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Otto Neurath, a driving force behind the Vienna Circle’s scientific world-
view, once remarked that “it is generally not a good sign when scholars
concern themselves too much with the foundations and the history of
their discipline, instead of working to find new and exact statements
about the topic they are investigating” (1930/1931, p. 107, our transla-
tion). Consequently, Neurath thought it advisable to limit such concerns
to an occasional “Sunday.”

We have not followed Neurath’s advice. The three case studies we
are presenting have not only benefited from historical research (not
necessarily on Sundays), but to some extent owe their existence to it.
In our experience, certain aspects of current practice become apparent
only in historical perspective; we may study past practices in order to
come to an improved understanding of current practices. Hence, in our
view, an historical and a scientific perspective need not be rival siblings
competing for privileged attention, as they seem to be in Neurath’s
worldview.

Representational Practices

In this chapter we focus on one particular aspect of practice, namely,
experts’ representational practices. Experts and, a fortiori, laypeople do
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Figure 7.1 Two ways of doing arithmetic. “Dame Arithmetic” from Gregor
Reisch, Margarita Philosophica, Strassbourg, 1504. (From The Abacus, p. 25, by
Parry Moon, 1971, New York: Gordon and Breach. Reprinted with permission.)

not always consciously choose a representation, but rely on one that has
been established by previous practice and convention. We have cho-
sen a print from the early 16th century to illustrate what we mean by
representational practices (Figure 7.1). On the right side of this print,
Pythagoras is depicted operating on a calculating board. The left side
shows Boethius, one of the earliest and most widely read scholastics,
calculating with the symbols of the “new arithmetic.” Note their facial
expressions.

Dame Arithmetic, in the background, has obviously chosen her fa-
vorite. Anyone who has tried division on an abacus, which is but a slight
modification of a calculating board, will probably agree with Dame
Arithmetic’s preference for Arabic numerals and computational sym-
bols that can be represented in writing. However, the new arithmetic
does not provide, for all purposes and in all contexts, the best representa-
tion. Even in our century, abacists have consistently outperformed con-
testants using calculating machines, at least in terms of speed (Dilson,
1968). On the other hand, the mathematical developments that we refer



190 KURZ-MILCKE, GIGERENZER, AND HOFFRAGE

to later, probability calculus and differential calculus, would not have
been possible, as we know them, without written numerical and oper-
ational symbols. v

One of the criteria by which the usefulness of a particular representa-
tion can be judged is computational ease. Consider, for example, a com-
parison of the Arabic and Roman number systems: Addition and sub-
traction are easier with Roman numerals (for computation, IIII should
be used rather than IV), whereas multiplication and division are much
easier with Arabic numerals (see Norman, 1993; Zhang & Norman, 1995,
for a detailed comparison of various numeration systems). Furthermore,
a representation can help or hinder insight, or highlight certain aspects
and make others less easy to see. It is therefore not surprising that at var-
ious times mathematical representations have been vehicles of political
change. One such occasion was the legal adoption of the metric system
in France in 1795 under the motto “for all the people, for all times”; in
spite of the motto, “the people” on the streets and in the market squares
kept up their old, tried and tested representational practices for many
years afterward. )

In our case studies, we were interested in the ways in which experts —
acquired immune deficiency syndrome (AIDS) counselors, physicians,
natural scientists, and mathematicians — represent information in order
to draw quantitative inferences. In Case Studies I and II, experts asso-
ciated with the medical field, AIDS counselors and physicians, had to
infer the probability of a disease when a positive test was obtained. The
representations employed by the counselors in Case Study I were strik-
ingly uniform and remarkably inefficient, for the experts as well as for
their clients (Gigerenzer, Hoffrage, & Ebert, 1998). Case Study Il demon-
strates an effective way of improving diagnostic reasoning, by using a
different representational format (Hoffrage & Gigerenzer, 1998). In Case
Study III, experts associated with different academic disciplines (chem-
istry, physics, mathematics) were asked to solve a problem requiring a
differential equation for its exact solution. These scientists relied on very
different representations to solve a mixture problem (Kurz, 1997).

Expertise is often discussed in terms of how much information an ex-
pert has, and in terms of his or her competence in selecting and process-
ing the relevant information. In this chapter, we argue that experts’ rea-
soning does not simply occur inside the experts” heads, but is performed
to a substantial degree by the external representation of information the
expert chooses or relies on. Shanteau (1992) has argued that experts’ per-
formance cannot be described generically, that is, without taking task
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characteristics into account. Our argument is in line with his. Represen-
tation is a task characteristic. Our case studies involve experts’ use of
a calculus, of the probability calculus in Case Studies I and II, and of
the differential calculus in Case Study III. Finding adequate represen-
tations, and also notations was, in fact, central to the inception and the
historical development of these calculi.

Calculi

The Latin term calculus means “little stone” and has present-day deriva-
tives in the English words calculate and calculator. Calculi, or pebbles,
were among the earliest calculation and bookkeeping aids (Damerow,
1995), leading to devices like the counting board, which was used
throughout the Middle Ages, and the abacus (or soroban), which is
still used today, especially in Asia (Moon, 1971). Nowadays we do not
think of a calculus as a material object (except, perhaps, when the term
is used in the medical context), but rather as a set of formalisms to solve
problems concerning, for instance, uncertain events and changing phe-
nomena. This modern sense of the term stems from the 17th century, and
in this sense it relates to the inception of differential and integral calcu-
lus (Bos, 1993; Grattan-Guinness, 1980) and of the calculus of probability
(Daston, 1988; Gigerenzer et al., 1989).

In the 17th and 18th centuries, the newly developed calculi of change
and uncertainty had no existence apart from their subject matters. The
same people who worked on problems that we today would consider to
be applied problems also concerned themselves with the analyticaspects
of the mathematics (Bos, 1993, p. 118). Moreover, 18th-century mathe-
matics was dominated by mixed mathematics, a category that as such has
ceased to be familiar to us. Mixed mathematics subsumed the study
of topics that we today would consider to be separate fields of study,
if not disciplines, for example, navigation, architecture, or geography.
But no matter which kind of 18th-century mathematics is concerned,
“all of mathematics, including pure mathematics, studied something”
(Daston, 1988, p. 54). Even today, insofar as mathematical formalisms
are tied to specific representations, be they graphic, verbal, or mental,
mathematics retains a material aspect.

A calculus consists of a fund of basic rules as well as basic concepts.
Thus, a calculus incorporates semantics. G. W. Leibniz’s program of a
universal calculus, formulated at the dawn of the Enlightenment, illus-
trates this point very nicely. Leibniz envisioned an encompassing system
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of signs — one for every basic concept — and rules to combine them and
its use to record all human knowledge. Then, according to Leibniz’s
program, it would be possible to settle disputes by computation and,
similarly, to acquire new insights based on the application of this calcu-
lus. What a daring vision! As Leibniz envisioned it, this formal system
was not an end in itself but was meant to serve scientific progress. The
calculus’s final success, of course, hinged on an important precondition:
universal agreement as to its appropriateness. Unsurprisingly, this uni-
versal calculus did not materialize on the envisioned scale (which does
not lessen Leibniz’s computational achievements, which were extraor-
dinary, including, among others, the inception of the differential and
integral calculus, contributions to the probability calculus and to logic,
as well as the construction of the first calculating machines capable of
performing the four basic arithmetic operations).

Leibniz’s universal calculus has remained a dream, and the term cal-
culus has lost much of its Leibnizian grandeur. Today, the term is mostly
used to refer to particular formal systems, as, for example, the differen-
tial calculus or the probability calculus. But even these calculi are not
what Leibniz had envisioned, that is, unitary formal systems. Historical
scholarship has taught us that these calculi were shaped by alternative,
at times competing, proposals. We argue that there are always multiple
alternative representations and interpretations in a calculus, and that
this variability in representational practice can be functional, allowing
a calculus to be relevant for various tasks and in various domains. Our
case studies of present-day experts and their representational practices
show how this plurality of representation can be a resource. Our case
studies are preceded by historical “prisms” that intend to make the
spectra of interpretations and representations of the calculi visible.

Representing Uncertainty

Observing Historical Spectra: The Calculus of Uncertainty

According to legend, the calculus of uncertainty is one of the few seminal
ideas thathas an exact birthday. In 1654, the now famous correspondence
between Blaise Pascal and Pierre Fermat first cast the calculus of prob-
ability in mathematical form. Ian Hacking (1975) argued that this prob-
ability, which emerged so suddenly, was Janus-faced from the very be-
ginning. One face was aleatory, concerned with observed frequencies
(e.g., co-occurrences between fever and disease, comets and the death
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of kings); the other face was epistemic, concerned with degrees of be-
lief or opinion warranted by authority. In his view, the “20th-century”
duality between objective frequencies and subjective probabilities ex-
isted then as now. Barbara Shapiro (1983) and Lorraine Daston (1988),
however, have argued that probability in the 17th and 18th centuries
had more than Janus’s two faces. It included physical symmetry (e.g.,
the physical construction of dice, now called propensity); frequency (e.g.,
how many people of a given age die annually); strength of argument
(e.g., evidence for or against a judicial verdict); intensity of belief (e.g.,
the firmness of a judge’s conviction of the guilt of the accused); verisimil-
itude and epistemological modesty, among others. Over the centuries,
probability also conquered new territories and created further mean-
ings, such as in quantum physics, and lost old territory, such as the
probability of causes (Daston, 1988).

The important point is that the calculus of probability began with sev-
" eral interpretations, and this plurality is still with us. This does not mean
that the relationship between these interpretations has remained stable -
on the contrary. For instance, the two major faces of probability, subjec-
tive belief and objective frequencies, began as equivalents and ended
up as diametric opposites. For Jakob Bernoulli and the other Enlighten-
ment mathematicians, belief and frequencies were just two sides of the
same coin, and the ease with which the Enlightenment probabilists slid
from one interpretation to the other is breathtaking — from today’s point
of view. Poisson eventually distinguished subjective belief and objec-
tive frequencies, and the political economist and philosopher Antoine
Cournot (1843/1975) seems to have been the first to go one step further
and eliminate subjective belief from the subject matter of mathemati-
cal probability: Mathematical probability was not a measure of belief.
There is a broader intellectual and social context in which the demise
of subjective belief as the subject matter of probability is embedded.
The French Revolution and its aftermath shook the confidence of the
mathematicians in the existence of a single shared standard of reason-
ableness. The consensus and the values of the intellectual and political
elites fragmented, and degrees of belief became associated with wishful
thinking and irrationality. By that time, the calculus of probability had
lost its subject matter, the judgment and decision making of reasonable
people (Gigerenzer et al., 1989, ch. 1).

By 1840, the calculus of uncertainty was no longer about mechani-
cal rules of rational belief embodied in an elite of reasonable men, but
about the observable properties of the average man (I'homme moyen), the
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embodiment of mass society, if not of mediocrity. Adolphe Quetelet’s
(1835) social physics determined the statistical distributions of suicide,
murder, marriage, prostitution, height, weight, education, and almost
everything else in Paris and compared them with the distributions in
London or Brussels. The means of these distributions defined the fic-
tional average man in each society. The means and rates of moral be-
haviors, such as suicides or crimes in Paris or in London, proved to
be strikingly stable over the years, and this was cited as evidence that
moral phenomena are governed by the laws of a society rather than by
the free decisions of its members. In 19th-century France, statistics be-
came known as moral science. Quetelet offered a model of human behav-
ior as erratic and unpredictable at the individual level, but governed by
statistical laws and predictable at the level of society. This model was in-
dependently adopted by James Clerk Maxwell and Ludwig Boltzmann
to justify, by analogy, their statistical interpretation of the behavior of
gas molecules (Porter, 1986). By this strange route, through analogy with
the statistical laws of society, physics was revolutionized.

Throughout most of the 19th and 20th centuries, the probabilistic rev-
olution (Kriiger, Daston, & Heidelberger, 1987; Kriiger, Gigerenzer, &
Morgan, 1987) was about frequencies, not about degrees of belief: from
the kinetic theory of gas to quantum statistics, and from population ge-
netics to the Neyman—Pearson theory of hypothesis testing. As is well
known, subjective probability regained acceptance in the second half
of the 20th century with the pioneering work of Bruno de Finetti and
Frank Ramsay in the 1920s and 1930s and of Leonard Savage in the
1950s. The reasonable man, once exiled from probability theory, made
his comeback. Economists, psychologists, and philosophers now strug-
gle again with the issue of how to codify reasonableness in mathemat-
ical form — the same issue once abandoned by mathematicians as a
thankless task. Before the 1970s, the return of subjective probability still
provoked a particularly lively debate between frequentists and subjec-
tivists (whose most prominent species are now called Bayesians). Today,
both sides pretend to know each other’s arguments all too well and
seem to have stopped listening. Frequentists dominate statistics and
the experimental sciences; subjectivists dominate theoretical economics
and artificial intelligence. The territory has been divided up. As Glenn
Shafer (1989) complained, “conceptually and institutionally, probability
has been balkanized” (p. 15).

To summarize: Since its inception, the calculus of uncertainty has had
not one subject matter, but a multitude, that is, there has always been
more than one interpretation of this calculus. The two most prominent
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ones are objective frequencies and subjective degrees of belief. The im-
portant point for this chapter is that each of these two interpretations is
linked with a specific class of representations. Observed frequencies, for
instance, can be represented by discrete elements that are the final tally
of a counting process, and which are different from degrees of belief
and single-event probabilities. The two representations we will focus
on are natural frequencies and probabilities. The former are pure observed
frequencies; the latter are the typical representations of degrees of belief.

Experts’ Representations of Uncertainty. In this section, we summarize
two case studies that demonstrate how the representation of statistical
information —single-event probabilities and natural frequencies — affects
human reasoning in Bayesian inference tasks. We first give an example
to show how the Bayesian solution can be derived from either of the two
representations. Then we report on how AIDS counselors reason in such
a task and how they represent the relevant information spontaneously
(Case Study D). Finally, we show how performance can be considerably
improved by altering the representation of information (Case Study II).

Task Analysis. Consider the situation of a young heterosexual man who
has undergone a human immunodeficiency virus (HIV) test. He does
not engage in activities considered risky, such as intravenous (IV) drug
use or homosexual practices. Yet, the result — after repeatedly applying
the enzyme-linked immunosorbent assay (ELISA) and the Western blot
test — comes back positive. What is the probability that he actually has
HIV?If the test is positive, the probability of being infected — also known
as the positive predictive value (PPV) — can be computed by Bayes’s rule:

p(HIV) p(pos|HIV)

PPV = p(HIV) p(pos|HIV) + p(no HIV) p(pos|no HIV)

1)

where p(HIV) denotes the prevalence of HIV in the respective popu-
lation, p(no HIV) equals 1 — p(HIV), p(pos|HIV) denotes the sensitiv-
ity of the test, and p(pos|no HIV) denotes the false positive rate of the
test. Often the specificity rather than the false positive rate of a test is
reported; the specificity of a test equals 1 — p(pos|no HIV). To compute
the PPV, we consulted the literature for estimates of these probabili-
ties. The prevalence of HIV in heterosexual men with no known risk
factors is estimated to be 0.01%. The best estimates for the sensitivity
and specificity of the respective testing procedure (repeated ELISA and
Western blot testing) is 99.8% for the sensitivity of the test and 99.99%
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for its specificity (see Gigerenzer et al., 1998). Inserting these values into
Bayes’s rule results in a PPV of .50, or 50%, which is consistent with
reports in the literature (Deutscher Bundestag, 1990, p. 121; Stine, 1996,
p- 338).

Do people understand Bayes’s rule and can they infer the PPV from a
given prevalence, sensitivity, and false positive rate? There is consider-
able empirical evidence that suggests the answer is “no” (e.g., Casscells,
Schoenberger, & Grayboys, 1978; Eddy, 1982; Gigerenzer & Hoffrage,
1995). The good news is that this negative answer need not be the cause
of utter pessimism for the following reason. Note that the statistical in-
formation in our HIV example was represented in terms of probabilities.
This probability-based format is the information format generally used
in medical textbooks and curricula, as well as in the experiments that
have demonstrated people’s (including physicians’) poor performance
in Bayesian inference tasks. However, as we saw in the preceding sec-
tion, probabilities constitute only one way of representing the relevant
information; it can also be represented in terms of natural frequencies,
that is, the absolute frequencies that result from observing cases that
have been representatively sampled from a population.

Unlike probabilities, natural frequencies are not normalized with re-
spect to the base rates of disease or no disease. Using natural frequencies,
computation of the PPV can be communicated as follows: “Imagine that
10,000 heterosexual men are tested. One has the virus, and he will with
practical certainty test positive (sensitivity = 99.8%). Of the remaining
uninfected men, one will also test positive (false positive rate = 0.01%).
This means that we expect that two men will test positive, and only one
of them has HIV. Thus, the chance of having the virus given a positive
test is one out of two, or 50%.” In general, the PPV is the number of
true positives (TP) divided by the number of true positives and false
positives (FP):

P

PPP = 5

2

Figure 7.2 illustrates the fact that Bayesian computations are simpler
with natural frequencies than with probabilities or percentages, where
the relevant statistical information is inserted in Equation 1 (left-hand
side) and Equation 2 (right-hand side).

To compute the formula on the right-hand side, fewer cognitive op-
erations need to be performed. Comparing the two equations yields
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Figure 7.2 Two ways of inferring the predictive value of a positive HIV test.
Relevant information is represented- either as probabilities or as natural
frequencies.

two further (related) results. First, with frequency representation only
two pieces of information, the symptom and disease frequencies and
the symptom and no disease frequencies (the two bold circles in
Figure 7.2), need to be used. Second, and as a consequence of this,
the base rate frequency (1 out of 10,000) can be ignored. On balance,
in this kind of Bayesian inference task we obtain the same result with
less information and fewer cognitive operations. We have chosen our
favorite!

As a final example, let us compute the risk of a young homosexual
man having HIV, given a positive test result. Assuming that the preva-
lence for this group is 1.5%, try to compute the PPV by using the proba-
bility representation first. (To make a fair comparison, you should think
of how you would have dealt with this task before reading the previ-
ous pages of this chapter.) Now consider the frequency representation:
Out of 10,000 homosexual men, about 150 have the virus and they will
probably all test positive. Of the remaining uninfected men, one will
also test positive. Thus, we expect that 151 men will test positive and
that 150 of these men have HIV. Given a positive test result, the chance
of having the virus is therefore 150 out of 151, or 99.3%.
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In this way, representing information in terms of natural frequen-
cies can help us “see” the correct Bayesian answer. The numbers can be
adjusted; the point is that these numbers have to be represented some-
how and that the representation chosen makes the computation more
or less easy.

AIDS Counseling for Low-Risk Clients (Case Study I)

How do AIDS counselors communicate the meaning of a positive test re-
sultin actual counseling sessions? Do they communicate the risk in prob-
abilities or natural frequencies? The study by Gigerenzer et al. (1998) on
AIDS counseling in German public health centers seems to be the only
study to have investigated what AIDS counselors tell a low-risk client
about the meaning of a positive test. One of the authors of the study
visited 20 counseling locations as a client wishing to take an HIV test.
He asked the counselor the following questions in the order indicated
(unless the counselor provided the information unprompted):

1. Sensitivity of the HIV Ifoneisinfected with HIV, is it pos-

test sible to have a negative test result?
How reliably does the test identify
a virus if the virus is present?

2. Specificity of the HIV If one is not infected with HIV,

test is it possible to have a positive
test result? How reliable is the test
with respect to a false positive

result?
3. Prevalence of HIV in How frequent is the virus in my
heterosexual men risk group, that is, heterosexual

men, 20 to 30 years old, with no
known risk - such as IV drug use?
4. Predictive value of a What is the probability that men

positive test in my risk group actually do have
HIV after a positive test?
5. Window period How much time has to pass be-

tween infection and test, so that an-
tibodies can be detected? (For the
present purpose, we will omit the
results concerning this question.)
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The interview included the following scheme for clarifying ques-
tions. If the counselor’s answer was a quantitative estimate (a figure
or a range), or if the counselor said that he or she could not (or did
not want to) give a more precise answer, then the client went on to
the next question. If the answer was qualitative (e.g., “fairly certain”),
or if the counselor misunderstood or avoided answering the question,
the client asked for further clarification and, if necessary, repeated the
request for clarification once. If, after the third attempt, there was still
no success, the client did not push further and went on to the next
question. When the client needed to ask for clarification concerning the
prevalence of HIV (Question 3), he always repeated his specific risk
group; when asking for clarification concerning the PPV (Question 4),
he always referred to the specific prevalence in his risk group, namely,
“heterosexual men, 20 to 30 years old, with no known risk-related ac-
tivity such as IV drug use.” If the counselor asked for more informa-
tion, which happened in only 11 of the 20 sessions, the client explained
that he was 27 years old and monogamous, and that neither his cur-
rent nor his (few) previous sexual partners used IV drugs or engaged
in other risky behavior. In 2 of these 11 cases, the client was given a
detailed questionnaire to determine his risk; in 1 of these 2 cases, the
counselor did not look at the questionnaire and the client still had it
in his hands when he left the location. Before turning to the general
results of this study, we present excerpts from four typical counsel-
ing sessions. The client’s questions are abbreviated (e.g., Sensitivity?)
and followed by the information provided by the counselors. The coun-
selors’ answers to the client’s clarifying questions are preceded by a
hyphen.

Session 1: A Social Worker

Sensitivity? False negatives really never occur. Although if I think about
the literature, there were reports about such cases. — I don’t know ex-
actly how many. — It happened only once or twice. False Positives? No,
because the test is repeated; it is absolutely sure. — If there are an-
tibodies, the test identifies them unambiguously and with absolute
certainty. — No, it is absolutely impossible that there are false positives;
by repeating the test it is absolutely certain. Prevalence? I can’t tell you
this exactly. — Between about 1 of 500 and 1 of 1,000. Positive predic-
tive value? As I have now told you repeatedly, the test is absolutely
certain.
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Session 2: A Physician

Sensitivity? When there are enough antibodies, then the test identifies
them in every case. Two tests are performed; the first test is in its fourth
generation and is tuned to be very specific and sensitive. Nevertheless
it is tuned in a way that it is more likely to identify positives than
negatives. — 99.8% sensitivity and specificity. But we repeat the test,
and if it comes out positive, then the result is as solid as cast iron. False
Positives? With certainty, they don’t occur; if there are false results, then
only false negatives, occurring when the antibodies have not formed. -
If you take the test here, including a confirmatory test, it is extremely
certain. In any case the specificity is 99.7%. This is as solid as cast iron.
We exclude confusions by using two tests. Prevalence? The classification
of individuals into risk groups is by now outdated, therefore one cannot
look at this that way. — I don’t remember this. There is a trend for
the virus to spread in the general public. Statistics are of no use for
the individual case! Positive predictive value? As 1 already have said:
extremely certain, 99.8%.

Session 3: A Physician

Sensitivity? The test is very, very reliable, that is, about 99.98%. False
Positives? The test will be repeated. After the first test, we do not speak
of positive, but only of reactive. When all tests are performed, then
the result is sure. — It is hard to say how many false positives occur. -
How many precisely? I would have to look up the literature to see if
I could find this information there. Prevalence? That depends on the
region. — Of the approximately 67,000 infected people [in Germany],
9% are heterosexual. — In Munich we have 10,000 infected people, that
is, 1% of the population. But these are only numbers, which tell you
nothing about whether you have the virus or not. Positive predictive
value? As I have already have mentioned, the result is 99.98% sure. If
you get a positive result, you can trust it.

Session 4: A Social Worker

Sensitivity? Very, very reliable. — No, not absolutely sure, such a thing
doesn’t exist in medicine, because it may be possible that the virus can-
not be identified. - Close to 100%; I don’t know exactly. False Positives?
They exist, but are extremely rare. — On the order of one tenth of 1%.
Probably less. However, in your risk group, compared with high-risk
groups, false positives are proportionally more frequent. —I don’t know
the exact value. Prevalence? With the contacts you have had, an in-
fection is unlikely. — Generally one can’t say. In our own institution,
among some 10,000 tests in the last 7 years, there were only three or
four heterosexuals, nondrug addicts, or similar non-risk-group persons
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who tested positive. Positive predictive value? As mentioned, the test is
not 100% sure. If the test confuses the [HIV] antibodies with others,
then other methods such as repeated tests do not help. And if someone
like you does not have a real risk, then I could imagine that even 5% to
10% of those who get a positive result will have gotten a false positive
result.

How Did the Counselors Represent Statistical Information? The client was
provided with information concerning sensitivity by 19 out of 20 coun-
selors. (One of them refused to give any information concerning sensi-
tivity, specificity, or predictive value before the test result was obtained.
When the client collected the test result, he didn’t receive any informa-
tion either.) Most counselors gave the client realistic information con-
cerning sensitivity (Table 7.1). However, 5 out of the 19 counselors incor-
rectly informed the client that even after the window period, it would
be impossible to get a false negative result.

The client was informed incorrectly that false positives do not occur
by 13 out of 19 counselors (e.g., Session 1). Eleven of the 13 explained
this by saying that repeated testing with ELISA and Western blot elim-
inates all false positives. Five of these 13 counselors told the client that
false positives had occurred in the 1980s, but no longer today, and 2
said that false positives occur only in foreign countries, such as France,
but not in Germany. In addition to these 13 counselors, 3 other coun-
selors initially suggested that false positives do not occur, but became
less certain when the client repeated his question and admitted the pos-
sibility of false positives (Sessions 2 and 3). Only the three remaining

Table 7.1. Summary of the Information Provided in 20 AIDS Counseling Sessions

Best Estimate
100% from the
Certainty >999% =>99% >90% Range Literature
Sensitivity 5(of19) 5 6 3 90-100% 99.99%
Specificity 13 (of19) 3 3 0 99.7-100% 99.99%
Prevalence - - - - 0.0075-6% 0.01%
PPV 10(of 18) 5 1 2 90-100% 50%

Note: Not all the counselors provided numerical estimates. The verbal assertion “absolutely
certain” is treated here as equivalent to 100% certain; verbal assertions such as “almost absolutely
certain” and “very, very certain” are classified as >99%, and assertions such as “very reliable”
are classified as >90%.

Source: Gigerenzer et al. (1998)
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counselors informed the client right away about the existence of false
positives. One of these three counselors (Session 4) was the only one
who informed the client of the important fact that the proportion of
false positives to true positives is higher in heterosexuals, such as the
client.

Recall that the currently available estimates indicate that, of hetero-
sexual German men with low-risk behavior who test positive, only 50%
actually have HIV. The information provided by the counselors on this
was quite different. Half of the counselors (10 out of 18; 2 repeatedly
ignored this question) told the client that if he tested positive, it was ab-
solutely certain (100%) that he had HIV (Table 7.1 and Session 1). He was
told by five counselors that the probability is 99.9% or higher (e.g., Ses-
sion 3). Thus, if the client had tested positive and trusted the information
provided by these 15 counselors, he might indeed have contemplated
suicide, as many people in this situation have done (Stine, 1996).

How did the counselors arrive at this inflated estimate of the pre-
dictive value? They seem to have followed two lines of thought. A
total of eight counselors confused sensitivity with the PPV (a confu-
sion also reported by Eddy, 1982, and Elstein, 1988), that is, they gave
the same figure for sensitivity as for the PPV (e.g., Sessions 2 and 3).
For example, three of these eight counselors explained that, apart from
the window period, the sensitivity is 100% and therefore the PPV is
also 100%. Another five counselors followed a different line of thought:
They erroneously assumed that false positives would be eliminated by
repeated testing and, consistent with this assumption, concluded that
the PPV is 100%. For both groups, the client’s question about the PPV
must have appeared to repeat a previous question. In fact, more than
half of the counselors (11 out of 18) explicitly introduced their answer
to this question with a phrase such as “As I have already said .. .” (e.g.,
Sessions 1-3).

Table 7.1 shows that two counselors provided estimates of the PPV
in the correct direction (between 99% and 90%). Only one of these two
(Session 4), however, arrived at this estimate by reasoning that the pro-
portion of false positives among all the positives increases when the
prevalence decreases. She was also the only one who explained to the
client that repeated testing cannot eliminate all possible causes of false
positives, such as a positive test reaction to antibodies wrongly iden-
tified as HIV antibodies. The second counselor initially asserted that
a positive test result means that an HIV infection is “completely cer-
tain,” but when the client asked what “completely certain” meant, the
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physician had second thoughts and said that the PPV is “at least in the
upper 90s” and “I can’t be more exact.”

How Was Statistical Information Communicated? Not one of the counselors
communicated the information in terms of natural frequencies, the rep-
resentation that physicians and laypeople can understand best. Except
for the prevalence of HIV, all statistical information was communicated
to the client in terms of percentages. The four sessions illustrate this.
As a consequence, clients probably did not understand the meaning of
what was being communicated to them. Further, some of the counselors
did not seem to understand the figures they were communicating. This
can be inferred from the fact that several counselors gave the client in-
consistent information but did not seem to notice this.

Two examples may serve to illustrate the counselors’ unawareness of
inconsistency. One physician told the client that the prevalence of HIV in
men such as the client is 0.1% or slightly higher and that the sensitivity,
specificity, and PPV are each 99.9%. To demonstrate that this informa-
tion is contradictory, we represent it in natural frequencies. Imagine that
1,000 men take an HIV test. One of these men (0.1%) is infected, and he
will test positive with practical certainty. Of the remaining uninfected
men, one will also test positive (because the specificity is assumed to
be 99.9%, which implies a false positive rate of 0.1%). Thus, two men
test positive, and one of them is infected. Therefore, the odds of being
infected with HIV are 1:1 (50%), not 999:1 (99.9%). (Even if the physician
assumed a prevalence of 0.5%, the odds are 5:1 (84%) rather than 999:1.
Note how in this case the odds representation paints a rather more dra-
matic picture than the probability representation based on percentages.)

Next, consider the information the client received in Session 2. For
the prevalence (which the counselor did not provide), assume the me-
dian estimate of the other counselors, 0.1%. Again, imagine 1,000 men.
One has the virus, and he will test positive with practical certainty (the
counselor’s estimated sensitivity: 99.8%). Of the remaining uninfected
men, three will also test positive (the counselor’s estimated specificity:
99.7%). Thus, we expect 4 of the 1,000 to test positive and 1 of these 4 to
have the virus. So if the test is positive, the probability of being infected
is 25% (one in four), and not 99.8% as the counselor told the client.

This study shows, for a representative sample of public AIDS coun-
seling centers in Germany, that counselors were not prepared to explain
to a man with low-risk behavior what it meant if he tested positive for
HIV. This is not to say that the counselors were generally ignorant; on
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the contrary, several counselors gave long and sophisticated lectures
concerning immunodiagnostic techniques, the nature of proteins, and
the pathways of infection. But when it came to explaining to the client
the risk of being infected if he tested positive, they uniformly relied on
a representational format that did not serve them well and could have
been harmful to their clients.

Diagnostic Insight in Physicians (Case Study II)

To see whether diagnostic reasoning improves when statistical informa-
tion is represented in terms of frequencies, we decided to manipulate the
representational format in an experiment with physicians (Gigerenzer,
1996; Hoffrage & Gigerenzer, 1998). We had previously carried out such
an experiment with students as participants, with the result that, when
information was presented in natural frequencies (rather than in proba-
bilities), the percentage of Bayesian solutions increased from about 16%
to 46% (Gigerenzer & Hoffrage, 1995). Yet, it remained an open (and
interesting) question whether this result would generalize to experts
such as physicians. Medical textbooks typically present information
about sensitivity, specificity, and priors in probabilities (as in Figure 7.2,
left-hand side). Medical experts may be so “spoiled” by this common
practice that they do not appreciate the advantages of representing the
relevant information in natural frequencies.

Forty-eight physicians participated in this study (Gigerenzer, 1996;
Hoffrage & Gigerenzer, 1998). The physicians were asked to work on
four diagnostic problems: inferring colorectal cancer on the basis of a
positive hemoccult test, inferring the risk of breast cancer from a positive
mammography test, inferring ankylosing spondylitis on the basis of a
positive HL antigen B 27 test, and inferring phenylketonuria from a pos-
itive Guthrie test. Two versions of each of the four diagnostic problems
were presented to the participants. In one version, the relevant informa-
tion was presented in a probability format; in the other, in a frequency
format. (Which problems were in which format and which format was
presented first was systematically varied, with the constraint that the
first two problems had the same format.) To illustrate, here are the two
versions of the colorectal cancer problem:

To diagnose colorectal cancer, one of the tests that is conducted to
detect occult blood in the stool is the hemoccult test. This test may be
used for people above a particular age and in routine screening for
early detection of colorectal cancer. Imagine that you are screening in a
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certain region using the hemoccult test. For symptom-free people over
50 years old who are screened by the hemoccult test in this region, the
following information is available:

The Probability Format

The probability that one of these people has colorectal cancer is
0.3%. If one of these people has colorectal cancer, the probability
that he or she will have a positive hemoccult test is 50%. If one
of these people does not have colorectal cancer, the probability
that he or she will still have a positive hemoccult test is 3%.
Imagine a person (aged over 50, no symptoms) who has a pos-
itive hemoccult test in your screening. What is the probability
that this person actually has colorectal cancer? %o

The Natural Frequency Format

Thirty out of every 10,000 people have colorectal cancer. Of
these 30 people with colorectal cancer, 15 will have a positive
hemoccult test. Of the remaining 9,970 people without colorectal
cancer, 300 will still have a positive hemoccult test. Imagine
a sample of people (aged over 50, no symptoms) who have
positive hemoccult tests in your screening. How many of these
people do actually have colorectal cancer? out of

The physicians received a booklet containing all four problems, two
of which presented information in probabilities and two in natural fre-
quencies. The formats and order of the problems were systematically
varied among the physicians, with the constraint that the first two prob-
lems were in the same representational format. Participants were in-
vited to make notes, calculations, or drawings while working on the
problems; these were analyzed later to reconstruct their reasoning. Af-
ter the physicians had filled out the booklets, we interviewed them about
their reasoning strategies. We only coded answers to the problems as
being in accord with Bayes’s rule when (1) the numerical estimate was
within 5 percentage points of the correct one, and (2) the physician’s
notes, calculations, or drawings, and the interview confirmed that the
answer was neither a guess nor the result of another strategy. Next, we
describe the impact of the two representational formats on a physician’s
reasoning. This physician was a rather typical case, and we therefore
call him Dr. Average.

A Physician’s Diagnostic Reasoning. Dr. Averageis 59 years old, director of
a university clinic, and a dermatologist by training. He spent 30 minutes
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on the four problems and another 15 minutes discussing the results with
the interviewer. Like many physicians, he became visibly nervous when
working on the problems, but only when faced with the probability
formats. At first, Dr. Average refused to write notes; later, he agreed to
do so, but only on his own piece of paper and not on the questionnaire.
He did not let the interviewer see his notes.

Dr. Average’s booklet started with the mammography problem in
the probability format. He commented: “I never inform my patients
about statistical data. I would tell the patient that mammography is not
so exact, and would in any case perform a biopsy.” He estimated the
probability of breast cancer after a positive mammography as 80% +
10% = 90%, that is, he added the sensitivity to the false positive rate (an
unusual strategy). Nervously, he remarked: “Oh, what nonsense. I can’t
do it. You should test my daughter; she studies medicine.” Dr. Average
was as helpless with the second problem, ankylosing spondylitis, in
a probability format. This time he estimated the posterior probability
by multiplying the base rate by the sensitivity (a common strategy in
statistically naive students; see Gigerenzer & Hoffrage, 1995).

Then came the first problem presented in a frequency format. Dr.
Average’s nervousness subsided visibly. Coming up with the Bayesian
answer, he remarked with relief: “That’s so easy.” He also arrived at the
Bayesian answer with the fourth problem, which was also presented in
a frequency format. Dr. Average’s reasoning evidently turned Bayesian
when the relevant information was presented in frequencies. This was
the case, despite the fact that he did not know Bayes’s rule, as he in-
formed us.

Incidentally, Dr. Average was not the only physician who referred
in despair to a daughter or son. In one case, the daughter was actually
nearby and was also working on the problems. Her father, a 49-year-old
private practitioner, worked for about 30 minutes on the four problems
and failed on all of them. “Statistics is alien to everyday concerns and of
little use for judging individual people,” he declared. He derived his nu-
merical estimates from one of two strategies: base rate only or sensitivity
only (both strategies are common with statistically naive students). His
18-year-old daughter solved all four problems by constructing Bayesian
trees (as on the right-hand side of Figure 7.2). When she learned about
her father’s strategies, she glanced at him and said: “Daddy, look, the
frequency problem is not hard. Couldn’t you do this one either?” For
this private practitioner, even frequency formats didn’t help. In contrast,
a 38-year-old gynecologist faced with the mammography problem in
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Figure 7.3 The percentage of Bayesian answers is higher when the relevant
information is represented as natural frequencies rather than as probabilities.

the frequency format, exclaimed: “A first grader could do this. Wow, if
someone couldn’t solve this .. .!”

Does Representation Have an Effect on Physicians” Diagnostic Reasoning?
On average, the 48 physicians worked on the four problems for half an
hour. When the information was presented in a probability format, the
physicians reasoned the Bayesian way in only 10% of the cases, averaged
across all four problems. When the information was presented in natural
frequencies, this figure increased to 46%.

Ascanbeseenin Figure 7.3, the frequency representation led to higher
proportions of Bayesian estimates for each of the four problems. In ad-
dition, the natural frequencies turned out to be less time-consuming for
the participants. The physicians spent about 25% more time on the prob-
ability problems, which indicates that they found them more difficult to
solve. As the case of Dr. Average illustrates, the physicians often reacted
differently — cognitively, emotionally, physiologically — to the probabil-
ity format and the natural frequency format. The physicians were more
often nervous when information was presented in terms of probabilities.
When working on probability problems, they made complaints such as:
“I simply can’t do that. Mathematics is not my forte.” However, with
natural frequencies, a typical remark was: “Now it’s different. It's quite
easy to imagine. There’s a frequency; that’s more visual.” In addition,
they were less skeptical about the relevance of statistical information to
medical diagnosis when it was communicated in frequencies.

The results of this case study, which have recently been replicated
with 96 advanced medical students (Hoffrage, Lindsey, Hertwig, &
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Gigerenzer, 2000), show that representing information in natural fre-
quencies is effective in inferring the predictive value of a test. The bene-
ficial effect of natural frequencies is, however, not limited to the field of
medicine. In criminal law, judges” and other legal experts’ understand-
ing of the meaning of a DNA match could similarly be improved by
using natural frequencies instead of probabilities (Hoffrage et al., 2000;
Koehler, 1996). It was also found, for example, that legal experts were
less likely to support a “guilty” verdict when the statistical information
was presented in natural frequencies. An important new finding is that
natural frequencies can also facilitate reasoning in complex Bayesian sit-
uations characterized either by two or more predictors or by predictors
and criteria with more than two values (Krauss, Martignon, Hoffrage,
& Gigerenzer, in review).

These results have two implications. First, because information in
medical textbooks is routinely communicated in terms of probabilities
or percentages, medical students as well as physicians ought to be taught
how to translate these figures into natural frequencies. Sedlmeier and
Gigerenzer (2001, Study 1) designed a computerized tutorial system that
teaches people how to do this. People who were taught to translate prob-
abilities into natural frequencies performed twice as well on Bayesian
inference problems as people who were taught the standard method
of inserting probabilities into Bayes’s rule. Even more striking, perfor-
mance in the group that translated information into natural frequen-
cies remained stable in a 5-week follow-up test (median performance
90% correct), whereas performance in the standard group showed the
usual deterioration due to forgetting (15% correct). Kurzenhduser and
Hoffrage (2002) applied this approach to a typical classroom setting
and found that twice as many medical students who learned to actively
translate probabilities into natural frequencies (as compared to a con-
trol group who learned Bayes’s rule) were able to deal with probabilities
when tested 2 months later.

A second, equally important implication concerns the communica-
tion of risks, not only in medical textbooks but also to patients. For
instance, before consenting to medical treatment on the basis of a diag-
nosis, patients should understand the uncertainties involved, such as
the risks of actually having the disease. In order to facilitate accurate
assessment of risk, physicians should use the most effective means of
representation and thus of communication. As we showed, it is not for
lack of contenders that more effective representations are not generally
available to medical experts and their patients.
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Representing Change

Observing Historical Spectra: The Differential Calculus

Isaac Newton (1642-1727) and Gottfried Wilhelm Leibniz (1646~1716),
the two eminent figures credited with the intellectual breakthrough of
the differential and integral calculus, had a bitter dispute over prior-
ity (Hall, 1980). In the work of both Leibniz and Newton, the incep-
tion of the calculus was embedded in a body of questions concerned
with natural philosophy, metaphysics, and theology (Bertoloni Meli,
1993; see also the Leibniz—Clarke correspondence in Alexander, 1956).
Both of them had arrived at the insight that two old problems could be
viewed as inverse to each other: finding tangents to curves and find-
ing areas below curves (quadratures). Since antiquity, these had been
distinct problems (Boyer, 1949). Although the calculation of tangents
and areas had advanced quite far in the century prior to Newton and
Leibniz, it was only through their work that these were seen as inverse
and that a general and algorithmic method was established. In the cen-
turies following Newton and Leibniz, some of their concepts were recast
and abandoned, and new ones, like the limit concept and the function
concept, were introduced. The important point is that the institution-
alization of the differential calculus began with rivaling proposals and
that this plurality of representation has remained a feature of the calcu-
lus. To demonstrate this point, we will ask you, the reader, to look at the
graph shown in Figure 7.4 through “Leibnizian glasses,” “Newtonian
glasses,” and “Modern glasses.”

Let us start with the Leibnizian glasses. Leibniz conceived of smooth
curves as polygons with infinitely many sides. If you look at the curvi-
linear line in Figure 7.4 through Leibnizian glasses you see the smooth
curve as a chain of short rectilinear line segments. The “links” in this
chain may be infinitely small, but the curve will always remain a chain
when you are looking through your Leibnizian glasses. The passage
from this imagined chain to the quantification of change can be achieved
by the following consideration pertaining to the vertices of the (infinite
angular) polygon, or, in other words, to the points at which the (in-
finitely small) links of the chain meet. The ordinates and abscissas cor-
responding to the vertices of the polygon can be understood as forming
number sequences. To approximate the smooth curve, the differences
between the successive terms of such sequences were conceptualized as
infinitely small. These infinitesimal differences were called differentials
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Figure 7.4 Cartesian coordinate system with a graph showing how the salt
concentration in the flask changes with time. The line representing the changing
concentration can be read in three different ways: a Newtonian, a Leibnizian,
or a function-based way.

and denoted by dx or dy, the differentials being assigned to the finite
variables x and y, respectively. In other words, the operator d, as in dx,
related to a sequence the corresponding difference sequence. Leibniz’s
operator [, by contrast, related to a sequence the corresponding sum
sequence. Thus, Leibniz’s insight of the inverse nature of the problem
of quadratures and tangents was in the end, or rather in its beginning,
based on the inverse operations of summing and finding differences
(Bos, 1993).

Now let us try on the Newtonian glasses. In Newton's fluxionary calcu-
lus, variable quantities, also called fluents, were conceived of as changing
over time. In Newton’s own words (cited from his Tractatus de quadratura
curvarum of 1704, as translated and reprinted in Struik, 1969, p. 303):

I consider mathematical quantities in this place not as consisting of
very small parts; but as described by a continued motion. Lines are
described, and thereby generated not by the apposition of parts, but
by the continued motion of points; superficies [surfaces] by the motion
of lines; solids by the motion of superficies; angles by rotation of sides;
portions of time by a continual flux: and so in other quantities. These
geneses really take place in the nature of things, and are daily seen in
the motion of bodies.

The velocities or rates of change with respect to time of such vari-
able quantities were called fluxions. Newton used pricked letters like
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% to symbolize them. If you look at the graph in Figure 7.4 through
Newtonian glasses, you see the curvilinear line as the trace created by a
rightward-moving point. Changes in velocity are represented as direc-
tional changes on the upward or downward dimension of the rightward-
moving point.

The passage from the motion of a geometrical object to the quantifica-
tion of change was accomplished by considering the change of variable
quantities during indefinitely small time intervals, also called moments
and denoted by the letter o. For instance, Newton determined the mo-
mentary change in the area below a curve by adding a moment o to the
variable quantity noted on the abscissa and then adding a correspond-
ing term to the variable quantity noted on the ordinate: Consider, for
example, the case in which the area underneath a curve is described
by the standard equation for a parabola z = x%; adding a moment o to
the abscissa corresponds to the expression z + yo = (x + 0)?, where z
denotes the area, and x and y are the variable quantities denoted on the
axes. The computational procedure was then completed by expanding
the expression on the right-hand side (applying the binomial theorem),
removing the terms without o (because they are equal), dividing by o,
and then neglecting terms carrying o as a factor. The result of these com-
putations is y = 2x. By this procedure, it was established that the area z
underneath the curvey =2x is x2. Later, Newton expressed the monetary
change of a variable quantity (for example, y) by multiplying its fluxion
(1) by an infinitely small time interval (leading to the expression yo),
but the main idea behind the computational procedure, namely, to con-
sider the change in area by adding very small increments to the variables
in an equation, remained the same (see Bos, 1980, pp. 56-59, for a thor-
ough exposition). Newton’s insight concerning the inverse nature of the
problem of quadratures and tangents was helped by his early work on
the binomial theorem and on series expansion in general, and was re-
lated to the way in which Newton determined the area underneath a
curve.

Lastly, let us switch to the Modern glasses. Modern glasses are not part
of modern analysis in the same way that Leibnizian and Newtonian
glasses had been part of their respective calculi. Geometrical consider-
ations were indispensable for the development, presentation, and justi-
fication of Newton’s and Leibniz’s calculi. The development of modern
analysis was accompanied by a distancing from geometrical consider-
ations. The French mathematician Augustin-Louis Cauchy (1789-1857)
was a major figure in the reworking of the foundations of the calculus
and in its modern formulation. He also introduced the modern notation,
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in which a prime is used to denote the derivative, for example, f(x). In
Cauchy’s definition of limit, and thus of the derivative, no reference was
made to geometric figures (Grattan-Guinness, 1980), and his textbook
Cours d’analyse de I'Ecole Royal Polytechnigue, published in 1821, did not
contain a single diagram!

However, it is nevertheless possible to construct a visual analogue
for the concept of derivative. We ask you to look once again at the
graph in Figure 7.4 and to choose a small segment of the curvilinear
line. We suggest you imagine that you can move a small open rectangle
(rather like a cursor on a computer screen) along the curvilinear line.
You could then make it your goal to move the cursor so that the open
rectangle frames a segment with particularly strong curvature, but it is
up to you. Once you have settled on a segment of the graph, we ask
you to imagine that the rectangle and its contents are enlarged so as to
fill your entire field of vision, or, in other words, that you are zooming
in on the segment. As a result, you see a line with less curvature than
the original line segment — you might even see a straight line. Starting
with this “new” line, repeat the procedure of choosing a line segment
and zooming in on it, and then repeat this procedure as many times as
you wish. You will soon get bored because you will be looking at what
appears to be the same straight line. With Modern glasses you can thus
explore the inner workings of the graph, whereby you will observe that
you are approaching a world of straight lines.

To summarize the three different ways of looking at the graph in
Figure 7.4: We first looked through Leibnizian glasses and imagined the
curvilinear line approximated by a chain with infinitely many infinitely
small links; then we looked through Newtonian glasses, imagining the
curvilinear line as the trace generated by a moving point; finally, we
constructed Modern glasses, zooming in on particular line segments
and exploring the inner workings of the graph. The important point
for this chapter is that since its inception, the calculus has provided
multiple representations of change. This multiplicity is also reflected in
the calculus-specific notation. Present-day experts use both Leibnizian
notation and Newtonian notation, as well as function-based notation.

Experts’ Representation of Change

In this section, we summarize a case study in which calculus experts —
a mathematician, a chemist, and a physicist — were asked to solve a
problem that requires a differential equation for its exact solution. Next,
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we introduce the task that these experts were asked to solve, considering
first the general model of exponential change.

Task Analysis. What do cell growth, population growth, continuously
compounded interest, radioactive decay, cooling of a body, and the de-
crease in intensity of light when transmitted through a sample have
in common? All of these phenomena concern change: an increase or
decrease in cell mass, in population size, money, temperature, or light
intensity. Furthermore, all of these phenomena have been described,
given certain additional assumptions, by a particular mathematical
model known as the law of exponential change. For example, in an ideal
environment, the change in mass of a cell will be proportional to the
mass of the cell, at least early on. This relationship can be described by
a differential equation (here in Leibnizian notation) of the form:

= kx, €))
where x is the mass of the cell, f is time, and k is a constant. This dif-
ferential equation can be solved to determine the mass of the cell at
a particular time ¢ or, for that matter, at any time £. Solving the equa-
tion, which requires the operation of integration, leads to the following
expression:

x = xget, 4)

where x; denotes the initial mass of the cell. In words, cell mass grows
exponentially. The identical equation has been used to model continu-
ously compounded interest, or radioactive decay, or the change in light
intensity when light is transmitted through a sample of a certain thick-
ness. (In the last two cases the constant k has a negative value.)

Now consider a slightly more involved situation as represented by,
for instance, the cooling of a body in a surrounding medium of constant
temperature. In this case, we have to take into account that the body’s
temperature adjusts to the temperature of the surrounding medium, so
that the difference between its temperature and that of the surrounding
medium is crucial. (We assume that the temperature of the body does
not affect the temperature of the surrounding medium.) Newton's law of
cooling (here in Newtonian notation) addresses this situation:

T=—-k(T -T.), )]
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where T signifies the change in temperature with time (in Leibnizian
notation denoted by dT/dt), k is a constant, and T is the temperature of
the surrounding medium. In words, the cooling of a body is proportional
to the difference between its temperature and that of the surrounding
medium. The differential equation describing Newton’s law of cooling
can also be used to model phenomena other than the cooling and heating
of bodies. The expert participants in our third case study worked on a
task that can be modeled by an equivalent first-order linear ordinary
differential equation.

The following problem, henceforth called the Flask Problem (Brenner,
1963), was presented to the expert participants:

A flask contains 10 liters of water, and to it is being added a salt so-
lution that contains 0.3 kilogram of salt per liter. This salt solution is
being poured in at a rate of 2 liters per minute. The solution is being
thoroughly mixed and drained off, and the mixture is drained off at
the same rate, so that the flask contains 10 liters at all times. How much
salt is in the flask after 5 minutes?

This problem can be represented by the following differential equa-
tion in Leibnizian notation:

‘% — 02003 — ) = 0.6 — 0.2x ©)

or, in Newtonian notation:
£ =0.6—0.2x. )

Solving the equation and taking into account that initially there is no
salt in the flask, the answer to the problem is

x = 3 — 3702 kilograms ®)

or 1.9 kilograms (rounded to one decimal position).

A notable feature of this problem is that it requires a conceptual-
ization of instantaneous change. Consider, for example, the following
“mutilation” of the problem: “A flask contains 10 liters of water, and to
it is being added a salt solution that contains 0.3 kilogram of salt per
liter. This salt solution is being poured in at a rate of 2 liters per minute.
How much salt is in the flask after 5 minutes?” The answer is, of course,
3 kilograms, little more than a multiplication exercise. In this version, the
problem still requires one to consider the rate of change of incoming salt,
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but there is no need (cognitively speaking!) to operate with the concept
of instantaneous change; in the “full” version of the Flask Problem, it is
necessary to conceptualize instantaneous change and to operate with it.
An exciting feature of calculus is that it provides more than one way to
do this.

Representational Practices of Differential Calculus

The experimenter met individually with the experts, usually in the ex-
pert’s office. The participants were allowed to use paper and penciland a
pocket calculator, but no access to reference books was permitted; they
were not told that the problem requires calculus for its solution. The
participants were asked to think out loud, using instructional materials
adapted from Ericsson and Simon (1993). The protocols were taped and
transcribed. The protocols in conjunction with the experts’ handwrit-
ten notes were analyzed into problem-solving episodes. The analyses
of three sessions are summarized in the following (for details see Kurz,
1997).

Session 1: A Mathematician. Participant T is a young, highly productive
mathematician whose major field is analysis. He is a faculty member
in a doctoral-level mathematics department. He worked on the Flask
Problem for about 25 minutes; his protocol consisted of 11 episodes.

After reading the problem statement (Episode I) and drawing a
schematic picture of the flask with arrows representing inflow and out-
flow of mixture (Episode II), Participant T assigned variables and briefly
pursued an algebraic approach (Episode III). But then he realized that
he “should probably use some calculus, in the sense of rates of change”
(Episode IV). More specifically, he realized that a “derivative with re-
spect to time” was needed. But he had to admit, somewhat embarrassed,
“not seeing how to do this straightforwardly with calculus either.”
He proceeded by computing the amount of salt that was added after
1 minute (Episode V). He saw that an extrapolation from there to the so-
lution of the problem was not feasible. As a way out of the dilemma, he
introduced the concept of instantaneous rate of change, which opened pos-
sibilities for computation: In his words, “Instead, I wanna try to figure
out what's the instantaneous rate of change of, well, what’s the saline
solution after any given time. So let me go to 30 seconds.”

His new strategy was to “refine until nothing,” to choose decreas-
ing fixed time increments until the increments would become infinitely
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small. In actual fact, Participant T’s computations concentrated on the
first and second 30 seconds (Episode VI), and he only considered, hy-
pothetically, to work with 15-second increments (Episode IX). These
computations turned out to be rather laborious, involving checking and
rechecking of the results (Episodes VII and VIII). He was clearly feeling
uneasy with the progress he was making on the problem.

This rather laborious process of “refining” was not unlike perceptual
rehearsal in that Participant T repeatedly carried out very similar com-
putations (Episodes V-VIID) that allowed him to “see” a new pattern
(see Ippolito & Tweney, 1995; Tweney, 1996). He noticed that “the rate
in is always the same” (Episode VIII). This inconspicuous insight en-
abled a crucial next step in the solution, namely, to “Figure out the rate
out” (Episode X). He then noticed that “it look[ed] like [he was] coming
up with the differential equation here.” Once represented in this form,
it was only a routine task for him to solve the equation. Unfortunately,
however, his differential equation was not entirely correct. The value for
the rate out was off by one decimal position because he had not taken
into account that the incoming salt was dissolved in 10 liters of fluid.
For this reason, his final solution could not be interpreted meaningfully
and remained unsatisfactory to him, but at this point, frustrated and
pressed for time, he was not prepared to “debug” his solution.

Session II: A Chemist. Participant U is a midcareer physical chemist and
a faculty member in a doctoral-level chemistry department. She is very
active in research and has published many papers in her field. Partic-
ipant U spent approximately 40 minutes working on the problem; her
protocol consisted of 12 episodes.

Participant U spent considerable time (about 10 minutes) reading
(Episode I) and rereading the problem (Episode II). At the end of her
second reading she singled out “the critical sentence here,” namely, that
“the solution is being thoroughly mixed and drained off” (Episode III).
From there she reasoned that “the concentration would be increasing
over a period of a few minutes, and at some point you’d reach a steady
state where you were putting the same amount of salt in as was going
out” (Episode IV). This understanding led to a graphical representation
(similar to the graph in Figure 7.4). She drew a Cartesian coordinate
system with time on the abscissa and salt concentration on the ordinate.
Then she constructed a “graph in time” (Episode V) by going to the
“1-minute” location in the coordinate system and marking the respective
value for the salt concentration, next to the “2-minute” location and
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again marking the respective value for the salt concentration, and so
forth. For the first minute, she explicitly assumed that no salt was leaving
the flask; for the 2-minute location she made sure, after adding the same
amount of salt than for the first minute that this time she marked a point
that was “a little low,” because salt loss had to be taken into account. She
proceeded to the “3-minute” location, adding twice the amount of the
first minute, and again making sure that the value on the ordinate was
“low, we'd be even lower.” The essential feature of the resulting graph
was its asymptotic nature, in her words, that “it's gonna be coming
up like this and then it's just gonna be a straight line for the rest of
the time” (Episode VI). The change in salt concentration with time had
been transformed into the continuous motion of a point, generating a
line. In this sense, her graph was a dynamic representation, that is, a
representation in which time is necessarily represented in an analog
fashion (Freyd, 1987).

Participant U also meant to use her graph to infer a solution to the
Flask Problem, but then she noticed that the scale on the ordinate was
not right. In fact, the scale was off by one decimal position. She did not
read off a solution from the graph but instead assumed that the con-
centration after 5 minutes would be the steady-state concentration of
0.3 kilogram — the concentration of the incoming salt solution. This as-
sumption gave her 3.0 kilograms as the amount of salt after 5 minutes.
The experimenter, somewhat worried that Participant U would quit at
this stage, asked whether she could formulate an equation. Immediately
she wrote dc/dt (c for concentration,  for time), the “change in the concen-
tration,” to represent the left-hand side of an equation (Episode VII). For
the right-hand side she reasoned that “first, the concentration is zero,”
so “the intercept is zero.” She added a term denoting “the increase in the
concentration,” which was 0.6, with the units “kilograms per liter per
minute.” The “concentration going out,” being the “minus part,” she
approached by making a “linear assumption” (Episode VIID). But she
quickly realized that this assumption led to the anomaly of “not getting
a steady state.” Thus, it had to be a nonlinear function. But what kind
of nonlinear “functional form”? This was a difficult question that led
her to recapitulate what she knew about the physical process, namely,
that “it’s increasing at a constant rate” and that “the concentration is
increasing linearly,” and she was certain “that it’s not decreasing at a
constant rate,” and also that a constant volume of the perfectly mixed
solution was pouring out (Episode IX). After silently rereading parts of
the problem, she emphasized that she was thinking about the process
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“in terms of a continuous thing,” and that the approximation method
she was going to propose next would be a “quickie” way to arrive at a
solution (Episode X). ‘

Participant U’s approximation method (Episode XI) matched the
way she had previously constructed her graph. In the first minute,
0.6 kilogram of salt was added to the flask, and she assumed that no
salt was deleted from the flask during this time. In the second minute,
another 0.6 kilogram was added and one-fifth of the amount of salt in
the flask after 1 minute was subtracted, because the salt was dissolved
in 10 liters, 2 of which were withdrawn during the second minute. With
the third minute, another 0.6 kilogram of salt was added to the amount
in the flask and one-fifth of the amount of salt in the flask after 2 min-
utes was subtracted. She carried this procedure through to 5 minutes
and then announced her solution as “2.14 kilograms in 10 liters; that’s
approximate!” The experimenter asked what she would do to improve
her approximation. She answered promptly (Episode XII): “Well, you
have to take smaller time intervals.” Finally, the experimenter asked for
her best guess of the precise solution. She answered: “Oh, 1.9 kilograms
or something at 5 minutes.” Certainly, an excellent guess. In a way, she
had achieved, what she had proposed earlier (Episode X), namely, that
after her solution by approximation she would “try to work back so that
[she’d] have an instantaneous picture of what was going on.”

Session 1II: A Physicist. Participant S is a theoretical physicist interna-
tionally known for contributions to his field. He teaches undergraduate
and graduate physics courses in a masters’-level physics department.
Participant S spent about 50 minutes working on the Flask Problem; his
protocol consisted of 18 episodes.

After reading the problem statement (Episode I), Participant S de-
termined that his task was to formulate a model, in his words, “to put
all this together in some formulas or something and see these relation-
ships” (Episode II). He restated the problem in his words and then com-
puted a “guess,” a numerical solution based on simplifying assumptions
(Episode III and IV). For his guess, he assumed that salt solution was
added to the flask at one instant and deleted at another. He announced
1.5 kilograms to be his answer to the problem, adding that it “may not
be right.” Fearing that, with this answer, Participant S might end his
problem solving, the experimenter asked, “Can you come up with an
equation?” “A good question,” Participant S agreed, because equations
had been “implicit” in what he had been thinking, but now the challenge
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was to “find what they are.” It was clear to him that it would need to
be “sort of a rate equation” (Episode V). He started to wonder whether
he had missed something before and therefore thought it best to “read
this again” (Episode VI).

After rereading the problem, he assigned x to “the amount of salt
in the tank” (Episode VII). The left-hand side of his rate equation was
“the time derivative of x” and was noted in Newtonian notation (see
Equation 9). The right-hand side had to be “the rate at which it's added
minus the amount that is leaving” (Episode VIII). The “rate at which
it'’s added” was 0.6 kg/min and was followed by a minus sign. He
immediately recast the rate of incoming salt as 0.3(2), omitting the units
of measurement. Then he proceeded to the part following the minus
sign, which had to be “also a function of time.” He knew that “the
amount of fluid that is flowing out is 2.” But how did the amount of
salt that was leaving the flask depend upon the concentration of salt
solution in the flask? The amount of salt in the tank “is always gonna
be x over 10.” He had written out the complete differential equation:

. x(2)
After alengthy pause (of 12 seconds), he came to the conclusion “that this
might be the right idea, really,” cause this says that the rate at which the
amount of salt changes depends upon how fast you add it” (Episode
IX). He checked the units of measurement (Episode X) and was just
delighted to find that the formulated equation had “the right units, this
has the right units!”

He anticipated that solving this equation would take some effort on
his part. He restated the equation in Leibnizian notation, which is prefer-
able for solving differential equations. (When he was asked later about
this switch in notation, it turned out that he had not been aware of it.)
But before actually beginning to solve the equation, he wanted to “see
whether [he] like[d] the way this [was] going” (Episode XII), whether
this mathematical model matched his process understanding. He de-
termined that “in the extreme future you would reach an equilibrium
situation where all of the original water had been replaced and therefore
the concentration inside the tank would be 0.3 kilogram per liter.” He
thus was able to determine the amount of salt in the “extreme future,”
but the problem asked for “the answer in the middle.” He thought that
he would find out “the answer to this question by solving this equation,”
and therefore “it's worth doing” (Episode XID).



220 KURZ-MILCKE, GIGERENZER, AND HOFFRAGE

Solving his rate equation (Episode XIII; separating variables, then us-
ing a substitution procedure, in which he differentiated with respect to
a dummy variable y, and then integrating the resulting expression), he
arrived at an intermediary result which he evaluated at ¢t = 0 and for
t — oo (Episode XIIV). He found that the equation did not exhibit the
right behavior at ¢ = 0 when no salt was supposed to be in the flask. But
nevertheless, he detected “elements of truth here” because he “saw” that
“at long times” the model would reach the appropriate equilibrium. He
realized that he had not properly integrated the equation (in his sub-
stitution procedure he had used the operations of differentiation and
of integration, which made a second integration necessary to solve the
differential equation). He integrated, evaluating a definite integral, and
computed the general solution (Episode XV). He evaluated the resulting
equation at f = 0 and for t — co and found what he “thought ought to
happen” (Episode XVI). Finally, he substituted ¢ = 5 to determine the
amount of salt after 5 minutes (Episode XVII) and then used a hand cal-
culator to determine the numerical solution, which was 1.896 kilograms
(Episode XVIII).

How Did the Calculus Experts Represent Change?

The solutions worked out by these three experts differed remarkably in
many respects. Here the focus is on their use of the differential calculus.
In a nutshell, the mathematician’s representational use of the calculus
was in many respects Leibnizian, the chemist’s Newtonian, and the
physicist’s born out of a genuine modeling approach. Specifically, the
mathematician’s solution was based on the choice of fixed increments.
In the limiting case these decreasing fixed increments are Leibniz’s dif-
ferentials. Limit taking in Leibniz’s calculus was global (Bos, 1993, p. 87).
With respect to a smooth curve, this global limit taking meant that the
curve remained composed of the sides of a polygon even after extrap-
olation to the infinite case. By contrast, the derivative defines a local
limit (see the earlier discussion of the Leibnizian glasses in contrast to
the Modern glasses). Participant T knew that a “derivative with respect
to time” was necessary, but he did not know how to model the prob-
lem using this concept. As a way out of this dilemma, he worked with
decreasing fixed increments. In a sense, then, Participant T “approxi-
mated” the concept of derivative with his computations rather than the
numerical solution of the problem. But even if Participant T’s plan to
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“refine until nothing” was not Leibnizian in intent, the realization in
terms of fixed increments was.

The chemist’s solution was based on the transformation of the change
in salt into the continuous motion of a point, creating a “graph in time.”
Her approximation method finally paralleled her construction of this
graph: First, she determined how much was added; then she made sure
that she was “a little low,” that she subtracted about the right amount.
Next, she extrapolated the appropriate “motion,” resulting in her “graph
in time.” The transformation of change into the motion of a geometrical
object was central to Newton'’s fluxionary calculus (see the previous dis-
cussion of the Newtonian glasses). Newton conceived of mathematical
quantities as motion of geometrical objects (see the previous quote from
the Tractatus de quadratura curvarum). Similarly, Participant U provided
a successful solution because she was able to utilize a dynamic repre-
sentation that enabled her to work out an approximation procedure that
led to a numerical solution of the problem.

Finally, the physicist engaged in an ongoing process of checking the
match between his mathematical model and his physical process under-
standing, both being constructed simultaneously. In order to consolidate
this match, Participant S made the process observable and manipula-
ble. This simulation of the physical process observed a process in time,
from “no salt in there to start with” to an “extreme future” in which
“you would reach an equilibrium” (Episodes XIIV and XVD). Descrip-
tion was observation in this case; this is, for instance, also parallel to
what Nersessian (1992) concluded about thought experiments. And in
this case, observation was inextricably coupled with manipulation — a
unity that also has been emphasized for experimentation, for instance, in
relation to Michael Faraday’s experimental investigations (see Gooding,
1992; Tweney, 1992). This unity of observation and manipulation oc-
curred at the interface of Participant S’s understanding of the physical
process and of his mathematical model. Although it could be argued that
the differential equation is the physical process model, the identification
of the understanding of the physical process in terms of the mathemat-
ical model was the final stage of Participant S’s solution process; it was
in fact his primary achievement.

This case study shows that there is variability in the representational
use of the calculus. Moreover, this variability becomes meaningful when
related to the historical development of the differential calculus. In its
historical development this variability was also related to differences
in the understanding of natural phenomena. Corresponding to their
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different representations of change, Newton and Leibniz, for instance,
also had different notions of accelerated motion (Bertoloni Meli, 1993,
pp- 74-91). For Leibniz, accelerated motion was a series of infinitesi-
mal rectilinear motions interrupted by impulses; for Newton, it was a
continuous curve where force acts continually. The experts in this case
study showed great competence in choosing and developing a repre-
sentation that was meaningful to them. The plurality of representations
provided by the calculus is a feature that experts may use to further
their understanding.

Representation Matters

In this chapter, we have argued (1) that the calculi of uncertainty and
change provide multiple representations, which bridge the past and
present, (2) that the choice of representation is already part of the so-
lution of the problem, and (3) that learning to choose an appropriate
representation can help experts to understand uncertainty and change,
and to communicate successfully with their clients and students on such
topics as how to assess risk. As the studies with AIDS counselors and
physicians dramatically demonstrated, the training of experts does not
always include learning to choose a suitable representation.

The importance of representations has been emphasized repeatedly,
from cognitive science (e.g., Marr, 1982) to physics (e.g. Feynman, 1967).
Otto Neurath, who cautioned scientists against wasting their time with
history, was in fact a pioneer in designing external representations
to help ordinary citizens understand statistical information. Neurath
(1939) successfully developed the visual statistical language ISOTYPE -
so successfully that in the early 1930s the Soviet government invited
him to train specialists to teach the Soviet people ISOTYPE. Unfortu-
nately, he was never paid for his efforts and got into serious financial
difficulties (Hegselmann, 1979).

The tools that experts use to quantify risk and change support vari-
ability in representational practice. This variability can be beneficial, as
we have shown for the case of risk assessment in medical diagnosis,
where most experts and laypeople are dramatically helped by represen-
tations using natural frequencies. Competence thus can mean knowing
how to re-represent a problem so that reasoning is facilitated. Becoming
competent in this fashion requires us to acknowledge the possibility of
a plurality of alternative representations, in fact, a hallmark of mathe-
matical thinking in general — no matter by whom it is carried out.
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In modern terms, the lesson from Neurath, Leibniz, and other stu-
dents of representation is: Minds do not reason from information, but
from representations. Even mathematically equivalent representations
can make a difference to the kind of insight experts gain. The power
and the indispensable nature of representations was with us in the past,
affects us in the present, and will continue to do so in the future.
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