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Abstract. We use a statistical model that combines longitudinal and survival analyses to estimate the influence of level and change in
cognition on age at death in old and very old individuals. Data are from the Berlin Aging Study, in which an initial sample of 516 elderly
individuals with an age range of 70 to 103 years was assessed up to 11 times across a period of up to 13 years. Four cognitive ability
domains were assessed by two variables each: perceptual speed (Digit Letter and Identical Pictures), episodic memory (Paired Associates
and Memory for Text), fluency (Categories and Word Beginnings), and verbal knowledge (Vocabulary and Spot-a-Word). Longitudinal
models on cognition controlled for dementia diagnosis and retest effects, while survival models on age at death controlled for age, sex,
socioeconomic status, sensory and motor performance, and broad personality characteristics. Results indicate: (1) Individual differences
in the level of and in the linear change in performance are present for all cognitive variables; (2) when analyzed independently of cognitive
performance, all covariates, except broad personality factors, predict survival; (3) when cognitive performance is accounted for, age, sex,
and motor performance do predict survival, while socioeconomic status and broad personality factors do not, and sensory performance
does only at times; (4) when cognitive variables are analyzed independently of each other, both level and change in speed and fluency,
as well as level in memory and knowledge predict survival; (5) when all cognitive variables are analyzed simultaneously using a two-stage
procedure, none of them is significantly associated to survival. In agreement with others, our findings suggest that survival is related to
cognitive development in old and very old age in a relatively global, rather than ability-specific, manner.
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The seminal papers of Kleemeier (1962), Riegel and Riegel
(1972), and Siegler (1975) on the association between cog-
nitive performance and mortality have provided the moti-
vation for a substantial body of psychological literature on
the theme of mortality prediction. It is now relatively well
established that cognitive functioning predicts survival re-
liably in old and very old populations, even over very long
periods (e.g., Rabbitt et al., 2002; Whalley & Deary, 2001)
or when accounting for several physical and medical con-
ditions in large epidemiological studies (e.g., Fried et al.,
1998). Nonetheless, and as also pointed out by Small and
Bickman (1999), there are a number of relevant research
questions yet to be resolved to further qualify the cogni-
tion-survival association. The most important of these is
the pervasiveness versus specificity dilemma (Riegel &
Riegel, 1972; White & Cunningham, 1988). According to
some, the predictive power to foretell death is limited to
specific intellectual domains. White and Cunningham fur-
ther hypothesized that abilities typically well preserved in
old age (e.g., verbal knowledge) are more affected by im-
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pending death than those that start declining in younger
portions of the lifespan (e.g., perceptual speed). Therefore,
older individuals who experience considerable declines in
crystallized abilities are the ones with the greatest proba-
bility of imminent death.

The empirical findings, however, do not invariably con-
firm the specificity hypothesis. While some scholars ob-
tained results in line with this hypothesis (e.g., Rabbitt et
al., 2002), others found that several different cognitive abil-
ities decline with approaching death (e.g., Bickman, Jons-
son Lauka, Wahlin, Small, & Fratiglioni, 2002; Hassing,
Johansson, et al., 2002; Johansson & Berg, 1989; Johans-
son et al., 2004; Ljungquist, Berg, & Steen, 1996; Small,
Fratiglioni, von Strauss, & Bickman, 2003). Others still
found that, when controlling for various health, socioeco-
nomic, and psychological covariates, only abilities that
start declining relatively early on in life are affected (e.g.,
Maier & Smith, 1999), confirming, in a sense, the specific-
ity hypothesis, while disconfirming White and Cunning-
ham’s hypothesis (1988). Thus, at present, it remains to be
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clarified whether performance in all or only some cognitive
abilities predicts survival. However, we are, at least, able
to assert with relative confidence that cognitive perfor-
mance is related to imminent death.

The confidence of this conclusion is much greater when
the level of, rather than the change in, cognitive perfor-
mance is investigated. Indeed, and somewhat surprisingly
given the growing interest in cognition-mortality associa-
tions, longitudinal studies on terminal change continue to
be scarce. Bosworth and Siegler (2002) reviewed longitu-
dinal studies that were published in English, addressed hu-
man subjects only, were not uniquely focused on dementia,
and had sufficiently large cognitive batteries to address, at
least partially, the pervasiveness versus specificity dilem-
ma. Only nine empirical articles were retained in their re-
view. The general conclusions were that while the decrease
in crystallized measures was found to be related to mortal-
ity, the findings concerning episodic memory and fluid rea-
soning measures were mixed. The authors proposed a num-
ber of possible design features that could explain some of
the discrepancies in the results. These included the consid-
eration of the sample’s health status, the time interval be-
tween cognitive assessment and mortality as well as be-
tween repeated cognitive assessments, the role of dementia,
and, of course, the age of the sample.

Methodological Considerations

In general, two major methodological approaches have
been used to investigate the cognition-survival association
(Maier & Smith, 1999; Small & Bickman, 1999). The first
relies on a single (i.e., cross-sectional) assessment of cog-
nitive performance, often with measures of health status,
sociological profiles, or psychological functioning. In this
design, the participants’ survival status is ascertained a
number of months or years after the general assessment,
and the goal of the analyses is to test the validity of the
baseline variables in predicting age at death. The second
methodology takes advantage of a repeated-measures de-
sign, where cognitive performance has been measured at
least twice. This also enables changes in cognition to be
estimated. Hence, with longitudinal data it is possible to
contrast the predictability of level information with that of
change. It is worth noting that level information is to some
extent an index of earlier changes, especially in old age.
This approach addresses the question of whether people
who generally experience decrease in cognitive perfor-
mance are more likely to die. The terminal-decline hypoth-
esis, however, may also be interpreted as addressing a
slightly different question, namely, whether death is immi-
nent for those whose cognitive performance declines
abruptly. The first question is at the sample level and fo-
cuses on overall trajectories in cognitive performance. The
second question is more concerned with particular individ-
uals who undergo greater changes compared to the overall
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sample trend. The vast majority of literature discussing ter-
minal decline is actually concerned with the first question.

Both the cross-sectional and the longitudinal methodo-
logical approaches usually analyze participants’ cognitive
performance and their age at death with survival analyses.
In survival analyses (also-called event-history analyses),
both an event of interest and the time elapsed to the occur-
rence of the event are considered in a regression-based
framework, allowing for the inclusion of covariates (e.g.,
Singer & Willett, 2003). Basically, this model predicts the
probability of experiencing an event at a specific time
point, given that up to that time point the event has not
occurred. In this research application, the event is death and
the time elapsed to its occurrence is usually the age at
death. Hence, this type of time-based analysis aims at test-
ing the effect of the covariates on age at death. Unlike
standard regression analysis, survival analysis also in-
cludes information about cases that did not yet experience
the event. These are the participants that did not die before
survival assessment (they are termed “right-censored”).
Rather than ignoring these data (in particular, their cogni-
tive trajectories), survival analyses take into account their
information when estimating the survival parameters
(Kalbfleisch & Prentice, 1980). The survival model used
most frequently by far has been the Cox Proportional Haz-
ards model (Cox, 1972), which is nonparametric (conse-
quently, it is not recommended with small sample sizes;
Yamaguchi, 1991). Other frequently used survival models
are parametric and include the Weibull and the exponential
function (Allison, 1995).

In sum then, it seems that extant studies on the relation
between cognitive change and mortality rely on appropri-
ate analyses to estimate the survival process. However, the
change process in this literature is rarely estimated with the
most suitable analytical tools. Indeed, the studies investi-
gating the relation between cognitive change and mortality
(e.g., asreviewed in Bosworth & Siegler, 2002) either com-
pared subgroups of the original samples that differed with
respect to their survival status or timing of death, or includ-
ed estimated cognitive change by computing simple differ-
ence scores (e.g., Time-2 minus Time- 1 measures). The dif-
ference-scores estimation method, however, (1) includes
only participants that returned at Occasion 2, (2) confounds
level and change information, and (3) assumes that change
is linear and that individuals differ reliably in how they
change (i.e., that variance in change is significant).

There is a profusion of studies focusing on cognitive
change in late adulthood (e.g., Baltes & Labouvie, 1973;
Cattell, 1971; Horn, 1968; Hultsch, 2004; Schaie, 1983;
Schaie & Hofer, 2001; Singer, Verhaeghen, Ghisletta, Lin-
denberger, & Baltes, 2003). The majority of these studies
estimate change information by applying state-of-the-art
analyses based on latent growth models or, analogously,
longitudinal multilevel models (e.g., Bryk & Raudenbush,
1987; Collins & Horn, 1991; Laird & Ware, 1982; McAr-
dle, 1986; Rogosa, Brandt, & Zimowski, 1982). This ap-
proach allows (1) analyzing all data (i.e., also those of par-
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ticipants that did not return after Occasion 1), (2) formally
distinguishing level from change information, and (3) test-
ing for interindividual differences in change. Very few of
these studies, however, have made a direct link with sur-
vival information.

Henderson, Diggle, and Dobson (2000) proposed an
analysis merging a longitudinal and a survival process via
a random Gaussian process (more details follow in the
Method section). Their method allowed integrating longi-
tudinal and survival models into a unique joint (or shared)
analysis to test the validity of change information in pre-
dicting the time to the occurrence of a focal event. Guo and
Carlin (2004) showed how this method can be estimated
with standard statistical software (e.g., SAS, WinBUGS).
McArdle, Small, Bickman, and Fratiglioni (2005) recently
applied this methodology in the psychological literature to
predict early diagnosis of Alzheimer disease with individ-
ual trajectories of episodic memory performance. In this
paper we intend to apply this joint methodology to study
the effects of cognitive level and change on mortality in the
Berlin Aging Study (BASE; Baltes & Mayer, 1999; Baltes,
Mayer, Helmchen, & Steinhagen-Thiessen, 1993).

Cognition and Mortality in the BASE

The BASE is an ongoing interdisciplinary aging study in-
volving the fields of psychology, sociology and social pol-
icy, psychiatry, and internal medicine and geriatric medi-
cine, which started in 1990. The study of psychological
and, more specifically, cognitive functioning in very old
individuals has been a focal interest of BASE (cf. Lovdén,
Ghisletta, & Lindenberger, 2004; Singer et al., 2003), and
as such, the BASE includes a large assessment battery of
cognition (for details see the Method section and Linden-
berger, Mayr, & Kliegl, 1993). Three papers have previous-
ly analyzed and documented psychological predictors of
mortality in the BASE. We now consider each in turn.

Maier and Smith (1999) analyzed Time-1 measurements
(collected between 1990-1993) in relation to mortality as-
sessed in 1996. They found that cognitive functioning in
all BASE cognitive domains and low extraversion, low
openness, and high emotional loneliness were directly pre-
dictive of mortality. Further statistical control for age, sex,
socioeconomic status SES, and health (objectively assessed
by a physician) reduced the set of significant predictors to
perceptual speed and dissatisfaction with aging (although
SES played a very minor role).

Lindenberger, Singer, and Baltes (2002) assessed exper-
imental and mortality selectivity of the Time-3 participants
with respect to the Time-1 parent sample (at Time-2 a re-
duced measurement protocol was administered, cf. the
Method section). Several medical, sensorimotor, personal-
ity, and socioeconomic variables were considered, together
with overall cognitive functioning. The main conclusions
were that, across all examined variables, mortality account-
ed for two thirds of the total selectivity. In all domains con-
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sidered the selectivity effects were quite small, except for
age and intellectual functioning, which were subject to me-
dium effect sizes. Furthermore, through applications of the
Pearson-Lawley selection formulae (Lawley, 1943; Pear-
son, 1903) the authors estimated selectivity effects of
Time-3 nonparticipating survivors. They concluded that,
after statistical control for age, there was small mortality
selectivity because of dementia diagnosis and intellectual
functioning. Overall, education was not subject to mortality
selection.

Finally, Ghisletta and Lindenberger (2000) analyzed
Time-1 and Time-3 BASE cognitive data in relation to sur-
vival assessed in 1999. Longitudinal multilevel models
were used to estimate cognitive level and change as a func-
tion of age for each participant. This estimation procedure
was contrasted to the alternative difference-score method
discussed above, that is, level = Time-1 and change = Time-
3 — Time-1. For both alternative methods, estimated level
and change scores were next added to age in a Cox survival
model to predict mortality. It was found that after control-
ling for age, only level in fluency and change in perceptual
speed predicted mortality. Moreover, the multilevel strate-
gy of estimating level and change scores had more predic-
tive power than the difference-score method.

Obijectives

The purpose of this paper is to extend these previous find-
ings by (1) relying on additional longitudinal assessments
of cognitive performance in the BASE and (2) applying
new statistical methodologies that directly integrate longi-
tudinal models with survival models. Thus, the rationales
of this paper are both substantive and methodological.
More precisely, we investigate the associations between
eight cognitive variables, assessed up to 11 times over a
period of 13 years, and the probability of survival in the
BASE. We apply longitudinal models based on multilevel
models to assess participants’ level of and change in cog-
nitive performance and merge this information with surviv-
al analyses to predict the age at death. First, joint longitu-
dinal and survival analyses are computed on each cognitive
variable in turn. Then, all cognitive variables are consid-
ered together to test the unique contribution of each vari-
able to the predictability of death.

The longitudinal models statistically control for the like-
lihood of dementia diagnosis and possible retest effects.
Indeed, both these variables represent threats to the internal
validity of cognitive assessment and have been shown to
affect aging estimates (Ferrer, Salthouse, Stewart, &
Schartz, 2004; Ghisletta & de Ribaupierre, 2005; Lovdén
et al., 2004; Sliwinski, Lipton, Buschke, & Stewart, 1996).
As a number of variables are related to both survival prob-
ability and cognitive performance, we statistically disen-
tangle the effects of cognitive functioning on survival by
controlling for sex, initial age, SES, sensory and motor per-
formance (vision, hearing, balance, and gait), and global
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personality characteristics (cf. Maier & Smith, 1999 and
Lindenberger, et al., 2002) in the survival models.

Method
Participants

The initial sample of the BASE was stratified by age (rang-
ing from 70 to 103 years) and sex, and included 516 par-
ticipants. All six waves of measurement except the second
included an initial assessment (IA) followed by a broader
intensive protocol (IPr). The second wave did not include
an IPr. The top portion of Table 1 includes the longitudinal
sample size, the average sample age, and the average du-
ration in the study since inception.

The sample’s survival status was last obtained from the
German State Registry office in September 2004. At that
time, of the 516 initial participants, 404 were deceased (193
women, 211 men) and 112 were alive. The average age at
death was 92.53 years for women and 91.17 years for men
(given the large initial age range imposed by the BASE
design, the respective standard deviations were quite large
—7.47 and 6.48).

Cognitive Functioning

The longitudinal cognitive battery of the BASE was moti-
vated by two-component lifespan theories of cognitive de-
velopment, in particular, the crystallized-fluid theory of
Cattell (1971) and Horn (1968) and the pragmatic-mechan-
ic theory of Baltes (1987; cf. Lindenberger, 2001, for a re-
view). Four major cognitive domains were investigated,
each assessed by two cognitive variables. A detailed de-
scription of these variables can be found elsewhere (Lin-
denberger et al., 1993) and we will only provide a brief
description here. The bottom portion of Table 1 presents

the longitudinal design of the cognitive variables in the
BASE.

Perceptual Speed

This domain was measured by the Digit Letter and the
Identical Pictures tests. The Digit Letter (DL) task is very
similar to the Digit Symbol test of the Wechsler Adult
Intelligence Scale (WAIS; Wechsler, 1955) and asked
that participants name letters (instead of writing sym-
bols). The number of correct responses provided within
3 min was analyzed. The Identical Pictures (IP) task was
adapted from the homonymous test of the Educational
Testing Services (Ekstrom, French, Harman, & Derman,
1976). Participants were shown a target picture on a com-
puter screen and were asked to touch the picture identical
to the target among five pictures shown below the target
on the same screen. The number of correct responses pro-
vided within 80 s was analyzed.

Episodic Memory

This domain was assessed by the Memory for Text (MT)
and the Paired Associates (PA) tasks. In the MT task, par-
ticipants first listened to a short story read aloud (that was
simultaneously shown on a computer screen) and were
then asked six questions concerning various propositions
about the story. The task was adapted from Engel and
Satzger (1990) and the number of correct responses was
analyzed. In the PA task, eight pairs of concrete nouns
were presented twice for 40 s, after which only the first
word was shown, in an order different from that of en-
coding. The number of correct paired nouns was ana-
lyzed.

Table 1. Sample characteristics and longitudinal design of the BASE for cognitive variables

Measurement occasion

1 2 3 4 5 6

1A IPr 1A 1A IPr 1A IPr 1A IPr 1A IPr
N 516 516 361 244 208" 164 132 88 82 48 47°
Mean age (SD) 84.92 85.04 85.26 84.34 83.87 84.07 8430  85.87 85.86 89.36 89.47

(8.66) (8.68) (8.41) (7.30) (6.91) (6.33) (5.90) (4.36) (4.48) (4.58) (4.60)
Mean time (SD) 0.00 0.13 1.95 3.76 3.99 5.53 6.03 8.94 9.00 13.00 13.04

(0.00) (0.09) (0.71) (0.66) (0.69) (0.79) (0.80) (0.84) (0.86) (0.87) (0.88)
Cognitive domain
Perceptual speed DL DL,IP DL DL DL,IP DL DL,IP DL DL,IP DL DL, IP
Episodic memory PA, MT PA, MT PA, MT PA, MT PA, MT
Fluency CA,WB CA CA CA, WB CA CA, WB CA CA, WB CA CA, WB
Verbal knowledge VO, SW VO, SW VO, SW VO, SW VO, SW

Note. 1A = Initial assessment. IPr = Intensive protocol. DL = Digit Letter. IP = Identical Pictures. PA = Paired Associates. MT = Memory for
Text. CA = Categories. WB = Word Beginnings. VO = Vocabulary. SW = Spot-a-Word. * = for entire IPs, n; = 206. ® = for entire IPg, ns = 46.

© 2006 Hogrefe & Huber Publishers

European Psychologist 2006; Vol. 11(3):204-223



208 P. Ghisletta et al.: Longitudinal Cognitive Performance and Survival in BASE

Fluency

The Categories (CA) and the Word Beginnings (WB) tasks
were used to measure fluency. In the CA task, participants
had 90 s to name as many animals as possible, and the total
number of different animals was analyzed. In the WB task
participants were again allowed 90 s to name as many
words starting with the letter S as possible. The total num-
ber of different words was analyzed.

Verbal Knowledge

This domain was assessed with the Vocabulary (VO) and
the Spot-a-Word (SW) tasks. In the VO task participants
were asked to define 20 words, presented sequentially on
the screen, from the German version of the WAIS (Wechs-
ler, 1982). In the SW task participants were asked to find
the existing word from a list also containing four distracting
but pronounceable nonwords. Twenty lists were presented
on a computer screen and the total number of correct re-
sponses was analyzed.

The DL, IP, and SW tasks required that participants see
the computer screens, because information could not be
provided auditorily. Hence, the available data for these
three tasks are fewer. More generally, in large studies it is
rarely the case that participants provide valid answers to all
questions (especially in very young or very old samples).
The analytical models used adjusted for this unbalanced
data situation. We transformed all cognitive performance
scores to t-scores (M = 50, SD = 10), anchored at the first
IPr.

Covariates in Longitudinal Models

To estimate aging effects in cognition with the smallest
possible bias, we accounted statistically for possible de-
mentia diagnosis and retest effects.

Dementia Diagnosis

Given that dementia, even at its preclinical stages, biases
estimates of aging effects in nondemented populations (Sli-
winski et al., 1996), we included markers of dementia di-
agnosis. Based on age cohort-specific cutoffs of the Short
Mini Mental State Examination, Gerstorf, Herlitz, and
Smith (in press) defined a dichotomous indicator of demen-
tia diagnosis at each wave of the BASE. These cutoffs were
shown to ensure high specificity (ranging from 72% to
98%) and sensitivity (ranging from 62% to 88%) of demen-
tia classification when compared to independent clinical
diagnoses of dementia based on standard clinical inter-
views and assessment procedures (Helmchen et al., 1999).
This appraisal was performed at the initial assessment of
each wave and was not recomputed at the respective IPr
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(given that the intrawave measurements were only a few
months apart from each other). From Wave 1 to 6, there
were 148, 117, 55, 32, 16, and 6 individuals considered
demented by these standards.

It is worth noting that this diagnostic measure, though
quite specific and sensitive, is used here (as well as in Gers-
torf et al., in press) merely as a statistical control, and does
not represent the variable of focal interest. We created a
wave-specific (i.e., time-varying) dummy code that as-
signed a 1 to those who were considered diagnosed at a
given wave of assessment and a O to the others. This al-
lowed us to estimate the effects of dementia diagnoses on
the parameter estimates of the longitudinal models. We pre-
ferred this to the more common strategy of simply exclud-
ing demented individuals (which drastically reduces statis-
tical power and increases sample selectivity).

Retest Effects

A long-recognized threat to internal validity in longitudinal
studies is represented by retest effects (e.g., Salthouse,
2000; Schaie, 1988). These may occur because prior expo-
sure to testing material may influence participants’ behav-
ioral outcomes. In particular, participants may learn fea-
tures about the tasks that facilitate the endorsement of cor-
rect answers, thereby underestimating the -effects
attributable to the chief variable of interest (e.g., chrono-
logical age). Several studies on cognitive change have
shown evidence of retest effects (Ferrer, Salthouse, McAr-
dle, Stewart, & Schwartz, 2005; Ferrer et al., 2004; Ghis-
letta & de Ribaupierre, 2005; Ghisletta, Schaie, & Willis,
2003; Lovdén et al., 2004; Rabbitt, Diggle, Holland, & Mc-
Innes, 2004), and often these effects bias aging estimates
to the point of interacting with age (such that the benefits
from repeated exposure on testing performance correlate
with participants’ age).

Retest effects may be estimated within adequate de-
signs. For instance, the Seattle Longitudinal Study
(Schaie, 1983, 2005) makes use of refreshment samples,
whereby at each occasion of measurement new partici-
pants of the same age as ongoing participants are intro-
duced to the study. Retest effects can then be estimated by
comparing the performance of the new participants to that
of the existing participants assessed at the same time. The
only assumption is that the two groups of participants dif-
fer only with respect to experience with the testing mate-
rial. McArdle, Prescott, Hamagami, and Horn (1998) have
shown how retest effects may be statistically estimated in
longitudinal analyses based on latent growth models, and
Rabbitt, Diggle, Smith, Holland, and McInnes (2001)
have shown how they may be statistically estimated in
analogous longitudinal analyses within the multilevel
modeling framework. Statistical estimations of retest ef-
fects are possible when the time basis of interest (e.g., age)
is not collinear with the number of repeated exposures. In
a truly longitudinal study, where one birth cohort is as-
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sessed repeatedly in time, age and time of testing are to-
tally confounded. However, a cross-sequential design
(Schaie, 1965) like that of the BASE, where multiple birth
cohorts are sampled and measured longitudinally at the
same time points, typically avoids multicolinearity be-
tween age and times of testing, thereby allowing the esti-
mation of retest effects. At the same time, in this type of
design it is impossible to disentangle cohort and retest ef-
fects, and assumptions about the lack of cohort effects
must be made to statistically estimate retest effects. Gen-
erally, the more heterogeneous in age the sample, the low-
er the correlation between age and the number of previous
testings. McArdle and Woodcock (1997) showed that this
correlation is zero when the time interval between repeat-
ed testings is randomly assigned to participants.

Following earlier work, we created for each cognitive
variable a specific set of dummy codes that marked, start-
ing at the second testing, the number of previous testings.
For instance, the DL variable was assessed at most 11 times
(at each initial assessment and IPr). The participants who
were administered the DL at each occasion are assigned 10
dummy codes, one for each repeated exposure (from the
second to the eleventh measurement). This strategy allows
estimating occasion-specific and variable-specific retest ef-
fects. We have shown in previous work that BASE partic-
ipants exhibit retest effects of different magnitude on sev-
eral cognitive variables (Lovdén et al., 2004).

Covariates in Survival Models

Before assessing the power of cognitive variables in pre-
dicting mortality, we tested several individual-specific co-
variates. In choosing them, we were guided by (1) general
findings from previous research on mortality predictors, (2)
specific BASE findings from previous work on mortality
predictors (Lindenberger et al., 2002; Maier & Smith,
1999), and (3) practical limitations dictated by empirical
computational issues encountered during the most complex
analyses. Indeed, the use of several single predictors
proved problematic in the joint longitudinal and survival
analyses. We, hence, created aggregate scores when theo-
retically justified. Although all covariates were assessed
longitudinally in the BASE, we considered their initial
measurement only, because this greatly facilitated inter-
preting their influence (Singer & Willett, 2003).

Sex

In most Western countries women have longer life expec-
tancies than men (although this gap is slowly narrowing)
and consequently sex has proven to affect survival (Bos-
worth & Siegler, 2002; Rabbitt et al., 2004). We estimated
this effect by contrast-coding sex (-1 for women, 1 for
men).
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Initial Age

We also tested the effects of age at study inception on mor-
tality. This is especially important for samples with wide
age ranges. Age is entered as a continuous variable.

Socioeconomic Status

This composite variable was constructed by merging infor-
mation on the participants’ (1) income, (2) occupational
prestige, (3) social class, and (4) number of years of edu-
cation. The final composite is considered continuous (for
more detail, see Lindenberger & Baltes, 1997).

Sensory and Motor Performance Composites

Previous work on the BASE data has shown strong associ-
ations between sensorimotor variables and cognitive per-
formance, both in cross-sectional (Baltes & Lindenberger,
1997; Lindenberger & Baltes, 1994; Lindenberger, Sche-
rer, & Baltes, 2001) and longitudinal (Ghisletta & Linden-
berger, 2005; Lindenberger & Ghisletta, 2006) analyses.
Moreover, sensory and motor variables are subject to both
mortality and experimental selection (Lindenberger et al.,
2002). To understand the unique contributions of cognitive
factors to mortality prediction better, we created two com-
posite scores by averaging close visual acuity, distance vis-
ual acuity, and hearing to represent sensory performance,
and an assessment of balance and of postural sway to rep-
resent motor performance. All measures were assessed by
trained professionals with standard equipment (for more
detail, see Baltes & Mayer, 1999). This bidimensional or-
ganization, although somewhat simplistic, described the
five variables in a two-factor model very well, X% =16, a/=
5y = 7.24, RMSEA = 0.031 (90% confidence interval =
[0.000-0.0741), p-value of close fit =0.72, SRMR = 0.022,
GFI = 0.99.

Positive and Negative Personality

The BASE assessed an extensive battery of personality and
self variables (cf. Baltes & Mayer, 1999). Nine personality
and self dimensions, each measured by several indicators,
were analyzed. The personality/self domains were neurot-
icism, extraversion, openness, positive affect, negative af-
fect, internal positive control, powerful others, future opti-
mism/orientation, and loneliness. Details about these vari-
ables can be found in Smith and Baltes (1997, 1999) and
Staudinger, Freund, Linden, and Maas (1999). Initial anal-
yses were considered separately for each domain, but led
to computational problems. We, therefore, reduced the per-
sonality/self space by aggregating variables in two factors.
It is worth noting that our intention at this point was not to
obtain a factor model that described with the interrelations
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of the nine personality/self scores with great precision, but
rather to collapse the latent space representing personality
and self variables to simplify the overall interpretations of
their effects on mortality. After extensive exploratory and
confirmatory factor analyses, we settled on a solution in
which extraversion, openness, positive affect, internal con-
trol positive, and future optimism/orientation loaded on a
factor we called Positive personality. On the other hand,
neuroticism, negative effect, powerful others, and loneli-
ness loaded on a second factor we labeled Negative per-
sonality. Although the overall model fit was not good, ¥
=516, ar = 26 = 209.416, RMSEA = 0.112 (95% confidence
interval = [0.098-0.127], p-value of close fit = 0.000,
SRMR = 0.099, GFI = 0.922), this model allows for a sim-
ple, albeit not precise, representation of the personality/self
domains.

Longitudinal Models

Multilevel models were calculated for each cognitive vari-
able separately. Change was defined over chronological
age and the intercept was defined at age 70 years (by sub-
tracting 70 from all ages) for nondemented individuals, pri-
or to any retest effect. Equation (1) depicts the specification
of a multilevel model applied to the cognitive variable Y of
individual j assessed at age i.

Y, =Bo+ By Ay + By - (A7 1A;) +

[33 -DD;; + |3Ryk cRi+ 1 (1)
Boj = Yoo + Uy
Blj =Yi0 + Uy 2)
Boj = Y20 +

By represents the intercept that is the predicted cognitive
performance when all other covariates have the value 0. 3,
captures the linear effect of age centered around 70 years
(A;)). B> estimates the effect of the quadratic component of
age, controlling for its dependence on the linear component
of age (A;/1A;;). The effect of participants’ dementia diag-
nosis at time i (DD;;) on the intercept is estimated by [3;.
The retest effect at time k, where k represents an occasion
of measurement after the first (i.e., number of occasion —
1, hence, not defined at Occasion 1), is captured by the Bry
parameters. These are the regression weights of the vari-
able-specific dummy codes defined at each occasion after
the first (i.e., for DL k=1, ...,10,for CAk=1,...,9, and
for the other variables k = 1, ... 4, that is, the maximum
number of repeated exposures to testing material). Finally,
the residual component r;; defines the error of prediction.
Equation (1) includes participants’ subscript j for the pa-
rameters estimating age effects (By;, B, B2)- Each of these
parameters is defined in Equation (2) as the sum of a sample
averaged value (also-called fixed effects; Yoo, Y10, Y20) and
individual-specific variations (also-called random effects;
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Ugj, Urj, Uz;), which are assumed to be Gaussian-distributed
around 0. In practice, only the variances of the Gaussian-
distributed random effects are estimated. With this kind of
data, the random effects of the intercept are typically very
high and significantly different from zero. However, the
power to detect random effects of linear and quadratic age
effects is typically low (Hertzog, Lindenberger, Ghisletta,
& von Oertzen, 2006). We systematically tested these
sources of individual-specific variance, and when signifi-
cant, we added dementia diagnosis (individual-specific in-
formation) as a predictor (by adding the interactions be-
tween, on the one hand, DD;; and on the other hand A;; and
[A; jzlA,-, ;1. The individual-specific random effects represent
the contribution of the longitudinal model to the joint mod-
eling of longitudinal and survival data.

Survival Models

As the joint longitudinal and survival models rely on a gen-
eral maximum likelihood estimator, they require a formal
specification of both processes. Therefore, we could not
integrate nonparametric models. More specifically, the Cox
model could not be used because it does not formally spec-
ify the survival function (a partial, rather than a full, like-
lihood algorithm is used as estimator; see Kalbfleisch &
Prentice, 1980; Kleinbaum, 1996). We considered two
parametric survival models, the Weibull and the exponen-
tial. The event of interest is death, and time () is the number
of years at which the event (death) occurs after age 70
years. That is, we again centered age at 70 years and de-
fined the risk of death for those having survived up to age
70 years (age of the youngest BASE participant at study
inception).

The formula of the Weibull survival model is presented in
Equation (3).

M) = (r-t)-exp(o + o1-sex; +
0 -IA; + 05-SES)) + Wi(t) 3)

.t~ is the Weibull hazard function, and r > 0. The predic-
tors of the survival model may or may not be those of Equa-
tion (1). In our case, for substantive reasons, we did not
include the same predictors. The effects of sex (sex;), initial
age (IA)), and socioeconomic status (SES;) of individual j
on his/her hazard rate at time ¢ (A;(1)) are captured by the
parameters o.;, O, O3, respectively.

In the exponential model Aj(z) = 1, for all #’s. Hence,
when r = 1, the Weibull model reduces to the exponential
model. The exponential is, thus, statistically nested within
the Weibull model, and a likelihood ratio test based on 1
degree of freedom (i.e., r) can be applied to compare their
fits when a general maximum likelihood algorithm is the
estimator. The interpretation of the scale parameter r is
straightforward. When r equals 1 (i.e., in the exponential
model), the risk that the event occurs stays constant across
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time. When r > 1, the risk of failure increases as time goes
by, and when 0 < r < 1, the risk decreases. In our applica-
tion, it would seem more sensible that the risk of death
does not stay constant in time, but that it actually dimin-
ishes as time increases, as a result of increasing sample
selectivity. That is, those that survived to age 70 represent
an already selected sample (Lindenberger et al., 2002),
and, as time increases, the risk of dying at the sample level
diminishes.

Finally, Wj(?) includes individual-specific covariate ef-
fects and an intercept, usually called frailty. Again, these
effects are assumed to be Gaussian-distributed and cen-
tered at 0. The Wj(t) term represents the crucial link be-
tween the longitudinal and the survival model in the joint
modeling.

Two-Stage Longitudinal and Survival Models

The simplest integration of the longitudinal information in
a survival model consists of applying a two-stage proce-
dure, similar to the classical analyses of hierarchically or-
ganized data prior to multilevel models (cf. Chou, Bentler,
& Pentz, 1998; de Leeuw & Kreft, 1986). This approach
consists of a first stage, during which random effects of the
longitudinal model (equations (1) and (2)) are estimated. In
the second stage, the estimated random effects are added
as usual covariates in the survival model (equation (3)).
This was the method used by Ghisletta and Lindenberger
(2000), discussed above.

Joint Longitudinal and Survival Models

Recent statistical advances allow the simultaneous estima-
tion of longitudinal and survival information in a single
joint model. Both the longitudinal model in Equation (1)
and the survival model in Equation (3) contain individual-
specific predictors and allow the estimation of individual-
specific random effects around sample-averaged fixed ef-
fects. The joint modeling occurs by specifying the longitu-
dinal and the survival models as two submodels where the
random effects of the former are included in the term Wj(z)
of the latter, as shown in Equation (4).

W/j(l)_: 'E'Moj + 'Y]'M]j + 'Yz'uzj + 'Y3'{M0j + Uy Xij +
o (AiflAL) Y + uy 4)

The parameters 7, Vi, Y. define the effects of the individual

O O R S

variations in intercept, linear age, and (residualized) qua-
dratic age of cognitive performance, while v; defines that
of the fitted longitudinal value. Finally, u; represent indi-
vidual independent frailty terms (cf. Guo & Carlin, 2004).
It is important to note that the joint modeling occurs by
solving for equations (1) through (4) simultaneously and
not incrementally.

Analytical Plan

For all analyses we used the SAS software, version 8 (SAS-
Institute, 1999). We first analyzed the individual trajecto-
ries in cognitive performance by applying the longitudinal
model to each cognitive variable separately'. Then we ob-
tained the Bayesian estimates of random effects?. Survival
models were first computed nonparametrically to enable us
to make an educated choice of parametric survival specifi-
cations. Initially, only sex was tested in nonparametric sur-
vival models®. The Weibull and exponential parametric sur-
vival models were then computed, estimating the effects of
all covariates®.

Joint analyses require that both longitudinal and survival
models be specified and solved with a general likelihood
function. Before computing the joint analyses, both longi-
tudinal and survival submodels were estimated with a gen-
eral likelihood function and these results were compared to
those of the previous analyses®. We consistently obtained
full agreement, justifying the application of the joint anal-
ysis. However, we had to check the robustness of results
carefully when inserting additional covariates in the sur-
vival submodel of the joint analysis. This motivated col-
lapsing the sensory, motor, and self/personality dimensions
into aggregate scores.

Finally, we considered all cognitive information togeth-
er in the same survival model. Indeed, the level and (linear
plus quadratic) change components of the cognitive trajec-
tories in BASE share considerable amounts of variance
(Lindenberger & Ghisletta, 2006). It is, therefore, of inter-
est to test the cognitive variables’ predictability of mortal-
ity against each other. As the estimation of multivariate
multilevel models is not straightforward in SAS, we ran a
two-stage analysis with all cognitive variables simulta-
neously. We, hence, added the Bayesian estimates of the
random effects of all cognitive variables in a unique sur-
vival model*. Throughout all survival and joint analyses,
the Weibull and the exponential distributions were contin-
uously compared, and the Weibull consistently provided a
better fit to the data.

The longitudinal analyses were computed with the MIXED procedure in SAS.

The Bayesian estimates were computed with the NLMIXED procedure in SAS.

The nonparametric survival analyses were computed with the LIFETEST procedure in SAS.

The Weibull and exponential survival analyses were computed with the LIFEREG procedure in SAS.

The NLMIXED procedure in SAS is very flexible and allows the estimation of both longitudinal and parametric survival model with a

general likelihood function. These results were then compared to those of the MIXED and LIFEREG procedures, respectively. Consistently,

the same outcome was obtained
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Results

The results are laid out in four sections. First, we present
survival analyses with noncognitive covariates. These anal-
yses test (1) demographic information, (2) indicators of
sensory-motor functioning, and (3) global personality fac-
ets. Second, we show the main results of the longitudinal
models applied to each cognitive variable separately. Here
we focus on the random effects parameters that are subse-
quently introduced in the survival models. Third, we pre-
sent joint longitudinal and survival models, where again
each cognitive variable was analyzed separately in relation
to mortality. Finally, the fourth section presents the results
of two-stage analyses, in which longitudinal information
from all cognitive indicators was simultaneously tested in
survival analyses. Throughout, the Weibull survival model
has proven to be highly superior to the exponential, so only
Weibull analyses are presented. We adopt a general 0.01
significance criterion for interpreting results.

P. Ghisletta et al.: Longitudinal Cognitive Performance and Survival in BASE

Baseline Survival Analyses

The first set of analyses served as a baseline comparison
for later survival models that included cognitive predictors.
The survival models were first computed nonparametrical-
ly to obtain the estimated survivor functions for females
and males. These curves are displayed in Figure 1 and plot
the probability of death as a function of time (i.e., years
since age 70). Two conclusions can be drawn from Figure
1. First, as expected, most censored individuals are dis-
played in the left half. This means that younger individuals
(those closer to age 70) are less likely to have experienced
the event during the study. In other words, fewer younger
than older participants died during the observation period.
Second, sex differences are not evident prior to about age
87. Thereafter, however, women are likely to live about two
more years than men. The average sex difference in life
expectancy in Germany is higher, and this reduced gender
gap is probably a result of the selective nature of the BASE
sample, which overrepresents older men. The plot of the
log of the negative log of the estimated survivor function
is shown in Figure 2. This plot can be used to diagnose the
appropriateness of an exponential or Weibull survival mod-
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Figure 1. Estimated survival curves starting at age 70 years for men (on the left) and women (on the right). Circles represent

right-censored observations.
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Table 2. Effects of age, sex, SES, sensory-motor functioning, and global personality characteristics on age of death in

Weibull survival analyses

Age, sex, SES

Age, sex, SES
sensory, motor

Age, sex, SES
sensory, motor
pos. + neg. pers.

Parm. Est. (SE) p>t Parm. Est. (SE) p>t Parm. Est. (SE) p>t
Intercept 0.821 <.001 0.286 .021 0.27 .03
(0.093) (0.124) (0.13)
Age 0.027 <.001 0.033 <.001 0.03 <.01
(0.001) (0.001) (0.00)
Sex -0.028 <.001 -0.034 <.001 —-0.035 <.001
(0.008) (0.001) (0.008)
SES 0.013 156 0.001 930 -0.001 931
(0.009) (0.010) (0.009)
Sensory - - 0.037 .002 0.035 <.001
(0.012) (0.012)
Motor - - 0.045 <.001 0.043 <.001
(0.010) (0.010)
Pos. pers. - - - - 0.008 364
(0.009)
Neg. pers. - - - - -0.05 .540
(0.009)
r 0.166 <.001 0.159 <.001 0.159 <.001
(0.007) (0.006) (0.006)
-2LL 2,462 2,418 2,402
# parms 5 7 9

Note. SES = socioeconomic status. r = Weibull parameter (cf. equation 3). Pos. Pers. = positive personality factor. Neg. Pers. = negative
personality factor. -2LL = deviance. # parms. = number of parameters estimated. Parm. Est = parameter estimate. SE = standard error. p > t =

probability of parameter estimate.

el (Allison, 1995). The lines for men and women are ap-
proximately linear and for the most part parallel, which
indicates that a Weibull should describe the survival pro-
cess well. This is confirmed by formal model comparisons
for all survival models tested, where the Weibull result was
consistently superior to the exponential function (all p’s <
.001).

Table 2 shows the parameter estimates, standard errors,
and p-values of three Weibull survival analyses. Each model
estimated the intercept and the r scaling parameter and incre-
mentally tested the covariates. The general conclusions of
this table are straightforward. Age and sex are significant,
even when tested vis-a-vis sensory and motor performance,
and global personality characteristics. SES status is consis-
tently not related to mortality. Sensory and motor perfor-
mance is predictive of survival, and, finally, the global per-
sonality characteristics are not related to mortality, although
the sign of their effects are in the expected direction.

Longitudinal Models on Cognitive Data

Table 3 shows all the parameters of eight longitudinal mod-
els, one for each cognitive variable. The three major com-
ponents of the longitudinal model were the level, that is,
the predicted performance at age 70, the linear change,
equivalent to the yearly linear decline in performance, and
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the quadratic change, which quantifies the amount of qua-
dratic (curvilinear) decrease in cognitive performance that
is independent of the linear change. For each component,
the longitudinal models estimated sample averages (fixed
effects) and individual variations (random effects). At first,
we tested the full longitudinal model of equation (1). How-
ever, estimating the variance in the quadratic change com-
ponent often caused computational problems. We hence
tested a reduced form of the model in equation (1) where
quadratic change was associated to a fixed effect only. This
specification converged to an admissible solution for all
cognitive variables.

As expected, all variables displayed variance in level
scores. Furthermore, all variables had significant fixed
(ranging from —0.801 for DL to —0.219 for SW) and ran-
dom (ranging from 0.171 for CA to 0.325 for DL) effects
for linear change. For all variables, quadratic change was
not significant for either fixed or random components, ex-
cept for DL where the fixed effect resulted significant
(-0.029, indicating a negative curvature). In sum, cognitive
performance decreased at the sample level across all indi-
cators, but differential linear change appeared on all indi-
cators. Digit Letter was the only indicator whose sample
trajectory deviated from linearity.

All individual-specific random effects were statistical-
ly controlled for the effects of dementia diagnosis and re-
test effects. Dementia diagnosis had strong effects on all
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Table 3. Parameters of univariate multilevel models with control for dementia diagnosis and retest effects

Cognitive variable

DL 1P PA MT CA WB VO SW
Fixed effects
Lev. 61.226 60.793 57.851 57.160 59.155 56.826 56.183 54.780
(0.757) (0.854) (0.954) (0.911) (0.800) (0.946) (0.860) (0.902)
L.C. -0.801 -0.652 -0.385 -0.378 -0.505 -0.340 -0.289 -0.219
(0.047) (0.061) (0.060) (0.058) (0.047) (0.059) (0.055) (0.062)
Q.C. -0.029 -0.003* 0.001* -0.003* —0.003* -0.001* 0.003* —0.002%*
(0.004) (0.005) (0.005) (0.004) (0.004) (0.005) (0.004) (0.005)
DD -2.555 -4.537 -8.817 -8.150 -3.474 -6.778 -5.752 -6.333
(0.976) (1.501) (1.651) (1.662) (1.311) (1.651) (1.376) (1.576)
DD*t -0.028* —0.043* 0.088* 0.140%* -0.131%* 0.046%* -0.036* 0.005%*
(0.053) (0.087) (0.089) (0.090) (0.068) (0.088) (0.074) (0.088)
R.-IPr, 0.632 n.d. n.d. n.d. n.d. n.d. n.d. n.d.
(0.201)
R.-TIA, 0.341%* n.d. n.d. n.d. 2.375 n.d. n.d. n.d.
(0.239) (0.347)
R.-IA; 0.533* n.d. n.d. n.d. 2.853 n.d. n.d. n.d.
(0.305) (0.432)
R.-IPr; 0.872 2.395 0.422%* 0.263* 0.903* 1.156* 0.348%* 1.300
(0.315) (0.445) (0.466) (0.501) (0.439) (0.467) (0.384) (0.464)
R.-TA, 0.713* n.d. n.d. n.d. 3.923 n.d. n.d. n.d.
(0.370) (0.524)
R.-IPr, 1.412 2.709 1.815 1.586 2.000 2.227 3.349 1.379*
(0.382) (0.554) (0.573) 0.612) (0.529) (0.589) (0.475) (0.577)
R.-IAs 0.853%* n.d. n.d. n.d. 2.107 n.d. n.d. n.d.
(0.470) (0.645)
R.-IPr;s 1.526 5.806 3.848 4.406 1.360* 1.693* 5.021 0.261*
(0.481) (0.759) (0.769) (0.790) (0.656) (0.775) (0.654) (0.770)
R.-1A¢ =0 n.d. n.d. n.d. 3.124 n.d. n.d. n.d.
(0.831)
R.-IPrg =0 1.450%* 1.099* 2.484 =0 0.642%* 3.437 2.424
(0.947) (0.902) (0.870) (0.904) (0.820) (0.939)
Random effects
Lev. 99.701 65.434 120.390 104.240 78.774 108.530 91.077 79.423
(14.277) (13.179) (16.595) (16.985) (11.725) (19.661) (13.130) (15.176)
L.C. 0.325 0.249 0.310 0.307 0.171 0.255 0.190 0.252
(0.047) (0.050) (0.048) (0.052) (0.035) (0.050) (0.036) (0.055)
Lev-LC -3.811 -2.578 -4.750 —4.659 -2.282 -3.816 -2.615 -2.878
(0.734) (0.739) (0.841) (0.894) (0.583) (0.862) (0.638) (0.859)
Resid. 9.547 16.129 20.376 25.513 23.275 21.223 11.463 18.454
(0.386) (1.119) (1.181) (1.520) (0.972) (1.265) (0.699) (1.136)
-2LL 12,592 7,228 8,342 8,376 12,196 8,419 7,867 7,758
#parms. 17 13 13 13 17 13 13 13

Note. Nonsignificant parameters at p = .01 are marked with an asterisk (*). n.d. = not defined. = 0 means parameter fixed at zero (i.e., not
estimated). Lev = level. L.C. = linear change. Q.C. = quadratic change (residualized for linear change). DD = prediction of dementia diagnosis
on level variance. DD*t = prediction of dementia diagnosis on linear change variance. R. = occasion specific retest effect. IA = Initial
assessment. IPr = Intensive protocol. Resid. = residual variance. —2LL = deviance. # parms. = number of parameters.
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Figure 2. Log of the negative log of the estimated survival curves for men (above) and women (below).

variables’ level component, varying in size from —2.555
in DL to —8.817 in PA. This means that when participants
were diagnosed with dementia, their performance de-
creased substantially. Retest effects were found across all
variables, but not on all occasions. Generally, the sign of
the estimated retest effects were positive as expected (in
40 out of 43 cases), meaning the repeated exposure to the
testing material increased one’s score. Only in 3 cases
were retest effects estimated to be negative. This occurred
on the last two testing occasions for DL and on the last
for CA. These two variables were measured most inten-
sively (11 and 10 times, respectively, versus 6 repeated
measures of the other cognitive variables; cf. Table 1). As
a consequence, the age and the retest information end up
overlapping to a greater extent for DL and CA. In this
situation, it is best not to estimate the retest effect, because
of its colinearity with age. We therefore fixed 3 parame-
ters (of a total of 43), estimating retest effects to zero (for
DL at the sixth initial assessment and for DL and CA at
the sixth IPr). In sum, from these models we can conclude
that each cognitive variable contributes level and linear
change information to mortality prediction (up; and u;; in
equation (4)). None of the variables adds information in
quadratic change (u2)).

© 2006 Hogrefe & Huber Publishers

Joint Longitudinal and Survival Models

The joint analyses estimated the individual-specific ran-
dom effects of the longitudinal process simultaneously and
specified them as covariates of mortality in the survival
process. This was done independently for each cognitive
variable, and results are shown in Table 4. Similarly to the
analyses displayed in Table 2, three types of survival mod-
els were specified. In the first model we controlled for de-
mographic predictors (cf. second column), in the second
model we further accounted for sensory and motor perfor-
mance (cf. third column), and in the third model we also
considered broad personality characteristics (cf. fourth col-
umn). The three survival models were merged with eight
longitudinal models as specified above (one for each cog-
nitive variable), so that in the end we tested 24 joint longi-
tudinal and survival models. Table 4 contains only the pre-
dictability of the cognitive variables (for simplicity).
Throughout all models, age, sex, and motor performance
(balance and gait) were consistently significant predictors
of mortality. Participants who were older, male, and with
lower motor functioning, showed an increased risk of
death. Males had a risk of death 1.5% to 4.9% greater to
that of females. The effect sizes of age and motor perfor-
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Table 4. Effects of cognitive performance on age of death in joint longitudinal and Weibull survival analyses (each

cognitive indicator analyzed independently)

age, sex, SES

Parm. est. (SE) p>t

age, sex, SES
sensory, motor

Parm. est. (SE) p>t

age, sex, SES
sensory, motor
pos. + neg. pers.

Parm. est. (SE) p>t

DL, 0.008 * <.001 0.006 * <.001 0.006 * <001
(0.002) (0.002) (0.002)

DL.c 0.144 * <.001 0.122 * <.001 0.121 * <.001
(0.028) (0.030) (0.032)

1P, 0.011 * <.001 0.008 * <.001 0.007 * <001
(0.002) (0.002) (0.002)

IPic 0.114 * <.001 0.087 101 0.082 020
(0.033) (0.034) (0.035)

PA, 0.005 * .001 0.004* .009 0.004* .009
(0.002) (0.001) (0.001)

PAc 0.074 032 0.061 068 0.059 083
(0.035) (0.033) (0.034)

MT, 0.006* .003 0.005 011 0.005 015
(0.002) (0.002) (0.002)

MTyc 0.075 064 0.068 076 0.065 094
(0.041) (0.038) (0.039)

CA, 0.009% <.001 0.007* <.001 0.007* <001
(0.002) (0.001) (0.002)

CArc 0.126% .003 0.104 011 0.098 023
(0.042) (0.041) (0.043)

WB, 0.007* <.001 0.006* <.001 0.006* <001
(0.002) (0.001) (0.002)

WBic 0.110% <.001 0.092 016 0.091 017
(0.039) (0.038) (0.038)

VO, 0.004* .003 0.003 034 0.003 034
(0.001) (0.001) (0.001)

VO.c 0.076 058 0.054 155 0.049 215
(0.040) (0.038) (0.039)

SW, 0.004 .009 0.002 167 0.002 158
(0.002) (0.002) (0.002)

SWic 0.065 056 0.041 238 0.036 308
(0.034) (0.034) (0.036)

Note. DL = Digit Letter. IP = Identical Pictures. PA = Paired Associates. MT = Memory for Text. CA = Categories. WB = Word Beginnings.
VO = Vocabulary. SW = Spot-a-Word. The subscripts L, LC, and QC denote the level, linear change, and quadratic change longitudinal
components, respectively. SES = socioeconomic status. Pos. + neg. pers. = positive and negative personality factors. Parm. est. = parameter
estimate. SE = standard error. p > t = probability of parameter estimate.* denotes parameters significant at the .01 level.

mance were very similar across all models. Each additional
1-unit change was associated with an increased risk of
2.5% to 3.6%. SES and the two broad personality factors
were consistently not related to mortality. Sensory perfor-
mance (vision and hearing) was predictive of mortality
when analyzed with PA and MT (both with and without
statistical control for personality factors) and with VO (on-
ly prior to adding the personality factors).

When we controlled only for age, sex, and SES, all cog-
nitive variables predicted mortality in their level compo-
nent. Furthermore, four variables, DL, IP, CA, and WB,
predicted mortality in their linear change component.
When we further added statistical control for sensory and
motor performance, MT, VO, and SW were no longer pre-
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dictive in the level component, and only DL was predic-
tive in its change component. Adding the personality fac-
tors did not alter this picture. All significant parameter
estimates were positive, meaning that higher cognitive
scores delayed the age of death. However, the effects of
level of performance in cognition on survival were mea-
ger. The weakest significant effect was for level in VO
and SW, where each additional unit of performance was
associated with a 0.1% to 0.9% increased risk of death.
Effects were much stronger for linear change in cognitive
performance. The strongest significant effect was for lin-
ear change in DL when only demographic variables were
controlled for. The associated risk ranged from 9.3% to
22.1% for each additional unit of change. It is worth not-
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Table 5. Effects of cognitive performance on age of death in two-stage longitudinal and Weibull survival analyses (all

cognitive indicators analyzed simultaneously)

age, sex, SES age, sex, SES age, sex, SES
sensory, motor sensory, motor
pos. + neg. pers.
P.Est. (SE) p>t P.Est. (SE) p>t P.Est. (SE) p>t

DL, 0.068 .305 0.001 .503 0.002 484
(0.002) (0.002) (0.002)

DL 0.007 .086 0.068 .082 0.070 .080
(0.039) (0.039) (0.040)

1P, -0.017 .017 0.005 .074 0.005 .080
(0.003) (0.003) (0.003)

1P c 0.001 .679 -0.034 413 -0.034 412
(0.041) (0.041) (0.042)

PAL 0.001 .609 0.001 147 0.001 758
(0.002) (0.002) (0.002)

PAc -0.011 755 -0.005 .881 -0.005 .888
(0.035) (0.035) (0.035)

MT. 0.002 374 0.002 .380 0.002 .369
(0.002) (0.002) (0.002)

MT.c 0.014 7132 0.018 .672 0.019 .646
(0.042) (0.042) (0.042)

CAL 0.005 .034 0.005 .032 0.005 .038
(0.002) (0.002) (0.002)

CAic 0.102 .028 0.087 .060 0.087 .070
(0.046) (0.046) (0.048)

WB. 0.002 .383 0.002 377 0.002 .383
(0.002) (0.002) (0.002)

WBic 0.039 .355 0.036 .387 0.036 397
(0.042) (0.042) (0.043)

VO, -0.001 532 -0.001 .655 -0.001 .651
(0.002) (0.002) (0.002)

VO,c -0.060 157 -0.052 213 -0.051 229
(0.042) (0.042) (0.043)

SW. 0.001 .666 0.001 917 0.001 936
(0.002) (0.002) (0.002)

SWic 0.025 475 0.017 .640 0.015 .679
(0.035) (0.036) (0.037)

-2LL 2,074 2,060 2,045

# parms. 21 23 25

Note. -2LL = deviance. # parms. = number of parameters estimated. SES = socioeconomic status. Pos. Pers. = positive personality factor. Neg.
Pers. = negative personality factor. P.Est = parameter estimate. SE = standard error. p > t = probability of parameter estimate. * denotes parameters

significant at the .01 level.

ing, however, that while there were big variations in level
of performance (ranging from a SD of 8.089 — square root
of 65.434, cf. Table 3 — for IP to a SD of 10.972 for PA),
variability in linear change was much smaller (ranging
from a SD of 0.414 for CA to a SD of 0.570 for DL).

Two-Stage Survival Models

The final analyses aimed at testing the predictability of
mortality using all cognitive variables together. This is cur-
rently too difficult in a joint analysis, so we opted for a
two-stage approach. In the first step of the two-stage lon-
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gitudinal plus survival analysis, the random effects re-
vealed in the longitudinal analyses were estimated via
Bayesian procedures. In the second step, we included the
estimated random effects of all cognitive variables together
in three survival analyses. In the first model, we again con-
trolled for demographic information only; then, in the sec-
ond model we added sensory-motor performance, and in
the third model we also included personality factors. These
results are shown in Table 5.

We consistently found that age, sex, and motor perfor-
mance were related to mortality (all ps < .01), with effects
very similar to those of the univariate joint analyses. SES,
sensory performance and both personality factors were not
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related to mortality. Across the three models, no cognitive
variable predicted mortality, neither in its level nor in its
change component. In short, when all cognitive variables
were tested against each other, no one single marker of cog-
nitive performance showed a strong relation to survival in-
formation. It is worth noting that these results are based on
a two-stage analysis and should be interpreted with caution.
A joint longitudinal plus survival analysis should result in
a gain in statistical efficiency and power (Guo & Carlin,
2004).

Discussion

The goals of this paper were two-fold. First, we wanted to
further explore mortality prediction in the BASE in relation
to up to 11 individual longitudinal measurements of cogni-
tive performance, across a period lasting over 13 years.
Second, we wanted to discuss in this context a recent ad-
vance in data analysis that joins longitudinal and survival
models in a common statistical framework to examine the
likely dependencies between the two processes.

With respect to cognitive change, the indicators of per-
ceptual speed (DL and IP) displayed the steepest average
sample decline, while the crystallized knowledge measures
(VO and SW) evinced the lowest average change, after
controlling for dementia diagnosis and retest effects. Vari-
ance in linear change was found for all cognitive indicators.
This finding replicates previous BASE results obtained
with cross-sectional data (Baltes & Lindenbeger, 1997,
Lindenberger & Baltes, 1994, 1997) and with fewer longi-
tudinal observations (e.g., Ghisletta & Lindenberger, 2003,
2004; Lindenberger & Ghisletta, 2006; Lovdén et al., 2004;
Singer et al., 2003) as well as results of several independent
studies (e.g., McArdle, Ferrer-Caja, Hamagami, & Wood-
cock, 2002; McArdle, Hamagami, Meredith, & Bradway,
2000; Schaie, 2005).

With respect to mortality prediction, our analyses par-
tially agree with the previous BASE results discussed in the
Introduction. In particular, we found that when the cogni-
tive variables were analyzed individually in the joint lon-
gitudinal and survival models with demographic informa-
tion (age, sex, and SES), all of them were related to mor-
tality in their level component. This result clearly disagrees
with the specificity hypothesis. When we statistically con-
trolled further for sensory and motor performance and
broad personality characteristics, both indicators of verbal
knowledge (VO and SW) and one indicator of episodic
memory (MT) were no longer associated with mortality,
neither in their level, nor in their change component. This
finding is in clear disagreement with the hypothesis of
White and Cunningham (1988) that variables resistant to
age effects should be most vulnerable to impending death.
Overall, we confirmed previous results that level informa-
tion in speed (Birren, 1964; Bosworth, Schaie, & Willis,
1999; Maier & Smith, 1999), episodic memory (Hassing,
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Small, von Strauss, Fratiglioni, & Biackman, 2002; Shipley,
Der, Taylor, & Deary, 2006; Small & Biackman, 1997), and
verbal fluency (Small & Bickman, 1997) predict mortality
when controlling for a number of important covariates.

The results of the joint analyses provide information
about the terminal-decline hypothesis. Besides level infor-
mation, the longitudinal component of the joint model also
formally related change in cognition to mortality. Inde-
pendent of age, sex, and SES, changes in speed (DL and
IP) and in verbal fluency (CA and WB) provide informa-
tion about the age at death; individuals with steeper de-
clines in cognitive functioning were more likely to die.
However, despite the high number of repeated measure-
ments available in the BASE, we did not obtain variance
in quadratic change.

The present data-analytic set-up is well suited to test the
hypothesis that individuals with steeper performance de-
crements as a function of chronological age tend to be clos-
er to death. Note, however, that terminal decline has also
been conceived as a more abrupt drop in performance that
is preceding death more or less immediately (e.g., Figure
5 in Baltes & Labouvie, 1973, p. 174; Figure 1 of Johans-
son et al., 2004, p. 146). The present set of analyses is not
optimally suited to examine this variant of the terminal de-
cline hypothesis because developmental time is represent-
ed as a continuous function over chronological age (i.e.,
distance from birth). Analyses with years to death as the
main developmental time axis may be more sensitive to
abrupt drops in performance that occur a certain number of
years prior to death, and may therefore turn out to be supe-
rior in modeling this aspect of terminal decline, if and when
it exists (see Sliwinski, Hofer, Hall, Buschke, & Lipton,
2003, for a similar application).

The final two-stage analyses allowed us to examine all
cognitive variables conjointly, such that the effect of each
would be statistically controlled for by all other variables. We
expected that the number of significant survival predictors
would diminish, given their high degree of interdependence
(i.e., positive manifold of cognitive performance, Spearman,
1927). Surprisingly, no cognitive variable was significantly
related to survival, neither in its level, nor in its linear change
component. Based on some of our previous work (Ghisletta
& Lindenberger, 2000) we expected that at least the level in
fluency performance and change in perceptual speed would
be significant predictors of age at death. Perhaps this lack of
results is a result of the lower efficiency of the two-stage
analysis when compared to the joint analysis (cf. Guo & Car-
lin, 2004). This possible difference in statistical efficiency
should be investigated in future work.

The cognition-mortality relations examined here were on-
ly partially mediated by the covariates we considered. As
expected, age and sex proved to be important covariates
(Bosworth et al., 1999; Rabbitt et al., 2002). On the other
hand, education, a principal constituent of our SES score, was
not essential. This replicates some previous findings, both in
the BASE (Lindenberger et al., 2002; Maier & Smith, 1999)
as well as in other studies (e.g., Hassing, Johansson, et al.,
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2002; Rabbitt et al., 2002). It is possible that individual dif-
ferences in health outcomes in old and very old age become
progressively more predictable from biological processes and
less from cultural factors (for related arguments, see Baltes,
Lindenberger, & Staudinger, in press; Lindenberger & Baltes,
1997). In part, these differences may be of genetic origin (e.g.,
McGue, Vaupel, Holm, & Harvald, 1993). In addition, sto-
chastic aspects intrinsic to biological aging may also play a
role (cf. Thaler, 2002).

Sensory information was predictive of mortality in the ini-
tial analyses that ignored cognitive functioning (Anstey,
Luszcz, Giles, & Andrews, 2001; Lindenberger et al., 2002).
However, when analyzed in conjunction with cognitive per-
formance, sensory information lost some (in the joint analy-
ses) or all (in the final two-stage analyses) predictive power.
With all likelihood, this is because in very old age vision and
hearing share considerable amounts of variance with cogni-
tive functioning, especially with measures that are highly age
sensitive, such as perceptual speed (Anstey, 1999; Anstey,
Hofer, & Luszcz, 2003; Anstey & Smith, 1999; Ghisletta &
Lindenberger, 2005; Lindenberger & Baltes, 1994; Stankov
& Horn, 1980). Overall, motor performance was related to
mortality independently of cognitive performance. Indeed, it
retained its predictive power even in the final survival analy-
ses that included all cognitive variables simultaneously. Per-
sonality characteristics have also been shown to relate to mor-
tality (e.g., Berkman, 1988; Friedman et al., 1995; Maier &
Smith, 1999). This was not the case in the present set of anal-
yses. Constrained by the computational complexity of the
joint model, we reduced the BASE personality battery to two
global factors. Thus, we cannot exclude that some of the per-
sonality constructs, such as extraversion, openness, and emo-
tional loneliness, may predict mortality within the present
data-analytic framework when considered separately.

The joint analysis, although available in standard statis-
tical software like SAS, is quite intensive and at present
seems to limit the number of possible covariates. When we
tried adding additional covariates in the analysis (e.g., sin-
gle personality aspects rather than global characteristics),
we often encountered convergence problems. Furthermore,
analyses of small samples (e.g., young-old vs. old-old in-
dividuals) resulted in similar empirical problems. Hence, a
number of important covariates were not tested in this
study. These include cause of death (Hassing, Johansson,
et al., 2002; Shipley et al., 2006; Small & Bickman, 1999),
existing pathologies (Anstey et al., 2001; Rabbitt et al.,
2002), and depression or dysphoria assessment (Lindenber-
ger et al., 2002; Rabbitt et al., 2002), all of which have been
shown to be related to survival.

More extensive cognitive measures would have in-
creased knowledge about the cognition-mortality associa-
tion. For example, Deary and Der (2005) have shown re-
action time measures to be more powerful predictors of
mortality than a test of general intelligence. Shipley, Der,
Taylor, and Deary (2006) showed further that level and
change (variability) estimates of reaction time were signif-
icantly related to higher risks of death over a 19-year peri-
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od. The results held after control for demographic, lifestyle,
and physical variables and also in a group of young adults.
Reaction time (level and variability) could indicate effi-
ciency of information processing and aging-induced dete-
rioration of the neural system (cf. Hultsch, MacDonald, &
Dixon, 2002; Li, Lindenberger, & Sikstrom, 2001). In the
present analyses, measures of perceptual speed (i.e., DL
and IP) and of verbal fluency (CA and WB) showed the
strongest predictive relations to mortality, and the only
variable whose change was predictive of death after con-
trolling for all covariates considered was DL. As psycho-
metric constructs, perceptual speed tests and choice reac-
tion-time tasks are highly related and at times undistin-
guishable. Thus, the present results are well in agreement
with these earlier findings.

All preceding examinations of the cognition-mortality
association have failed to account for possible retest ef-
fects. Several longitudinal studies have shown that esti-
mates of aging effects can be biased by retest effects (Ferrer
et al., 2004, 2005; Ghisletta & de Ribaupierre, 2005; Lov-
dén et al., 2004; McArdle et al., 1998; Rabbitt et al., 2001,
2004; Salthouse, Schroeder, & Ferrer, 2004). Furthermore,
some research has shown age interactions with retest ef-
fects (Lovdén et al., 2004; Rabbitt et al., 2004). In the pre-
sent context, one might imagine that individuals approach-
ing death may benefit less from repeated test exposure than
those in better health. As a result, ignoring retest effects
could imply that cognitive performance of the survivors
would be overestimated by a greater degree than that of the
people near to death. Although we are not saying that sta-
tistically controlling for retest effects (as was done here) is
the panacea to this issue, we do think that not doing any-
thing about possible retest effects may bias the results and
subsequently all theoretical inferences. Clearly, the
planned inclusion of control groups by design should result
in more precise estimates of retest effects than the statistical
modeling of available variability in test exposure (cf. Mc-
Ardle & Woodcock, 1997; Schaie, 1965). The design of the
BASE, however, as in most large-scale psychological panel
studies, did not include such groups.

In conclusion, we feel that investigating the cognition-
mortality association remains an important aspect of geron-
tological research. Modern statistical methods can be help-
ful in this context, provided that they are applied to appro-
priate designs. For crucial outcomes such as death, research
designs that are sensitive to within-person patterns of
change for the individuals composing the sample are more
appropriate than designs that optimize descriptions of the
group average.
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