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Abstract

The Centre for Adaptive Behaviour and Cognition (ABC) has hypothesised that much human decision-making can be described
by simple algorithmic process models (heuristics). This paper explains this approach and relates it to research in biology on
rules of thumb, which we also review. As an example of a simple heuristic, consider the lexicographic strategy of Take The Best
for choosing between two alternatives: cues are searched in turn until one discriminates, then search stops and all other cues
are ignored. Heuristics consist of building blocks, and building blocks exploit evolved or learned abilities such as recognition
memory; it is the complexity of these abilities that allows the heuristics to be simple. Simple heuristics have an advantage in
making decisions fast and with little information, and in avoiding overfitting. Furthermore, humans are observed to use simple
heuristics. Simulations show that the statistical structures of different environments affect which heuristics perform better, a
relationship referred to as ecological rationality. We contrast ecological rationality with the stronger claim of adaptation. Rules
of thumb from biology provide clearer examples of adaptation because animals can be studied in the environments in which
they evolved. The range of examples is also much more diverse. To investigate them, biologists have sometimes used similar
simulation techniques to ABC, but many examples depend on empirically driven approaches. ABC's theoretical framework can
be useful in connecting some of these examples, particularly the scattered literature on how information from different cues is
integrated. Optimality modelling is usually used to explain less detailed aspects of behaviour but might more often be redirected
to investigate rules of thumb.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We both work in a research group called the Centre
for Adaptive Behaviour and Cognition (ABC). Its main
—_— research topic is the cognitive mechanisms by which
fax:(i%e;é’g;iggszlihor' Tel.: +49 30 82406352; humans make decisions. We call these mechanisms
E-mail addresshutch@mpib-berlin.mpg.de heuristicsand our thesis is that rather simple heuristics
(3.M.C. Hutchinson). both work surprisingly well and are what humans
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widely use. Simple heuristics correspond roughly both alternatives; (2) if both cue values are identical
to what behavioural biologists call rules of thumb. examine the next cue, otherwise ignore all other cues
Our aim in this paper is to relate ABC’s research to and make a decision on the basis of this single cue;
biological research on behaviour. One of us (GG) is (3) if no cues are left to examine, guess. Such a
the director and founder of ABC, and, like most of the process is called lexicographic because it resembles
group, is a psychologist by training; the other (JMCH) the obvious way to arrange two items into alphabetical
is a behavioural ecologist who has worked in ABC for order: first compare the first letters and only if they
the last four years. are identical consider the next letter. A hypothetical
For a more thorough review of ABC's results and biological example might be a male bird that compares
outlook, read the boolsimple Heuristics that Make itself with a rival first on the basis of their songs; if
Us Smart(Gigerenzer, Todd and the ABC Research the songs differ in quality the weaker rival leaves,
Group, 199%. Another boolBounded Rationality: The  and only otherwise do both remain to compare one
Adaptive ToolboXGigerenzer and Selten, 200dro- another on further successive cues, such as plumage or
vides more of a discourse between ABC and other display.
researchers. In the current paper, we seek to identify  We have notyet specified the order in which cues are
where behavioural biologists and ABC have used sim- examined. Intuitively it makes sense to try to look up
ilar approaches or arrived at similar results, but also the more reliable cues first, and also those that are most
to clarify exactly where the two schools disagree or likely to make a distinctionGigerenzer and Goldstein
diverge on tactics. We thus hope to discover ways in (1996) proposed to rank cues by validity; validity is
which each discipline might learn from the other; we defined as the proportion of correct inferences among
try to be open about potential limitations of ABC’s ap- all inferences that this cue, if considered in isolation,
proach. This paper is written to inform both biologists allows (a tie does not allow inference). With this cue
and psychologists. order, the heuristic has been named Take The Best. This
Before making more general points we start by order might have been individually estimated from a
giving some examples of the simple heuristics that sample, or learned by instruction, or have evolved by
ABC has studied, and then some examples of rules natural selection.
of thumb from biology. These will convey better Amazingly, the predictive accuracy of this heuris-
than any definition the range of phenomena to which tic, judged on a real-world dataset about German cities,
these terms are applied. The succeeding sections willwas about equal to, or better than, that of multiple re-
deal more systematically with the principles behind gression Fig. 1, Gigerenzer and Goldstein, 1998.
ABC's research, and contrast its techniques and find- 93). Fig. 1 further compares the performance of Take
ings with those from research on animal rules of The Bestagainsttwo computationally sophisticated al-
thumb. gorithms that also each construct a decision tree (H.J.
Brighton, personal communication). Especially, when
the “learning” sample of cities used to construct the

2. Examples of fast and frugal heuristics in treesis small, Take The Best nearly always outperforms

humans these methods in accurately comparing sizes of the re-
maining cities (i.e. in cross-validationhater et al.

2.1. Take The Best (2003)have performed a slightly different analysis for

other sophisticated algorithms, including a three-layer
Consider the task of which of two alternatives to feedforward neural network, and observed a similar
choose given several binary cues to some unobservablepattern. These are surprising and striking results, es-
criterion. An example is deciding which of two cities pecially as at least the comparison against multiple re-
is the bigger, given such cues as whether each hasgression holds in 19 other such real-world comparison
a university or has a football team in the premier tasks besides the original city-size exam@eérlinski
league. Gigerenzer and Goldstein (199@yoposed etal., 1999.
the following decision mechanism: (1) consider one  Take The Best is fast to execute and frugal in the
cue at a time, always looking up the cue values for information used, since usually not all cues are exam-
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Fig. 1. Predictive accuracy of Take The Best (TTB) compared to multiple regression and to two computationally intensive algorithms designed
to generalise well to new samples: C4@ufnlan, 1993 and CART (classification and regression trBeeiman et al., 1984 Another such

algorithm, MML (Buntine and Caruana, 199derformed similarly to CART and C4.5. The task is judging which of two German cities has the

larger population, based on nine cues (same datagigasenzer and Goldstein, 1999; Chater et al., 2008e abscissa specifies the number of

cities in the learning sample to which the regression equation or decision tree is fitted, and the ordinate specifies the predictive accuracy achieved
in the test set (remaining cities of the 83). Results are averaged over 1000 random selections of the learning set. Except for multiple regression,
the strategies can each be expressed as decision trees. The intensive algorithms first grow a tree (for instance, in the case of C4.5, iteratively
using reduction in entropy as a criterion for which cue to use for the next split), and then prune it so as to avoid overfitting. Results for multiple
regression are not shown for learning sets involving fewer cities than the number of cues; the regression algorithm was not one that eliminated
cues of low statistical significance. (Figure provided by H.J. Brighton.)

ined. It is simple in that it involves only comparisons

of binary values, rather than the additions and multi-
plications that are involved in the standard statistical
solutions to the task. This degree of frugality and sim-
plicity applies to the execution of the procedure. If the
prior ranking of cues by validities must be individu-

ally learned, this requires counting, and prior experi-
ence of the task with feedback. Nevertheless, it is still
relatively much simpler to gauge the rank order of va-
lidities than the cue weights in a multiple regression
equation, partly because validities ignore the correla-

tions between cues. Note, however, that ordering by va-

lidities is not necessarily optimal; finding the optimal
orderrequires exhaustively checking all possible orders
(Martignon and Hoffrage, 20Q2In natural biological

through trial and error; such an ordering might perform
very well yet be neither ranked by validity nor opti-
mal. Simulations show that performance remains high
if the ordering of cues only roughly matches validity
(Martignon and Hoffrage, 2002or if the ordering is
generated by a simple learning algorithm, itself a sim-
ple heuristic Dieckmann and Todd, 2004; Todd and
Dieckmann, in pregs

Take The Best was originally envisaged as a heuris-
tic that processed information already in memory.
However, when subjects are presented with the bi-
nary cues in written form, a variety of experiments
have identified situations under which Take The Best
and similar decision heuristics accurately describe how
people sample and process the informatidieékamp

examples, a good ordering of cues could have beenand Hoffrage, 1999; Bder, 2000, 2003; Bder and

achieved by natural selection or by individual learning

Schiffer, 2003; Newell and Shanks, 2003
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2.2. Comparing heuristics in structure and
performance
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points (although the accuracy and frugality of tally-
ing can benefit from more complex prior calculations
to setm and eliminate cues likely to be uninforma-

Take The Best can be viewed as a sequence of threetive). Like Take The Best, the predictive accuracy of

building blocks.

Search ruleexamine cues in order of validity, at each
step comparing values between alternatives.

Stopping rulesstop search when a cue discriminates.
Decision rule:choose the alternative indicated by the

discriminating cue.

This can be compared with a different class of
heuristics based on tallying.

Searchruleexamine cuesin arbitrary order, checking
values of both alternatives but not necessarily consec-
utively.

Stopping rulesstop search aften cues.

Decision rule:tally thesem cue vales for each alter-
native and choose the alternative with the higher tally.

The amount of information used by Take The Best
(its frugality) varies from decision to decision; the fru-
gality of tallying is alwaysm pairs of cue values. Ifn
is all the cues available, tallying is called Dawes’ Rule
(named after the pioneering workidawes, 1979 Tal-
lying is also simple to execute in that it requires only
counting. Unlike Take The Best, it does not require
knowing an order of cues, just which direction each

Noncompensatory

Dawes’ Rule is as good as, or better than, multiple re-
gression for the 20 real-world datasefz érlinskietal.,
1999.

With some of these datasets Take The Best per-
formed better than Dawes’ Rule and with others
worse. We now have some understanding of how the
environment (i.e. the statistical structure of cues and
criterion) determines thisMartignon and Hoffrage,
2002. Not surprisingly, in environments in which the
weights from a multiple regression are roughly equal
forallcues Fig. 2), Dawes’ Rule, which is equivalent to
multiple regression with unit weights, performs better.
Take The Best performs better when each cue weightis
much greater than the next largest one. If each weight
is greater than the sum of all smaller weights, and the
order of weights matches that of validity, multi-
ple regression must produce identical decisions
to Take The Best. Such an environment is called
non-compensatory because in the multiple regression
an important cue cannot be outweighed by less
important cues even if the latter all disagree with
the former. It turns out that many of our 20 example
environments tend towards having non-compensatory
cue structures@zerlinski et al., 1999 most cues add

Compensatory

Regression weights

Cues

Fig. 2. Two environment structures shown by the cue weights from

environmental structure where Take The Best is as accurate as any linear weighted combination of cues. The weights of the cues are 1, 1/2
1/4, etc.Right: a compensatory environmental structure where Dawes’ Rule is as accurate as any linear weighted combination. A cue weight
reflects how much information the cue adds to that already provided by the better cues, not the independent correlation between the cue and th

criterion. SeeMartignon and Hoffrage (2002)

Cues

a multiple regression (cue values areL@ftralhon-compensatory
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little independent information to that provided by the
most informative cues. Take The Best and Dawes’

Rule can be viewed as each taking a bet on a different

environment structure, whereas multiple regression
tries to be a jack of all trades and computes its pa-
rameters to fit the structurdi@rtignon and Hoffrage,
2002).

It should now be clear that statements of the kind
“This heuristic is good” are ill-conceived, or at least
incomplete. A heuristic is neither good nor bad per
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2.3. A heuristic in action

A different decision task is to classify an object
into one of two or more classes, as in medical treat-
ment allocation (Should a patient be in intensive care
or the regular ward?}ig. 3shows a model of a heuris-
tic that predicts a very high proportion of the deci-
sion outcomes made by London magistrates whether
to grant unconditional bail or to make a punitive de-
cision such as custodypphami, 2003 88% accuracy

se; rather, some are better than others in specified en-in cross-validation was representative). Just like Take
vironments (e.g. compensatory or non-compensatory) The Best, this heuristic searches cues one at atime, can

on specified criteria (e.g. predictive accuracy or fru-
gality). It follows that although ABC has an overall
vision that simple heuristics are the solution that the

stop search after any cue, and the outcome depends on
that cue alone. This is why both Take The Best and
this decision tree are examples of what ABC calls one-

brain uses for many tasks, we envisage that the heuris-reason decision-making. The decision tree is based on

tics used for different tasks will vary widely and not
be special cases of one global all-inclusive model. This

observations of court outcomes, whereas when magis-
trates were asked how they made their decisions they

suggests a somewhat piecemeal research programmetold a totally different story consistent with the offi-
which need not be a weakness: the same piecemeakial Bail Act; this specifies that they should consider
approach has certainly not held behavioural ecology many other cues such as the severity of the crime and

back Krebs et al., 1988 Incidentally, ABC also puts
no general restrictions on the extent to which heuris-
tics are innate or learnt, or applied consciously or un-

whether the defendant has a home. It could be that the
simpler heuristic was used unconsciously, but unfortu-
nately data on outcomes alone provides no convincing

consciously. Nor has our research so far focussed onevidence what information was considered or how it
categorising specific instances of heuristic use along was processed (one alternative heuristic that does con-

these dimensions. We expect that in different circum-

stances the same heuristic might fall into more than one

category.

Formal models of heuristics like Take The Best and
tallying have their roots in the work of Herbert Si-
mon on satisficing and bounded rationality, but also
in early models of heuristics for preferences, such
as Tversky's (1972)Elimination by Aspects, and the
work on the adaptive decision maker Bayne et al.
(1993) Yet most recent work has abstained from for-
malising heuristics or considering the conditions when
they work well Kahneman and Tversky, 199&BC’s
work also differs from those parts of cognitive psy-
chology that are typically strong in modelling, yet rely
on versions of expected utility (no search or stopping
rules; e.g. Prospect Theoritahneman and Tversky,
1979 or on Wald’s sequential analysis (which has stop-
ping rules, but relies on optimisatiohyald, 1947.

Whereas ABC's research explores the benefits of sim-

plicity, other schools of psychology try to explain com-
plex behaviour by building equally complex cognitive
models.

sider all cues also had a high predictive accuracy).
2.4. Clever cues

Some very simple heuristics perform well not be-
cause of the method of combining cues but because
they utilise a single “clever” cue. Loosely speaking,
the heuristic lets the environment do much of the work.
One example is the Recognition Heurist&gldstein
and Gigerenzer, 2002if one alternative is recognised
and the other not, the recognised alternative is chosen
independent of further information. It predicts the con-
ditions for counterintuitive less-is-more effects: Amer-
icans made better inferences about German city sizes
than about American ones, because with American
cities they too often recognised both alternatives and
could not apply the Recognition Heuristic.

Another example of a heuristic relying on a clever
cue is how players catch a ball. To a Martian it might
look like we are solving complex algebraic equations
of motion to compute the trajectory of the ball. Studies
have concluded instead that players might utilise a
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Did prosecution
request conditional
bail or oppose bail?

Did previous court
impose conditions or
remand in custody?

Did police impose
conditions or remand
in custody?

Fig. 3. Simple decision tree based on the bail decision outcomes of London magistrate3t{after 2003. The exact number and choice of
cues depended on which randomly selected subset of judgements formed the learning sample (to which the tree was fitted), but the number o
outcomes predicted in cross-validation was typically 85-92%, and this particular tree described 96% of outcomes in fitting.

number of simple heuristics (e §lcLeod and Dienes,  that players are typically unaware of using this sort of
1996; Oudejans et al., 1999The Gaze Heuristic is  heuristic even though this accurately accounts for their
the simplest candidate and works if the ball is already behaviour. Biologist readers will probably already be
high in the air and travelling directly in line with  asking whether other animals might also use similar
the player: the player fixates his gaze on the ball, heuristics: indeed, maintenance of a constant optical
starts running, and adjusts his speed to ensure that theangle between pursuer and target has been found in
angle of the ball above the horizon appears constanta variety of animals besides humans, including bats,
(Gigerenzer, 2004 Another heuristic better describes birds, fish and insectsShaffer et al., 2004 Surely, it
actual behaviour: it has the same first two building is not the only heuristic that we share with animals.
blocks (fixate and run) but the third one is modified to

keep the image of the ball rising at a constant speed. If

players manage to follow either heuristic, they and the 3. Some simple rules of thumb from biology

ball will both arrive at the same location when the ball

reaches head height; the prediction is not that players = We now consider examples of rules of thumb from
run to a pre-computed landing spot and wait for the biology; there are many more that we could have
ball. Neither heuristic is optimal, in the sense that they chosen. Our aim in this section is to give a broad
miss balls that would be catchable by running as fast flavour of this area of biological research, and so we
as possible towards the point of impact (although the deliberately leave most comparisons with ABC'’s ap-
second heuristic would be optimal if the ball were not proach until later. The diversity of the biological ex-
slowed by air resistance: s&ancazio, 198p Note amples and the lack of theoretical connections between
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many of them are parts of the picture that we wish to
convey.

A recently described example is the method by
which the ant.eptothorax albipennisstimates the size
of a candidate nest cavityiallon and Franks, 2000;
Mugford et al., 2001 Natural nest sites are narrow
cracks in rocks, typically irregular in shape. The ants’
solution is first to explore the cavity for a fixed pe-
riod on an irregular path that covers the area fairly
evenly. While doing this it lays down an individually
distinct pheromone trail. It then leaves. When it re-
turns it again moves around but on a different irregular
path. The frequency of encountering its old trail is used
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there is some particular advantage of each individ-
ual rigorously following simple rules. But other ex-
amples do not concern coordination. Perhaps it is
just that social insects are small animals with small
nervous systems. This might matter because they re-
ally can only follow simpler rules than higher an-
imals, but it could be merely that biologists are
readier to view them as robotically following sim-
ple rules than larger animals that more closely re-
semble ourselves. Instead our suspicion is that the
plethora of good examples of rules of thumb in so-
cial insects is because this way of thinking about
mechanisms happens to have become prevalent in this

to judge size (ratex 1/area). This “Buffon’s needle al-  research community, each new nice example stim-
gorithm” is remarkably accurate: nests half the area ulating similar interpretations of other phenomena.
of others yielded reencounter frequencies 1.96 times Perhaps then, rules of thumb will grow in promi-
greater. nence when researchers on other organisms realise
Another example concerns how the waaplistes the concept’s usefulness. A more pessimistic expla-
dominulus constructs its nestK@rsai and Bnzes, nation is that because social insects are small, study-
2000. The nest is a tessellation of hexagonal cells ing their behaviour is difficult, and our knowledge
that grows as each new cell is added. Up to the incomplete, which allows simple rules of thumb to
15-cell stage only 18 arrangements of cells have beenbe adequate explanations. According to this view-
observed. These arrangements are all compact, whichpoint (suggested to us by a social-insect worker re-
ensures that less new material is required and thatsponsible for some of the nicest examples of rules
the structure is strong. However, these optimality of thumb!), further research will lead to simple rules
criteria are inadequate explanations of why just these of thumb being rejected in favour of more complex
18 arrangements: economy of material predicts 155 mechanisms.
optimal arrangements, whereas not all the observed Some of the earliest analyses of rules of thumb
structures maximise compactness. A better explana- came from considering the varied ways that simple an-
tion is a construction rule in which the wasp places imals locate stimuli Eraenkel and Gunn, 19%0For
each cell at the site where the sum of the ages of theinstance, a copepod (a planktonic crustacean) faced
existing walls is greatest. Age of wall might plausibly with two light sources follows a trajectory as if it
be judged by the concentration of pheromone added were pulled towards each source with a force propor-
at the time of construction or the state of the larva tional to source intensity/distarfceSuch apparently
inside. This rule explains all observed arrangements, complex behaviour is explicable by the simple rule
with one exception that plausibly follows from a small that the animal adjusts its orientation so as to max-
mistake in execution of the rule. Further unexpected imise the amount of light falling on a flat eye. More
forms appear as the nest grows beyond 15 cells, butrecent research has examined how a female moth lo-
then it is plausible that the wasp does not visit all cates a pheromone-producing makenedy, 1988
potential building sites, or that small differences in She applies the simple rule of heading upwind when
wall age get harder to judge as the structure getsthe pheromone concentration lies above a particular
older. threshold. This will not always get her to the male, be-
Social insects provide the richest source of rule- cause variation in wind direction creates a meandering
of-thumb examples (e.gMiller and Wehner, 1988; plume of pheromone. When she breaks out of a plume,
Seeley, 1995; Camazine et al., 2001; Detrain and the lowered pheromone concentration triggers her to
Deneubourg, 2002; Sato et al., 200Some of these  cast back and forth cross wind with increasing ampli-
examples concern mechanisms that ensure that in-tude until she reencounters the plume. Analytic models
dividual behaviour is well integrated, when perhaps have estimated the efficiency of different methods of
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taxis depending on aspects of environmental structure decreases through some sort of habituation response,
such as turbulenceBalkovsky and Shraiman, 2002; but the effect of finding a host further decreases the
Dusenbery, 2001 tendency to staylfriessen and Bernstein, 199Be-

The two other areas of behavioural biology that tween similar parasitoid species there is much varia-
make most frequent reference to rules of thumb are tion in whether finding a host increases or decreases
mate choice and patch-leaving. A paper Ignetos the tendency to stay, but we do not yet know enough
(1980)seems responsible for a tradition in behavioural about the environmental structure in most of these ex-
ecology of modelling mate choice as a process of amples to judge whether the theory explains these dif-
sequential assessment of candidate males. The twoferences an Alphen et al., 2003; Wajnberg et al.,
most discussed rules are for a female to accept the 2003.
first male above a preset threshold or for a female to  Models of patch-leaving decision rules show a his-
view a preset number dfi males and then return to  torical progression from unbounded rationality assum-
the best (“best-ofN” rule). Janetos argued that ani- ing omniscience towards more realistic assumptions
mals follow simple rules that can achieve good but of what information is available. At the omniscient
not optimal performanceJanetos and Cole, 1981  end is the Marginal Value TheorerCljarnov, 197%
Other behavioural ecologists agreed that information specifying that the optimal switching point is when
constraints would restrict what sort of rule could be the instantaneous rate of the reward falls to the mean
used, but preferred to hypothesise that a rule’s pa- rate in the environment under the optimal policy. But
rameters were optimised for the environmeRedl, how should the animal know this mean rate without
19903. However, neither of these two rules explains knowing the optimal policy already®icNamara and
adequately the patterns of return typically observed Houston (1985proposed a simple iterative algorithm
nor effects of the quality of previously encountered by which this might be learnt while foraging efficiently.
males on acceptance decisions, so somewhat moreAnother problem is that when prey are discrete items
complex rules may be necessarkuitbeg, 1996; turning up stochastically, the underlying rate (=proba-
Wiegmann et al., 1996; Hutchinson and Halupka, bility) of reward is not directly observable. The opti-
2009. mality models olwasa et al. (1981and others are one

Patch-leaving rules represent more of a success forresponse to this situation, but another is the simpler
modelling. The idea is that food items occur in patches, rule, not derived from an optimality model, of giving
and that they are depleted by the forager, which should up after a constant time without finding an item. If
thus at some stage move to another patch. The questhe giving-up time parameter is appropriate, the per-
tion is when. The number of food items remaining is formance may come close to that of the optimum rule
unknown to the forager, but it is indicated by the rate (Green, 198} In the real world, in which environmen-
at which it finds items. An elegant optimality model tal parameters are uncertain, it could be that the giving-
derives how the rule of thumb should depend on the up time rule works better than the optimum computed
environment vasa et al., 1981 In an environmentin  for a simple model of the environment. A more re-
which all patches are of similar quality, finding a food cent example concerns when a bee should leave one
item should decrease the tendency to stay because thénflorescence for another; the problem is that bum-
patch has been depleted. In an environment in which blebees increasingly revisit flowers that they have just
some patches are very poor and some very good, find-emptied because they can only remember the last few
ing a food item should increase the tendency to stay, visited.Goulson (2000proposed that a good solution
because the success suggests that it is a better patchthat agreed with bumblebees’ observed behaviour is to
Later, it was realised that if an independent cue was leave once two empty flowers are found. Other work-
available indicating initial patch quality, even in the ers have modified optimality models to incorporate
second type of environment the decremental decision characteristics of known or hypothesised psychological
rule can be bettedriessen and Bernstein, 1999 his mechanisms, such as Weber’s Law, Scalar Expectancy
fits empirical research on the parasitoid wapturia Theory and rate-biased time perceptig@¢elnik and
canescenawhich lays its eggs in caterpillars: the con- Todd, 1992; Todd and Kacelnik, 1993; Hills and Adler,
centration of host scent sets the tendency to stay, this2002.



J.M.C. Hutchinson, G. Gigerenzer / Behavioural Processes 69 (2005) 97-124

4. Heuristics are precise testable models of
proximal mechanism

Having used specific examples to give a flavour first
of the ABC programme and then of biological research
on rules of thumb, we now start to explain more about
the principles and assumptions underlying the former.

The ABC programme has two interrelated components:

the first is to study the heuristics that people actually
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how internet sites, for instance, should present infor-
mation. Using the program Mouselab it is possible to
present information on a computer screen but require
subjects to click on a button to read a cue value, so that
we at least know the order in which they seek informa-
tion and when they stop information searétayne et
al., 1993. Another potential approach is eye tracking.
Combining sources of information is a feature of
decision-making in not just animals but even bacteria

use, the second is to demonstrate in which environ- and plants: for instance, for a seed to germinate in re-

ments a given heuristic performs well. We call the first
the study of the “adaptive toolbox”, and the second the
study of the “ecological rationality” of heuristics. The

sponse to springtime warmth or photoperiod often re-
quires weeks of winter chilling to remove dormancy
(Bradbeer, 1988 this requirement prevents prema-

next two sections address how ABC models the adap- ture germination in autumn. Some insects show strik-

tive toolbox.

ABC is concerned with the cognitive process of
decision-making, and in particular with which sources
of information are considered and how they are pro-
cessed in combination. Our concern is with mecha-
nism, not merely with how behaviour depends on cue
values (what optimality modellers call the policy). Al-

ingly similar requirements before emerginga(ber
and Tauber, 1976 The mechanism in plants cannot
be the same as what is known of the process in the in-
sect brain Williams, 1956, but in principle the same
algorithm might describe how the cues interact. ABC's
level of analysis is algorithmic, in the senseMéarr
(1982) One advantage of this approach is that conclu-

though observations of the policy can lead us to reject sions might apply across different decisions and dif-

some candidate mechanisms, this is not a sufficient testferent organisms; indeed, they also have relevance for
because a variety of mechanisms can generate identi-programming computers. Another advantage is that al-
cal policies. For instance, Take The Best makes deci- gorithmic explanations are often simple enough to be

sions indistinguishable from multiple regression if the readily comprehensible. To understand how comput-
cue weights are non-compensatory. They are, however,ers perform a sorting task, for instance, it is natural to

distinguishable if one can monitor how many cues are seek explanations at the algorithmic level, ignoring the

examined and in which order. chip’s circuitry.

Much decision-making depends on information al- In some invertebrates remarkable progress has been
ready present in memory. We cannot rely on self- made in explaining some aspects of cognition in terms
reports to know how we access such memories, but of the underlying neurobiology, although gaps in our
some information is obtainable from timing. For in- knowledge remain in even the best-known systems
stance, one might hypothesise that humans rank two-(e.g. olfactory learning in honeybeddenzel, 2001;
digit numbers using the lexicographic strategy of first Menzel and Giurfa, 2001 There is no prospect in the
comparing the first digits alone, and only in the case of near future of the kind of cognitive processes that ABC
a tie looking at the second digit. In this example, the considers in humans becoming understandable in such
lexicographic heuristic must be rejected because exper-terms. However, brain imaging does provide a window
iments have shown that the timing of the decision does to test whether some of the hypothesised processes oc-
depend on the second digit even if the first digits differ cur. Heuristics are assumed to exploit evolved abilities
(Moyer and Landauer, 19%.7 such as recognition memory (Recognition Heuristic),

It is an open question whether the same heuristics recollection memory (Take The Best), and object track-
are used when the information is external in the envi- ing (ball-catching heuristics). Therefore, one can test
ronment as when it is already in internal memory. The whether, in situations where people act as predicted by
results ofBroder and Schiffer (2003uggest a differ-  a given heuristic, brain areas that are known to specifi-
ence. But external search, besides being much morecally reflect the corresponding ability are activated. The
tractable to study, is of importance in its own right, and first study of this kind has used functional Magnetic
also of practical relevance in formulating advice about Resonance Imaging (fMRI) to test whether decisions
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made when the Recognition Heuristic can be applied so for routine decisions, and also whether it is adaptive
are indeed accompanied by activation of brain regions for them to bother.

underlying recognition memory but not of those un- The heuristics that ABC has proposed are highly
derlying guessing or recollection memoiyo{z et al., specified; they are readily convertible to computer code
in press. and they yield bold quantitative predictions that are

A complementary approach to testing the physical amenable to testing. This contrasts with most models
reality of a proposed heuristic is to attempt to model of heuristics in cognitive psychology, which are often
it using a framework such as ACT-R\(derson et al., specified only at a level of detail described by block
2004). This is based on a restricted set of processing diagrams and arrows indicating that one quantity has
modules the properties of which are constrained by some unquantified influence on another. Such models
numerous independent studies. Translating a heuristicare typically so vague in their predictions that they are
into ACT-R both confirms that it is cognitively plausi- impossible to test. In order to facilitate rigorous testing,
ble and makes testable predictions about reaction timesABC tries to avoid heuristics with free parameters that
and fMRI results. ABC has made a start with using mustbe fitted anewto each dataset orto eachindividual,
ACT-R, for a model of a version of the Recognition unless they can be estimated independently. This is not
Heuristic (L. Schooler, R. Hertwig, personal commu- because we necessarily deny that, forinstance, there are
nication). individual differences in personality that might affect
The heuristics that ABC describes may rely oninput how or which heuristics are applied.
variables that require complex calculations to compute.  Given that real heuristics have not been written by
For instance, the ball-catching heuristics rely on the a programmer but have evolved by the messy process
ability to track a moving object against a noisy back- of natural selection, and given that they are enacted by
ground, which is developing in two- or three-month-old neurones not silicon, ABC’s precisely specified models
infants Rosander and von Hofsten, 2Q0But which is seem likely to be simplifications capturing the broad
extremely difficult to program computers to do. ABC’s  principle but eventually requiring adjustments in the
heuristics exploit these abilities but do not attempt to detail. Nevertheless, on the current evidence perhaps
explain their mechanisms. The underlying assumption less adjustment will be necessary than one might sup-
is of a hierarchical organisation of cognitive process- pose.
ing: heuristics on top of evolved or learned abilities.
There is good evidence of a hierarchy in insects, be-
cause much of the processing is peripheral and elec-5. The attractions of simplicity
trodes can monitor what information is passed on to
the central nervous system. It is less clear how wellthe  The heuristics studied by ABC are simple in com-
assumption holds in vertebrates. ABC does not claim parison with standard statistical procedures applied to
that algorithmic models are necessarily the best level the same task. Proposals by other psychologists for how
of analysis for all that goes on in brains. The peripheral our minds tackle these tasks typically also involve more
processing in retinas, for instance, can involve clever complex processes such as Bayesian probability updat-
neuronal circuitry that perhaps is better analysed with ing. Part of the reason why ABC'’s heuristics can be
models of neural networks. The same argument may simple is that as their input they can utilise evolved or
apply to some higher level capabilities in humans: face highly trained abilities, such as recognition memory,
recognition and language processing are possible in-that may involve complex data processing.
stances. A computing analogy might be some time- It is not just Occam’s Razor that has made ABC
critical task that has been written in machine code favour simple models. But we will start off by men-
(or perhaps even out-tasked to a special video chip) tioning the weakest reason. That is that with simple
and thus remains opaque to another programmer whoheuristics we can be more confident that our brains are
knows only higher level languages (dbdd, 1999. capable of performing the necessary calculations. The
Equally, ABC does not deny that humans can con- weakness of this argumentis thatitis hard to judge what
sciously perform highly complex calculations to com- complexity of calculation or memory a brain might
pare options. The question is whether they trouble to do achieve. At the lower levels of processing, some hu-
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man capabilities apparently involve calculations that tance. For instance, the memory capabilities of small
seem surprisingly difficult (e.g. Bayesian estimationin food-storing birds seem astounding by the standards
a sensorimotor contexkKording and Wolpert, 2004 of how we expect ourselves to perform at the same
So, if we can perform these calculations at that level task Balda and Kamil, 1992 Some better examined
in the hierarchy (abilities), why should we not be able biological examples suggest unexpected complexity:
to evolve similar complex strategies to replace simple for instance, pigeons seem able to use a surprising di-
heuristics? versity of methods to navigate, especially considering
One answer is that simple heuristics often need ac- thatthey are not long-distance migrantéischko and
cess less information (i.e. they are frugal) and can thus Wiltschko, 2003 but cf. Wallraff, 2001). The greater
make a decision faster, at least if information search specialism of other animals may also mean that the en-
is external. Another answer, and a more important ar- vironments that they deal with are more predictable,
gument for simple heuristics, is the high accuracy that and thus that the robustness of simple heuristics may
they exhibit in our simulations (e.g. séég. 1). This no longer be such an advantage (cf. the argument of
accuracy may be because of, not just in spite of, their Arkes and Ayton, 1999that animals in their natural
simplicity. In particular, because they have few param- environments do not commit various fallacies because
eters they avoid overfitting data in a learning sample, they do not need to generalise their rules of thumb to
and consequently generalise better across other samnovel circumstances).
ples. The extra parameters of more complex models A separate concern is that for morphological traits
often fitthe noise rather than the signdidcKay, 1992; there are plenty of examples of evolution getting stuck
Hertwig and Todd, 2003 Of course we are not saying on a local adaptive peak and not finding its way to the
that all simple heuristics are good: only some simple neatest solution. The classic example is the giraffe’'s
heuristics will perform well in any given environment.  recurrent laryngeal nerve, which travels down and then
Although we would argue strongly that ABC has back up the neck because in allmammals itloops round
made an important advance in demonstrating how well the aorta. Nobody knows how common such a situation
simple frugal heuristics can perform, we do not yet might be with cognitive traits. It could be that humans’
know how generally the claim of “simple is good” can ability to learn through experience makes them more
be extended. Inthe hope of stimulating others to test our readily adopt simple heuristics than other animals that
claims, we now play the devil’'s advocate and question are more rigidly programmed and where natural selec-
the generality of our results. For instance, we cannot tion alone is responsible for the adaptation.
claim to have evidence that simple heuristics perform  Another way to consider the recurrent laryngeal
better than more complex ones for every task. More- nerve is that it may be simple in terms of what is easy
over, even in the tasks that we have investigated, we for existing embryological processes to engineer. We
have inevitably not considered all possible heuristics, can only make plausibility arguments about what algo-
and the set considered is biased towards simplicity, so rithms are difficult for an organism to build or evolve.
we cannot be sure that there are not other more complexThose that are simple to engineer need not be those
heuristics that achieve equally impressive performance. that are simple to describe: a perfect linear response is
For instance, although one strength of simple heuris- simple to describe but perhaps often difficult to engi-
tics is that they generalise well by avoiding overfitting, neer physiologically. For instance, nectivorous insects
other much more complex statistical procedures have judge meal volume with stretch receptors in their guts,
also been designed to avoid overfitting (e.g. classifi- but the way these receptors work results in a non-linear
cation and regression trees, CARTHig. 1; Breiman responseReal, 1992 Artificial neural networks may
etal., 1984 provide some guidance about what sorts of process-
It is tempting to propose that since other animals ing is easy or hard to engined®éal, 1992; Webb and
have simpler brains than humans, they are more likely Reeve, 2008 However, what is easy to hardwire need
to have to use simple heuristics. But a contrary argu- not be easy to calculate consciously. For humans acting
ment is that humans are much more generalist than consciously, a weighted-additive calculation is much
most animals, and that animals may be able to devote harder than tallying (weights all unity), but for an in-
more cognitive resources to tasks of particular impor- sect specialised on a specific task, evolution can have
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hardwired the weights (for instance, by controlling sen- result that has worried behavioural biologists is that
sitivity of the receptors for different cues); then the in- in operant “self-control” experiments animals tend to
sect need simply tally these ready-weighted cues, yet forgo the option with a higher long-term reward rate
it achieves what to us looks like a harder weighted- in favour of one in which less food is delivered but
additive calculationKranks et al., 2003 with less delayl(ogue, 1988 RecentlyStephens and
Anderson (20013uggested that a rule of thumb based
on maximising short-term gain rate makes adaptive
6. Adaptation and ecological rationality sense when the same reward structure as in the self-
control experiments is presented in a patch-leaving
The following sections deal with the fit of the context. In that context the difference in short-term
heuristics to the environment, which ABC refers to as rates between staying a short time or a long time in a
ecological rationality. In this section, we compare and patch agrees with, and even amplifies, the difference in
contrast this with biologists’ concern with adaptation. long-term rates (see al$teal, 1992; Stephens, 2002
Adaptation is the assumption underlying optimality and cf.Kareev, 200D The argument is that the op-
modelling, a technique that has dominated behavioural erant self-control task in which the decision rule had
ecology, and the next section will consider how useful first been recognised, and in which it appeared dele-
this might be in investigations of cognitive mechanism. terious, is an artificial situation, which played no part
We will then turn from mechanisms to the other blade in the rule’s evolution or maintenance. Such a result
of Simon'’s scissors (1990the environment. mirrors some of ABC’s work (and that of other psy-
ABC's research programme is very much concerned chologists) pointing out that what have been viewed as
with heuristics working well in the environment in  maladaptive biases in humans are the by-products of
which they perform. Biologists mostly deal with rules rules that make adaptive sense in an appropriate envi-
of thumb that are adapted through natural selection, but ronment (e.gArkes and Ayton, 1999; Hoffrage et al.,
the human heuristics that ABC studies have also been2000; Gigerenzer, 200Chapter 12).
honed by individual or cultural learning of what works The biologists’ evolutionary perspective at least
well. Alikely possibility is that natural selection has set made them hanker for an adaptive explanation for the
humans up with a set of heuristics (the adaptive tool- self-control results. Biologist readers may be amazed
box:Gigerenzeretal., 199@ach member of whichwe that adaptation is not at all a universal consideration
can readily learn to apply as appropriate to a specific in psychology. In fact, human psychologists do have
environment. Or the building blocks of heuristics (such a plausible defence. Many argue that our brain has
as when to stop search) might be readily recombined to evolved as a general-purpose calculating machine and
create novel heuristics suitable for a novel task. These that most of its capabilities, such as a facility at chess,
possibilities deal with the objection that humans have are mere by-products, which have not been subject
not had time to evolve heuristics to cope with today’s to direct selection. Allied to the general-purpose-
environments. If two environments share a common calculating-machine viewpoint is the normative
statistical structure, the same heuristics will work well. assumptions of the heuristics-and-biases school of
We require only a mechanism for learning or reason- Kahnemann and Tversky, that heuristics should be
ing which heuristic from our toolbox works bestin a judged by whether they follow the rules of logic
novel environmentRieskamp and Otto, submitted for  (Gilovich et al., 2002 Philosophically, ABC argues
publication). instead that what matters is not logic but performance,
The idea of adaptation is, of course, old hat to most and that in real environments many so-called biases
biologists; they see no reason to believe that cognition are adaptive Gigerenzer, 2000Chapter 12). And
is not adapted like everything else—hence, the field of empirically we have found it a highly illuminating
cognitive ecology Dukas, 1998; Shettleworth, 1998  research strategy to apply the working assumption
Nevertheless, biologists face the same problem as psy-that our decision-making heuristics fit the statistical
chologists that much behaviour must be studied in the structures in our environments.
artificial environment of the laboratory where its adap- By “adaptation” biologists imply not only that a trait
tive significance need not be obvious. For instance, one fits the environment but that it has been shaped by the
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environment for that task. Therefore, claims of adap- ically rational deliberately omits any implication that
tation of heuristics are vulnerable to the arguments of this is why the trait originally evolved, or has current
the biologistsGould and Lewontin (1979who were value to the organism, or that either heuristic or envi-
concerned about many claims of adaptation in biol- ronment occur for real in the present or past. Ecologi-
ogy being mere “just-so stories”. Unfortunately, hu- cal rationality might then be useful as a term indicating
man psychologists are not able to utilise many of the a more attainable intermediate step on the path to a
lines of evidence that biologists apply to justify that a demonstration of adaptation. There is nevertheless a
trait is adaptive. We can make only informed guesses risk that a demonstration of ecological rationality of
about the environment in which the novel features of a given heuristic in a given environment will mislead
human brains evolved and, because most of us growsomeone who uses this evidence alone to infer adap-
up in an environment very different to this, the cog- tation. Think of the Victorian habit of noting the most
nitive traits that we exhibit might not even have been fanciful resemblance of an animal to a part of its en-
expressed when our brains were evolvilgpgkins, vironment as an adaptation. This reached its apogee in
1982 p. 38). Biologists use a more detailed fit of trait such ridiculous illustrations as pink flamingos camou-
to environment as evidence for adaptation, but becauseflaged against pink sunsetgguld, 1991 Chapter 14;
simple heuristics have few characters (e.g. parameters),sexual selection is the real explanation for most bright
even this approach may be unavailable. plumage).

It thus would be a weak argument (which ABC
avoids) to find a heuristic that humans use, then search
for some environment in which that heuristic works 7. Why not use optimality modelling?
well, and then claim on this basis alone that the heuris-

tic is an adaptation to that environment. The heuristic
may work well in that environment, but that need not

be the reason why it evolved or even why it has sur-
vived. For instance, our colleagues L. Schooler and R.
Hertwig (personal communication) have constructed
a model demonstrating that for a type of Recognition
Heuristic it can be beneficial that we forget out-of-date

information at a certain rate; but memory is used for a
diversity of other purposes, so they rightly avoid claim-

ing that this model explains the length of our memories.

Optimality modelling is used in behavioural ecology
mostly as a test of whether a particular adaptive argu-
ment explains a particular phenomenon. The model is
constructed to include the components of the expla-
nation (maximised currencies, constraints, trade-offs,
etc.) and often a deliberate minimum of anything else.
The next stage is to calculate the optimal behaviour
given these assumptions. If these predictions match
empirical data, one can claim to have a coherent expla-
nation for why that behaviour occurs. Sometimes the

To claim adaptation, itis at least necessary to check thatmatch occurs only over a restricted range of a model
the heuristic is generally used only in environments in parameter, in which case measuring or varying the cor-
which it works well and better than other heuristics that responding characteristic in the real world offers a fur-
we use in other contexts. ABC's empirical research pro- ther empirical test. In the absence of a match, a new or
gramme has yet to develop this far, although there is modified explanation must be sought.

no barrier to it doing so. ABC'’s concern with adaptation to the environment

ABC avoids the difficult issue of demonstrating
adaptation in humans by defining ecological rational-
ity as the performance, in terms of a given currency, of
a given heuristic in a given environment. We empha-

might seem to ally it with optimality modelling. Much
of ABC's research has involved finding what decision
rules workwell in a model environment; optimality
modelling involves finding what decision rules work

sise that currency and environment have to be specifiedbestin a model environment. In both instances good
before the ecological rationality of a heuristic can be performance is the basis of predictions, or even expec-
determined; thus, Take The Best is more ecologically tations, about the rules actually used. Optimality mod-
rational (both more accurate and frugal) than tallying elling has the attractions that there is no arbitrariness in
in non-compensatory environments, but not more ac- deciding whether a heuristic works well enough, and
curate in compensatory ondsd. 2). Unlike claiming no uncertainty whether there might be another better
that a heuristic is an adaptation, a claim that itis ecolog- heuristic that one had not thought of. Moreover, it has
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proved its practical utility in dominating the successful cisions might usefully respond, although it may be indi-
fields of behavioural ecology and biomechanics, mak- rect cues that are actually used. Conversely, optimality
ing testable predictions that have not only stimulated modelling is helpful in pointing out what aspects of the
empirical research but also strikingly often been well environment a decision heuristic should ignore. In cer-
supported by the data. So, why does ABC not take this tain cases the optimal policy may be so simple thatitcan
road? be generated by a simple heuristic. Forinstance, ifitems
Typically one prediction of an optimality model are randomly (Poisson) distributed across patches,
is the policy, which describes what behaviour is Iwasaetal. (19813howed that the optimal leaving rule
performed given any specified value of an individual's is to spend a constant time in each patch regardless of
external environment and internal state. Although the foraging success. In other cases an examination of the
policy can itself be viewed as a decision rule, it is form of the optimal policy can suggest a heuristic that
the mechanisms generating policies that interest ABC would come close to generating such a policy. Thus, for

and other psychologists. Behavioural ecologists do
believe that animals are using simple rules of thumb
that achieve only an approximation of the optimal
policy, but most often rules of thumb are not their
interest. Nevertheless, it could be that the limitations of
such rules of thumb would often constrain behaviour
enough to interfere with the fit with predictions. The
optimality modeller’s gambit is that evolved rules of
thumb can mimic optimal behaviour well enough not
to disrupt the fit by much, so that they can be left as a
black box. It turns out that the power of natural selec-
tion is such that the gambit usually works to the level

a different patch-leaving modegreen (1984plotted
against the time spent on the patch the critical num-
ber of prey items that must have been found to make
it worthwhile to stay longer. The calculations required
were computationally involved but the thresholds fell
quite close to a straight line through the origin, suggest-
ing a simple rule that would perform close to optimally.
(2) If enacting the optimal policy would require,

say, unrealistically extensive knowledge or demanding
memory requirements to be achievable, it is possible
to introduce more realistic information constraints into
an optimality model. Several optimality models exam-

of accuracy that satisfies behavioural ecologists. Given ine the effects of a restricted memory on performance

that their models are usually deliberately schematic,
behavioural ecologists are usually satisfied that they
understand the selective value of a behaviour if they
successfully predict merely the rough qualitative form
of the policy or of the resultant patterns of behaviour.
But ABC’'s focus on process means that it is
concerned with a much more detailed prediction of
behaviour. A good model of the process can lead to
predictions of behaviour that differ from standard
optimisation models or for which optimisation models
are mute. For instance, the ball-catching heuristics
mentioned in Sectio@ predict that the player catches
the ball while running, the precise running speeds,
and when players will run in a slight arc. All these
predictions concern observable behaviours. The
example ofPolistesnest construction (Sectid) also

and behaviour (e.ddutchinson et al., 1993; Roitberg

et al., 1993; Rlisle and Cresswell, 199.More com-
mon, and differing only in degree of specification, is to
constrain the rule of thumb to be of a particular non-
optimal form but use optimality to specify the values
of any parameters. The expectation is that an adapted
heuristic lies on a local optimum. Such an approach
has been used both by biologists and members of ABC
for mate choice rulesReal, 1990b; Wiegmann and
Mukhopadhyay, 1998; Todd and Miller, 1999; Hutchin-
son and Halupka, 2004andReal (1990a)points out
that in the appendix to Simon’s classic paper on sat-
isficing, Simon (1956)also uses optimality to set the
threshold. As we learn more about an organism’s sen-
sory and cognitive capacities, and so can add ever more
realistic constraints to an optimality model, one might

showed how much more specific process models canhope that the different approaches converge in their

be.

Nevertheless, there are several ways in which op-
timality modelling can help to suggest what rules of
thumb the animal uses.

(1) The optimal policy provides clues. It does at
least indicate aspects of the environment to which de-

predictions.

(3) Optimality modelling can be applied to the pro-
cesses of gathering information and stopping search.
ThusFawcett and Johnstone (20G3)Iculated the op-
timal order of cues to examine given cues that differed
in costs and informativenedauttbeg (1996%alculated
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how a female should concentrate sampling effort on 1999. However, there remains a more fundamental
those males that earlier had appeared the most promis+teason for ABC’s objection to the routine use of the
ing. optimality approach. There are a number of situations
(4) Optimality modelling may help us in providing  where the optimal solution to a real-world problem can-
a gold standard against which to compare performance not be determined. One problem is computational in-
of candidate heuristics. If a simple heuristic performs tractability, such as the notorious travelling salesman
almost as well as the optimum, there is less need to problem (awler et al., 198% Another problem is if
search further for a better heuristic. An ABC paper in there are multiple criteria to optimise and we do not

this spiritisMartignon and Laskey (1999\hich com- know the appropriate way to convert them into a com-
putes a Bayesian network against which to compare themon currency (such as fitness). Thirdly, in many real-
performance of Take The Best. world problems it is impossible to put probabilities

(5) Any fine-scale mismatch between optimality on the various possible outcomes or even to recog-
prediction and observation can be suggestive of what nise what all those outcomes might be. Think about
rule of thumb is being used (although there are other optimising the choice of a partner who will bear you
potential reasons for a lack of fit—errors in model many children; it is uncertain what partners are avail-
specification, evolutionary time lags, etc.). Even if the able, whether each one would be faithful, how long
nature of the mismatch does notitself suggest the rule of each will live, etc. This is true about many animal de-
thumb, it at least highlights a problem to which the so- cisions too, of course, and biologists do not imagine
lution may be the mechanism used by the animal. Thus, their animals even attempting such optimality calcula-
Muller and Wehner (1988)vere stimulated by the tions.
systematic errors that ants make in path integration (i.e.  Instead, the behavioural ecologist’'s solution is to
their deviation from the optimal solution of heading find optima in deliberately simplified model environ-
straight back to the nest) to suggest a rule of thumb that ments. We note that this introduces much scope for mis-
explains these errors. This rule is to average the anglesunderstanding, inconsistency and loose thinking over
of each outward step, weighted by the distance moved. whether “optimal policy” refers to a claim of optimal-
Another example is that the classic optimality models ity in the real world or just in a model. Calculating
of diet choice predict a sudden switch from complete the optima even in the simplified model environments
unselectivity to complete specialisation as density in- may still be beyond the capabilities of an animal, but
creases. However, experiments typically find gradually the hope is that the optimal policy that emerges from
increasing partial preferences instead (Krgbs et al., the calculations may be generated instead, to a lesser
1977). This was the stimulus to suggest various refine- level of accuracy, by a rule that is simple enough for
ments that would explain the difference, such as that an animal to follow. The animal might be hardwired
the birds make discrimination errors, or that they have with such a rule following its evolution through natu-
to estimate prey density or value with learning rules ral selection, or the animal might learn it through trial
that are sensitive to runs of bad luck. Such constraints and error. There remains an interesting logical gap in
and mechanisms can be incorporated in a new generathe procedure: there is no guarantee that optimal so-
tion of more realistic optimality models (e.Bechten lutions to simplified model environments will be good
et al., 1983; McNamara and Houston, 1987ajifle solutions to the original complex environments. The
and Cresswell, 1997 As long as the additional hy-  biologist might reply that often this does turn out to be
potheses are confirmed by testing further independentthe case, otherwise natural selection would not have al-
predictions, this process of successively improving lowed the good fit between the predictions and observa-
models can progressively inform us about cognitive tions. Success with this approach undoubtedly depends
mechanismsGheverton et al., 1985 on the modeller’s skill in simplifying the environment

Thus we would encourage optimality modellers to in a way that fairly represents the information avail-
consider decision processes to be interesting topics thatable to the animal. The unsatisfying uncertainty of how
theirtechnique mightaddress. Indeed, the rational anal-to simplify is often not appreciatedookstaber and
ysis school of psychology has had some success with Langsam (1985argue that by choosing simple models
that approachAnderson, 1990; Chater and Oaksford, with many of the uncertainties ignored, we introduce
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a bias in the optimal behaviour predicted, favouring negative correlations with each other (specifying that
complex rules over coarser ones. high values of a cue always indicate, other things being
The same criticism about simplification of real en- equal, a better optionjohnson et al., 1989; Shanteau
vironments can also be made of any simulation of a and Thomas, 2000 Negative correlations might be
heuristic in a model environment, so much of ABC' s typical of competing commercial products, because,
research is as vulnerable to the argument as optimal-for a product to survive in the market place, traits in
ity modelling. ABC has tried to avoid the criticism by  which it is weak must be compensated by other desir-
using data from a variety of real-world environments. able features (e.g. for cars, a low maximum speed may
(This technique is rare in biology, but an analogous ex- be associated with low price or high safety). This is
ampleisNakata etal.’s (2003psting of web-relocation  a different environment structure from city sizes, and
rules in spiders; rather than make assumptions aboutalso perhaps from male traits used by females for mate
the temporal and spatial autocorrelations in prey cap- choice, where quality variation might be expected to
ture rates, they used observed rates from sticky trapsgenerate a positive correlation between all traits (which
set out in the field.) ABC demonstrated the high per- is observed in some examples, but others show no cor-
formance of Take The Best on a diverse set of 20 relation: Candolin, 2003 Other aspects of environ-
real-world problems@zerlinski et al., 1999 It was ment structure that ABC has analysed are “scarcity”
hoped that the environmental structures in these exam-(the number of objects relative to the number of cues
ples would be representative of problems in other do- in the learning sampléjlartignon and Hoffrage, 2002
mains. However, these supposedly real-world problems and the skewness of frequency distributioRitwig
are still gross simplifications from the sorts of decisions et al., 1999.
that we really face. For instance, the performance cri-  Behavioural ecology has also considered what as-
teria were just frugality and accuracy, it had already pects of the environment favour different rules of
been determined which cues were available, and therethumb, but often by using analytic techniques in com-
were no search costs. Another limitation is that one bination with the optimality approach. We have already
can judge how far the performance results are generalmentionedwasa et al.’s (19813lerivation of optimal
to other decision problems only by understanding what patch-leaving rules, showing that how evenly prey are
statistical structures in these environments influenced spread amongst patches determines whether a prey cap-
performance of the heuristics tested. The best way to ture should make the predator more or less likely to
prove that a statistical structure has the hypothesisedmove. Another example i8icNamara and Houston’s
effect on performance is to construct simple model (1987b)derivation of how the forgetting rate of a sim-
environments. ple linear-operator memory rule should depend on the
rate at which the environment changes.
Autocorrelation in food supply may be an impor-
8. Environment structure tant aspect of environment structure for animals. One
would predict that nectar-feeders would avoid return-
It should already be clear that ABC has an interest ing to a flower immediately after exploiting it, but
in identifying what statistical properties of the environ- return once it has had time to refill. Whereas bird
ment allow particular heuristics to perform well. Their species feeding on aggregated cryptic invertebrates re-
identification enables us to predict in which environ- main in a good spot (win-stay), nectar-feeding birds
ments a heuristic is used. We might then go on to ask indeed tend to “win-shift” in the short-terB(irke and
whether such statistical properties are easy to recog- Fulham, 200R Even naive captive-reared honeyeaters
nise, and hence how a heuristic for selecting appropri- Xanthomyza phrygiaore easily learned to win-shift
ate heuristics might work. than win-stay with short delays between feeding ses-
When describing the example of Take The Best sions, but vice versa with long delayBurke and
we have already mentioned two pertinent aspects Fulham, 2008 An easy rule to ensure returning at
of environment structure, whether the cues are non- regular intervals to a resource is to follow the same
compensatoryKig. 2) and the size of the learning sam-  route repeatedly; such traplining behaviour is shown by
ple (Fig. 1). Another aspect is whether cues show many nectar-feeding birds and insects as well as birds feed-
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ing on flotsam along stream edges (edJgavies and between visits, but increase them if weaker production
Houston, 1981; Thomson, 19p6&patial, rather than  caused the decline.
temporal, autocorrelation may be the important statis-  In the case of many social situations, what heuris-
tical structure determining movement rules for species tic is adaptive for one player depends on the heuristic
feeding on non-renewing hidden food (eBggnhamou, used by another. If this is mutual, the obvious method of
1992; Fortin, 200B analysis is game theory, which is widely used in theo-
retical biology. Most biological game theory centres on
finding the Evolutionary Stable Statéaynard Smith,
9. Social rationality 1982, where both players behave optimally given the
strategy of their opponent. This takes us back to ABC'’s
For both humans and animals, an important compo- objections to routinely using an optimality approach,
nent of their environmentis social; thatis itis generated but many game-theoretic biological models are often
by other individuals. Even plants can be considered to so abstract that the lack of realism of strategies such
show social heuristics: for instance, seeds may use cuesas hawk and dove is not an issue. This does not mean
such as daily temperature fluctuations to sense whenthat they need be useless in helping us understand rules
competitors are abseritifompson and Grime, 1983 of thumb; for instance, game-theoretic analysis of the
A simple human example of an adaptive social heuris- handicap principle has transformed our expectations of
tic is to copy the choice of meal of someone who is what sorts of mate-quality cues are attende@i@fen,
more familiar with the restaurant. 1990. Nevertheless, as game-theoretic models become
There has been much analysis in both the human andtailored more closely to real situations, it can turn out
biological literature concerning when it pays to copy to be critical how we model what information is avail-
other individuals (e.gHenrich and Boyd, 1998; Sirot, able to each player, and thus how they can “negotiate”
2001). One specific example concerns escape flights (e.g.Barta et al., 200R
in flocks of wading birds. Birds in a flock that see Indeed, it is up to the modeller to specify the strat-
their neighbours flying up should immediately copy egy set, and there is no reason why this cannot be re-
them if it was a predator that alarmed the first bird. But stricted to plausible rules of thumb. Ongoing research
how to avoid numerous false alarms? Checking for the at ABC (J.M.C. Hutchinson, P.M. Todd, C. Fanselow,
predator themselves may be unreliable and cause de{personal communication) considers adaptive car park-
lay, so instead.ima (1994)suggested that they might ing heuristics in this context: the best heuristic for de-
use the simple rule of flying only if at least two other ciding whether to accept a parking space now or try
birds in the flock have flown up simultaneously. Mod- closer to the destination depends on the patterns of
elling confirms that this is an efficient strategy except cars in the car park, which depend on the heuristics
when flock size is smalRroctor et al., 2001 and there used by other drivers. We set up computer tournaments
is also empirical evidence of its us€rgsswell et al., between different candidate heuristics, each of which
2000. could vary in at least one parameter. The car park lay-
Not all social heuristics involve copying, and inter- out was kept constant but the less successful heuristics
action may be only indirect. For instandéyuijsman et were less likely to be reused by drivers. The frequencies
al. (1995)considered simple rules responding to nectar of competing strategies and of their parameter values
volume that bees might use to choose between alterna-were then left to “evolve”. The victorious heuristic re-
tive patches of flowers. Although these rules seemed quired that two conditions be satisfied for a space to
maladaptive when applied to an individual foraging be accepted: one was that it lay within a fixed distance
in isolation (they cause matching), they made good of the destination, and the other that the local density
sense in an environment where there are competitorsof spaces was low. Leaving aside the question of how
for the nectar (they then produce an ideal free distribu- representative our single car park is of the diversity of
tion). With hummingbirds sometimes an individual has real parking situations, our model is unrealistic in how
a flower to itself, and sometimes competitors also visit deterministically the rule frequencies adjust depending
(Gill, 1988). If a flower’s nectar supply declines be- on average performance in the preceding generation. In
cause of competition, the bird should decrease intervals reality, each person is likely to show lots of noise in the
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strategies they use, which can considerably affect what voting methods restrict the sorts of heuristics that an
strategies are favoured in responbtcifNamara et al., ant colony can use to choose between nest sites. They
2009). So, there is a long chain of uncertain reasoning considered such models as satisficing, Elimination by
involved in a fully game-theoretic analysis. An alter- Aspects and lexicographic strategies, but produced firm
native approach would be simply to calculate which evidence both that ants consistently select the best site
heuristics performwellin response to patterns of spacesand that even the least important cue could affect a

observed on real streets.

decision. Thus, a weighted-additive model fitted best.

Computer tournaments between simple strategies They argued that such a mechanism may be inevitable

were also the original method of analysis of the Iter-
ated Prisoner’s Dilemma gamé&xelrod and Hamilton,
198]) in which one of the simplest strategies, Tit for
Tat, was the victor. Tit for Tat has stood up remark-
ably well to new challengers, although recently a more
complex rule has been claimed as supetitaiert and
Stenull, 2002 More important is that this paradigm has
been influential in getting both economists and biolo-
gists thinking in terms of simple algorithmic response
strategies, with sometimes deliberately limited cogni-
tive abilities Hoffmann, 200. Unfortunately, existing
claims of animals using Tit for Tat are unconvincing
(Hammerstein, 2003 part of the problem is that real
biological situations are much more complex than the

in a parallel-processing superorganism in which the
method of decision is roughly counting votes of indi-
vidual workers weighted by their individual enthusiasm
fortheir single site. This mechanism makesitinfeasible
that the colony could consider attributes successively in
turn even if a non-compensatory environment structure

would favour this.

10. How biologists study rules of thumb

Having now explained the principles behind the
ABC programme, we concentrate again on biological
research on rules of thumb. In this section we contrast

Iterated Prisoner’s Dilemma game, so that other strate- the techniques of the two disciplines.

gies become available.
Another aspect of social rationality that ABC has
started to investigate is the mechanisms by which in-

Many behavioural ecologists are interested mostly
in the ultimate function of behaviour. To them rules
of thumb may mostly seem important in providing a

dividuals in a group amalgamate their separate knowl- possible excuse if their optimality models fit only ap-

edge or judgements to make a group deciskReifher
and Katsikopoulos, 2004Maybe there is something to

be learntin this regard from research on group decision-

making in social insects. For instancgeley (2003)

proximately. Then there are rarer behavioural biolo-
gists who, very much like ABC, do have an interest in
the adaptation of rules of thumb. They may use simi-
lar simulation techniques to compare the performance

considers how honeybees use simple rules to compareof different rules of thumb. For instancklpuston et

the quality of different potential nest sites even though al. (1982)considered how a forager should decide be-
no individual need have visited more than one site. tween two resources providing food items stochasti-
Scouts that have discovered an inferior nest site ad- cally each with an unknown reward rate (a “two-armed
vertise it (dance) less vigorously and for less time. Re- bandit”). Candidate rules of thumb included “Win-stay,
cruits are consequently more likely to visit the better Lose-shift”, probability matching, and sampling each
sites, and dancing for inferior sites dies dseley and resource equally until one had yieldegohore successes
Visscher (2003, 2004discuss why it is adaptive that than the other. Which was the best rule depended on
the colony moves when a critical-sized quorum (10-15 the environment, although the first two examples were
individuals) agree on one site, rather than waiting for generally the worst.
a consensus or majority. This sounds like satisficing  The simulation approach hasthe limitation that there
in that the colony takes the first option exceeding a is no guarantee that there are not simpler or better rules.
threshold, but it is not a case of ignoring all but the One testisto give areal animal exactly the same task as
first acceptable site, because scouts may already havehe simulated agents and compare performance: thus,
visited other sites and competed to recruit nestmates. Baum and Grant (200Xpund that real hummingbirds

A similar quorum rule has evolved in an®rétt et did better in two of their three model environments than
al., 2003. Franks et al. (2003rgued that this and other  did any of the simulated simple rules of movement. An-
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other check on the biological relevance of postulated a smallish and moving object; they then approached
rules of thumb is to compare behaviour of the simulated closely downwind to check its scent, jumped on it, and
agents with that of real animals. Some papers use thethen could use tactile or taste cues to further check its
same simulation model to predict both behaviour and suitability. Although the right scent was necessary as
performance (e.gVajnberg et al., 2000In this exam- a second stage, and although they could retrieve lost
ple, the parameters of the patch-leaving rule were first prey items by scent alone, without the initial move-
estimated from experimental data, but then varied to ex- ment stimulus a correctly smelling dead bee attracted
amine which mattered for performance. Other papers no interest. Tinbergen was also surprised that, although
use simulation only to check whether postulated deci- homing wasps showed great sophistication in recog-
sion rules can explain observed emergent behavioursnising landmarks visually, hunting wasps were easily
(e.g.Ydenberg, 1982; Keasar et al., 2002; de Vries and fooled into smelling a moving object that was visually
Biesmeijer, 200% ultimate function is not the main  very unlike their bee prey.
focus. Some of this type of behavioural research has de-
However, most biological research on rules of veloped beyond the behaviour to examine the neuro-
thumb has not involved computing but an experimen- logical processes responsible. This can sometimes be
tal, bottom-up approach that starts by observing the uniquely illuminating with regards to rules of thumb.
animals and is usually not driven by anything but the For instanceRomer and Krusch (200@)ave discov-
most intuitive theoretical expectations of what rules ered a simple negative feedback loop in the ear of
would work well. The interest is in details of mech- bushcrickets, which adjusts the sensitivity of the ear
anism, maybe aiming down to the levels of neurones according to the loudness of the signal. The conse-
and molecules. ABC has emphatically nottaken thisap- quence is that the female’s brain is totally unaware
proach, but much of human and animal psychology has of all but the loudest male cricket in the vicinity (or
this emphasis on discovering the details of the mecha- possibly two, if a different male is loudest in each
nism. Although research in this tradition usually starts ear). The consequence behaviourally is a rule of thumb
by investigating the response to single cues, sometimesfor mate choice of simply heading towards the male
attention may later shift to examining how cues are in- that appears loudest (usually the closest). Whether this
tegrated. With this approach, rules of thumb are not the is adaptive has not been considered. Unfortunately,
testable hypotheses with which one starts an investiga-results at this almost physiological level of analysis
tion but rather they emerge at the end of the process asare still largely restricted to perception, learning and
broad summary descriptions of the more detailed pat- memory (e.gMenzel et al., 1993; Shettleworth, 1998;
terns already discovered. The adaptive advantages ofMenzel and Giurfa, 2001 not yet revealing much
the observed mechanism over others may only appearabout cue integration or decision-making.
as speculation in the discussion. Advances in molecular biology mean that other
Some of the most elegant examples of this bottom- non-neural mechanisms of cue integration are also be-
up approach come from the classic workTafibergen coming accessible. For instance, recent work has es-
(1958) although for him ultimate function was cer- tablished that there are three independent pathways
tainly not always a peripheral issue. For instance, he influencing when arArabidopsisplant flowers (one
was interested in how a digger waBhilanthus triag- responds to photoperiod, one to chilling, and one
ulum finds its way back to its burrow. By building a is endogenous), and how these pathways interact is
circle of fir cones around the burrow and then mov- something molecular biologists now hope to answer
ing them while it was away, he showed that wasps use (Simpson et al., 1999
such objects as landmarks. He went onto examinewhat  In summary, although some biologists study rules
sorts of objects are used as landmarks, at what pointof thumb in the same way that ABC studies heuristics,
they are learnt, and how close landmarks interact with most of the results derive from experiment that has
more distant ones. He also became interested in hownot been driven by theory. Such work often throws up
the wasps found their prey. Using a variety of carefully surprises in the particulars, which one hopes theory can
presented models hanging from a thread he showedexplain. ABC relies on other schools of psychology,
that what first alerted the wasps was the appearance offor instance the heuristics-and-biases sch@db{ich
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etal., 2002, to provide some of the empirical surprises are seen to be inspected at each stage before others are
that its theories explain. available, or where different cues predict breaking off
the process at different stages. Forinstance, female sage
grouse first assess males in a lek on the basis of their
11. How animals combine information from songs, and then visit only those passing this test for a
multiple cues closer visual inspection of display rat8ipson, 199%
Such a “layered” process of sexual selection seems ex-
Much of ABC's research has been on the integra- tremely widespreaddonduriansky, 2003and clear se-
tion of different cues, so a disappointment about the quences of cue inspection are similarly well known in
biological research is that most papers examine a sin- navigation and food choice. Note, however, that a se-
gle cue. Often all other cues are held constant. When quential process need not necessarily imply a fixed cue
the interactions between cues have been investigated order, nor that cues observed at one stage are ignored in
and lots of such studies exist, most often the results are decisions at later stages. Thus, either visual or olfactory
not related to those of other such studies. Recently a cues in isolation are sufficient to attract hawkmoths to
few papers have reviewed how females integrate cuesa flower, but both cues must be present to stimulate
to male quality Jennions and Petrie, 1997; Candolin, feeding Raguso and Willis, 2002
2003; Fawcett, 20QXhapter 3) but results from many Even where the sequential aspect is not apparent,
other domains of decision-making could be connected a clear ranking of importance of cues is at least com-
(e.g.Partan and Marler, 1999This is certainly some-  patible with a decision rule like Take The Best. For
where that ABC can contribute to behavioural biology, instance, honeybees trained to identify model flowers
by providing testable theory of what statistical struc- decide on the basis of colour only if the odours of
tures of cues favour what methods of cue integration. two alternatives match, and on the basis of shape only
This is not the place for a thorough review of the if colour and odour matchGould and Gould, 1988
empirical results, but a general conclusion is the diver- Chapter 8). Gould and Gould explained this order on
sity of methods used to combine cues. For instance, the basis of validity: odour was the most reliable cue to
Shettleworth (1998, Chapter 7@views how animals  the species of flower, colour varied more from flower
combine cues used in navigation (local and distant to flower, and shape varied depending on the angle of
landmarks, path integration, sun compass, etc.). Ex- approach. They also are clear that by the time the bee
periments indicate clear cases both of a sequential ap-gets close enough to sense flower odour, all three cues
plication of cues and of averaging the locations pointed are available.
to by conflicting cues. However, even in those species  However, other examples suggest that ABC's
that average, if there is too much conflict between cues, sequential cue assessment models may need to be
they tend to fall back on large-scale spatial cues, which extended. One complication is that most cues are
in nature are the most constant and reliable. An interest- quantitative rather than the binary cues on which Take
ing comparison is the rules for dealing with conflicting The Best operates. A threshold can convert quantitative
temporal cuesKairhurst et al., 2003 into binary, which might be applicable for categorisa-
We now focus in turn on sequential and non- tion into species or sex (e.¥icario et al., 200}, but
sequential cue assessment, finding in each case thatnost tasks studied involve comparison of a continuous
empirical results from biology might prompt new di- criterion such as quality. With quantitative characters

rections of research for ABC. the distinction between compensatory and non-
compensatory becomes muddied. If two individuals
11.1. Sequential cue assessment differ considerably on one cue, there may be no useful

information to be gained by looking at further cues;
Most studies measure only how cue values and the but if they differ only a little, it may be useful to con-
availability of cues affect the outcome of choice, notthe sider further cues without necessarily discarding the
process, so we cannot readily tell whether assessmentinformation from the first cue. With quantitative cues
of cues is sequential. The exception is if there is an ob- we may find that which cues predict choices depends
servable behavioural sequence in which different cues on which exhibit the most variation in that habitat and
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that year (e.gLifjeld and Slagsvold, 1988 We might rather than that the cue informativeness of pre-existing
observe such a pattern even if the same method of cuesignals has favoured an order of inspection.
integration were used in the different environments, but
itwould not be surprising if choosers learnt notto trou- 11.2. Non-sequential cue assessment
ble to examine the less informative cues in that envi-
ronment. Another complication with quantitative traits There are striking examples of an additive effect
is that intermediate cue values may be more attractive of different cues. By manipulating realistic computer
than either extreme (e.Galkins and Burley, 2003 animations of stickleback€&asterosteus aculeatus
Whereas for search in memory or search on a com- Kiinzler and Bakker (20013howed that the propor-
puter screen examining cues in order of decreasing va-tion of choices for one image over another was linearly
lidity may make good sense, in the biological examples related to the number of cues in which it was supe-
other factors seem more important. In mate choice the rior (cf. tallying). Similarly,Basolo and Trainor (2002)
more reliable cues to quality tend to be examined last. showed in the swordtail fisKiphophorus hellerthat
Inlocating resources the cue giving the most exact loca- the time for a female to respond was explicable as the
tion tends to be examined last. Onereasonis likely to be sum of the effects of each component of the sword
the cost of sampling each cue in terms of risk, energetic (cf. weighted-additive). HoweverHankinson and
expenditure or time. For instance, mock fighting an- Morris (2003) pointed out an alternative explanation
other male may be the most reliable cue to which of you for such additive results, which depend on averaging
would win a real fight, but mock fighting has consid- the responses of many fish. An additive pattern need
erable dangers of damage, and consequently is not at-not be due to an additive interaction of the cues in all
tempted unless other safer displays have failed to makeindividuals, but to each individual responding to dif-
the difference in quality apparenlls, 1988; Enquist  ferent single cues—each extra cue persuades another
et al., 1990. Morphological cues may be judged at a subset of the population. We do know of cases of dif-
glance whereas behavioural traits may require time to ferent individuals in the same population attending to
assesdrawcett and Johnstone (20@)nsider the op-  different cues (e.gHill et al., 1999. The method of
timal order to assess cues differing in informativeness processing may differ between individuals too; older
and cost. The other related reason for less valid cues tofemale garter snakes demand males that are good on
be assessed earlier is that some cues must necessariltwo cues, whereas either cue alone satisfies younger
appear before others. For instance, a deer stag cannofemales Shine et al., 2003
help but see the size of its rival before it starts fight- More complex interactions between cues are also
ing it, and the deepness of a roar may be available as aobserved. For instance, in the gupgfnecilia reticulata
cue to size even before the animals get close enough tocolour affected choice when both animations showed a
judge size visually. low display rate, but not when they both showed a high
Paradoxically, in these situations a more non- rate; conversely display rates mattered when both ani-
compensatory environment may lead to examining mations displayed colour, but not an absence of colour
cues in increasing order of validity (the reverse of Take (Kodric-Brown and Nicoletto, 2001Another complex
The Best), at least in cases where the quantitative na-patternis suggested in the work of baihk et al. (1992)
ture of cues means that cue values are unlikely to tie. As andMarchetti (1998)female choice was unaffected by
the chooser gets progressively closer or more willing manipulations of single male traits that earlier obser-
to take risks, more cues become available; it should be vational studies had suggested females were utilising.
adapted to read those new cues whose validities out-One interpretation is that if one signal disagrees with all
weigh those of earlier cues, but less valid new cues the other signals, itis ignored, which might be adaptive
are unlikely to provide useful additional information if accidental damage to single morphological charac-
and so might be ignored. An interesting question is to ters is not indicative of quality. Some traits that we
what extent the orders in which cues are examined are can measure independently may well be treated by the
adaptations. With sexual selection, it could often be that animal as composite traits, implying that complex in-
particular traits evolve as signals because of the stage oftegration of cues may happen at an almost perceptual
the assessment process in which they can be examinedlevel (Rowe, 1999; Calkins and Burley, 2003; Rowe
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and Skelhorn, 20040ne cue may alert the receiverto  species, individual humans can rapidly change the rule
the presence of another (eHdgbets, 200p or one cue according to the environment structure encountered.
may act as an amplifier for anothétgsson, 1991for Equally valid a research strategy would be to move
instance, contrasting plumage coloration makes it eas-in the opposite direction, testing whether animals use
ier for the receiver to judge display movements). The the heuristics that ABC has proposed that humans
usual assumption is that amplifiers rely on constraints use. Demonstrating the parallel evolution of human
in the way perception works, but such multiplicative heuristics in other lineages facing similar environmen-
cue interactions arise through other mechanisms alsotal structures would provide more stringent tests of their
(Patricelli et al., 2008and so it might be an adapta- status as adaptations. Studying humans has some ad-
tion to some particular environment structures. A mul- vantages, such as the possibility to use introspection
tiplicative interaction favours two traits both being well  to formulate plausible hypotheses about our heuristics,
developed over either one in isolation. Perhaps this is but animals provide many other advantages. In most
ecologically rational in negatively correlated environ- non-human animals it is clearer what is their natural
ments (cfJohnson et al.’s (198%hding of the benefits  habitat and it is possible still to study the animal’s
of including interaction terms in choice models in such behaviour and its consequences in that environment.
environments). Comparative studies can testwhether the rules of thumb
used by related species have adjusted to their differing
environments. Analysing the structure of the environ-
12. Breaking down disciplinary boundaries ment is usually easier than with humans because most
species are more specialist. Shorter life cycles make
In the preceeding section we showed how empir- it is easier to relate the immediate consequences of a
ical results on rules of thumb and ABC's theoretical behaviour to fitness. Practical considerations also al-
approach could mutually illuminate each other. This low far more complete manipulations of an animal’'s
short section examines further ways to develop the in- environment than in humans. Moreover, as Tinbergen

teraction. found, it is often the case in animals that quite crude
ABC has already published research on heuristics tricks suffice, itself perhaps a reflection of animals’
used by animals. For instand@avis et al. (1999%im- greater reliance on simpler rules of thumb.

ulated various rules that a parent bird might use to al-  Of course calls for better communication between
locate food amongst its chicks (feed them in turn, or biologists and psychologists are not original, and be-
feed the largest, or hungriest, etc.). Other ABC papers havioural ecology has always had some contacts with
have dealt with rules of thumb for mate choice, which animal psychology (e.gkamil and Sargent, 1981;
relate to both animals and humari®@d and Miller, Fantino and Abarca, 1985; Rowe and Skelhorn, 2004
1999; Sinfo and Todd, 2002; Hutchinson and Halupka, One link of some relevance to ABC is the investiga-
2004). The resulting papers fitted comfortably into the tion of animal models that duplicate the human “bi-
biological literature, emphasising the similaritiesinap- ases” emphasised by the heuristics-and-biases school
proaches of the two schools. (e.g.Fantino, 1998; Shafir et al., 2002; Bateson et al.,
Another way to break down the interdisciplinary 2003. If these findings are related to the natural envi-
barriers is to test theory developed in one school on ronments of these animals (not always done), this can
the organisms (human or animal) of the other. ABC is be an avenue to test explanations of these biases as
currently testing whether humans use the same patch-products of adaptive heuristics (eArkes and Ayton,
leaving rules known from animal¥\(ilke et al., 2004. 1999; Schuck-Paim et al., 2004
One experimental context is a computer game mod-
elled on a foraging task, but another consists of inter-
nal search in memory for solutions to a Scrabble-like 13. Conclusions
word puzzle. It is known that different species use dif-
ferent patch-leaving rules, presumably in response to  ABC has demonstrated that simple heuristics can be
their environmentsvan Alphen et al., 2003; Wajnberg  a surprisingly effective way of making many decisions,
et al., 2003, but we will test whether, as a generalist both in terms of frugality and performance. Research
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has also started to show that humans really use theseplicity of animal nervous systems (but sBeokstaber
simple heuristics in environments where they are eco- and Langsam, 1985; Real, 1992; Stephens and
logically rational. It lies ahead to discover how much of Anderson, 2001; Stephens, 2Q0Phe shared assump-
human cognition can be usefully understood interms of tion that performance is what matters should facilitate
ABC'’s algorithmic approach. Within psychology there communication between biologists and ABC.
is a wide range of opinion about the likely answer and One of the possible derivations of the phrase “rule of
thus about the importance of ABC’s work. However, thumb”is from craftsmen using the size of their thumb
there is increasing interest from economists, who re- as a measure instead of a rulBréwer, 1998. To finish
alise that their unboundedly rational optimality mod- with a pleasing parallel between humans and animals,
els often provide an inadequate prediction of human consider this example. The sticky part of a spider’s web
decisions. is a spiral thread with each whorl evenly spaced from
How might ABC gain from a closer relationship its predecessor, as one expects of a well-designed net.

with behavioural biology? Certainly biology consid- Just like the craftsman, the spider uses a part of its own
erably broadens the range of examples of heuristics, body as a calliper. To demonstrate this|lrath (1987)
some of which will turn out to be shared between cut off the spider’s legs on one side; the legs regrew at
animals and humans. Some make particularly strong the next moult, but smaller than before, and the spacing
examples because they can be anchored in proven neuef the spiral was then proportionately closer.
rological mechanisms or because their adaptive value
is less ambiguous than with humans. Animal examples
may illuminate characteristics of natural environments
that are less important to modern humans, but to
which our cognitive me_chamsms are still adapted: an We thank Edmund Fantino, Konstantinos Kat-
example is our suggestion that cue orders may have as . . ) .
much to do with costs and accessibility of each cue as sikopoulos, Heike Reise, Lael Schooler, Masanori

. - . Takezawa, Peter Todd and an anonymous referee for
with validity. We have also discussed how the tools of

- . . . their comments on an earlier version of the manuscript,
optimality modelling might be reapplied to the study of : o
o and Henry Brighton for providingig. 1 We also thank
heuristics. . . o .
. . . Randolph Grace for stimulating and facilitating this
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