 (.27-.65) .52 (.35-.73) 2.81 .59 —5.19
Cz 5.52 + 44 56" 32" .55 (.36-.69) 45 (31-.64) 1.15 .89 —6.85
Pz 5.59 + 47 46 25 46 (.24-.63) .54 (37-.76) 1.08 .90 —6.92
Factor 1 00+ 1.0 63" 17 .60 (.40-.74) 40 (.26-.60) 2.07 72 —5.94

Notes: ryz and rpz are intrapair correlations for MZ and DZ twins, respectively. Variance component estimates are based on the best-fitting “AE” model: a? is the
proportion of total phenotypic variance explained by genetic factors (heritability); e® is the proportion of variance due to environmental factors (95% confidence
intervals of the maximum likelihood estimates of the variance components are shown in brackets). Chi-square shows the goodness of fit, with lower values indicating

a better fit; AIC is Akaike’s information criterion.
* Significance levels, p <0.05.
™ Significance levels, p <0.01.
*** Significance levels, p <0.001.

analyses to accept the simpler (more parsimonious) model when
two models explain the observed data equally well, parameter
estimates are presented for the AE model (Table 1). The per-
centage of variance in PD2 measures accounted for by genetic
factors (heritability) ranged from 62 to 68% for the eyes-closed
condition and from 0.46 to 0.60% for the eyes-open condition.
The PD2 measures in the central scalp region (Cz) showed the
highest heritability estimates.

Results of the present study suggest substantial genetic influ-
ences on individual differences in PD2, a measure of the EEG’s
dynamic complexity. To our knowledge, this study provides
the first evidence for heritability of this measure of brain elec-
tric activity. The strongest evidence for genetic influences was
obtained for PD2 assessed in posterior regions of the cortex,
which is consistent with heritability estimates for the EEG power
spectrum [34].

The finding of substantial heritability of cortical dimensional
complexity raises questions about the neuromorphological char-
acteristics and neurophysiological mechanisms that mediate
genetic influences on PD2. The complexity of electrocortical
dynamics as assessed by PD2 may indicate the complexity of
the underlying system of neural generators, that is, the number
of simultaneously oscillating and relatively independent cortical
cell assemblies [18]. This, in turn, may reflect the degree of dif-
ferentiation of inter-neuronal connectivity in the cortex. A larger
number of simultaneously active and relatively independent dis-
tributed neuronal networks can give rise to an EEG signal with
higher degree of dynamic complexity. On the other hand, high
complexity may also indicate an excessive activation of neuronal
networks due to reduced inhibitory self-regulation of cortical
activity. Previous studies [33,34] have demonstrated substantial
genetic influences on EEG power and coherence, a purported
index of functional connectivity between neuronal activity in dif-
ferent cortical regions. Since coherence and dynamic complexity
show a significant inverse relationship [2], both measures can
reflect the degree of integration versus differentiation of cortical
neuronal assemblies. The extent to which these two measures of

cortical dynamics are influenced by the same or different set of
genes remains to be explored.

Alterations in EEG complexity measures have been reported
in some neuropsychiatric disorders including schizophrenia
[8,15,25]. The present findings of high heritability of PD2
measures suggest that EEG complexity measures may help in
identifying putative neurophysiological abnormalities mediat-
ing genetic liability to neuropsychiatric disorders.

EEG complexity is believed to reflect the diversity of the
“repertoire” of neural activity patterns, or differentiated neural
states [32] that in turn may depend on the number of simultane-
ously oscillating neural networks [18]. In a previous study we
have shown that EEG complexity increases with age [1], sug-
gesting a greater diversity of spontaneously activated neuronal
networks. This functional interpretation of EEG complexity is
corroborated by evidence from neuroimaging studies [6] sug-
gesting that aging-related deficits in the performance on memory
tasks may be related to nonselective recruitment of brain regions
and reduced ability to suppress spontaneous activation of repre-
sentations that are irrelevant to the task at hand [3]. In another
study [22], increased EEG complexity was associated with the
disturbances in Parkinson’s disease resulting from the recruit-
ment of superfluous cortical networks due to failing inhibition of
alternative motor programs in the striatum. Thus, available data
suggest that EEG complexity is indicative of important prop-
erties of functional organization of cortical activity, including
its impairments in certain psychiatric disorders and in normal
aging. However, further work is needed for a better understand-
ing of the functional significance of this measure.

Our results indicate substantial genetic influences on indi-
vidual differences in PD2. The specific genes that affect elec-
trocortical complexity as well as the major neurophysiological
mechanisms mediating this genetic influence still need to be
determined. In this study, individuals with known neurological
disorders were excluded at initial screening. However, in order to
ensure that the sample is representative of the entire continuum
of EEG variability in the population, no further attempts were
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made to exclude participants on the basis of “abnormal” EEG
features. Therefore, heritability of PD2 measures may reflect
genetic variation in the “normal” range as well as EEG variation
related to genetic liability to a broad spectrum of neuropsychi-
atric disorders existing in the population.

Some limitations of the present study need to be acknowl-
edged. First, the study included young adult female subjects
only, and it remains to be seen in future studies whether
heritability of dynamic cortical complexity varies as a function
of age group, gender, and their interaction. Second, the study
was limited to resting EEG only, and it remains to be deter-
mined whether the finding of high heritability extends to EEG
recorded under other conditions, such as various cognitive tasks
or different emotional states. Next, it remains unclear whether
genetic influences estimated here are specific to PD2 or shared
with other characteristics of electrocortical activity. Studies
involving conjoined multivariate analyses of other characteris-
tics such as spectral power, coherence, and event-related activity
are needed in order to clarify the “genetic architecture” of
brain dynamics. Another limitation concerns the interpretation
of PD2 as a nonlinear measure, as some recent studies have
questioned the extent of nonlinearity in EEG signals. However,
the correlation dimension can be used as a relative, generic
estimate of dynamic complexity of a time series regardless of
the source of the complexity (linear, nonlinear or stochastic;
see [26]). Finally, because EEG recordings were not evaluated
by a clinical neurophysiologist, it remains unclear whether PD2
might be related to organic CNS abnormalities. Furthermore, to
ensure that the sample is representative of the entire spectrum
of EEG variability in the general population, individuals with
psychiatric disorders were not excluded. Since many disorders
are fairly common in this age group (e.g. history of depression
or substance use disorders), it remains to be determined whether
such disorders can partially account for genetic variance in PD2
and, consequently, whether PD2 can serve as an endophenotype
(marker of genetic risk) for such disorders.

In conclusion, this study presents the first evidence for heri-
tability of dynamic complexity of human electrocortical activity.
We suggest that PD2 can serve as indicator of genetically trans-
mitted individual differences in functional organization of the
cerebral cortex.
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