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Abstract

Stochastic resonance (SR) is fundamental to physical and biological processes. Here, we use a stochastic gain-tuning model to

investigate interactions between aging-related increase of endogenous neuronal noise and external input noise in affecting SR. Compared

to networks that have optimal system gain parameter of the activation function, networks with attenuated endogenous gain tuning at

the system level, simulating aging neurocognitive systems with more intrinsic neuronal noise but less plasticity, continue to exhibit the

general SR effect; however, this effect is smaller and requires more external noise. This set of finding suggests that determining the

optimal proportion of resonance-inducing external noise as a function of internal-system stochastic gain tuning properties promotes

unified theorizing about sensory and cognitive aging at behavioral and neural levels of analysis.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic resonance (SR), the phenomenon of noise-
enhanced responses to weak signals, is fundamental in
many physical as well as physiological processes [10,44].
For instance, recent evidence of SR in neurobiological
systems’ sensory processing suggests that SR increases
phase locking and coherence, thus promoting synchroniza-
tion of neuronal activities (for a review, see [29]).
Specifically, in humans, an optimal level of noise externally
added to subthreshold signals can improve tactile sensory
detection [6,7,25], balance control [12,32], and visual
perception [38]. A recent fMRI study [39] also showed
that SR enhanced the activation level of neuronal activity
in human visual cortex.

Other than external noise, intrinsic stochasticity of the
nervous system is also inherently present in the compo-
nents of neurons, such as synapses, that are central for
e front matter r 2005 Elsevier B.V. All rights reserved.
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neurotransmission [17]. Sensory and cognitive processes
entail constant exchanges between neuronal activities and
external stimulations. Thus, interactions between internal
and external noise are inevitable. In order to study such
interactions, it has been suggested recently that computa-
tional approaches need to explore how between-system
differences in endogenous system parameters that regulate
internal stochasticity interact with the commonly observed
SR that is induced by external noise [e.g., 14,46]. With
respect to gerontological applications, it has been suggested
that senescence is associated with increasing internal noise.
For instance, a classical hypothesis in neurocognitive aging
research states that the aging brain is noisier [42], due to
deteriorations in various transmitter systems [1,2,13,15,
35,36,45], such as acetylcholine (Ach) and monoamines
(e.g., dopamine, norepinephrine, and serotonin), and
degenerations in structural integrity, such as reductions in
gray and white matter density and brain volume shrinkages
in prefrontal cortex and hippocampus [4,33] as well as
attenuated functional connectivity between these cortical
regions [11]. Brain electrophysiological activities captured
by EEG recordings show aging-related increase in varia-
bility [16]. Noisy fluctuations in cognitive and sensorimotor
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processes also increase with aging [19,22,23,27]. A handful
of studies have examined the effect of external input noise
on tactile sensation or balance control in young and old
adults [6,7,12,25,32], and provided first evidence of the
continued existence of external-noise-enhanced SR in aging
neurocognitive systems. However, little is known about
how interactions between external input noise and aging-
related increase of endogenous neuronal noise may
modulate the general SR effect.

1.1. Modeling neuromodulation as stochastic system gain

tuning

Tuning the gain parameter of neural networks’ activa-
tion function is a common system-based approach for
modeling neuromodulation and its effect on neural
plasticity [8,37]. We extended a stochastic gain-tuning
model of neurocognitive aging [18] to investigate interac-
tions between external-noise-enhanced SR and aging-
related increase of endogenous neuronal noise derived
from deficits in the intrinsic system neuromodulatory
process. Rather than assuming additive internal noise
[9,26], here we capture aging-related increase of intrinsic
neuronal noise that may be attributable to decline in
neuromodulation, particularly dopaminergic modulation,
by attenuating the gain parameter of neuronal networks’
sigmoid activation function (Eq. (1)). The gain parameter is
a system parameter that affects the slope and non-linearity
of the neural network’s activation function. Modeled as
such, the net input a given processing unit i receives from
afferent channels at the simulated discrete time step t is
gated by the gain parameter (Git

) before the unit emits its
activation and further propagates the activity. At each
processing step, indexed in discrete time steps, the value of
the gain parameter associated with a given unit is randomly
sampled from a uniform distribution with a given mean
and standard deviation. The stochastic gain manipulation
implemented as such incorporates the probabilistic nature
of transmitter release [30]:

ActðGit ; inputit
Þ ¼

1

1þ e�ðGit �inputitþbiasÞ
. (1)

Whereas the level of external noise that is part of the
stimulus environment may vary leading to various extents
of external-noise-induced tuning, systems may also differ in
the efficacy of their endogenous gain control mechanism.
The stochastic gain manipulation we propose here is aimed
at capturing aging-related differences in endogenous
neuromodulatory gain control, in order for us to explore
the effects of aging on the commonly observed external-
noise-enhanced SR. Differences in neuromodulatory gain
control between young and older neurobiological systems
can be simulated by neural networks with a larger or
smaller mean G. Fig. 1 shows three families of activation
functions that are associated with three ranges of G. The
slopes and non-linearity of activation functions associated
with smaller G are reduced in comparison to the functions
with larger G, i.e., comparing the set of curves on the right
(G ranges from 0.4 to 0.6, with a mean of 0.5) and the set of
curves in the middle (G ranges from 0.6 to 0.8, with a mean
of 0.7) with that on the left (G ranges from 1.0 to 1.2, with a
mean of 1.1). Extant evidence suggests that across various
brain regions, there is about 5–10% decline in the efficacy
of dopaminergic modulation per decade starting at about
age 20 years [1,15]. Assuming a 10% decline per decade,
changing the level of mean G from 1.1 to 0.7 numerically
corresponds to about four decades (36%) of decline (i.e.,
about the decline from 20 to 60 years of age), whereas
changing the level of mean G from 1.1 to 0.5 numerically
reflects about six decades (55%) of decline (i.e., about the
decline from 20 to 80 years of age). These parameter ranges
are also comparable to empirically observed aging-related
increase in perceptual/cognitive processing fluctuation
(noise), which was found to be about 7% increase in
processing noise per decade from age 30 to 90 years in one
study [23].
Attenuating the system-parameter-based stochastic gain

regulation reduces the responsivity, thus the signal
transmission efficiency, of the processing units, which
subsequently increases intra-network activation noise and
reduces representation distinctiveness [18]. This sequence
of effects integrates findings of aging-related decline in
neuromodulation [1,15] and various cognitive aging deficits
(e.g., adult age differences in learning rate, susceptibility to
interference, working memory, associative binding, and
performance variability) at the behavioral level [19–22].
However, the question of whether similar mechanisms may
also affect SR in aging neurobiological systems still needs
to be investigated.
In principle, the within-system manipulation of neural

network’s gain parameter is related to typical concepts of
input or output signal-to-noise ratio (SNR), as it is related
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to the SNR gain frequently encountered in the literatures
of perceptual/sensory discrimination or signal processing.
However, there is one clear difference: whereas the
typically SNR gain [34] is often defined as the ratio of
the system’s output SNR (e.g., a person’s perceptual
performance measured at the behavioral level) to input
SNR (e.g., the quality of the input stimuli), the within-
system stochastic gain regulation of the activation function
as implemented here is a manipulation of a system
parameter that is intrinsic to the neural network. Concep-
tually, the importance of comparing SR phenomena
derived from adding external noise and tuning system
parameters as well as studying their interactions have been
emphasized in recent work [e.g., 14,46]. With respect to
gerontological applications, it is important to arrive at
computational frameworks within which between-person
differences in endogenous neurobioloical processes, such as
the effect of aging on neuromodulation, can be directly
modeled by an intrinsic system parameter. If this is done,
we are enabled to study how gain regulation of the
network’s activation function at the system level interacts
with the effect of external noise on SR. From an applied
perspective, computational and empirical findings on this
interaction between external noise and internal gain tuning
properties open the possibility for determining optimal
levels of noise [cf. 14] for human systems with suboptimal
gain tuning characteristics.

Two important earlier studies have shown that external,
context-dependent noise linearizes the input–output trans-
fer function of model neuron ensembles [3] and changes the
frequency tuning properties of actual sensory neurons [14].
Building on these earlier findings regarding external-noise-
induced tuning of SR, particularly the so-called aperiodic
SR, our effort here is to illuminate how external-noise-
induced SR effects vary as a function of between-system
EðactGðinput;noiseÞÞ ¼

Z Gmax

Gmin

1

ðGmax � GminÞ

Z 1
�1

e�x2

ffiffiffi
p
p

1

1þ e�ðGðinputþnoise xÞþbiasÞ
dxdG. (2)
differences in the efficacy of endogenous gain regulation.
Although external noise may affect the input–output
transfer function in both young and old neurobiological
systems, mechanisms underlying age differences in brain
integrity between the young and old that affect the efficacy
of neuromodulation add another layer of influence at the
system level, that may, in turn, interact with the effects of
external noise tuning.

2. Analytic analysis of gain tuning and SR in a single-neuron

model

To analytically characterize the effects of attenuating G

on SR, we first considered a single-unit model. The aging
deficit of neuromodulation is modeled by sampling G of the
processing unit’s activation function from uniform dis-
tributions with smaller means. Across a range of white
Gaussian external input noise, we compute how accurate a
single unit can distinguish between two relatively similar
signals that represent the presence or absence of a stimulus.
For each level of external noise, the single unit’s detection
accuracy is quantified as the difference between the
expectation values of the unit’s activation when the signal
is present or absent. For a given input, noise level (i.e., here
defined as the standard deviation of the Gaussian noise
distribution, x), and range of gain [Gmin, Gmax], the
expectation value of the unit’s activation is computed as
the integrals over the respective distributions:
We set the bias to –4.0, input to 0.0 for ‘‘signal absent’’
and 0.2 for ‘‘signal present’’. Fig. 2 shows that activation
functions associated with different levels of G all exhibit the
typical pattern of SR: detection accuracy initially increases
with increasing input noise, reaches a peak at optimal noise
level, and decreases gradually thereafter. However, the
peak of SR decreases and shifts rightward with decreasing
G. These effects show that a unit with smaller G profits less
efficiently from SR: the effect of SR is weaker and needs to
be achieved with more external noise.

3. Gain tuning and SR of sensory detection in multi-neuron

networks

We next expanded the G modulation of SR in the single-
unit model to multi-unit networks to study adult age
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differences in external-noise-enhanced sensory detection.
Multi-layer, feedforward backpropagation networks with
full connections were implemented (see Fig. 3) to simulate
sensory detection in paradigms analogous to earlier
experiments [6,7,25]. For all reported simulations, the
ensemble of processing units at the sensory layer (n1 ¼ 12)
encoded a pattern of signal amplitude in arbitrary units
that represented the presence (signal value set to 1) or
absence (signal value set to 0) of applied stimulus force
across 12 arbitrary discrete time periods. Their activities
were summed and the resulting net sensory input to each of
the units in the cortical layers (n2 ¼ 4) was gated by the
units’ G parameters. The latter of the two cortical layers
had two detector units. Based on activations of the
detector, the networks gave a ‘‘stimulus’’ or ‘‘no-stimulus’’
response.

We generated three groups of 10 networks that differed
only in the means of the uniform distributions from which
the values of their G parameters were sampled. As with the
single-unit model, the ranges (hence the standard devia-
tions as well) of the three distributions of G parameters
were fixed at 0.2 (i.e., [0.4, 0.6], [0.6, 0.8], and [1.0, 1.2]) and
the bias of the activation function was fixed at –4.0. The
networks were first trained with the backpropagation
algorithm to detect the presence of the perfect stimulus in
the absence of external noise until all networks reached an
equivalent level of high precision. At testing, the networks
were presented with a subthreshold stimulus. The test
involved 20 trials (10 ‘‘stimulus present’’ and 10 ‘‘stimulus
absent’’) at various levels of external input noise. Indepen-
dent white Gaussian noise distributions with a mean of
zero were added to the sensory signal train. The standard
deviations of the noise distributions were varied across
blocks. A subthreshold stimulus was generated by reducing
the signal intensity of the perfect stimulus to a level that
networks with all levels of G achieved the base rate of
50–55% correct detection accuracy in the absence of any
external noise. This criterion was reached by cutting down
the signal intensity of the perfect stimulus to 40% in the
reported simulations.
4. Results

The results show that the details of SR depend on the
interaction between external noise and G. In line with SR
observed in old people [25], the G-reduced networks also
exhibit SR. The magnitudes of peak SR are, however,
smaller in G-reduced networks and the peaks are again
right-shifted to greater levels of external noise (Fig. 4(a)).
These findings indicate that increased internal noise in the
G-reduced networks reduces the relative efficiency of
external noise in producing SR. These results parallel
findings of earlier theoretical studies [5,9], which have
considered the effect of network size on SR. It is worth
noting that other than findings reported here, results from
additional simulations indicated that in comparison to
either only manipulating the values of a fixed G or the
ranges of the G distributions but keeping the mean
constant, the stochastic G manipulation as implemented
here yields the most unequivocal age differences in SR.
Furthermore, consistent with earlier work on SR in multi-
unit summing network [5,9], increasing the number of units
at the cortical layer (i.e., from n2 ¼ 4 to 50) extends the
limit of sensitivity to optimal noise intensity for networks
with all levels of G. The relative effect of G on the
magnitude of SR is, however, maintained: networks with
smaller G show lower peak SR.
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4.1. Effects of repeated noise exposure

The effects of short- and long-term repeated exposures to
external noise were also investigated. The neurocognitive
system is adaptive and plastic at various levels [31,40,41].
Gradual adaptations to external noise and weak signal may
affect the SR effect. Hitherto, the effect of short-term
exposure to external noise on SR in sensory detection had
only been empirically examined in a small number of
young subjects in up to two testing sessions. In the second
session, only 50% of the subjects still showed an SR effect
of a magnitude similar to the initial effect [7]. Analogous to
the experimental procedure used in the empirical study, in
one set of simulations we examined the effect of short-term
repeated exposure to noise by comparing the SR effect
assessed in a second testing session with that assessed in the
first session. Following an initial training phase as
described above, the connection weights of the networks
were adaptively adjusted while being exposed to the
subthreshold stimulus together with noise during the first
test session. Simulation results presented in Fig. 4(b) show
that absolute detection accuracy increases in the second
testing session, as indicated by the greater-than-zero
difference of detection accuracy at zero noise level. This
effect is clearest in networks with the largest G, suggesting
that networks with the largest G learned most and became
more familiarized with the weak signal. Second, although
SR is still observed, the relative SR effects in comparison to
those of the first session are reduced and this reduction is
strongest in networks with the largest G (see inserted panel,
Fig. 4(b)).
The effect of long-term exposure to noise was examined

in another set of simulations. After determining the
optimal levels of external noise that produced the peaks
of SR for networks associated with different levels of G, the
networks were trained with 30 additional trials in which the
original, superthreshold stimulus was embedded in the
optimal level of external noise (d ¼ 0:5 in the simulations
reported here). After 30 trials of noise exposure training,
the networks were again tested with the subthreshold
stimulus across different levels of external noise. Similarly,
the simulation results show that gradual adaptations to
long-term repeated exposures of external noise for over 30
sessions reduce the magnitude of SR (compare Fig. 4(c)
with 4(a)). Again, this relative reduction is more pro-
nounced in networks with larger G. Together, these results
suggest that, when been repeatedly exposed to external
noise, aging-related reduction in neural plasticity might
protect old people from losing the SR benefit as drastically
as young people, who pay the price of greater plasticity
resulting in greater adaptation to subthreshold stimuli and
repeated noise exposures.

5. Discussion and conclusion

Juxtaposing our findings of reduced and right-shifted
peak SR with decreasing G tuning and previous analytical
models [5,9] showing similar effects with limiting the
number of processing units suggests a conjecture: networks
with attenuated G function as if they have a more limited
number of processing units. This sheds new light for
understanding cognitive and sensory aging both at the
neurochemical and neuroanatomical levels. Current evi-
dence suggests that the effect of anatomical neuronal loss is
small during normal relative to pathological aging. Milder
cognitive and sensorimotor deficits occurring during
normal aging are likely to be due to neurochemical shifts
in relatively intact neural networks [28]. As conjectured
here, without explicitly modeling anatomical neuronal loss,
networks with an equal number of processing units but
attenuated G can be functionally similar to networks with
fewer units.
Our simulation results here also corroborate previous

findings on linearization of the input–output transfer
function by external noise in the context of aperiodic SR
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Fig. 5. Simulations results regarding interactions between system-para-

meter-based gain regulation and external-noise-induced tuning effect.

Panel (a) depicts mean activation curves in the typical sense of input SNR.

The x-axis gives the mean strength of the signal, and the y-axis gives the

activation of a single unit. The different curves represent different levels of

noise (3.0–7.0). Each curve is associated with a given level of noise and

depicts the mean activation function across a range of signal strengths.

Panel (b) displays data from (a), restricted to a tight interval of signal

strength from 0.0 to 0.04 (see explanations in text). Panel (c) depicts slopes

for different curves at a signal level of precisely 0.04 across the noise levels

between 3.0 and 7.0. The curve for gain ¼ 1.0 corresponds directly to

panels (a) and (b). To see the interactions between system gain regulation

and external-noise-induced tuning, the other three curves plot the similar

effect for networks with lower mean values of system gain (see text for

further explanation).
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[3]. In addition, we demonstrate how external-noise-
induced tuning interacts with the system’s intrinsic gain
regulation. As shown in Fig. 5(a), one way to illustrate the
effect of external noise on signal detection (as was done,
e.g., in [3]) is to plot the mean activation for a given signal
strength across different noise levels (i.e., the input SNR
function at different levels of external noise). Focusing on a
very tight range of signals (0.0–0.04), we see in Fig. 5(b)
that the slopes (visualized here as more discrete rising steps
in the curves) of the uppermost (corresponding to high
external noise level) and the lowermost curves (correspond-
ing to low external noise level) are less steep than the slopes
of curves in the center (corresponding to optimal noise
range for external-noise-based SR effect). In other words,
at low and high levels of external noise the slope of the
SNR transfer function is reduced, as shown in the previous
study [3]. To visually illustrate the differences in slopes of
the SNR transfer function more clearly as it was done in
previous work [3], Fig. 5(c) depicts the slopes of the
different curves at a signal level of precisely 0.04 across
external noise levels from 3.0 to 7.0. Furthermore, Fig. 5(c)
also displays a new additional aspect: the slopes of the
SNR transfer function are affected by different levels of
intrinsic system gain regulation. The curve for gain ¼ 1.0
corresponds to the plots in panels a and b of Fig. 5. The
other three curves represent the slopes of the SNR transfer
function for systems with three lower levels of intrinsic
system gain regulation. It is clearly seen that the effect of
external noise tuning interacts with the level of the system’s
internal gain regulation. In line with the simulation results
reported in Figs. 2 and 4, analyzing the effect of system
gain regulation on external-noise-induced SR in terms of
the slopes of the SNR transfer function also shows that
systems with suboptimal intrinsic gain regulation (i.e.,
lower values for the gain parameters of their activation
functions that simulate older people with less efficient
neuromodulation) exhibit weaker and right-shifted SR
effects.
Direct empirical studies on age differences in SR are

scarce, as most studies examined SR in old [25] and young
[6,7] people separately. Our results point to a methodolo-
gical issue regarding interpretations of age differences of
SR in psychophysical experiments. Due to reduced sensory
threshold sensitivity [24], a higher level of externally
applied noise is usually required for old rather than young
people [32]. Such age differential adjustments, however, set
the to-be-observed empirical young and old effects on
different parts of the SR functions, and hence render
unambiguous comparisons of age effects difficult. Com-
parisons of the full psychophysical SR function using
experimental paradigms with systematic parametric varia-
tions across external noise and stimulus levels in different
age groups may more comprehensively capture age
differences of SR.
In conclusion, the analytical and computational analyses

reported here provide a framework for relating aging-
related neurobiological declines with the phenomenon of
SR. As processes of brain aging occur at neurochemical
and neuroanatomical levels, increased neuronal noise and
reduced neural plasticity may modulate the extent of the
external-noise-enhanced SR effect and its habituation
process. Our model suggests that as the aging brain
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becomes noisier internally, sensory aging is associated with
reduced peak SR, higher level of external noise required for
inducing SR,1 increased sensitivity to the range of optimal
noise intensity, and decreased sensitivity to repeated noise
exposure. We hope these predictions stimulate concerted
empirical efforts for research on aging and SR.
References
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