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Variability in Cognitive Aging:
From Taxonomy to Theory
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Variability pervades cognitive aging, Shining examples
of older individuals who preserved outstanding intel-
lectual abilities well into very old age, such as Johann
Wolfgang von Goethe or Sophocles, stand in contrast
to individuals whose intellectual capacities are de-
pleted by the time they reach later adulthood. Simi-
lar contrasts exist between different intellectual
abilities. For example, if one looks at perceptual speed,
one is likely to find monotonic decline after late ado-
lescence and early adulthood. But if one looks at vo-
cabulary, one will find age stability or positive change
into very old age (Singer, Verhaeghen, Ghisletta,
Lindenberger, & Baltes, 2003).

Despite its prominence, the conceptual signifi-
cance of variability in cognitive aging is difficult to
evaluate. On the one hand, variability in old age is
often portrayed as the late-life culmination of inter-
acting developmental causes that affect different in-
dividuals and different task domains to varying
degrees. Here, variability in intellectual functioning
is seen as a dependent variable, or outcome (for an

example, see Figure 7 in Lindenberger & Baltes,
1997). On the other hand, variability can also be con-
ceived as an agent, or mechanism, of senescent
changes in cognition (Hultsch & MacDonald, 2004;
Li, Lindenberger, & Sikstrom, 2001; Thaler, 2002).
According to this complementary position, certain
forms of variability index basic properties of senescing
cognitive systems at neural or behavioral levels of
analysis, and may help to explain ontogenetic changes
in cognition from early adulthood to old age.

Thus, the conceptual status of variability is ambigu-
ous, as it denotes both consequences and causes of
development. The same kind of ambiguity holds for
other central phenomena of cognitive aging. For in-
stance, the ubiquitous slowing of information process-
ing with advancing age is conceived both as an
antecedent (e.g., Salthouse, 1996) and as a conse-
quence (e.g., Ratcliff, Spieler, & McKoon, 2000) of
other senescent changes in behavior.

The general objective of the present chapter is to
help in categorizing and clarifying the conceptual sta-
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tus of variability in cognitive aging. We first introduce
a taxonomy of intra-individual variability. Then, we
evaluate the commion practice of measuring variability
between persons to test propositions about within-
person variability. Third, we focus on two variability phe-
nomena in cognitive aging: high processing fluctuation
(i.e., low processing robustness), and intellectual ability
dedifferentiation. Fourth and finally, we report a neuro-
computational model that integrates evidence about
variability in cognitive aging across neural and behavioral
levels of analysis and across microgenetic and ontoge-
netic timescales. We show how this neurocomputational
model links ability dedifferentiation to low processing
robustness, and may further guide the investigation of
variability in cognitive aging.

A TAXONOMY OF WITHIN-PERSON
VARIABILITY

Following Cattell’s (1966) data box of individuals,
variables, and occasions, Buss (1974) presented a
schema of inter-individual differences and intra-indi-
vidual changes that constituted 15 different data-gath-
ering strategies for studying variability. Recently, S -C.
Li, Huxhold, and Schmiedek (2004) modified this
picture by focusing on intra-individual variability and
by adding substantive assumptions about its timescale
and scope. A modified version of this scheme is pre-
sented in Table 21.1.

The taxonomy shown in Table 21.1 coordinates
two dichotomous dimensions, timescale and scope.
On the timescale dimension, we follow the distinction
between microgenetic variations and ontogenetic
change (e.g., Lindenberger & Baltes, 1995; Siegler,
1989). Microgenetic variations are short term and of-
ten reversible, whereas ontogenetic changes are long
term and often cumulative, progressive, and perma-
nent. Both microgenetic and ontogenetic changes can
be adaptive, maladaptive, or both (i.e., adaptive with
respect to one developmental goal but maladaptive
with respect to another; cf. Baltes, 1987). On the scope
dimension, alterations in a single function are set apart
from transformations in functional organization in-
volving more than one function. Alterations in a single
function are often assumed to be local in character—
that is, confined to the function under study. However,
both microgenetic variations and ontogenetic change
may co-involve more than one function and entail

global reorganization (structural modification). Such
system-general transformations necessitate a multivari-
ate approach.

A further dimension not explicitly represented in
Table 21.1 is the distinction between neural and be-
havioral levels of analysis. Most forms of within-per-
son variability can be studied at both neural and
behavioral levels. For instance, age-associated decline
in episodic memory performance during adulthood
and old age can be studied from a neural perspective —
what are its anatomical, neurochemical, and neuro-
functional correlates? —but it also can be studied from
a behavioral perspective: what are its behavioral ante-
cedents, correlates, and consequences?

For illustration, we may apply this classificatory
scheme to one specific cognitive function such as
episodic memory. At the microgenetic timescale, trial-
to-trial variability in the ability to represent contextual
information at encoding would qualify as univariate
microgenetic variability (i.e., the upper left cell of
Table 21.1). Shifts in resource allocation between an
episedic memory task and a simultaneously performed
perceptual-motor task are instances of functional re-
organization (upper right cell). At the ontogenetic
timescale, longitudinal age changes in episodic
memory ability from young adulthood to old age,
when viewed in isolation, fall into the univariate, lo-
cal category (lower lett cell). In contrast, ontogenetic
changes in the functional relation between episodic
and semantic memory represent an instance of global
functional reorganization (lower right cell).

In our view, a major challenge for cognitive aging
research is to identify neural and behavioral mecha-
nisms that link local to global variations and micro-
genetic variations to ontogenetic change. Specifically,
developmental researchers need to specify how
microgenetic variations are affected by and result in
ontogenetic change, and how local variability is af-
fected by and results in global organization, both neu-
rally and behaviorally. In other words, if we wish to
move from taxonomy to theory, we need to explicate
mechanisms that link developmental phenomena
across the cells of our classificatory scheme. Based on
the criteria of parsimony and explanatory power,
mechanisms that link local microgenetic variations to
global ontogenetic transformations seem especially
attractive. One such hypothetical mechanism, the sto-
chastic gain parameter of connectionist networks, will
be described in the last section of this chapter.
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TABLE 21.1. Taxonomy of within-person variability in cognitive functioning across the lifespan

Scope

Variations in a Single Function

Time scale

(e.g., local, univariate)

Transformations in Functional Organization (e.g.,
global, multivariate)

Microgenetic
(e.g., usually
across trials,
sessions, or

weeks) .
L]
L]
L]
Ontogenetic

(e.g., usually

Relatively reversible variations in one function
Examples:

processing fluctuation (processing liability
or lack of processing robustness)

neural and behavioral plasticity (short-term
learning potential)

within-task strategic diversity (richness of
within-task behavioral repertoire)
adaptability/resilience to environmental
perturbations

cyclic (e.g., state) variations in any specific
function

Relatively permanent (e.g., cumulative,
progressive) changes in one function

4Cross Examples:
months, ¢ physical growth
years, or ® progressive (e.g., trait) changes in any
decades) specific cognitive function (e.g., mechanics
of cognition / broad Gf, episodic memory)
L]

long-term learning and skill acquisition
(e.g., pragmatics of cognition / broad Ge,

Relatively reversible variations in functional

organization

Examples:

o shifts in resource allocation, coordination and
compensatory behavior during multitasking

¢ context-driven variations in mental set and
functional organization (e.g., posture control
with eyes open or closed)

* situational choice and preference behavior

Relatively permanent (e.g., cumulative, progressive)

alterations in functional organization

Examples:

e ability dedifferentiation from adulthood to old age

e ability differentiation from childhood to early
adulthood

¢ corticogenests and functional specification of
brain areas during maturation and learning

e functional reintegration of brain circuitry in

semantic memory)

old age
e shrinkage of brain volume and loss of
receptor density during senescence
 cortical reorganization after brain damage
or trauma

Note: This taxonomy is not meant to be exhaustive. For instance, societal sources of variability are not systematically considered. All listed
forms of variability can be studied at neuronal and behavioral levels of analysis. Examples are drawn from both levels. Examples printed in
italics are discussed in more detail in this chapter. A major challenge for lifespan psychology is to identify mechanisms that link local to
global variations, microgenetic variations to ontogenetic change, and neuronal mechanisms to behavior. Theories that link neuronal mecha-
nisms in a single function acting at a microgenetic timescale to global ontogenetic transformations in behavior are high in parsimony and
explanatory power. (Modified after S.-C. Li, Huxhold, & Schmiedek, 2004.)

MEASURING VARIABILITY WITHIN AND
BETWEEN INDIVIDUALS

Whereas developmental theories about variability gen-
erally refer to ontogenetic changes and microgenetic
variations within individuals, most of the data used to
evaluate such theories refer to variability between indi-
viduals. This habitual mismatch between theory and
data has been noted for a long time in lifespan psychol-
ogy (e.g., Baltes, Reese, & Nesselroade, 1977/1988),
child development (e.g., Reuchlin, 1978), dynamic
systems approaches (e.g., Smith & Thelen, 2003),

and proponents of an idiographic approach (e.g.,
Magnusson & Stattin, 1998).

Though many researchers are aware of the mis-
match, its consequences are often overlooked or be-
littled. The study of univariate ontogenetic changes
forms a notable positive exception to this rule. Here,
the difference between intra- and inter-individual
variation generally refers to the distinction between
cross-sectional age differences and longitudinal age
changes. The benefits and costs of both data-analytic
schemes, and the issue of extrapolating average age
changes on the basis of cross-sectional age differences
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and observed longitudinal changes, are fairly well
understood (e.g., Baltes, 1968; Lindenberger & Baltes,
1994; Lovdén, Ghisletta, & Lindenberger, 2004;
Salthouse, 1991; Schaie, Maitland, Willis, & Intieri,
1998). For instance, cross-sectional age differences are
confounded with stable differences between birth
cohorts, whereas longitudinal observations contain
retest effects and are often conditioned by selective
attrition {e.g., Lindenberger, Singer, & Baltes, 2002).

In contrast, much less is known about the relation-
ship between intra- and inter-individual variability
with respect to global ontogenetic changes in func-
tional organization, univariate microgenetic varia-
tions, and multivariate microgenetic variations (i.e.,
the remaining three cells of the cross-classification of
timescale and scope of variability presented in Table
21.1). Cognitive aging researchers often ignore the
relation between intra-individual and inter-individual
variability, and simply substitute intra-individual with
inter-individual observations, primarily because the
latter are more easily available than the former. The
methodological assumptions underlying this strategy
are discussed in the next section.

Extrapolating Intra-Individual Variability
Based on Inter-Individual Variability

The generalizability of inter-individual to intra-indi-
vidual variability hinges on two interrelated criteria:
variation equivalence and sample homogeneity
(Lovdén & Lindenberger, 2005). We use the term
variation equivalence to designate an empirical situa-
tion in which intra-individual and inter-individual
variability do not differ in important ways with respect
to the variables under study. Variation equivalence
holds when the processes that generate variability
between and within individuals are identical, but it
may also hold for other reasons (e.g., by coincidence).
Formal criteria that need to be met to guarantee varia-
tion equivalence depend on statistical context {(e.g.,
Markov chains, Bayesian nets) and have been discussed
under the heading of ergodicity (e.g., Molenaar,
Huizenga, & Nesselroade, 2003). A formal treatment
of these criteria is beyond the scope of the present
chapter.

Equivalance of inter-individual and intra-indi-
vidual variability is often assumed but rarely tested.
Imagine, for instance, a correlation of r = .50 between
episodic memory and semantic memory that was ob-

tained by administering indicators of the two abilities
to different individuals at a given point in time. In
the absence of intra-individual information, such a
between-person correlation is often meant to suggest
a moderately positive correlation within individuals,
perhaps reflecting the existence of two separate but
overlapping memory systems. One way to test this
interpretation empirically would actually be to obtain
extensive observations on measures of episodic and
semantic memory within individuals. Even for the
same sample of individuals, the correlation based on
between-person variability does not have to approxi-
mate the mean of the distribution of the within-
person correlations, nor does it prescribe its range. For
instance, in the case of an r =.50 between-person cor-
relation between episodic and semantic memory,
within-person correlations may be r = —.30 in some
individuals and r = .80 in others.

Sample homogeneity refers to the assumption that
structural relations among variables of interest do not
differ significantly from person to person. In the
present case, sample homogeneity requires that the
correlations between episodic and semantic memory
be of similar magnitude within all individuals (e.g., a
sufficiently narrow normal distribution around the
same mean). Sample homogeneity is a necessary but
not a sufficient condition for variation equivalence.
In our previous example, the intra-individual correla-
tions between episodic and semantic memory may be
homogeneously distributed around r = .30, but the
inter-individual correlation may still be r = .50.

The assumption of sample homogeneity is at odds
with the more general notion that individuals differ
in the way they change over time. According to
lifespan theory (e.g., Baltes et al., 1977/1988; cf.
Lindenberger & Baltes, 1999; Tetens, 1777), the de-
velopmental path of each individual corresponds to a
multivariate pattern of intra-individual change. De-
scription and explanation of these intra-person patterns
is a prerequisite for arriving at unbiased descriptions
and explanations of the differences and commonali-
ties among them. Premature aggregation across indi-
viduals can mask both differences and commonalities
in change (e.g., Estes, 1956; Wohlwill, 1973). In the
extreme case, certain laws and regularities may be
specific to aggregate data and not apply to any of the
individuals on which the aggregate data were based.

To conclude, the quid pro quo approach to vari-
ability, in which inter-individual variability is taken
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as a valid proxy for intra-individual variability, man-
dates equivalence between inter-individual and intra-
individual variation, and presupposes homogeneity of
change. Except for univariate ontogenetic changes we
know exceedingly little about the degree to which
these assumptions are met.

Mlustrating the Difference Between
Inter- and Intra-Individual Variability

The following illustration further specifies the differ-
ence between inter-individual and intra-individual
variability. It uses the metaphor of leaves falling down
to earth (see Figure 21.1). The movements of any
given leaf falling down to earth will differ from the
movements of all other leaves as a function of shape,
weight, air pressure, initial conditions, and so on.
Physicists may want to arrive at general laws of leaf
falling that generalize across all possible constellations
of variables (e.g., apply to all possible leaves). Such
general laws would accommodate both the differences
and commonalities in movement among various types
of leaves. Probably, gravity and turbulence will play
prominent roles in formulating such laws. For in-
stance, all leaves eventually reach the ground because
of gravity but each leaf moves down to earth in a
slightly different manner because of turbulence.

To arrive at such laws, physicists probably would
refrain, except for special cases, from using averages
over different leaves as their primary database. In fact,
the trajectory of the “average leaf” would be more simi-
lar to a stone falling down to earth in slow motion than
to the falling patterns of any existing leaf because
movements due to turbulence would cancel each
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FIGURE 21.1. [llustrating the difference between intra-
individual and inter-individual variability. The picture
shows the path of three leaves falling from a tree to
the ground. The dots correspond to observations, and
are summarized in Table 21.2.

other out. Thus, the movements of the average leaf
would not provide a good empirical basis for arriving
at adequate models of leaf falling.

Figure 21.1 depicts the positions of three indi-
vidual leaves on their way down to earth. The three
leaves start falling at a vertical position (i.e. height) of
8 meters and a horizontal position of 6 meters, and
their horizontal positions are repeatedly measured as
a function of height as they are falling down to earth.
Table 21.2 reports the means and variances in hori-

TaBLE 21.2. Means and standard deviations in horizontal position of three individual leaves and the “average
leaf”: Hlustrating the difference between intra-individual and inter-individual variability

Horizontal Position (meters)

left leaf middle leaf right leaf all leaves
Vertical Position mean of
(range in meters)  scores mean SD  scores mean SD  scores mean SD  mean SD  intra-SDs
6-7 5,43 400 082 565 533 047 788 7.67 047 567 18] 0.59
4-5 2,43 300 0.82 656 567 047 89,8 8.67 047 567 2.26 0.59
0-1 1,1,2 133 047 6,54 500 082 8§89 833 047 489 292 0.59

Note: Date are illustrated in Figure 21.2.
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zoutal position for these leaves 67, 4-5, and 0-1
meters above the ground. Intra-individual standard
deviations indicate that the leaves” intra-individual
variability in movement stays relatively constant over
time; in fact, the average intra-individual standard
deviation (i.e., mean of SDs) stays constant. In con-
trast, inter-individual standard deviations (i.e., the
overall SD) increase over time, reflecting the fact that
the three leaves diverge in horizontal position over
time. The corresponding comparisons of central ten-
dency yield opposite results. Here, the intra-individual
means show greater divergence over time than the
inter-individual average (i.e., the overall mean).

This illustration demonstrates that empirical results
based on inter-individual variability may not always be
appropriate to test propositions about intra-person
mechanisms. [t also suggests that endorsing individu-
als as privileged units of analysis does not mandate a
withdrawal from the search for laws of behavioral de-
velopment that generalize across collections of indi-
viduals. Instead, chances of arriving at such laws may
increase, rather than decrease, when intra-individual
variability is brought to the fore.

EMPIRICAL FINDINGS ABOUT VARIABILITY
IN COGNITIVE AGING

'The empirical investigation of variability in cognitive
aging has intensified in recent years. In the following,
we concentrate our discussion on two central phenom-
ena: processing fluctuation and ability dedifferentiation.
Whereas processing fluctuation (i.e., processing labil-
ity or lack of processing robustness) operates at the
microgenetic timescale, ability dedifferentiation is op-
erating at an ontogenetic timescale (see also Table
21.1). After a selective review of empirical findings, we
report a neurocomputational model, originally intro-
duced by S.-C. Li and Lindenberger (1999), that links
ability dedifferentiation to lack of processing robustness
by means of a hypothetical neuronal mechanism,

Processing Fluctuation

Processing fluctuation, or lack of processing robust-
ness, refers to a predominantly maladaptive form of
microgenetic variability. For instance, in the context
of a choice-reaction time task, processing fluctuation
would correspond behaviorally to response time vari-
ability within a given experimental condition. Here,

greater variability indicates that individuals are less
able to reproduce their behavior over time. Little is
known about adult age changes in processing fluctua-
tion, and about the relative magnitude of such fluc-
tuations in comparison to ontogenetic age trends in
mean levels of functioning. Based on the general no-
tion that senescence produces an increasingly labile,
less efficiently regulated internal milieu (Thaler,
2002), and for more specific reasons outlined in the
next section, we expect that processing fluctuation is
increasing with advancing adult age.

Nesselroade and Salthouse (2004) investigated
cross-sectional adult age differences in processing fluc-
tuation in adults ranging from 20 to 91 years of age.
Research participants were asked to perform three
perceptual-motor tasks on three different occasions
administered within a two-week period. For each task,
three types of variability (i.e., standard deviations) were
computed: (1) standard between-person variability; (2)
within-person, within-session variability, computed as
a person’s average within-session standard deviation
over three repeated administrations of each task; (3)
within-person, between-session variability, computed
as the standard deviation of each person’s mean ses-
sion scores.

Nesselroade and Salthouse (2004) made several
important observations. First, the two indices of process-
ing fluctuation showed substantial positive correlations
within and across tasks, indicating that people differed
reliably and consistently in variability of perceptual-
motor performance. Second, when computing ratios of
within-person over between-person variability, Nessel-
roade and Salthouse (2004) discovered that the mag-
nitude of both types of within-person variability
amounted to about half the magnitude of the standard
measures of inter-individual variability. The corre-
sponding ratios ranged from 0.31 to 0.85, with the
majority being in the 0.40-0.55 range. In fact, the av-
erage fluctuation of a single individual within a single
session, if projected onto average age trends, corre-
sponded to an age range of 21-44 years! In other words,
depending upon whether a given 32-year-old individual
performed more or less variably (e.g., “had a good or
a bad day”), he or she would look like an average 21-
year-old or an average 44-year-old individual. Third,
intra-individual fluctuation was negatively related to
performance level, confirming its dysfunctional char-
acter. Fourth, intra-individual fluctuations increased
with age, supporting the hypothesis that the cognitive
system functions less reliably with advancing age.
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The consistency, magnitude, external validity, and
age association of within-person variability observed by
Nesselroade and Salthouse (2004) have profound im-
plications for cognitive aging research. Methodologi-
cally, they demonstrate that measures of central
tendency fail to represent the performance character-
istics of a given individual. A major portion of variabil-
ity commonly attributed to between-person differences
or measurement error appears to be due to within-person
fluctuations. As noted by Nesselroade and Salthouse
(2004), these findings challenge “the value of even a
‘working’ notion of the classical test theory conception
of true score”(p. 53). As a consequence, attempts to
resolve methodological problems associated with devel-
opmental sample heterogeneity by relying on so-called
narrow age-cohort designs; that is, the comparative
study of strictly age-homogeneous samples (Hofer &
Sliwinski, 2001) do not appear to be particularly prom-
ising. If within-person microgenetic variability corre-
sponds to several decades of average ontogenetic age
gradients, and if within-person variability increases with
age, then matching individuals with respect to chrono-
logical age does not effectively control for developmen-
tal status.

Instead, it seems more promising to incorporate
intensive within-person observations, or measure-
ment bursts (Nesselroade, 1991), into the design of
longitudinal studies to explicitly study interactions
among microgenetic and ontogenetic forms of vari-
ability such as processing fluctuation, plasticity
(short-term learning potential), and long-term devel-
opment {cf. Lindenberger & Baltes, 1995; Siegler,
Chapter 20, this volume; for recent empirical ex-
amples, see MacDonald, Hultsch, & Dixon, 2003;
Singer, Lindenberger, & Baltes, 2003). Given that
empirical associations between perceptual-motor
performance of the kind measured by Nesselroade
and Salthouse (2004) and other aspects of intellec-
tual and sensorimotor performance are substantial,
especially in aging samples (Baltes & Lindenberger,
1997; Li & Lindenberger, 2002; Lindenberger &
Baltes, 1997), this conclusion is likely to generalize
to many behavioral domains.

Of course, not all forms of microgenetic variabil-
ity are maladaptive. Contradictory findings about the
functional meaning of microgenetic variability can be
reconciled by separating mechanisms supporting skill
acquisition and resilience to environmental perturba-
tions from mechanisms permitting stable performance
atasymptotic levels of learning. According to this view,

a variety of mechanisms contribute to observed
microgenetic variability. For instance, during early
phases of learning and with difficult reasoning tasks,
microgenetic variability may be dominated by strate-
gic diversity —that is, by an individual’s capacity to
approach the task in many different ways (Chapter 20,
this volume). The contribution of strategic diversity
to variability may fade out late in learning when opti-
mal behavioral repertoires have been selected, trained,
and automatized. Furthermore, its contribution may
be small from the very start whenever tasks are suffi-
ciently simple or constrained to effectively prevent
strategic diversity. Processing fluctuation is likely to
be present throughout learning, but its relative con-
tribution to overall microgenetic variability may in-
crease as the contribution of strategic diversity
decreases. In addition, processing fluctuation may also
increase in absolute magnitude with learning because
the production of asymptotic performance may tax the
system’s capacity limits, thereby rendering its behav-
jor more susceptible to minor external and internal
perturbations.

Based on these considerations, we expect that inter-
individual differences in within-person variability early
in learning should be positively related to inter-
individual differences in performance level, reflecting
differences in strategic diversity. In contrast, variability
late in learning should be negatively related to perfor-
mance level, primarily reflecting differences in pro-
cessing fluctuations. Thus, the association between
variability and performance should switch signs in the
course of learning. The results of a recent study (Allaire
& Marsiske, 2002) exactly followed this pattern.

In sum, processing fluctuation, a maladaptive form
of microgenetic variability, can be conceptually and
empirically dissociated from other, more beneficial
forms of microgenetic variability such as strategic di-
versity and short-term learning. Moreover, recent evi-
dence (Nesselroade & Salthouse, 2004) suggests that
processing fluctuation in perceptual-motor cognitive
tasks is of considerable magnitude in relation to onto-
genetic age trends in mean levels of performance, and
increases significantly from adulthood to old age.

Ability Dedifferentiation in Old Age

Within the psychometric research tradition, the dif-
ferentiation/dedifferentiation hypothesis is arguably
the most comprehensive proposition about lifespan
changes in variability (cf. Lindenberger, 2001). The
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hypothesis asserts that the functional organization of
intellectual abilities is relatively compressed in child-
hood, unfolds (differentiates) during maturation (e.g.,
Garrett, 1946), and contracts (dedifferentiates) again
in old age (e.g., Baltes, Cornelius, Spiro, Nesselroade,
& Willis, 1980; Reinert, 1970). During childhood and
old age, operation and expression of intellectual abili-
ties are assumed to depend strongly on system-general
constraints, reflecting the age-graded developmental
status of relevant biological substrates. With matura-
tion and during adulthood, these system-general en-
sembles of constraints are relaxed, and other factors,
such as interest, motivation, and occupational/educa-
tional opportunities, determine intellectual develop-
ment to a relatively greater degree, leading to greater
diversity in levels of functioning across different in-
tellectual abilities. As such, the hypothesis conveys a
dynamic view of the structure of intellectual abilities
(cf. Krampe & Baltes, 2003). The hypothesis is speci-
fied further by two-component theories of intellectual
development that distinguish between biological and
cultural dimensions of cognition (Baltes, 1987;
Cattell, 1971; Horn, 1989; Tetens, 1777; for compari-
son, see Baltes, Lindenberger, & Staudinger, 1998;
Lindenberger, 2001). The general constraints as-
sumed to operate more strongly early and late in on-
togeny are assumed to be biological in kind.

Clearly, the differentiation/dedifferentiation hy-
pothesis of lifespan intelligence refers to the organi-
zation of intellectual abilities within individuals.
However, almost all of the empirical evidence brought
to bear on this hypothesis consists in comparing the
structure of inter-individual differences (i.e., between-
person variability) in different age groups, such as
decreasing correlations among intellectual tests
sampled across persons from childhood to adoles-
cence, and increasing correlations among intellectual
tests sampled across persons from adulthood to old age.
Thus, just as described in the previous section, evi-
dence obtained by structuring variability between in-
dividuals has been used routinely to test a hypothesis
that refers to age changes in functional organization
within individuals.

Most of the evidence based on inter-individual
differences seems to favor the existence of ability dedi-
fferentiation in advanced old age (e.g., Baltes &
Lindenberger, 1997; Hultsch, Hertzog, Dixon, &
Small, 1998;Li, Lindenberger, et al., 2004; Schaie
et al., 1998; but see Park et al., 2002). Discrepancies
in findings may relate to sample composition, differ-

ences in age groups, and restriction of range (e.g.,
Deary et al., 1996; Nesselroade & Thompson, 1995),
Only a few studies have examined the dedifferentia-
tion hypothesis at the intra-person level, by assessing
age differences in ability covariance structures within
young and older adults (for a review on the relation
between sensorimotor and intellectual domains, see
Li & Lindenberger, 2002). Here, the evidence gener-
ally appears to be supportive as well (e.g., Li, Aggen,
Nesselroade, & Baltes, 2001).

Links Between Dedifferentiation
and Processing Fluctuation

Recently, S.-C. Li, Lindenberger, et al. (2004) empiri-
cally linked inter-individual differences in micro-
genetic processing fluctuation to the differentiation/
dedifferentiation hypothesis of lifespan intelligence.
The authors administered a psychometric battery com-
prising 15 tests assessing three marker abilities of fluid
mechanics (perceptual speed, reasoning, and fluency)
and two marker abilities of crystallized pragmatics (ver-
bal knowledge and fluency) to a sample of 291 indi-
viduals ages 6-89 vears. Participants were classified
into six age groups, childhood (6-11 years), adoles-
cence (12-17 years), early adulthood (18-35 years),
middle adulthood (26-54 years), late adulthood (55—
69 years), and old age (70-89 years). In addition, Li,
Lindenberger, et al. (2004) also administered five ba-
sic experimental cognitive tasks (i.e., visual search, re-
sponse competition, memory search, and choice
reactions). Based on performance on these tasks, the
authors computed two overall indicators of information
processing: processing speed (i.e., a person’s average
speed of responding across the five tasks) and process-
ing robustness (i.e., the inverse of a person’s average
within-task reaction-time fluctuation).

Two sets of findings are relevant in the present
context (see Figure 21.2). First, within the limitations
of the inter-individual variability approach, results
provided support for the differentiation/dedifferentia-
tion hypothesis. Across the lifespan, fluid intelligence,
crystallized intelligence, processing speed, and pro-
cessing robustness all followed the expected inverted
U-shape pattern. Fluid intelligence showed the earli-
est increase during early and the earliest decrease in
late life, whereas crystallized intelligence showed a
later increase and a later decrease. Principal compo-
nent analyses of the 15 psychometric tests were per-
formed separately in each group. In childhood, late
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adulthood, and old age, only two components with
eigenvalues greater than 1 were extracted. In adoles-
cence, young, and middle adulthood, five components
displayed eigenvalues greater than unity. Also, fluid
and crystallized intelligence were more highly corre-
lated in childhood, late adulthood, and old age than
in adolescence, young, and middle adulthood.

Second, processing speed was a strong predictor of
intellectual performance in all age groups, and espe-
cially in childhood and old age. In contrast, the unique
predictive validity of processing robustness was re-
stricted to late adulthood and old age (see Table 21.3).
Thus, in late adulthood and old age, higher process-
ing fluctuation was uniquely associated with lower
performance on psychometric measures of intelli-
gence. This empirical association between high pro-
cessing fluctuation, low average performance, and
compressed ability structure will be taken up again in
the next section.

Dedifferentiation at the Neuronal Level

The behavioral neuroscience of aging has been re-
markably successful in promoting variability as a key
concept in research on aging. Regional covariation
methods suggest that functional interconnections
found in younger adults are typically weaker in older
adults (e.g., Schreurs, Bahro, Molchan, Sunderland,
& Mclntosh, 2001). With respect to activated brain
areas, both under- and overactivation relative to young
adults have been observed. Possibly, some of the ob-
served age changes in activation patterns reflect a loss
of distinctiveness (or dedifferentiation) of mental rep-
resentations (Park, Polk, Park, Minear, Savage, &
Smith, 2004). In addition, some increments in the
bilaterality of prefrontal activation may represent adap-
tive (compensatory) changes in functional circuitry
(Cabeza, 2002).

Recently, strong evidence in favor of dedifferen-
tiation at the intra-person, neuronal level of analysis
has been found (Park et al., 2004). Park et al. examined
whether neural structures become less functionally
differentiated and specialized with age, as predicted
by the differentiation/dedifferentiation hypothesis.
Whereas much of the earlier work has focused on fron-
tal cortex, this study investigated age differences in
specificity of regions in ventral visual cortex. Com-
pared to frontal areas, ventral visual cortex shows con-
siderably less neurodegenerative change (Raz, 2000).
Also, in young adults, this area is known to respond

TABLE 21.3. Commonality analyses of processing ro-
bustness and processing speed as predictors of fluid
and crystallized intelligence in late adulthood and old
age (55-89 years)

Dependent variables

Fluid Crystallized
Predictors Intelligence  Intelligence
Unique processing robustness 4.7 0.1
Unique processing speed 4.1 4.4
Shared 28.7 13.3
Total 37.5 13.5

Note: Components different from zero are repinted in boldface
(p <.01). (Adapted from Li, Lindenberger, Hommel, Aschersleben,
Prinz, & Baltes, 2004.)

differentially to different visual categories. Park et al.
(2004) administered stimuli from four different visual
categories—faces, houses, pseudowords (plausible
non-words), and chairs—to young and old adults, and
assessed neural activity during stimulus perception
using functional magnetic resonance imaging. Within
the ventral visual cortex, the authors isolated, sepa-
rately for each participant, the most active regions for
cach of the stimulus categories relative to phase-
scrambled control stimuli. Note that this person-based
procedure takes care of inter-individual differences in
brain activation patterns, thereby avoiding some of the
problems commonly associated with averaging brain
activity across individuals.

Young adults showed clear peaks in activation pro-
files. For instance, when processing faces, the voxels
selected because of their activation peak during face
perception were much more active than the voxels
selected because of activation peaks for houses,
pseudowords, or chairs. In contrast, old adults
showed considerably flatter performance profiles,
though the overall amount of activation relative to
control stimuli was about the same. For instance,
when processing faces, the activation differences
between voxels selected because of their activation
peak for faces and voxels selected because of corre-
sponding activation peaks for the other three catego-
ries were small. These findings demonstrate that
visual processing in the neocortex becomes less func-
tionally specialized with advancing age, perhaps re-
ducing the distinctiveness of cortical representations

(cf.Li & Sikstrom, 2002).
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A FORMAL MODEL OF VARIABILITY
IN COGNITIVE AGING

Formalization of theoretical assumptions is a particu-
larly powerful tool in science. When applied to cog-
nitive aging, such models enable researchers to map
differences observed at neural and behavioral levels
of analysis onto model parameters that express theo-
retical assumptions about the ontogeny of human in-
formation processing. In the following, we will present
one such model (e.g., Li & Lindenberger, 1999),
which has been inspired by the neural noise hypoth-
esis of cognitive aging. According to this model, age-
based decrements in the modulation of neuronal
signals negatively affect the distinctiveness of cortical
representations, with widespread consequences for
performance level, variance, and covariation. Most
important, this model attempts to link microgenesis
to ontogeny, univariate variation to global Change, and
neuronal mechanisms to behavior (Li, Lindenberger,
etal., 2001).

About 40 years ago, Welford (1965) hypothesized
that senescing brains are marked by an increase in neu-
ral noise. At a more cognitive level of analysis, Craik
(1983) noted that older adults encode events in a less
distinctive manner than young adults because of re-
duced attentional resources. Relatedly, Kinsbourne and
Hicks (1978) proposed the notion of functional cere-
bra) space to better understand attention regulation,
interference, and individual differences in perfor-
mance. Here, the metaphor of declining processing
resources was reframed as an aging-indnced compres-
sion of functional cerebral space. In all three cases,
behavioral aging was linked to some form of repre-
sentational dedifferentiation, or a decrease in the dis-
tinctiveness of brain states, well in line with the
differentiation/dedifferentiation hypothesis pursued
independently in psychometrics and foreshadowing
the results of current-day brain-imaging studies.

Still another line of recent research has linked
behavioral aging to continuous age-associated shifts in
neurochemical functioning. Specifically, the dopam-
inergic systemn has been identified as a promising neu-
rochemical correlate of behavioral aging (Backman &
Farde, 2004). First, dopamine transmitter content and
binding mechanisms show an almost universal and
highly consistent pattern of age-associated decline in
various brain regions during normal aging. Second,
much of behavioral aging has been attributed to pre-
frontal cortex dysfunction (Raz, 2000), where dopam-

inergic pathways serve to activate and maintain rep-
resentations in the absence of environmental cues, and
to direct attention to goal-relevant stimuli, actions, and
action effects (Miller & Cohen, 2001). Third, more
direct experimental evidence based on animal mod-
els points to the functional significance of dopamine
receptor density. Taken together, age-associated dit-
ferences in dopaminergic neuromodulation appear to
be related to negative age differences in behavior.

The theory of representational dedifferentiation
proposed by S.-C. Li and colleagues simulates the
effects of aging-related changes in neuromodulation
on behavior through a series of neurocomputational
simulations. It combines earlier theoretical proposi-
tions regarding representational dedifferentiation with
recent neurochemical evidence about adult age dif-
ferences in neuromodulation. Variations in the gain
parameter (G) of connectionist models are used to
simulate the effects of age differences in neuro-
modulation on neural network signal processing and
behavior. G regulates the input sensitivity of the
network’s processing units. When G is at its lower
boundary, units become completely insensitive to
input variations. With high values of G, processing
units produce very little output with signals below a
certain threshold, and close to maximum output for
signals above threshold (see Figure 21.3, top panel).
Thus, reductions in G flatten the sigmoidal activation
function, thereby reducing a unit’s capacity to dis-
criminate between different levels of input signals.

In all neurocomputational simulations used to
implement the theory, the only difference betwcen
“young” and “old” networks concerns mean levels of
G; in all other respects, the two groups of networks are
identical. In contrast to earlier work (Servan-
Schreiber, Printz, & Cohen, 1990), empirical evi-
dence about natural fluctuations in transmitter
availability is considered by randomly sampling G
from a given distribution at each processing step.
Thus, the difference between “old” and “young” net-
works concerns the mean of the range from which G
is sampled; for instance, the Gs of “young” networks
are sampled from a range of 0.6 to 1.0, whereas the
Gs of “old” networks are sampled from a range of 0.1
to 0.5 (see Figure 21.3, top panel). To reiterate, both
the range and the distribution of the gain parameters
and all other aspects of the network do not difter be-
tween “young” and “old” networks; the only difference
by design concerns the mean level at which the gain
parameter is varied.
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‘T'he most basic consequence of the difference in
stochastic gain between “young” and “old” networks is
seen in the middle panel of Figure 21.3. This figure
displays the output activation of two units with high
versus low mean gain in response to the same signal.
[n the unit with the lower mean gain, output activation
is less extreme and more variable. The units’ increase
in stochastic output variability fundamentally alters the
network’s state space. As illustrated in the bottom panel
of Figure 21.3, networks with a greater proportion of
stochastic output variation to a given signal are less
capable of mapping different patterns of input signals
onto discriminable activation patterns, or network states.
"T'he panel displays the internal activation patterns across
five different units to four different stimuli in an epi-
sodic memory task. The activation patterns, or internal
representations, of the four stimuli are much less
discriminable in the “old” than in the “young” network.

Decrements in stochastic gain have been used to
simulate aging phenomena at both neural and behav-
ioral levels of analysis. Table 21.4 provides a listing of
phenomena simulated thus far. As noted already, dec-
rements in gain lead to increments in stochastic vari-
ability and to decrements in the distinctiveness of

activation patterns. In addition, decrements in gain
also can account for less distinct cortical representa-
tions (Li, Lindenberger, et al., 2001; Li, Naveh-Ben-
jamin, & Lindenberger, 2005) and neural-network
dedifferentiation at the level of processing modules (i
& Sikstrom, 2002). Thus, at the neural simulation
level, the gain manipulation successfully simulates the
“contraction of functional cerebral space” envisioned
by Kinsbourne and Hicks (1978) and observed by Park
et al. (2004) in the domain of visual perception.

Atthe behavioral level, comparisons between groups
of high-gain networks (young networks) and groups of
low-gain networks (old networks) reveal striking simi-
larities to comparisons between groups of young and
old individuals (see Figure 21.4). First, mean level of
performance is lower among old networks than among
young networks. Second, inter-individual differences are
larger among old networks than among young networks.
Third, intercorrelations between tasks are higher among
old networks than among young networks. Figure 21.4
illustrates all of these findings with respect to two dif-
ferent word lists learned by 20 “young”, 20 “middle-
aged,” and 20 “old networks” (Li & Lindenberger,
1999; Li, Lindel}berger, & Frensch, 2000).

TABLE 21.4. Relating neuromodulation to cognitive aging by reducing the mean of distribution of the gain
parameter (G) of neural networks: List of simulated phenomena at neural and behavioral levels of analysis

Neural Aging

® Increase in stochastic, stimulus-unrelated fluctuation of neuronal output activation (reduced processing robustness)
® Less distinet internal representations (e.g., dedifferentiation of neural activation patterns)

® [.ess distinet processing pathways (e.g., dedifferentiation of functional connectivity)?

Behavioral Aging

® [ncrease in performance fluctuation (within-network variability)
® Decrease in mean levels of performance (e.g., list learning, category discrimination)

o Increase in interindividual differences in performance
® [ncrease in covariation between tasks across individuals

* Greater age deficits with more difficult tasks (e.g., ordinal interactions between task difficulty and age in S-item vs. 8-item list

learning)

¢ Greater proactive interference (e.g., greater age differences in A-B, A-C relative to A-B, C-D list learning)
* Lower maximum levels of performance (e.g., age differences in asymptotes of list learning performance)

* Conjunctive binding deficit in associative learning (e.g., simulating empirical results reported by Naveh-Benjamin

(2000)P

Note: Reductions in the gain parameter G of neural networks flatten the sigmoidal shape of a unit's activation function, therehy leading to
decrements in the total amount as well as inerements in the stochastic, stimulus-unrelated component of output activation (see Figure 21.3,
top pancl). (Unless noted otherwise, the list refers to simulations reported in Li, 2002; Li and Lindenberger, (1999); Li, Lindenberger, &
Frensch, (2000); and Li, Lindenberger, and Sikstrém, 2001. Phenomena printed in italics are discussed in more detail in the present chapter.)

“Based on Li & Sikstrom (2002).

bBased on Li & Lindenberger (i press).
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To conclude, these simulations show that incre-
ments in stochastic (i.e., stimulus-unrelated) variabil-
ity induced by lowering the gain parameter of
connectionist networks may lead to decrements in
means as well as increments in variance and correla-
tions at the population level. Age differences in the
structure of inter-individual differences were solely
brought about by increased stochastic variability at the
intra-individual (i.e., intra-network) level (for more
details, e.g., Li & Lindenberger, 1999); no additional
assumptions about differences in life histories or an-
tecedent conditions were needed. Hence, the present
model specifies reductions in the mean of stochastic
gain as a mechanism that links univariate micro-
genetic variability to ontogenetic changes in func-
tional organization, tracing a path from the upper left
to the lower right cell of the taxonomy presented in

Table 21.1.

OUTLOOK

Interest in variability as an agent of development dur-
ing adulthood and old age has increased during the
last decade. Researchers increasingly recognize the
need to assess and articulate various forms and funec-
tions of variability, and to identify relevant mecha-
nisms (Hultsch & MacDonald, 2004; Lovdén &
Lindenberger, 2005; Rabbitt, Osman, Moore, &
Stollery, 2001). General theories of cognitive aging
that emphasize central tendency such as average
response latency (e.g., Salthouse, 1996) have been
augmented by formal theories that emphasize sto-
chastic variability at various levels of analysis (e.g.,
Li & Lindenberger, 1999; Ratcliff et al., 2000).
For instance, recent empirical findings {(e.g., Li,
Lindenberger, et al., 2004; Nesselroade & Salthouse,
2004) suggest that inter-individual differences in
processing fluctuation may functions as traits
that change with age and predict mean levels of
performance.

FIGURE 21.4. Scatterplots of between-network (i.e.,
inter-individual) correlations between memory
performance for a 3-item list and memory perfor-
mance for an 8-item list in groups of networks with
high, medium, and low mean values of stochastic
gain (G). (Modified after Li and Lindenberger,
1999.)
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We agree with Nesselroade and Salthouse (2004)
that classical test-theory interpretations of observed
between-person variability need to be abandoned once
and for all (cf. Hertzog, 1985). The contributions of
intra-person fluctuations to observed between-person
variability are simply too large and too systematic to
be accommodated by a theory that makes no prin-
cipled reference to variability at the within-person
level. Researchers’ increasing reliance on statistical
procedures capable of representing inter-individual
differences in intra-individual change (e.g., Baltes et
al., 1977/1988) indicates a change for the better (e.g.,
Lindenberger & Ghisletta, 2004; Wilson et al., 2002).

There continues to be a dearth of data on age dif
ferences in various forms of microgenetic variability—
trial-by-trial, session-to-session, and day-to-day (but see
Li, Aggen, et al., 2001; MacDonald et al., 2003;
Nesselroade & Salthouse, 2004; Rabbitt et al., 2001).
Extensive multivariate time series of carefully selected
collections of individuals, young and old, are needed
to investigate the functional status and multiple mean-
ings of variability (e.g., Jones & Nesselroade, 1990).
Ideally, behavioral and neural variables should be as-
sessed conjointly to examine links between variabil-
ity at both levels of analysis. To provide more direct
tests of the differentiation/dedifferentiation hypothesis,
intra-person structures of intellectual abilities need to
be assessed at different ages and stages of learning. The
ensuing comparisons between intra-person and inter-
person structures will help to quantify sample hetero-
geneity and departure from variation equivalence. The
phenomenon of strategic diversity and other forms of
adaptive microgenetic variability also awaits further
study, including the difficult issue of how different
strategies emerge in the first place (e.g., Lautrey, 2003;
chapter 20, this volume). The selection, optimization,
and compensation (SOC) model of successful devel-
opment offers a productive theoretical context for
examining this issue (e.g., Baltes & Baltes, 1990;
Krampe & Baltes, 2003).

Finally, the role of noise in aging systems needs
further exploration. Generally, noise is assumed to
degrade information processing in physical and bio-
logical systems. However, under certain conditions,
noise actually enhances rather than hinders the de-
tection of weak signals. The simplest possible system
showing this property consists of a threshold, a sub-
threshold signal, and added noise. Whenever the noise
plus the signal crosses the threshold in one direction,
it triggers a response in the output. As a detector of

weak signals, this system is optimally sensitive at some
non-zero level of input noise. Recently, researchers
have begun to examine this phenomenon, called sto-
chastic resonance (Wiesenfeld & Moss, 1995), in ag-
ing individuals (e.g., Collins etal., 2003). Future work
needs to examine the fate of stochastic resonance in
networks with low stochastic gain in order to specify
optimal levels of external noise for signal processing
in old age (Li, Oertzen, & Lindenberger, in press).
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