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Intelligence as Smart Heuristics

Markus Raab and Gerd Gigerenzer

“The great end of life is not knowledge but action.”
Thomas H. Huxley (1825-18g5)

Humans and other animals differ in the amount of intelligence ascribed
to them or that can be tested. Observed behavior reflects the underlying
cognitive abilities of the individual that are either thought of as a general
device system or a system of more or less independent parts. On this contin-
uum, the view of intelligence as fast and frugal heuristics orientates toward a
concept that models intelligence as parts (tools) of a larger system (adaptive
toolbox). This view departs from the notion of intelligence as an assembly
of “factors”: either one (g), a few, or many. The idea that one could model
the intelligence of a person by the values of one or several factors became
prominent after the invention of factor analysis, a statistical tool, in the early
twentieth century. A key problem with this tool-driven metaphor of intel-
ligence is that it does not describe how cognition translates into behavior.
The consequence of this missing link is that the usefulness of factor val-
ues to predict behavior is quite limited (Sternberg, Grigorenko, & Bundy,
2001). More importantly, the exclusive focus on paper-and-pencil tasks has
estranged the notion of intelligence from the abilities and heuristics that
are relevant for everyday behavior as well as for solving the problems that
experts struggle with.

In this chapter, we propose a radically different view of intelligence
that links cognition with behavior in terms of heuristics. A heuristic is a
mental device that can solve a class of problems in situations with lim-
ited knowledge and time. Unlike an IQ value or a set of values on sev-
eral intelligence factors, models of heuristics describe mechanisms or pro-
cesses with which people solve problems. Because there are many classes
of problems that confront humans, there are many heuristics, each one
adapted to a specific class. However, these heuristics are composed of a
smaller number of building blocks, the set of which we call the adaptive
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toolbox. The relation between heuristics and building blocks is analo-
gous to the relation between chemical elements and subatomic particles:
There are many heuristics, just as there are a large number of elements,
but they are made of only a few building blocks, such as protons and
electrons.

The vision of intelligence as an adaptive toolbox embodies an ecological
and social view of rationality, not a logical one. The goal of the research
program is (a) to describe the building blocks and heuristics, that is, the
content of the adaptive toolbox; (b) to describe the problem structures or
environments in which various heuristics can be successful, that is, the
ecological rationality of heuristics; and (c) to determine individual differ-
ences in the use of heuristics. The program is outlined in Gigerenzer, Todd,
and the ABC Research Group (1999) and Gigerenzer and Selten (2001) and
has its intellectual roots in the work of Herbert Simon (e.g., 1955, 1956)
on bounded rationality. Let us start with three illustrative examples of
heuristics.

Recognition Heuristic

Imagine you are a contestant in the show “Who Wants to Be a Millionaire”
and face the one-million-dollar question: “Which city has a larger popula-
tion: San Diego or San Antonio?” If you are as knowledgeable as a group of
undergraduates at the University of Chicago, then your chance of winning
is not bad: Almost two-thirds of them got the answer right — San Diego.
What, however, if you had as little knowledge as a group of German stu-
dents, who knew scarcely anything about San Diego and had mostly not
even heard of San Antonio? When a dozen Germans answered this ques-
tion, 100% got the answer right (Goldstein & Gigerenzer, 2002). How can
it be that people who know less about a subject nevertheless make more
correct inferences? The answer is that the Germans used a smart heuristic,
the recognition heuristic: If you have heard of one city (San Diego) but not
the other (San Antonio), infer that the one you recognize by name has the
larger population. Note that the Americans could not use this heuristic be-
cause they knew too much; they had heard of both cities. The recognition
heuristic can be used by people who are partially ignorant, that is, have
heard of one but not the other alternative. When British soccer fans want to
predict the winner of Manchester United playing Shrewsbury Town, they
cannot use the recognition heuristic because they recognize both names,
but most Americans know immediately who will win the game. In fact,
when Turkish students predicted the outcomes of all the English EA. Cup
third-round soccer games, they followed the recognition heuristic in 5%
(627 out of 662) of the cases where they recognized only one of the team’s
names, and were nearly as accurate as the highly informed British group
(Ayton & Onkal, 1997).
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Note that the point is not that less knowledge is always better. The point
is that we are regularly in situations where we have limited knowledge, and
in these situations the recognition heuristic is a smart mind tool for extract-
ing information from ignorance. Note also that the Americans, Germans,
British, and Turkish students in these experiments may have a range of
IQs, but an IQ does not describe how one solves a problem, nor can the
variability in IQs predict the counterintuitive results.

For the general task of inferring which of two objects scores higher on a
criterion, the recognition heuristic can be defined as the following: If one of
two objects is recognized and the other is not, then infer that the recognized
object has the higher value.

The heuristic does not always guarantee the making of good inferences;
its success depends on the problem structure, or the structure of the envi-
ronment. The recognition heuristic is successful when recognition is infor-
mative, that is, not random, but positively correlated with the criterion.

The recognition heuristic guides a broad range of behaviors, from se-
lecting brands in the supermarket, buying CDs, and watching movies, to
food and habitat choice. People who use the recognition heuristic show
two kinds of counterintuitive behavior. First, the recognition heuristic
searches only for recognition information, not for recall information, and
thus tends to ignore information concerning the recognized object. For in-
stance, Goldstein and Gigerenzer (2002) taught American students a pow-
erful cue for predicting the population of German cities: whether or not a
city has a soccer team in the major league. After the training session, the
participants (who only learned about soccer teams, whereas the predictive
power of name recognition was never mentioned) were tested on critical
pairs: one city that they recognized from before the experiment but they
had now learned has no soccer team (such as Hanover), and one city that
they did not recognize (such as Bielefeld). Participants knew that all cities
were among the largest in terms of population. Despite being trained on
soccer team information, more than 9o% of the participants inferred that
the city they recognized had the larger population, thus ignoring the soccer
team cue. There is comparative evidence in animals that recognition domi-
nates competing information. For instance, when wild Norway rats choose
between two foods, one that they recognize from the breath of a fellow rat
and one that they do not recognize, they tend to choose the recognized
one, even if the fellow rat is (experimentally made) sick at the time (Galef,
1987; Galef, McQuoid, & Whiskin, 1990).

The second counterintuitive prediction is the less-is-more effect
(Gigerenzer & Goldstein, 1999). A less-is-more effect occurs when less
knowledge leads, with the help of the recognition heuristic, to better in-
ferences than more knowledge would have done. The San Diego question
illustrates this effect. Since the recognition heuristic can be easily formal-
ized, one can predict exactly when the less-is-more effect will occur and
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when it will not. Individual differences in recognition are of utmost im-
portance for these predictions. For instance, when about half of the objects
(such as sports teams or stocks) are recognized, then the chances for the
less-is-more effect are best.

The recognition heuristic is not the only case where wisdom can emerge
from the poorly informed mind. An interesting variant is the situation in
which collective wisdom emerges from the poorly informed masses, in
honey bees (Seeley & Buhrmann, 2001) as well as in humans. Let us return
to “Who Wants to be a Millionaire.” You are trying to decide whether
Nashville or Knoxville is the capital of Tennessee and you have no idea,
but you can appeal to two outside sources for help. You can call the smartest
person you know, or you can ask the audience to vote. So whom would you
chose: your brainy brother-in-law or a random bunch of loafers who have
nothing better to do on a weekday afternoon than sit in a TV studio? The
friend gets it right two-thirds of the time, but the audience nine times out
of ten. Similarly, when experts predicted that the influx of inexperienced
investors would create a situation that the stock market would not be able
to absorb, that situation did not happen. The market is smart even when
the people within it are dumb.

Gaze Heuristic

Imagine you want to build a robot that can catch balls to play baseball,
for instance. (It's a thought experiment — no such robots yet exist.) If you
follow a classical artificial intelligence (Al) approach, you will aim to give
your robot a complete representation of its environment and the most
sophisticated computational machinery. First, you might feed your robot
the family of parabolas (because thrown balls have parabolic trajectories).
In order to choose the right parabola, the robot needs instruments that
can measure the ball’s initial distance, its initial velocity, and its projection
angle. But in the real world, balls do not fly in true parabolas because of air
resistance and wind. Thus, the robot would need additional instruments to
measure the wind speed and direction at each point on the ball’s flight and
compute the resulting path. A true challenge. And there is more: spin and
myriad other factors that the robot would have to measure and incorporate
into a complete representation.

There is, however, an alternative strategy that does not aim at com-
plete information and representation, but rather at smart heuristics. One
method to discover such heuristics is to study actual players. McLeod and
Dienes (1996) discovered that experienced players use a simple heuristic,
which is the gaze heuristic. When a ball comes in high, the player fixates
on the ball and starts running. The heuristic is to adjust the running speed
so that the angle of gaze, that is, the angle between the eye and the ball,
remains constant (or within a certain range). In our thought experiment,
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a robot that uses this heuristic does not need to measure wind, air resis-
tance, spin, or the other causal variables. It can get away with ignoring thig
information. All the relevant information is contained in one variable: the
angle of gaze. Attending to this one variable alone and ignoring all causa]
relevant variables is an example of a class of decision rules that are known
as one-reason decision making.

Note that the gaze heuristic achieves its goal by transforming the rela-
tionship between the eyes of the player and the relevant part of the en-
vironment, the moving ball, into a linear line. Like all heuristics, the gaze
heuristic is domain-specific, because it can only be used when balls come in
high and therefore an angle of gaze exists. Imagine catching a ball as a base-
ball catcher. Unlike the outfielder, who can use the angle of gaze to catch
the flying ball, the catcher is frontally approached by the ball. However,
he can use the time-to-contact heuristic that looks for retinal image informa-
tion (search rule) to estimate the time to collision between ball and hand
(Hubbard & Seng, 1954). And indeed people mainly use the change in size
of the approaching baseball (stopping rule; no further information such as
background information is used) to estimate the time when the ball will
collide (e.g., Savelsbergh, Whiting, & Bootsma, 1991). Therefore, players
preplan their movement (decision rule) on one information source. Pigeons
also use this type of information, although not to collide but to avoid col-
lision in the air. This time-to-contact information can be tracked down to
the level of neurons (Wang & Frost, 1992), and serves as a prototype exam-
ple of how mechanisms for even more complex behavior can be described
on a low level. Just like the recognition heuristic, the gaze heuristic and
the time-to-contact heuristic search only for one piece of information and
ignore the rest.

Tit-for-Tat Heuristic

Let us now turn to social intelligence. Two people play a game: Each has
two behavioral options, to cooperate with the other, or to “defect.” If one
cooperates and the other defects, the first is exploited by the second, a sit-
uation that can be represented in monetary terms, for example, by stating
that the first loses $1 whereas the second gains $3. If neither cooperates,
nobody loses and nobody gains anything. If both cooperate, each gains
$2. Such a situation is known as the prisoner’s dilemma. Standard rational
choice theory says that the optimal behavior is for both sides to defect, be-
cause whatever the other person does, it is always an advantage to defect.
There is, however, a fast and frugal heuristic called tit-for-tat that can
outperform the “optimal” strategy. In the first round, tit-for-tat always
cooperates, that is, it trusts the partner. Thereafter it searches in memory
for the partner’s response (search rule), memorizes only the last move of
the partner (stopping rule), and reciprocates, that is, imitates the partner’s
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behavior (decision rule). In a famous tournament, Axelrod (1984) showed
that tit-for-tat outperformed highly sophisticated strategies that analyzed
more information about the partner’s moves and based their behavior on
heavy computational machinery.

Tit-for-tat is a social exchange heuristic that can perform well in envi-
ronments where other tit-for-tat players exist. It illustrates how simplicity
and transparency can lead to highly efficient social behaviors. Together
with other social heuristics, such as searching for information that could
detect cheaters in social contracts (Cosmides & Tooby, 1992), the view of
social intelligence as part of the adaptive toolbox provides, in our opin-
ion, a better basis for understanding the nature of social intelligence than
the current program of quantifying social and emotional intelligence by
questionnaires and factor values (Gigerenzer, 2000).

THE ADAPTIVE TOOLBOX

These three heuristics and their building blocks illustrate some of the men-
tal tools that underlie intelligent behavior, both social and nonsocial. The
adaptive toolbox is, in two respects, a Darwinian metaphor for intelligence.
First, evolution does not follow a grand plan, but results in a patchwork
of solutions for specific problems. The same holds true for the toolbox: Its
heuristics are domain-specific, not general. Second, the heuristics in the
adaptive toolbox are not intrinsically good or bad, rational or irrational,
but only relative to an environment, just as adaptations are context-bound.
In these two restrictions lies their potential: Heuristics can perform aston-
ishingly well when used in a suitable environment. The rationality of the
adaptive toolbox is not logical, but rather ecological. In the context of the
toolbox, “adaptive” refers to the cognitive abilities that allow us to perform
well in our particular (past) environments.

Ecological Rationality

Herbert Simon once compared bounded rationality, that is, intelligent be-
havior under conditions of limited time and knowledge, to a pair of scis-
sors. One blade is cognition, the other the environment. If one looks at just
a single blade, one will not understand how human intelligence works. A
football coach who constantly ignores the opponents’ line-up when defin-
ing the strategy of his own team'’s attacks will sooner or later be fired. In
other words, the structure of the environment and the cognitive heuristics
have to match. Putting two knives together, however, does not make a pair
of scissors; a heuristic such as divide and conquer can only solve compli-
cated problems if they can be decomposed. Fast and frugal heuristics are
domain-specific; they succeed in one environment but may fail in another.
Computer simulations and mathematical proofs have given us a better
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understanding of the environmental structures in which specific heuris-
tics operate (Gigerenzer et al., 1999; Martignon & Hoffrage, 2002; Payne,
Bettman, & Johnson, 1993). This work has shown that many fast and fru-
gal heuristics, like tit-for-tat, can match or even outperform more complex
statistical models in situations ranging from medical decision making to
investment choice.

Intelligent behavior needs to satisfy important constraints other than
finding the best behavior, including being able to act fast and on the basis
of incomplete information. A cartoon illustrates this point. An early Homo
sapiens is standing in front of a cave, facing a lion. Our ancestor is calculat-
ing the trajectory of the jump and the magnitude of the impulse a lion will
have in order to decide what to do. The last picture shows a sated, happy
lion. The cartoon makes us smile because its message conflicts with our
superego of rational decision making, which demands: Search through
all the available information, deduce all the possible consequences, and
compute the optimal decision. Intelligent decision making, from this point
of view, is based on the ideals of omniscience and optimization. An or-
ganism aiming for these heavenly ideals, however, might not survive on
Earth. Nevertheless, the majority of rational decision making models in
the social, behavioral, and cognitive sciences, as well as in economics, rely
on some version of this doctrine. Even when empirical studies show that
real human beings cannot live up to it, the doctrine is not abandoned as
other models would be, but is instead retained and declared a norm, that
is, how we should reason. The concept of ecological rationality, however,
clarifies that intelligent behavior can be achieved by smart heuristics ap-
plied to the proper situations, and that it does not need the fiction of a
superintelligence.

Building Blocks

Heuristics, such as the recognition, gaze, and tit-for-tat heuristic, are com-
posed of building blocks. The most important ones are search rules, stop-
ping rules, and decision rules.

Search Rules

There are two kinds of search that intelligent behavior requires: search for
alternatives and search for cues. In game shows such as Millionaire, the
alternatives are fixed, and one has to search for cues to decide what the
correct answer is. Mere name recognition is a minimal cue. When both
alternatives are recognized, then the search for cues in memory or in ex-
ternal sources, such as the Internet or a good friend, can be guided by a
number of search rules. Search randomly is the most simple rule; try the
cues with the highest validity first is a more promising one (Gigerenzer &
Goldstein, 1999). When the alternatives are not known or not fixed a priori,
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then intelligent behavior has to employ search rules for alternatives. When
searching for houses or potential spouses, search can again be more or
less random, that is, one happens to encounter possible objects or persons
without taking measures that the better options tend to come first, or it can
be structured, as in traditional societies where parents, matchmakers, or
horoscopes guide the search.

Stopping Rules

Search for cues or alternatives must be stopped at some point. Classical
models of optimal search assume that there is a way to compute the optimal
stopping point, that is, where the costs of further search exceed its benefits.
In the real world, however, such cost-benefit trade-offs are rarely knowable
and predictable. Heuristics employ search rules that stop search without
explicit cost-benefit computations. For instance, the recognition heuristic
stops the search when it has recognized one alternative but not the other.
It does not proceed and look up information about the recognized object.
In Simon’s satisfying heuristic, the search for alternatives (e.g., houses or
potential spouses) is stopped when the first alternative that meets a specific
aspiration level is encountered (Simon, 1955). If search takes too long, for
instance, because the aspiration level of a person is too high, then the
aspiration level itself can be lowered (Selten, 2001). More effectively than
cognitive rules, emotions such as love can also stop the search, enabling
commitment to the loved one.

Decision Rules

A decision rule describes how a decision is made after the search has been
stopped. Decision rules define how the information searched and found
is used to make a decision. Psychology has a tradition of assuming that
intelligent behavior implies weighting and combining cues (e.g., multiple
linear regression models), but the research on fast and frugal heuristics has
shown that less is often more. The recognition heuristic, the gaze heuristic,
and tit-for-tat all employ one-reason decision making, because they rely
on only one cue to make the decision and ignore all others.

Domain-Specificity of Heuristics

The heuristics in the adaptive toolbox are domain-specific cognitive abili-
ties. As mentioned before, the domain-specificity of the heuristics is more
expressed than that of their building blocks, just as chemical elements are
quite distinct and show different processes, yet, as far as we know, consist
of the same particles. Thus, domain-specificity must be discussed relative
to the level of analysis. The domain definition seems very crucial to deter-
mining the specificity of the tools in the toolbox. For instance, eyes may
be domain-specific in the sense that they process visual but not acoustic



196 Markus Raab and Gerd Gigerenzer

information. On the other hand, we do not have different eyes for differ-
ent perceptual abilities, such as for locating objects in space or detecting
features of objects. However, we know from different locations within the
visual cortex that they are specialized to detect the color, shape, or di-
rection of a moving object. Similarly, the same heuristic may be used in
different environments. The process that activates the use of one heuristic
over another is not well understood today.

At least four arguments favor a domain-specific mtelhgence that works
with fast and frugal heuristics. First, much of intelligence involves go-
ing beyond the information given, that is, to make reasonable inferences.
Although there are powerful statistical tools for induction, no single sta-
tistical method works in every environment (Gigerenzer et al., 1989). In
addition, our own intuition tells us that we are often capable of producing
smart solutions in one domain but quite stupid ones in another. Second,
a general purpose mechanism would run into the well-known problem
of computational explosion; that is, even if it were known, it could not
work. Even for well-defined problems such as chess, there is no optimal
algorithm known, and experts, just like Deep Blue, have to rely on heuris-
tics. This indicates that general purpose notions such as the g factor for
intelligence (Jensen, 1998) are doomed to fail in the face of computational
complexity. Third, the lesson artificial intelligence designers had to learn
when they actually tried to build robots was similar: A general inference
machine was not feasible, and designers opted for a number of modules
that practiced and orchestrated division of labor, as do the organs in our
bodies or a symphony orchestra. The more general an intelligence is, the
slower it becomes. Fourth, human intelligence has to achieve more than
correct answers to a test, as is obvious when we come to social or emotional
intelligence. Domain-specific intelligence can be modeled by modularity
of the tools in the adaptive toolbox. The term modular or module has
multiple meanings, from Fodor’s (1987) ideas that modules consist of the
senses plus language, to the evolutionary-based idea that a module is an
array of sensory, cognitive, and emotional tools designed to solve impor-
tant adaptive tasks such as raising children, finding food, and avoiding
predators (e.g., Cosmides & Tooby, 1992). The example of catching a ball
makes it plausible to argue for sensory intelligence and motor modules (see
Hossner, 1995; Keele, Jennings, et al., 1995). The modularity hypothesis of
social intelligence postulates that modules draw on a number of heuristics
as tools and are hierarchically organized (see Gigerenzer, 2000, for a de-
tailed argumentation). In addition, it is plausible to assume that cognitive
modules have less hard-wired properties than sensory and motor mod-
ules. For instance, the distinction between different sensors and different
effectors is easily defined, and concepts such as equilibrium sense can be
tracked down to modular entities because of this specific neuronal archi-
tecture. Even with the new power of techniques in neuroscience, however,



Intelligence as Smart Heuristics 197

precisely locating the specific networks that are active for cognitive or social
problems still seems far away. Due to the less restricted array of modules
for cognitive abilities, the modularization is even more interwoven with
the environmental system that humans confront.

Social Intelligence

Homo sapiens is one of the few species where genetically unrelated mem-
bers cooperate in certain tasks. Social intelligence, that is, the ability to
handle interactions with others intelligently, has consequently been pro-
posed as the hallmark of human intelligence and one of the defining fea-
tures of Homo sapiens, together with profound tool use and language.
Nevertheless, it is far from clear exactly what entails social intelligence -
or Machiavellian intelligence, its exploitive sibling. Again, we argue that
the way to find out about social intelligence is to discover and model the
actual mechanisms, that is, the heuristics people use when dealing with
others. We believe that this is far superior to asking people to answer a
questionnaire and to giving them values on “factors” of social intelligence,
or a quotient of emotional intelligence. With these numbers, just as with
standard intelligence tests, one will never discover what people do when
they try to handle others.

The framework of the adaptive toolbox can be applied to unravel social
intelligence (Gigerenzer, 1997; Miller & Todd, 1998). This provides precise
models and a modular perspective that has different degrees of generality:
The building blocks of social intelligence will be fewer but more general
than the social heuristics themselves. Table 1 lists examples of social and
nonsocial heuristics, their building blocks, and applications.

Tit-for-tat , which we discussed earlier, is a fast and frugal social heuris-
tic. It can handle social exchange situations, such as asking someone for
help and offering something in return. There are numerous candidates for
social heuristics and building blocks, but they are typically not as clearly
defined as tit-for-tat. These include forms of social imitation, known as
follow the crowd (Boyd & Richerson, 2001; Marsh, 2002). The advantage
of such imitation behavior is well understood in animals, for example,
in schools of fish (Laland, 2001; Williams, 1996). Growing evidence from
a variety of other human imitation behaviors, from childhood to panic
behaviors, shows how social imitation can be defined in each context in
a variety of domains (Noble & Todd, 2002). Social categorization heuris-
tics, such as judgments about others that either are within the same group
(ingroup) or from another group (outgroup), seem to be the rule rather
than the exception. The heuristic that a person from the same group is a
“good person,” and that their information or judgments are accurate, en-
ables fast decisions about a topic based on other persons’ information or
judgments.
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TABLE 1. Examples of Social and Nonsocial Heuristics, Their Building Blocks,
and Applications
Heuristic Building Blocks Applications
Recognition  Search rule: Look for recognition Answering general
Heuristic information knowledge questions;
Stopping rule: If you recognize one predicting outcomes of
option and not the other, stop sports games (Goldstein
search & Gigerenzer, 2002);
Decision rule: Infer that the option you  investment decisions;
recognize has the higher value on stock picking (Borges
the criterion et al., 1999)
Gaze Fixate the ball and start running, Catching balls that come in
Heuristic thereafter: high, as in baseball and
Search rule: Look for information cricket (McLeod &
concerning the angle of gaze Dienes, 1996); avoiding
Stopping rule: Use the angle of gaze collision in flight;
only av.olldmg collisions in
Decision rule: When the angle sailing
changes, adjust speed so that the
angle remains constant
Tit-for-Tat Trust first, thereafter: Exchange of goods;
Heuristic  geg70h rule: Recall information international politics;
concerning the behavior social behavior and trust
(cooperation or defection) of your in dyadic relations
partner (Kouock, 1994; Messick
Stopping rule: Ignore everything & Liebrand, 1995)
except the last behavior of your
partner
Decision rule: Imitate the behavior of
your partner
Take-the- Search rule: Generate options inthe ~ Chess playing (Klein et al.,
First order of validity 1995); allocation
Heuristic ~ Stopping rule: Stop after the first decisions in ball games
option is generated that can be
implemented, ignore all the rest
Decision rule: Take this option
Take-the- Search rule: First try the recognition ~ Hindsight bias (Hoffrage,
Best heuristic; if both objects are Hertwig, & Gigerenzer,
Heuristic recognized, look up cues in order 2000); attractiveness

of their validity

Stopping rule: Stop search when the
first cue is found that has a positive
value for one alternative, but not
for the other

Decision rule: Infer that the alternative
with the positive cue value has the
higher criterion value

judgments of famous
men or women;
predicting high school
dropout rates;
homelessness rates;
(Czerlinski, Gigerenzer,
& Goldstein, 1999)
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Again, the specific description of this ingroup-outgroup heuristic is
lacking. Is the information from ingroup members just weighted higher
than the information from outgroup members, or does it dominate the
other information, just as recognition information dominates competing
information? We do not know these details, but it seems possible to exper-
imentally test the different ways of how such social heuristics work, once
they are precisely formulated. From our standpoint, the starting point is
set; that is, we do not expect to find only one general purpose tool, but
rather several heuristics for social intelligence. This also has methodolog-
ical and practical consequences. For instance, if no such general social
intelligence exists, there is no point in developing and measuring with
a one-dimensional social intelligence test or using a single observation,
scale, or another method to detect social intelligence. On the other hand,
the modular perspective needs to define a research agenda of how to find
proposed heuristics of social intelligence, and how to define environments
in which specific heuristics do and do not work, and we are just starting this
adventure. We do have proposals: modules for social contracts, threats, pre-
cautions, as well as cheating mechanisms (Cosmides, 1989; Gigerenzer &
Hug, 1992; Kummer et al., 1997).

Nonsocial Intelligence

Imagine that you are attending a conference and wish to buy a new laser
pointer in your free time. The first shop you encounter has two special of-
fers near the entrance. The recognition heuristics would assume that if you
recognize one company label (e.g., Sony) and not the other, the Sony laser
pointer will be chosen. However, if it happens that both are from Sony, you
may continue searching for more information such as the price or size, un-
til you find a difference that favors one laser pointer over the other. A fast
and frugal heuristic take-the-best can describe this behavior (Gigerenzer &
Goldstein, 1999). The heuristic is called take-the-best because it takes the
option based on the first cue that favors one option over the other and
ignores all other available information. Take-the-best consists of three
buildings blocks: rules for searching, stopping, and making a decision.
Search for cuesis in the order of cue validities (search rule). These validities,
which are based on the relative frequency with which a cue predicts the
criterion, can be acquired by individual or social learning, or, in the case of
some animal species, such as female guppies with regard to mate choice,
seem to be genetically coded (Dugatkin, 1996). Search is stopped when
the first cue is found on which the two alternatives differ (stopping rule).
The alternative with the positive cue value (e.g., lower price, smaller size
of the laser pointer) is chosen (decision rule). In experiments conducted
by Newell et al. (2004), the searching, stopping, and decision rules of
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take-the-best are followed in 75% to 92% of all cases (see also Bréder, 2000,
2003; Newell & Shanks, 2003).

In this chapter, we have seen evidence that less information can result
in better performance. Whereas the recognition heuristic and the take-the-
best heuristic describe how to choose between given alternatives, the take-
the-first heuristic describes how people generate alternatives from their
memory. For instance, in chess it is known that experts can generate a
large number of options, but that the first ones generated are often the best
options (Klein et al., 1995). Take-the-first describes how options are gener-
ated from the memory (Johnson & Raab, 2003). The options are generated
by order of their appropriateness in a specific situation. Like take-the-best
(where cues are searched for in order of cue validity), take-the-first looks
up alternative options by option validity (search rule). In familiar, yet ill-
defined tasks, take-the-first chooses one of the initial options, once a goal
and strategy have been defined. When generating options in sports, experts
generate only a few options (stopping rule) and decide predominantly on
the first option that can be implemented (decision rule). Limited search
and quick stopping can be beneficial: Experts are not only faster but also
more accurate with this fast heuristic, compared to making the choice after
generating and giving due consideration to all possible alternatives. For
instance, Johnson and Raab (2003) showed experienced handball players a
10-second video sequence from a game, then froze the video and asked the
players what option they would take, such as pass right, pass left, or throw
at the goal. The results indicated that these players searched for options in
order of their appropriateness, generated only a few options, and picked
mostly one of the first that was generated. In contrast, when they were
asked to generate all possible options and then, after reflection, to pick the
one that seemed best, their choices were no longer as appropriate as when
they spontaneously picked the first good one that came to mind.

Ecological Rationality

Domain-specific heuristics are designed to work in specific environments.
Therefore it is natural that they may not work equally well in another envi-
ronment. Table 2 gives examples of heuristics and specific environments in
which these heuristics fail or succeed. For instance, the recognition heuris-
tic can only be used in situations with partial ignorance, that is, when one
object is recognized and the other is not. Using this heuristic is ecologi-
cally rational to the degree that recognition is correlated with the criterion;
when such a correlation does not exist, it is no longer a promising strategy
(although it may not hurt). For instance, although brand-name recognition
is typically correlated with quality, firms that invest their money in ad-
vertisement that does not give information about the product, but is only
intended to increase name recognition, can exploit people’s reliance on the
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TABLE 2. Fast and Frugal Heuristics and Examples for Environmental Structures
that Enable Good or Poor Performance

Environments that Enable

Environments that Enable

Heuristics Good Performance Poor Performance
Recognition Positive correlation between Zero correlation between
Heuristic recognition and criterion recognition and criterion
Gaze Intersection of moving objects Intersection of moving
Heuristic for which the angle of gaze objects for which the angle
changes (relative to a fixed of gaze is constant (relative
observer) to a fixed observer)
Tit-for-Tat Mostly tit-for-tat players Only defectors present
Heuristic present; the possibility to

Take-the-First
Heuristic

Take-the-Best
Heuristic

exclude noncooperative
players by custom or law
(Dawkins, 1989; Boyd &
Lorberbaum, 1987)

An environment in which the
person is highly trained by
feedback, that is, options are
automatically generated from
memory in the order of
validity

Noncompensatory
environments, in which
higher-ranking cues cannot be
compensated by combinations
of lower-ranking cues
(Martignon & Hoffrage, 1999)

An environment in which the
person is a novice, that is,
options are not generated
in the order of validity

Compensatory environments,
in which higher-ranking
cues can be compensated
by combinations of
lower-ranking cues

recognition heuristic. In an international study of stock picking, the recog-
nition heuristic — based on laypeople’s name recognition — outperformed
the level of major mutual funds and the market (Borges et al., 1999). The
take-the-first heuristic works quite well for experts (e.g., chess masters).
However, on the assumption that novices do not have the experience to
generate options automatically in order of their appropriateness, take-the-
first would not be advantageous at this low level of knowledge.

RELATION TO OTHER APPROACHES

The view of intelligence as an adaptive toolbox with smart heuristics is
not a minor variation of the existing theories of intelligence, but represents
a radical break with several entrenched ideas. First and most important,
all theories that try to capture the nature of intelligence in terms of factor
values — one, a few, or many - follow an entirely different conception of
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intelligence. If one thinks of intelligence as an interaction between the mind
and the world, then one needs to model exactly this, and this is what models
of heuristics are all about. Factor values are mute about the mechanisms of
this interaction. Second, all theories — differential approaches, information
processing approaches, and componential approaches (see Sternberg &
Kaufman, 2002) — that look at only one blade of Simon’s pair of scissors (the
cognitive abilities), at the price of ignoring the other blade (the structure
of the environment), are hardly compatible with the present approach.
Third, approaches that incorporate cognitive abilities and the environment
but ignore the domain-specificity (e.g., the person-situation interaction
theory of Snow, 1994) can be distinguished from our approach. Fourth,
many approaches ignore the evolutionary perspective on intelligence (for
examples, see Sternberg, 1999).

Frames of Mind and Multiple Intelligences

Gardner (1983) argues that the notion of relative autonomous cognitive
abilities (“multiple intelligences” in his concept) is relevant to understand-
ing the specialized performance of humans in many domains. This domain-
specificity is similar to the view of intelligence as smart cognitive heuristics,
but with two important differences. First, Gardner’s multiple intelligences
(e.g., linguistic, spatial, or musical intelligence) are, like most approaches,
still partly based on psychometric data. Specifically, the absence of cor-
relations such as those between spatial and verbal abilities (Gardner,
Kornhuber, & Wake, 1996) as well as studies from specific populations
(e.g., brain-damaged patients, low IQ savants) supports his view of mul-
tiple independent intelligences. According to this view, a person can be
ascribed high or low musical intelligence, but the heuristics that people
actually use when making music, such as how to practice, how to over-
come a block or stage fright, how to perform and electrify the audience,
and where to find inspiration for composing are not explicated. Second,
an evolutionary view on domain-specificity results in important adaptive
tasks (e.g., handling social contracts), although not in domains such as
Gardner’s musical or mathematical intelligences, which seem to be more
motivated by university curricula.

The Mind as a Swiss Army Knife

A conception that is a close relative of the view of intelligence as an adaptive
toolbox is the modular perspective of intelligence by Cosmides and Tooby
(2002). The authors separate dedicated intelligence (systems or programs
that are designed for solving a target set of adaptive computational prob-
lems) from improvisational intelligence (components that are designed to
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exploit transient or novel local conditions to achieve adaptive outcomes).
The image of the mind as a Swiss Army knife stresses the idea that the
mind holds domain-specific rather than general purpose tools. Like the
adaptive toolbox, the Swiss Army knife view of intelligence is not based
on the factor analysis analogy of mind, but on the actual processes needed
to solve important adaptive problems and their modern equivalent. More
so than the Swiss Army knife analogy, the concept of the adaptive toolbox
brings the possibility for novel combinations of building blocks and nesting
heuristics into the foreground. Most important, however, are the models
of heuristics and building blocks (Gigerenzer & Selten, 2001; Gigerenzer
etal., 1999) that can flesh out the nature of the “Darwinian algorithms” and
allow new and sometimes counterintuitive predictions to be deduced.

PROGRAM REVIEW AND FUTURE

To learn more about the view outlined in this chapter, we recommend
Gigerenzer, Todd, and the ABC Research Group (1999). Briefly stated, the
research program starts with computational models of heuristic candidates
in a specific domain, analyzes the environmental structure of this domain,
tests the heuristics in real-world environments by means of simulation,
and tests whether and when people use these heuristics by means of ex-
periment. This procedure can be varied to the specific problem on hand.
Individual differences in the use of heuristics have been documented in
a number of situations (e.g., Goldstein & Gigerenzer, 2002; Rieskamp &
Hoffrage, 1999).

We would now like to highlight two routes into the future of the pro-
gram. First, in the beginning of this chapter we extended the notion of
cognitive modules to lower-level systems, such as the sensory and motor
domains. This extension draws attention to the biological underpinnings
of the candidate tools in a toolbox (Duchaine, Cosmides, & Tooby, 2001).
An example of this, as demonstrated in this chapter, is the ecological ra-
tionality perspective, in which evolutionary accounts may help us find the
roots of the intelligent behavior observed nowadays.

Second, neuropsychological evidence may provide further insights into
possible instantiations of proposed cognitive heuristics. At a minimum,
neuropsychological evidence can help us understand whether different
heuristics are biologically alike or different, both qualitatively and quanti-
tatively. For quantitative differences we would expect activation quantity
only in the same neuronal circuit, whereas for qualitative differences we
would assume to see activation of different neuronal circuits. In addition,
the arguments about the amount and kind of domain-specificity versus ar-
guments about domain-generality can also be tested by comparing shared
versus nonshared activation in different tasks of nested and nonnested
heuristics.
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As with every perspective on intelligence, the adaptive toolbox will
have its limits. Shepard (2001) speculated that fast and frugal heuristics
reflect the nature of ordinary human intelligence, that is, the conscious
and sometimes unconscious forms of reasoning and decision making in
everyday life. Shepard believes that heuristics cannot do two things: de-
scribe the lower cognitive processes, such as those involved in perception,
and describe those at the high-level end, the creative processes of scien-
tific discovery. We do not know to what degree Shepard is right; we know
of heuristics that work at the lower end, for example, the gaze heuris-
tic and the time-to-contact heuristics. But many evolutionary hard-wired
processes seem to need different kinds of models, such as the processes
of face perception. The creative processes of artists and scientists are also
mostly out of reach for modeling by fast and frugal heuristics, although one
might add that they are out of reach of any theory. However, substantial
evidence exists for a heuristic that describes the discovery of new theo-
ries in the cognitive sciences, the tools-to-theories heuristic (Gigerenzer,
2000).

The adaptive toolbox provides a research agenda of how to study cog-
nitive abilities in terms of smart heuristics. At the same time, it provides
an alternative to the notion of human intelligence driven by factor anal-
ysis, which bypasses the actual mechanisms with which humans make
intelligent or less intelligent decisions.
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