Published in: E. Kurz-Milcke & G. Gigerenzer (Eds.), Experts in science and society (pp. 249-268).
© 2004 Kluwer Academic/Plenum Publisher.

How to Improve the Diagnostic Inferences
of Medical Experts

Ulrich Hoffrage and Gerd Gigerenzer
Center for Adaptive Behavior and Cognition
Max Planck Institute for Human Development, Berlin, Germany

Women are generally informed that mammography screening reduces the risk of dying from
breast cancer by 25%. Does that mean that from 100 women who participate in screening, 25
lives will be saved? Although many people believe this to be the case, the conclusion is not justi-
fied. This figure means that from 1,000 women who participate in screening, 3 will die from
breast cancer within 10 years, whereas from 1,000 women who do not participate, 4 will die. The
difference between 4 and 3 is the 25% “relative risk reduction.” Expressed as an “absolute risk
reduction,” however, this means that the benefit is 1 in 1,000, that is, 0.1%. Cancer organiza-
tions and health departments continue to inform women of the relative risk reduction, which
gives a higher number—25% as compared to 0.1%—and makes the benefit of screening appear
larger than if it were represented in absolute risks.

The topic of this chapter is the representation of information on medical risks. As the case of
mammography screening illustrates, the same information can be presented in various ways. The
general point is that information always requires representation, and the choice between alterna-
tive representations can influence the patients” willingness to participate in screening, or more
generally, patients” understanding of risks and choices of medical treatments. The ideal of “in-
formed consent” can only be achieved if the patient knows about the pros and cons of a treat-
ment, or the chances that a particular diagnosis is right or wrong. However, in order to commu-
nicate such uncertainties to the patients, the physician has to first understand statistical informa-
tion and its implications. This requirement sharply contrasts with the fact that physicians are
rarely trained in risk communication, and some still think that medicine can dispense with sta-
tistics and psychology. Such reluctance may also explain why previous research observed that a
majority of physicians do not use relevant statistical information properly in diagnostic inference.
Casscells, Schoenberger, and Grayboys (1978), for instance, asked 60 house officers, students,
and physicians at the Harvard Medical School to estimate the probability of an unnamed disease
given the following information:

If a test to detect a disease whose prevalence is 1/1,000 has a false positive rate of 5 per cent, what is the

chance that a person found to have a positive result actually has the disease, assuming that you know
nothing about the person’s symptoms or signs? (p. 999)

The estimates varied wildly, from the most frequent estimate, 95% (27 out of 60), down to 2%
(11 out of 60). The value of 2% is obtained by inserting the problem information into Bayes’
rule (see below)—assuming that the sensitivity of the test, which is not specified in the problem,
is approximately 100%. Casscells et al. (1978) concluded that “(...) in this group of students and
physicians, formal decision analysis was almost entirely unknown and even common-sense rea-
soning about the interpretation of laboratory data was uncommon” (p. 1000).
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In a seminal article on probabilistic reasoning about mammography, David Eddy (1982) re-
ported an informal study in which he asked an unspecified group of physicians to estimate the
probability of breast cancer given a base rate (prevalence) of 1%, a hit rate (sensitivity) of 79%,
and a false positive rate of 9.6%. He reported that 95 out of 100 physicians gave estimates of the
posterior probability of breast cancer given a positive mammogram (the positive predictive value)
of between 70% and 80%, whereas Bayes’ rule results in a value one order of magnitude smaller,
namely, 7.7%. Eddy proposed that the majority of physicians confused the sensitivity of the test
with the positive predictive value. Evidence of this confusion can also be found in medical text-
books and journal articles (Eddy, 1982), as well as in statistical textbooks (Gigerenzer, 1993).

In 1986, Windeler and Kébberling reported responses to a questionnaire they had mailed to
family physicians, surgeons, internists, and gynecologists in Germany. Only 13 of the 50 respon-
dents realized that an increase in a disease’s prevalence implies an increase in the positive predic-
tive value. The authors concluded with this puzzling observation: Although intuitive judgment
of probabilities is part of every diagnostic and treatment decision, the physicians in their scudy
were obviously unaccustomed to estimating quantitative probabilities. Given these demonstra-
tions that many physicians’ reasoning does not follow the laws of probability (see also Abernathy
& Hamm, 1995; Dawes, 1988; Dowie & Elstein, 1988), what can be done to improve diagnostic
inference?

Natural Frequencies Help in Making Diagnostic Inferences

Each of the three studies summarized above presented numerical information in the form of
probabilities and percentages. The same holds for other studies in which the conclusion was that
physicians (Berwick, Fineberg, & Weinstein, 1981; Politser, 1984) and laypeople (Koehler,
1996a) have great difficulties in making diagnostic inferences from statistical information.
Whether information is presented in probabilities, percentages, absolute frequencies, or some
other form is irrelevant from a mathematical viewpoint. These different representations can be
mapped onto one another in a one-to-one fashion. However, they are not equivalent from a psy-
chological viewpoint, which is the key to our argument.

We argue that a specific class of representations, which we call natural frequencies, helps lay-
people and experts to make inferences the Bayesian way. We illustrate the difference between
probabilities and natural frequencies with the diagnostic problem of inferring the presence of col-
orectal cancer (C) from a positive result in the hemoccult test (7), a standard diagnostic test. In
terms of probabilities, the relevant information is a base rate for colorectal cancer p(C) = 0.3%, a
sensitivity p(7]C) = 50%, and a false positive rate p(7|not-C) = 3%. In natural frequencies, the
same information would read:

Thirty out of every 10,000 people have colorectal cancer. Of these 30 people with colorectal cancer, 15

will have a positive hemoccult test. Of the remaining 9,970 people without colorectal cancer, 300 will
still have a positive hemoccult test.

Natural frequencies are absolute frequencies as encoded through direct experience and have 7oz
been normalized with respect to the base rates of disease and non-disease (Gigerenzer & Hoffrage,
1995, 1999). They are to be distinguished from probabilities, percentages, relative frequencies,
and other representations where the underlying natural frequencies have been normalized with
respect to these base rates. !

Why should natural frequencies facilitate diagnostic inferences? There are two related argu-
ments. The first is computational. Bayesian computations are simpler when the information is
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represented in natural frequencies rather than in probabilities, percentages, or relative frequencies
(Christensen-Szalanski & Bushyhead, 1981; Kleiter, 1994). For instance, when the information
concerning colorectal cancer is represented in probabilities, applying a cognitive algorithm to
compute the positive predictive value, that is, the Bayesian posterior probability, amounts to per-
forming the following computation:

p(C|T) = p(C)p(T|C) B (.003)(.5)

" p(C)p(T|C) + p(not-C) p(T |not-C)  (.003)(.5) + (.997)(.03) M

The result is 0.048. Equation 1 is Bayes’ rule for binary hypotheses (here, C'and not-C) and
data (here, 7). The rule is named after Thomas Bayes (1702-1761), an English dissident minis-
ter, to whom the solution of the problem of how to make an inference from data to hypothesis
is attributed (Stigler, 1983).

When the information is presented in natural frequencies, then the computations are much
simpler:

c&t 15

CIT) = -
PICIT) = o moreqt ~ 152300

2)

Equation 2 is Bayes’ rule for natural frequencies, where ¢&#is the number of cases with cancer
and a positive test, and not-c&¢is the number of cases without cancer but with a positive test.

The second argument supplements the first. Minds appear to be tuned to make inferences
from natural frequencies rather than from probabilities and percentages. This argument is con-
sistent with developmental studies indicating the primacy of reasoning with discrete numbers
over fractions, and studies of adult humans and animals indicating the ability to monitor fre-
quency information in natural environments in fairly accurate and automatic ways (e.g., Gallistel
& Gelman, 1992; Jonides & Jones, 1992; Real, 1991; Sedlmeier, Hertwig, & Gigerenzer, 1998).
For most of their existence, humans and animals have made inferences from information encod-
ed sequentially through direct experience, and natural frequencies are the final tally of such a pro-
cess. Mathematical probability emerged only in the mid-17th century (Daston, 1988), and not
until the aftermath of the French Revolution—when the metric system was adopted—do per-
centages appear to have become common representations, mainly for taxes and interests, and only
very recently for risk and uncertainty (Gigerenzer et al., 1989). Thus, one might speculate that
minds have evolved to deal with natural frequencies rather than with probabilities.

Probabilities can be represented in what Gigerenzer and Hoffrage (1995) called the standard
menu and the short menu. The standard menu is illustrated above; the short menu presents
p(C&T) and p(7). Both lead to the same result. Similarly, natural frequencies can be expressed
in both a standard and a short menu (see Appendix for all four versions of the colorectal cancer
problem). To compute the Bayesian solution for probabilities, the short menu demands fewer
computations than the standard menu, whereas for natural frequencies the computations are the

For instance, the following representation of the colorectal cancer problem is not in terms of natural frequen-
cies (or frequency formats; Gigerenzer & Hoffrage, 1995, 1999), because the frequencies have been normal-
ized with respect to the base rates: a base rate of 30 out of 10,000, a sensitivity of 5,000 out of 10,000, and a
false positive rate of 300 out of 10,000.
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same, except that in the standard menu the two compounds & and not-c&# need to be added
to determine the denominator (Gigerenzer & Hoffrage, 1995, theoretical results 5 and 6, p. 688).

Do Natural Frequencies Improve Laypeople’s Reasoning?

Many studies have concluded that people’s judgments do not follow Bayes’ rule, but little is
known about how to help people reason the Bayesian way. We tested whether natural frequencies
improve Bayesian inference in laypeople, specifically, students in various fields at the University
of Salzburg (Gigerenzer & Hoffrage, 1995). We used 15 problems, including Eddy’s mammog-
raphy problem and Tversky and Kahneman’s (1982) cab problem. When the information was
presented in natural frequencies rather than in probabilities, the proportion of Bayesian responses
increased systematically for each of the 15 problems. This advantage held whether the frequencies
and probabilities were presented in the standard menu or the short menu. The average propor-
tions of Bayesian responses were 16% and 28% for probabilities, rising to 46% and 50% for nat-
ural frequencies (standard and short menu, respectively). Thus, although they can be directly in-
serted in Equation 2, compound probabilities as displayed in the short menu were not as effective
as natural frequencies. To conclude, natural frequencies, whether presented in the standard or
the short menu, improve Bayesian reasoning without instruction.

Similarly, Cosmides and Tooby (1996) showed that natural frequencies improve Bayesian in-
ferences in the Casscell et al.’s (1978) problem as well. This hypothetical medical problem is nu-
merically simpler (the hit rate is assumed to be 100%) than the problems in the Gigerenzer and
Hoffrage (1995) study, and Cosmides and Tooby reported that 76% of the answers were Baye-
sian (see also Christensen-Szalanski & Beach, 1982).

But would medical experts also profit from natural frequencies, and do they use them in com-
municating risks to their clients? The following studies with medical students and experienced
physicians provide an answer to the first question; the final study with AIDS counselors addresses
the second question.

Do Natural Frequencies Improve Medical Students’
Diagnostic Inferences?

Participants were 87 advanced medical students of whom most had already passed a course in
biostatistics and were, on average, in their fifth year, and 9 first-year interns. Fifty-four studied
in Berlin and 42 in Heidelberg; 52 were female and 44 were male. The average age was 25 years.

We chose four realistic diagnostic tasks and constructed four versions of each: two in which
the information was presented in probabilities (as it typically is), and two in which the informa-
tion was presented in natural frequencies. For each of these two formats the information was pre-
sented either in the standard menu or in the short menu. The four diagnostic tasks were to infer
(a) the presence of colorectal cancer from a positive hemoccult test, (b) the presence of breast can-
cer from a positive mammogram, (c) the presence of phenylketonuria from a positive Guthrie
test, and (d) the presence of ankylosing spondylitis (Bekhterev’s disease) from a positive HL-Anti-
gen-B27 (HLA-B27) test. The information on prevalence (base rate), sensitivity (hit rate), and
false positives (false-alarm rate) was taken from Eddy (1982), Mandel et al. (1993), Marshall
(1993), Politser (1984), and Windeler and Kébberling (1986). The four diagnostic tasks are
shown in the Appendix.
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Figure 1. Medical students’ percentage of Bayesian inferences in four diagnostic tasks, broken
down according to the four versions of each task (see Appendix for the four versions of the col-
orectal cancer problem).

These problems were given to the participants in a questionnaire. We used a Latin square de-
sign: Each participant worked on all problems, each in a different version. Across all participants,
the four problems and the four versions appeared on each of the four pages in the questionnaire
equally often. The first two problems in each questionnaire were always given in the same format,
either both in probabilities or both in natural frequencies. In addition, we systematically varied
the order of the two pieces of information in the short menu.

Participants were paid a flat fee. They worked on the questionnaire at their own pace and in
small groups of mainly three to six participants. The experimenter asked them to make notes, cal-
culations, or drawings, so that we could reconstruct their reasoning. Interviews were performed
after the participants completed their questionnaire.

When a participant’s estimate was within plus or minus 5 percentage points (or the equivalent
in frequencies) of the Bayesian estimate, and the notes and interview indicated that the estimate
was arrived at by Bayesian reasoning (or a shortcut thereof; see Gigerenzer & Hoffrage, 1995)
rather than by guessing or other means, then we classified the response as a “Bayesian inference.”
Figure 1 shows the percentages of Bayesian inferences for the four diagnostic tasks (the results for
the standard menu have already been published in Hoffrage, Lindsey, Hertwig, & Gigerenzer,
2000). For each problem, probabilities in the standard menu made it most difficult for the med-
ical students to reason the Bayesian way. When the standard menu was used with natural fre-
quencies, the performance increased from 18% to 57%. For the short menu, the differences were
smaller, from 50% to 68%. This interaction is consistent with the theoretical result mentioned
above—that the beneficial effect of the short menu is larger for probabilities than for natural fre-
quencies. To summarize, medical students showed signs of “innumeracy” (Paulos, 1988) similar
to those of laypeople when the information was in terms of probabilities (standard menu), but
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their reasoning improved more than laypeople’s when the frequency representations (or proba-
bilities in the short menu) were used.

Do Natural Frequencies Improve Physicians” Diagnostic Inferences?

As important as this result is for improving medical students’” “insight,” one might suspect that
it will not generalize to experienced physicians who treat real patients. We asked 51 physicians
to participate in the following study (Gigerenzer, 1996; Hoffrage & Gigerenzer, 1998). Three
physicians did not give numerical estimates, either because they generally rejected statistical in-
formation as meaningless for medical diagnosis, or because they stated that they were unable to
think in numbers. The remaining 48 physicians had practiced for an average of 14 years (ranging
from 1 month to 32 years) and had a mean age of 42 years (ranging from 26 to 59). They worked
either in Munich or Diisseldorf; 18 were female and 30 were male. Eighteen worked in university
hospitals, 16 in private or public hospitals, and 14 in private practice. The sample included in-
ternists, gynecologists, dermatologists, and radiologists, among others. The physicians’ status
ranged from directors of clinics to physicians commencing their careers.

The interviewer visited the physicians individually at their institutions or private offices and,
in a few cases, in their homes. She first informed the physician about our interest in studying di-
agnostic inference and established a relaxed personal rapport. Each physician was then given the
same four diagnostic tasks as in the previous study. Each problem was printed on a sheet of paper,
followed by a separate blank sheet. The interviewer asked the physician to use the empty sheet to
make notes, calculations, or drawings so that we could later reconstruct his or her reasoning. After
the physician completed the four tasks, the interviewer reviewed the physician’s notes. If it could
not be discerned how the estimate was achieved in each task, the physician was asked for clarifi-
cation.

Given the limited free time of practicing physicians, we only used the standard menu. In two
diagnostic tasks, the information was presented in probabilities, in the other two in natural fre-
quencies. We systematically varied which tasks were in which format and which format was pre-
sented first with the constraint that the first two tasks had the same format.

Dr. Average

To give the reader a better understanding of the test situation and the results, we first describe
the results for Dr. Average, who represents the “average physician” with respect to performance
on these diagnostic tasks.

Dr. Average is a 59-year-old director of a university clinic who is active in research and teach-
ing, a dermatologist with 32 years of professional experience. He worked on the problems for 30
minutes and spent another 15 minutes discussing the results with the interviewer. He was visibly
nervous when working on the first two problems, which used probabilities. Initially, Dr. Average
refused to make notes; he acquiesced later, when the interviewer again requested that he do so,
but he did not let the interviewer see his notes.

Dr. Average first worked on the mammography problem in the probability format. He cal-
culated the probability of breast cancer after a positive mammography to be 90%, by adding the
sensitivity to the false positive rate, 80% + 10% = 90%. Nervously, he remarked, “Oh, what non-
sense. I can’t do it. You should test my daughter; she studies medicine.”
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The second problem was on ankylosing spondylitis, also in the probability format. Dr. Aver-
age first commented that he himself had performed the HLA-B27 test (unlike the mammography
test). Then he began to draw and calculate on his sheet of paper and remarked that the prevalence
of 5% would be irrelevant. With some hesitation and annoyance, he estimated the probability of
ankylosing spondylitis after a positive test to be 0.46%, by multiplying the sensitivity (92%) by
the prevalence (5%). Apart from a calculation error by factor 10, this is a common strategy
among laypeople (Gigerenzer & Hoffrage, 1995).

The third problem was to diagnose colorectal cancer from a positive hemoccult test. The in-
formation was presented in natural frequencies. Dr. Average remarked, “But that’s so easy,” and
calculated that 15 out of 315 people with a positive test would have colorectal cancer. This was
the Bayesian answer. Unlike in the first two diagnostic inferences, he now seemed to realize that
he had found the correct solution. His nervousness subsided.

The phenylketonuria problem in natural frequencies came last. Dr. Average calculated that
10 out of 60 newborns with a positive Guthrie test have phenylketonuria, which again was the
Bayesian answer. He said he had never advised parents on how to interpret a positive Guthrie
test, whereas he had advised people on how to interpret a positive hemoccult test.

During the following interview, Dr. Average discussed his strategies for estimating the pre-
dictive values of the tests with the interviewer, asked her to calculate the estimate for the mam-
mography problem for him, and concluded, “That was fun.” Note that this physician’s perfor-
mance was independent of whether he had experience with the specific test or not. What made
the difference was whether the problem information was communicated in natural frequencies
or probabilities. We now report the results aggregated across all physicians.

Forty-Eight Physicians

Each of the 48 physicians made four diagnostic inferences. Thus, we have 48 estimates for each
problem, and 24 estimates for each format of each problem. To classify a strategy as Bayesian, we
used the same criteria as in the previous study. Figure 2 shows that for each diagnostic problem,
the physicians reasoned the Bayesian way more often when the information was communicated
in natural frequencies than in probabilities. The effect varied between problems, but even in the
problem showing the weakest effect (phenylketonuria), the proportion of Bayesian answers was
twice as large. For the two cancer problems, natural frequencies increased Bayesian inferences by
more than a factor of five as compared to probabilities. Across all problems, the physicians gave
the Bayesian answer with probabilities in only 10% of the cases; with natural frequencies this
value increased to 46%.

With probabilities, physicians spent an average of 25% more time solving the diagnostic
problems than with natural frequencies. Moreover, physicians commented that they were ner-
vous, tense, and uncertain more often when working with probabilities than with natural fre-
quencies. They also stated that they were less skeptical of the relevance of statistical information
when it was in natural frequencies. Physicians were conscious of their better and faster perfor-
mance with natural frequencies, as illustrated by comments such as “Now it’s different. It’s quite
easy to imagine. There is a frequency; that’s more visual” and “A first grader could do this!”
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Figure 2. Physicians percentage of Bayesian inferences in the four diagnostic tasks, broken
down according to whether the information was presented in probabilities or natural frequen-
cies (in the standard menu only).

Innumeracy

We asked the physicians how often they took statistical information into account when they in-
terpreted the results of diagnostic tests. Twenty-six answered “very seldom or never,” 15 an-
swered “once in a while,” 5 said “frequently,” and none answered “always.” Their comments sug-
gested two reasons why physicians used statistical information rather infrequently: the physician’s
innumeracy and the patient’s uniqueness. Several physicians perceived themselves as mathemat-
ically illiterate or suffering from a cognitive disease known as “innumeracy” (Paulos, 1988). Six
physicians explicitly remarked on their inability to deal with numbers, stating, for instance, “But
this is mathematics. I can’t do that. I'm too stupid for this.” With natural frequencies, however,
these same physicians spontaneously reasoned statistically (i.e., in accordance with Bayes’ rule) as
often as their peers who did not complain of innumeracy.

Innumeracy and individual uniqueness were also the reasons why three physicians refused to
complete our questionnaire. A 60-year-old high-ranking physician in a government agency want-
ed to give up on the first problem: “I simply can’t do that. Mathematics is not my forte.” When
the interviewer encouraged her to try again, she tried, failed again, cursed loudly, and gave up. A
second physician said: “I can’t do much with numbers. I am an intuitive being. I treat my patients
in a holistic manner and don’t use statistics.” Finally, a university professor—an ears, nose, and
throat specialist—seemed agitated and affronted by the test and refused to give numerical esti-
mates. “This is not the way to treat patients. I throw all these journals [with statistical informa-
tion] away immediately. One can’t make a diagnosis on such a basis. Statistical information is
one big lie.”
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This last reaction reminds us of the great physiologist and arch-determinist Claude Bernard,
who ridiculed the use of statistical information in medical diagnosis and therapy:

A great surgeon performs operations for stone by a single method; later he makes a statistical summary

of deaths and recoveries, and he concludes from these statistics that the mortality law for this operation

is two out of five. Well, I say that this ratio means literally nothing scientifically and gives us no certainty

in performing the next operation. (Bernard, 1865/1957, p. 137)
However, unlike Bernard, who contrasted statistics with science and its goal to discover the de-
terministic laws that rule all individual cases, physicians like those who refused to fill out our
questionnaire contrast statistics not with science, but with their own intuition and experience,
which are centered on the individual patient.

Comparing Medical Students and Physicians

Presenting the information in Bayesian inference tasks in natural frequencies rather than in prob-
abilities fosters insight in laypeople, advanced medical students, and experienced physicians. This
is the main result of the three studies. The four diagnostic tasks for the medical students and the
physicians were identical; therefore, we can directly compare their performance, at least for the
standard menu. The medical students reasoned the Bayesian way more often than the physicians:
The difference was 8 percentage points for the probabilities and 9 percentage points for natural
frequencies. The beneficial effect of natural frequencies (as compared to probabilities) was ap-
proximately the same: 39 percentage points for the students and 36 percentage points for the
physicians.

Non-Bayesian Strategies

What strategies did the students and the physicians use when they were not reasoning according
to Bayes’ rule? From their notes, numerical estimates, and interviews, we were able to identify
their strategies in 83% of the cases, using the same criteria as in the identification of Bayesian
reasoning, Table 1 lists the major strategies, each of which was also identified for laypeople
(Gigerenzer & Hoffrage, 1995, Table 3). One important result is that strategy use was contingent
on the menu in which the information was displayed.

For the short menu, the most prevalent non-Bayesian strategy was joint occurrence, that is, to
use the probability or absolute frequency of disease and positive test. For the standard menu, a
strong effect of the information format occurred. When information was communicated in prob-
abilities, the two most frequent strategies relied on the sensitivity of the test and ignored the prev-
alence of the disease. In 14 (18) cases, the students (physicians) simply mistook the sensitivity for
the predictive value—a well-known confusion in reasoning with probabilities in medical, legal,
and experimental contexts (e.g., Dawes, 1988; Gigerenzer, 1996). In 10 (20) cases, the students
(physicians) subtracted the false positive rate from the sensitivity, a strategy known as AR. This
strategy has been discussed as the correct strategy for estimating the covariation between two
dichotomous variables, such as disease and symptom (McKenzie, 1994). AR has also been pro-
posed as a measure of evidential support (Schum, 1994) and as a model of how people assess caus-
al strength (Cheng & Novick, 1992). A shortcut of AR is the false alarm complement, which was
used in 15 of the probability versions. This strategy does not subtract the false alarm rate from
the sensitivity (which for most diagnostic tests is close to 100%), but from 100%.
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Table 1

Reasoning Strategies and How They Depend on Information Representation

Medical students Physicians

Natural

Natural Probabi-  frequen-
Probabilities Jrequencies lities cies

Strategy Formal equivalent Standard ~ Short Standard  Short Standard  Standard
Bayesian p(H)p(DIH) | p(D) 17 48 55 65 10 44
Joint occurences P(H&D) 2 22 4 15 1 2
Sensitivity only p(DIH) 14 - 2 - 18 5
DR p(DIH) - p(D Inot-H) 10 - - - 20 5
Prevalence only p(H) 3 - 12 1 1 15
False alarm complement 1 — p(DInot-H) 11 - 1 - 4 1
Positives only D) - - 3 1 - 9
Other 15 13 9 6 13 2
Not identified 24 13 10 8 29 13
Total 96 96 96 96 96 96

Note. H stands for hypothesis (e.g., cancer) and D for data (e.g., positive test). “Standard” and “Short” refer to the two
menus for presenting information (see text for details).

With natural frequencies, however, none of these three strategies played a major role. The two
most frequent non-Bayesian strategies ignored the sensitivity of the test and focused exclusively
on one of the two base rates. In 27 cases (12 for the students, 15 for the physicians), the diagnostic
inferences were based only on the prevalence of the disease, and in 12 cases (3 and 9) only on the
base rate of a positive test.

Thus, natural frequencies not only improved Bayesian inferences, but also encouraged non-
Bayesian strategies that rely on the base rates, and discouraged strategies that rely solely on the
sensitivity and the false positive rate. In medical diagnostic tasks, the former [p(H) and p(D)] usu-
ally yield lower estimates than the latter [p(DI|H), p(D1H) — p(DInot-H) and 1 — p(DInot-H)]
and will, thus, be closer to the Bayesian estimate. This is one factor that explains why, with nat-
ural frequencies, non-Bayesian strategies resulted in estimates that were closer to the Bayesian an-
swer than with probabilities: an average absolute discrepancy of 20 and 42 percentage points, re-
spectively, for medical students, and 29 and 51 for physicians.

The dependency of strategies on menus and formats is one explanation for the frequent ob-
servation that people use multiple strategies (Gigerenzer & Hoffrage, 1995; Gigerenzer &
Richter, 1990). Furthermore, probability formats seem to generate a high inconsistency of strat-
egy use. For instance, only 38% of the physicians used the same strategy to solve both problems
in the probability format, whereas with natural frequencies this number increased to 70%.

Age and Statistical Education

Of all the characteristics known about the physicians, such as gender and specialization, only one
was correlated with statistical reasoning: age. Across the two formats, the younger physicians
(aged 40 and under) reasoned the Bayesian way in 35% of the cases, the older ones only in 21%.
A similar age effect was reported in a study in 1981 (Berwick et al., 1981). The physicians in our
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study were aware of this difference between young and old, as illustrated by the one physicians
comment, “You should test my daughter; she studies medicine.” Indeed, the percentage of Baye-
sian inferences obtained from medical students was 37% (for the standard menu and across both
formats), similar to that of the younger physicians.

Can this age effect be attributed to a shift in university training? We asked the participants
after the experiment whether they had heard of Bayes’ rule. Only 10% of the physicians (all
among the youngest) had, compared to 40% of the medical students. However, knowledge of
Bayes’ rule turned out to be of little assistance. The medical students who stated that they had
never heard of Bayes’ rule reasoned the Bayesian way in 47% of the cases, compared to 49% of
those who had (across all four versions). Can we at least find an effect of education when the tasks
were in probabilities and in the standard menu, which is the format typically used to train med-
ical students? No. The corresponding values were 17% and 19%. Some students wrote that the
problem could be solved by Bayes’ rule, but that they had forgotten it. Thus, there appears to be
a shift in education: Medical students are more likely to learn Bayes’ rule, but this shift does not
transfer into more Bayesian reasoning. We suggest that training students in frequency represen-
tation may help to slow down the decay of what students have learned (see below).

AIDS Counseling for Low-Risk Clients

An important application of Bayesian reasoning is in AIDS counseling for low-risk clients. In
Germany, for instance, the prevalence of HIV in heterosexual men who are in no known risk
group is approximately 0.01%, the specificity of the HIV test (one blood sample; repeated ELISA
and Western blot) approximately 99.99%, and the sensitivity approximately 99.9% (specific es-
timates vary). If a counselor communicates these numbers, the client will most likely not be able
to work out his chances of having the virus if he tests positive. Most seem to assume that a positive
test means that one has the virus with practical certainty. For instance, in the early days of blood
screening in Florida, 22 blood donors (who are typically low-risk persons) were told they were
HIV positive; seven committed suicide (Stine, 1996).

How do AIDS counselors explain to their clients what a positive test means? We studied
AIDS counselors in German public health centers (Gigerenzer, Hoffrage, & Ebert, 1998). One
of us visited 20 centers as a client to take 20 HIV tests and make use of the mandatory pre-test
counseling. The counselor was asked the relevant questions concerning the prevalence, sensitivi-
ty, specificity, and what the chances are that the client actually has the virus if he tests positive.
Not one counselor communicated the risks to the client in natural frequencies. Instead, they used
probabilities and percentages, and in the majority of the counseling sessions the information was
either internally inconsistent or incorrect. For instance, one counselor estimated the base rate at
approximately 0.1% and the sensitivity and specificity at 99.9%, and concluded that the clients
chance of having the virus if he tests positive is also 99.9%. In fact, 15 out of 20 counselors told
their low-risk client that it is 99.9% or 100% certain that he has HIV if he tests positive.

If a counselor, however, communicates the information specified above in natural frequen-
cies, insight is more likely:

Think of 10,000 heterosexual men like yourself being tested. We expect that one has the virus, and this

one will, with practical certainty, test positive. Of the remaining uninfected men, one will also test posi-

tive. Thus, we expect that of every two men in this risk group who test positive, only one has HIV. This

is the situation you would be in if you tested positive; your chance of having the virus would be roughly
1 to 1, or 50%.
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With natural frequencies, the client can understand that there is no reason to contemplate suicide
if he tests positive. In real-world contexts such as AIDS counseling, the difference between nat-
ural frequencies and probabilities can make the difference between hope and despair.

Conclusion

Statistical reasoning is an indispensable part of a citizen’s education, similar to the ability to read
and write. The last few decades have witnessed much debate on whether minds are equipped with
the right or wrong rules for making judgments under conditions of uncertainty. However, the
ability to draw inferences from statistical information depends not only on cognitive strategies,
but also on the format in which the numerical information is communicated. External represen-
tation can “perform” part of the reasoning process. In our studies, natural frequencies improved
medical experts’ Bayesian reasoning in every 1 of 4 diagnostic problems, and laypeoples reasoning
in every 1 of 15 problems.

The relevance of natural frequencies is not limited to medical diagnosis. As Koehlers work
(e.g., 1996b) demonstrates, the difficulty in drawing inferences from probabilities holds for DNA
experts, judges, and prosecutors as well. Nevertheless, in criminal and paternity cases, the general
practice in court is to present information in terms of probabilities or likelihood ratios (i.c., ratios
of conditional probabilities), with the consequence that jurors, judges, and sometimes the experts
themselves are confused and misinterpret the evidence. The O. J. Simpson defense team took no-
tice of the psychological research on information representation and successfully blocked the ad-
mission of a DNA expert’s report in which the probative value of blood matches was presented
in probabilities and likelihood ratios. The prosecution finally presented the evidence in terms of
frequencies (Koehler, 1996b). In a recent study, Hoffrage et al. (2000) demonstrated that both
law students and jurists profit from natural frequencies: The percentage of Bayesian inferences
rose from 3% to 45% when the format of the information concerning DNA fingerprinting
changed from probabilities to natural frequencies. Possibly even more important, the probability
format led to a higher conviction rate than natural frequencies (for details, see also Hertwig &
Hoffrage, 2002).

Textbooks and curricula can promote statistical thinking by (a) explaining Bayesian inference
in terms of natural frequencies, and (b) teaching people how to translate probabilities and per-
centages into natural frequencies. Using visual aids, such as tree diagrams and frequency grids,
Sedlmeier (1997; Sedlmeier & Gigerenzer, 2001) designed a computerized tutorial that teaches
people how to translate probabilities into natural frequencies. Compared with a traditional tuto-
rial that teaches people how to insert probabilities into Bayes’ rule (Equation 1), the immediate
effect of the frequency training was approximately twice as high. But how quickly did students
forget what they had learned? (As one of the five physicians who stated that they had heard of
Bayes’ rule remarked, “We learned such a formula. I have forgotten it.”) In a retest five weeks
after the training, the median performance of the group that had received the traditional tutorial
decreased (a median of 15% Bayesian responses), whereas the performance of the group that had
received training in how to construct frequency representations remained stable at its high level
(a median of 90% Bayesian responses).

Kurzenhiuser and Hoffrage (2002) implemented both approaches in a traditional classroom
tutorial with a blackboard and an overhead projector. The tutorial was designed for medical stu-
dents, with examples taken from human genetics. The two approaches were evaluated two
months later by testing students’ ability to correctly solve a Bayesian inference task with informa-
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tion represented as probabilities. While both approaches improved performance compared to
pre-test results, almost three times as many students were able to profit from the representation
training as opposed to the rule training. Teaching frequency representations is applicable to dif-
ferent instructional settings and contents. It has proven to be an effective method of teaching
Bayesian reasoning that fosters insight and reduces forgetting.

One physician wrote in a letter that

(...) participating in that study and learning its results is of great importance to me professionally. 'm
sure that from now on I will represent medical data to myself in terms of frequencies rather than just
glancing over them or being content with some vague idea.

The results of our studies illustrate that basic research on reasoning can produce simple and pow-
erful methods of communicating risks that can be applied in various public domains.
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Appendix: The Four Diagnostic Problems

We present the full text for the four versions of the colorectal cancer problem. For the other three
diagnostic tasks we present only the natural frequency, standard menu version, from which the
numerical information for the other three versions can be derived.

Problem 1: Colorectal Cancer

To diagnose colorectal cancer, the hemoccult test—among others—is conducted to detect occult
blood in the stool. This test is performed not only from a certain age onward, but also in a routine
screening for early detection of colorectal cancer. Imagine conducting a screening using the
hemoccult test in a certain region. For symptom-free people over 50 years old who participate in
screening using the hemoccult test, the following information is available for this region.

Probabilities—Standard Menu

The probability that one of these people has colorectal cancer is 0.3%. If one of these people has
colorectal cancer, the probability is 50% that he or she will have a positive hemoccult test. If one
of these people does 7ot have colorectal cancer, the probability is 3% that he or she will still have
a positive hemoccult test. Imagine a person (aged over 50, no symptoms) who has a positive
hemoccult test in your screening. What is the probability that this person actually has colorectal
cancer?! __ %

Probabilities—Short Menu

The probability that one of these people has colorectal cancer and a positive hemoccult test is
0.15%. The probability that one of these people has a positive hemoccult test is 3.15%. Imagine
a person ...

Natural Frequencies—Standard Menu

Thirty out of every 10,000 people have colorectal cancer. Of these 30 people with colorectal can-
cer, 15 will have a positive hemoccult test. Of the remaining 9,970 people without colorectal can-
cer, 300 will still have a positive hemoccult test. Imagine a sample of people (aged over 50, no
symptoms) who have positive hemoccult tests in your screening. How many of these people ac-
tually do have colorectal cancer? ___of ___
Natural Frequencies—Short Menu

Fifteen out of every 10,000 people have colorectal cancer and positive hemoccult test. Three hun-
dred and fifteen out of every 10,000 people have a positive hemoccult test. Imagine a sample ...

Problem 2: Breast Cancer

To facilitate early detection of breast cancer, from a certain age onward, women are encouraged
to participate in routine screening at regular intervals, even if they have no obvious symptoms.
Imagine conducting such a breast cancer screening using mammography in a certain geographical
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region. For symptom free women aged 40 to 50 who participate in screening using mammogra-
phy, the following information is available for this region.

Ten out of every 1,000 women have breast cancer. Of these 10 women with breast cancer, 8
will have a positive mammogram. Of the remaining 990 women without breast cancer, 99 will
still have a positive mammogram. Imagine a sample of women (aged 4050, no symptoms) who
have positive mammograms in your breast cancer screening. How many of these women actually
do have breast cancer? _ of _

Problem 3: Ankylosing Spondylitis

To diagnose ankylosing spondylitis (Bekhterev’s disease), lymphocyte classification—among
other tests—is conducted: For ankylosing spondylitis patients the HL-Antigen-B27 (HLA-B27)
is frequently present, whereas healthy people have it comparatively seldom. Of great importance
is the presence of HLA-B27 for people with nonspecific rheumatic symptoms, in which case a
diagnosis of ankylosing spondylitis will be considered. In this case, lymphocyte classification will
be used for differential diagnosis. Imagine conducting a HLA-B27 screening using a lymphatic
classification in a certain region. For people with nonspecific rheumatic symptoms who partici-
pate in such a screening, the following information is available for this region.

Fifty out of every 1,000 people have ankylosing spondylitis. Of these 50 people with anky-
losing spondylitis, 46 will have HLA-B27. Of the remaining 950 people without ankylosing
spondylitis, 76 will still have HLA-B27. Imagine a sample of people (with nonspecific rheumatic
symptoms) who have HLA-B27 in your screening. How many of these people do actually have
ankylosing spondylitis? ___ of ___

Problem 4: Phenylketonuria

On the fifth day after birth, blood will be taken from all newborns in a routine screening to test
for phenylketonuria (Guthrie test). Imagine working at a women’s clinic. The following infor-
mation is available for newborns in the region in which the clinic is situated.

Ten out of every 100,000 newborns have phenylketonuria. Of these 10 newborns with phe-
nylketonuria, all 10 will have a positive Guthrie test. Of the remaining 99,990 newborns withour
phenylketonuria, 50 will still have a positive Guthrie test. Imagine a sample of newborns being
delivered at your clinic who have a positive Guthrie test. How many of these newborns do actu-
ally have phenylketonuria? ___ of ___
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