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We evaluated the statistical power of single-indicator latent growth curve models (LGCMs)
to detect correlated change between two variables (covariance of slopes) as a function of
sample size, number of longitudinal measurement occasions, and reliability (measurement
error variance). Power approximations following the method of Satorra and Saris (1985) were
used to evaluate the power to detect slope covariances. Even with large samples (N = 500)
and several longitudinal occasions (4 or 5), statistical power to detect covariance of slopes
was moderate to low unless growth curve reliability at study onset was above .90. Studies
using LGCMs may fail to detect slope correlations because of low power rather than a lack
of relationship of change between variables. The present findings allow researchers to make
more informed design decisions when planning a longitudinal study and aid in interpreting
LGCM results regarding correlated interindividual differences in rates of development.
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models

Assessing individual differences in change with appropri-
ate statistical models is critical for empirical studies of life
span development (Baltes & Nesselroade, 1979; Hertzog &
Schaie, 1986; Hofer & Sliwinski, 2006; McArdle, 1988;
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Wohlwill, 1991). When developmental change can be char-
acterized as progressive or cumulative (e.g., cognitive de-
velopment from childhood to early maturity or cognitive
aging in older adults), latent growth curve models (LGCMs)
provide an attractive means of assessing both average de-
velopmental function and individual differences in rates of
developmental change (Bryk & Raudenbush, 1987; Duncan,
Duncan, Strycker, Li, & Alpert, 1999; Laird & Ware, 1982;
McArdle & Epstein, 1987; Raykov, 1993; Rogosa & Wil-
lett, 1985). LGCMs can be used to test a critical develop-
mental question, namely, whether there are covariances in
change between variables. Whether change is associated
across two or more variables is a hallmark of theories about
life span cognitive development (Hertzog, 1985; Hultsch,
Hertzog, Dixon, & Small, 1998; Lindenberger & Baltes,
1994; Rabbitt, 1993).

Currently, we lack good information about the capability
of LGCMs to detect a covariance in slopes between two
variables. Existing simulation studies of LGCMs have fo-
cused on other issues, including the power of LGCMs to
detect differences in average slopes between different
groups of persons (e.g., Fan, 2003; Muthén and Curran,
1997). Consequently, psychologists seeking to design pro-
spective longitudinal studies of psychological development
have no simulation-based guidelines regarding sample size,
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spacing of temporal retest intervals, the temporal length of
studies needed to detect different effect sizes of variance in
change, and so on. A major risk, then, is that researchers
may design studies that do not have a realistic chance of
detecting relationships in change between variables because
their choices regarding sample size, occasions of measure-
ment, or other relevant design features led to insufficient
statistical power to detect potentially existing correlations
between two or more change processes.

Statistical Model

Given our interest in evaluating individual differences in
adult cognitive development (e.g., Ghisletta & Linden-
berger, 2003; Hertzog, Dixon, Hultsch, & MacDonald,
2003; Lindenberger & Oertzen, 2006), we frame the LGCM
issues around the problem of detecting reliable individual
differences in rates of cognitive decline and reliable asso-
ciations of age-related decline in two variables. However,
the results we report are actually arbitrary with respect to (a)
epoch of time, (b) direction of change (growth or decline),
and (c) choice of psychological constructs.

Consider a simple bivariate linear LGCM for two vari-
ables, x and y, measured longitudinally over time ¢t =0, . . .,
T,oni=1,..., N persons, generating data matrices x,, and
¥i The LGCM can be written as

x;, = By * InterceptX; + By, + SlopeX; + €y,
Yi = By - InterceptY; + By,, - SlopeY; + €y, (1)

where InterceptX,, SlopeX;, InterceptY,, and SlopeY; are
latent variables defining the intercepts and slopes of the
latent growth curves for x and y. For x and y, a growth curve
design matrix, B, is defined with 27 rows for occasions of
measurement for x and y and four columns for the intercept
and slope of x and y. Each column of B is a vector of
regression weights establishing the relationship of occasions
of measurement to the growth curve. For intercepts, all
values are fixed at 1. The regression weights for slopes are
increased from O to 1 in steps of 1/T. (See McArdle &
Epstein, 1987, and Rovine & Molenaar, 2000, for discus-
sion and alternative scalings of the growth curves.)

The model can be used to derive expectations (E) on the
basis of the mean growth curves across individuals for x;,
and y,,:

E(xi[) = Mlnterceth + BZI : MSlopeX

E(yit) = Mlntercept)’ + BZI . MS]opeYa (2)

where [8,, is the column vector of weights defining the linear
growth curve slope across 7 occasions, Mi,ercepry and
M percepry are the population mean intercepts and Mgqpex
and Mg,y are the population mean slopes.

Consistent with common practice in empirical applica-
tions of LGCMs, we assume that the errors, €y, and €,,,, are
distributed normally and are stochastically independent of
the latent intercepts and slopes, as well as independent of
each other. We also assume the errors have homogeneous
variance across occasions of measurement, denoted o2, and
ogy. Hence the expectation for the covariance matrix of the
observed variables, 3, aggregating over individuals, is

Xy’
Exy = BptEISBpt’ + ®x}'7 (3)

where p is an index for each observed variable, 34 is the
covariance matrix of InterceptX, InterceptY, SlopeX, and
SlopeY and @, is a diagonal matrix containing the error
variances o2, and a;,. The parameters in X5 and @, are
termed random effects in multilevel models. Our interest in
this study is on the power to detect nonzero slope covari-
ances, namely, Ogjopexsiopey> ON€ element of 2.

Longitudinal Design Model

The setting for this power study is a prospective single-
cohort longitudinal design (Baltes, Reese, & Nesselroade,
1988; Schaie, 1977). We assume that a population of adults
of homogeneous initial age (i.e., 50 years) has been mea-
sured on two variables that produce linear age decline from
age 50 years through age 69 years. We assume that the
scientist draws a random sample of individuals from the
general population and then measures these individuals
longitudinally. To enable comparisons across different tem-
poral epochs, we framed the linear growth process as
change over 20 occasions of measurement. For relevance to
studies of adult cognitive development, the temporal unit is
years, but other substantive problems would dictate other
time scales (e.g., days or weeks for prosocial development
in preschool). The variables x and y were scaled as T scores
(M = 50, SD = 10) at #(0), and the LGCM parameters were
scaled to be psychologically plausible, on the basis of prior
longitudinal studies of adult cognitive development, and
statistically possible. Data from longitudinal studies have
demonstrated that variance in change is small to moderate
relative to variance in initial level (e.g., Hertzog & Schaie,
1986; Hultsch et al., 1998; Lovdén, Ghisletta, & Linden-
berger, 2004; Lovdén, Ronnlund, et al., 2004; Rabbitt,
Diggle, Smith, Holland, & Mclnnes, 2001; Schaie, 1996).
On the basis of these empirical considerations, we scaled
change variance to be either 50 or 25 at #(19), relative to the
intercept variance of 100, to arrive at a ratio of total change
over intercept variance of 1:2 or 1:4. Note that estimated
ratios reported in the literature are generally smaller, in all
likelihood making it even more difficult to detect interindi-
vidual differences in change. Both variables were treated as
having equal magnitudes of mean parameters for intercept
and slope, intercept variance and covariance parameters,
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and slope variance (i.e., we did not simulate the situation of
differential change in the two variables). Mean intercepts,
mean slopes, intercept variances, and intercept covariances
were held constant. Also, covariances between intercepts
and slopes were fixed to 0. Error variance was treated as
homogenous across all T occasions.

One important issue is the number of occasions of mea-
surement needed to reliably detect a covariance between the
slopes of x and y. Hence we evaluated changes in statistical
power as a function of increasing the number of longitudinal
occasions of measurement, as if we were conducting an
actual longitudinal study.

A second issue is the effect of growth curve reliability
(GCR) on the power to detect covariance between the
slopes. Define the total variance of x at time ¢ as o2, This
variance can be decomposed into two components, (a) that
due to individual differences in latent intercepts and slopes,
namely o7, + B3, * 05, (where o7, and o, are the variances
of the intercepts and slopes for x, respectively), and (b) that
due to error (oZ,). Then GCR is defined as (o7, + B3,°
os)la?, or (02, — o2)lo?,; that is, the ratio of variance is
determined by the latent growth curve to total variance. The
same expressions apply to variable y. The error variance has
two components: random measurement error in each vari-
able and variability of the residuals for the true scores of x
and y around the linear regression functions of the growth
curves. At #(0), GCR reduces to o7 /(o7 + oZ,) for x and
012/(0%‘, + (ré‘,) for y (namely, variance in latent intercepts
divided by total variance), because by scaling constraint,
individual differences in slopes do not contribute to the
reliable variance at #(0). These expressions are, of course,
closely related to reliability as defined by classical test
theory, differing only in the growth curve basis for estimat-
ing the residual variances o2, and ogy and hence the result-
ing absorption of regression residual variance into the error
term. In general, GCR varies with 7, so we refer to GCR as
scaled at #(0) for the power curves we report in this article.

On the basis of the well-known effects of random mea-
surement error (unreliability) on change scores (e.g., Ro-
gosa, Brandt, & Zimowski, 1982), we also expected that
GCR would influence the power of LGCMs to detect slope
covariances. Moreover, LGCMs can be framed as an instan-
tiation of restricted common factor analysis. MacCallum,
Widaman, Zhang, and Hong (1999) demonstrated that
power to detect unstandardized factor loadings depends on
the magnitude of residual variances. Note that although
LGCMs define latent factors of intercept and change, each
of these latent factors is typically based on just one indicator
per construct measured over time. We suspected that the
statistical power of such models may be more susceptible to
measurement error than is commonly assumed.

In practice, researchers evaluate the null hypothesis of
zero slope covariance with a likelihood ratio (LR) chi-
square test (e.g., Steiger, Shapiro, & Browne, 1985), com-

puted as the difference in fit between a model that fixes the
slope covariance to O versus one that estimates it freely.
Power is defined as the probability of rejecting the null
hypothesis when it is false, that is, of detecting a covariance
in change when it actually exists. We used the method
developed by Satorra and Saris (1985) to evaluate the power
to detect slope covariances of varying magnitudes (effect
sizes). Satorra and Saris showed that if the true model is in
a sufficiently close neighborhood to the model of the null
hypothesis, then the LR of a set of data generated by the true
model tested against the null hypothesis will be distributed
as a noncentral chi-square variate. The noncentrality param-
eter of this distribution is then the optimal —2 log likelihood
index for the true model against the null hypothesis model,
multiplied by the number of observed data points. Power
can then be estimated in turn by comparing the overlap of
the noncentral chi-square with the central chi-square gener-
ated for the LR test (Saris & Satorra, 1993; Satorra & Saris,
1985).

Results

We first traced power curves as a function of number of
measurement occasions and reliability for six conditions:
slope correlations of .25, .50, and .75 crossed with sample
sizes of 200 and 500. Figure 1 plots these curves for each
number of longitudinal occasions (from left to right, 20, 10,
6, 5, 4, and 3). The curves for the larger sample size (N =
500) are shown in the top row; the curves for the smaller
sample size (N = 200) are shown in the bottom row. The
curves were generated by computing Satorra—Saris power
estimates by stepping through GCRs—scaled for occasion
1(0), the onset of the longitudinal study—from .50 to .99 in
.005 increments.

Power was generally low for GCRs below .90, although
this depended on sample size and effect size, as expected.
For the slope correlation of .25 (small effect size), the
steepest rise in the power curves occurred for reliabilities
greater than .91, and the plots reveal the rapidly ascending
behavior of the sigmoidal power curves in this region. With
a sample size of 200, power did not exceed .80 until reli-
ability was nearly perfect (>.96) for longitudinal designs
with 3, 4, 5, or 6 occasions of measurement and achieved
.80 when reliability was approximately .90 for 10 occasions
of measurement. When sample size increased to 500 for this
effect size, the picture improved somewhat, with a 6-occa-
sion longitudinal design achieving .80 power with a GCR of
about .92. The increase in power as a function of effect size
is seen by going from left to right within a row of the figure.
With a sample size of 500 for the moderate effect size,
power of .80 was achieved with GCR of .82 for 6 occasions
of measurement and with GCR of .93 with 4 occasions of
measurement. With the largest effect size (slope correlation
of .75), power for a sample of 500 persons rose to .80 with
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4 occasions of measurement and reliability of just under .90.
Clearly, use of a bivariate LGCM requires sample sizes
greater than 500 and good GCRs to achieve acceptable
power to detect slope covariances with only 3 or 4 occasions
of measurement, assuming all other assumptions hold.

To gain further understanding of the power to detect slope
covariances, we estimated a second set of Satorra—Saris
power curves that systematically varied the magnitude of
the implied slope correlation from 0.0 to 1.0 for a sample of
500 persons. Figure 2 presents these curves. Each panel
reports a different number of longitudinal occasions of
measurement, varying from 3 to 10. Separate curves are
plotted for GCRs at #0) of .75, .80, .85, .90, and .95 within
each panel.

When the number of longitudinal occasions of measure-
ment is 3, power remains relatively low in all cases except
when GCR is .99. As the number of occasions increases, the
power curves improve, reaching the benchmark of .80 with
smaller effect sizes and GCRs. With 4 occasions of mea-
surement and a GCR of .91, better than .80 power is
achieved to detect a slope correlation of approximately .70.
With 5 occasions of measurement and a GCR of .91, .80
power is found for a slope correlation of .40. As the number
of occasions increases, power for lower levels of GCRs
becomes more satisfactory, and with 10 occasions of mea-
surement, the curves for the different levels of GCRs lie
relatively close to one another. Nevertheless, it is clear that
with 5 or fewer longitudinal occasions (e.g., the norm for
actual longitudinal studies in the cognitive aging literature),
power remains quite low for even high levels of GCRs until
effect size becomes very large.

Discussion

The results of this study show that the power to detect
individual differences in change as well as correlations
among changes between two variables is often disappoint-
ingly low. We had anticipated that sample size and the
number of longitudinal occasions of measurement would
affect power, as they did. What was unexpected was the
degree of influence of GCR on power in LGCMs. LR tests
of slope covariance were affected by measurement error to
a degree that we did not foresee.

It is well-known that arguing for the null hypothesis is
problematic when statistical power is low (e.g., Cohen,
1994). Our results demonstrate that failures to reject the null
hypotheses of no covariance in change often do not permit
any firm conclusions about the absence of such effects in
reality. Even with moderate or large change-related effect
sizes, LGCMs failed to detect these effects under many
combinations of sample size, number of measurement oc-
casions, and GCR. When one is evaluating theoretical prop-
ositions about the degree of commonality of change in
various attributes within and across domains of functioning,

this vexing fact of low statistical power needs to be kept in
mind.

In cognitive aging research, for instance, LGCM analyses
of longitudinal studies with relatively large sample sizes,
extended longitudinal observation periods, and high mea-
surement reliability have tended to yield significant esti-
mates of variance and covariance in change. For instance,
Wilson et al. (2002) detected significant correlations among
LGCM slopes in a sample of over 600 persons and with up
to 6 years of longitudinal data, using composite variables of
multiple psychometric tests for each construct that undoubt-
edly had high measurement reliability. Be that as it may,
studies that conclude that there is a lack of individual
differences in slopes or that there are no correlations among
slopes between variables should be treated with skepticism
unless the power of the study design to detect such effects
is evaluated.

The results indicated that statistical power to detect co-
variance in change is generally most satisfactory when GCR
is above .90. The two components of GCR are variation in
each person’s scores around his or her intraindividual re-
gression line and random measurement error. The former is
a characteristic of persons developing in contexts, whereas
the latter is a function of the scientist’s measurement
choices and hence can be manipulated to improve GCR.
One can speculate that if multiple indicators of a construct
are measured so that a multiple-indicator measurement
model can be specified at each occasion, then an LGCM on
the latent rather than manifest variables (see McArdle,
1988; Sayer & Cumsille, 2001; see also Christensen et al.,
2004) would produce improved statistical power for a given
sample size and number of occasions of measurement. In
this case, one should, in effect, have corrected for random
measurement error, leaving only latent regression residuals
to influence the power of the test for correlated slopes.

If our single-indicator results generalize to multiple-indi-
cator LGCMs, these results may explain an apparent dis-
crepancy in the literature on cognitive development in adult-
hood. In contrast to some null results with single-indicator
LGCM studies, latent difference score models (using mul-
tiple indicators to estimate differences in latent constructs;
see Hertzog & Nesselroade, 2003; McArdle & Nesselroade,
1994) have detected reliable correlations of change in cog-
nitive latent variables over relatively short time periods
(e.g., 6 years) with samples under 500 persons (Hertzog et
al., 2003; Hultsch et al., 1998; Lovdén, Ronnlund, et al.,
2004). With the same approach, Raz et al. (2005) were able
to detect reliable variance and covariance in brain volume
changes among 72 adults measured over 5 years. These
results are consistent with the hypothesis that multiple-
indicator LGCMs should make it possible to detect covari-
ance in change among constructs over shorter periods of
time and with smaller samples.

The results of this study can be helpful in making longi-
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tudinal design decisions. The problem, in part, is how to
trade off sample size for study duration. If the researcher
desires a reasonable opportunity to detect correlations of
slopes with fewer than 10 occasions of measurement (in our
arbitrary example metric, 18 years of elapsed time), then the
power curves suggest that a large sample size (N = 500 or
greater) is critical, especially if the true correlation of
change is modest (.25) rather than large (.75). Most devel-
opmental psychologists would shudder at needing this long
a temporal epoch to have the power to detect correlations
among slopes. Increasing the sample size would, in turn,
greatly reduce the number of longitudinal occasions needed
to have excellent power to detect correlations among slopes.

Of course, this conclusion is strongly moderated by the
GCR of the variables. The unexpectedly strong influence of
GCR on the power curves suggests that one must have
measures with, at a minimum, a GCR of .91 or greater to
have adequate power with even 10 occasions of measure-
ment. In fact, the effect of GCR is so potent that a longi-
tudinal researcher might even be better off investing several
potential retest cycles (e.g., 2 to 4 years) in refining mea-
surements and enhancing their reliability before the incep-
tion of a longitudinal panel study (see Nesselroade, 1988,
for further discussion of longitudinal design decisions from
a selection perspective). There are boundaries on how much
reliability can be increased for different kinds of measures,
however. Hence, increasing GCR through the use of mul-
tiple-indicator models could save many cases and several
temporal epochs of longitudinal sampling to achieve ade-
quate power to detect correlations of change. In addition,
the use of multiple indicators also enhances construct va-
lidity in the sense that it increases the likelihood of identi-
fying the center of the construct domain in question (e.g.,
Little, Lindenberger, & Nesselroade, 1999).

One problem for using the present results to inform about
power is that in actual longitudinal research, nonrandom
attrition from the sample reduces the size of the remaining
sample as a function of the number of occasions of mea-
surement (e.g., Schaie, 1977). The present results cannot
speak to effects of nonrandom attrition. However, one can
compensate for sample size reductions, assuming random
attrition, in a crude sense: One can assume a particular
attrition rate and base power estimates on the complete
sample available at the end of the study. So, for example, if
one assumes that a 50% attrition rate occurs over the desired
sampling epoch, then one needs to double the estimated
sample size at the inception of the study.

The power curves we reported here can be used to illus-
trate provisional longitudinal design decisions (but see Kim,
2005). For example, say that a researcher wishes to have .80
or better power to detect a slope correlation of .50. Figure 1
indicates that a sample of 500 persons would need to be
collected over four occasions of measurement (6 years
elapsed time) on variables generating GCR of .93 to have

.80 power to detect this correlation. With five occasions of
measurement, .80 power would be achieved with GCR of
.88. However, if GCR were .99, Figure 1 indicates that a
sample size of 200 persons could be assessed over four
occasions of measurement (6 years elapsed time) with
power of 1.0 to detect the same slope correlation.

Likewise, Figure 2 enables a more fine-grained evaluation of
statistical power for an expected effect size (slope correlation).
Say that the investigator is interested in detecting a slope
correlation of .5 with .80 power in a study with sample size of
500 but is only willing to assume a GCR of .80. The curves
indicate that the investigator will not be able to achieve this
level of power until measurements are collected on five or
more occasions. If GCR is .91, then this level of power would
be achieved with four occasions of measurement.

Researchers contemplating longitudinal designs can and
should use their own specific conjectures on parameter
values by the Satorra—Saris approximation (Kim, 2005) and
by Monte Carlo simulation (which is readily available in
Mplus; see Muthén & Muthén, 2002). This will allow them
to generate a priori power estimates to guide longitudinal
design decisions.

Given that longitudinal studies often involve small sam-
ples, limited numbers of measurement occasions, and less-
than-perfect reliability, the present results are sobering. Per-
haps even more sobering is the likelihood that the present
simulation could present a best-case scenario for power,
because it treats the basic LGCM assumptions as true (e.g.,
there is a universal linear functional form of growth; errors
are homoscedastic, statistically independent of latent
change, and uncorrelated with themselves and each other
over time). Further evaluation of the effects of assumption
violations on LGCM power is needed. The present study has
a number of limitations. We did not fully explore the
universe of possible combinations of LGCM parameter
values and change-related effect sizes. Furthermore, there
are a number of other LGCM models and applications that
we have not evaluated, such as the introduction of exoge-
nous covariates that predict variance in intercept and change
or more complicated models that build off the basic LGCM
but add dynamic regression coefficients, such as McArdle’s
bivariate dual-change score model (e.g., McArdle, Ferrer-
Caja, Hamagami, & Woodcock, 2002). Hence one should
not overgeneralize our findings to the statistical power of
other classes of developmental models for detecting rela-
tions among change processes. Such issues remain open
empirical questions that can and should be explored in
future research.
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