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According to 2-component theories of intelligence, negative cross-sectional age gradients in mechanic
(broad Gf) and pragmatic (broad Gc) cognitive components reflect the increasing constraining of the
former in the expression and integrity of the latter component. The authors examined this widely held but
untested assumption by applying a recently proposed dynamic structural modeling technique, the
bivariate dual change score model, to longitudinal data from the Berlin Aging Study (N � 516, age
range � 70–103 years). Mechanics and pragmatics were indexed by perceptual speed and knowledge,
respectively. As hypothesized, results indicated that changes in knowledge are dominated by perceptual
speed and offered strong support for the notion of “mechanization” of pragmatic abilities in old and very
old age.

Intellectual development in adulthood and old age is multidi-
mensional and multidirectional (Baltes, 1987, 1997; Baltes, Cor-
nelius, Spiro, Nesselroade, & Willis, 1980; cf. Horn, 1982; Jones
& Conrad, 1933). Intellectual abilities that primarily assess indi-
vidual differences in biographically acquired knowledge, such as
verbal knowledge, tend to remain stable or increase up to middle
and late adulthood. In contrast, intellectual abilities presumably
related to the speed, accuracy, and coordination of processing,
such as perceptual speed, show monotonic decline during adult-
hood. This difference between aging-resilient and aging-sensitive
abilities is at the heart of two-component theories of intelligence
(TTIs; for a review, see Lindenberger, 2001). Typical examples
include the distinction of Tetens (1777) between absolute and

relative capabilities (see Lindenberger & Baltes, 1999), the Gf/Gc
theory of Cattell (1971) and Horn (1982), and the distinction
between the mechanics and pragmatics of cognition proposed by
Baltes (1987; Baltes, Lindenberger, & Staudinger, 1998) in adult
life. Generally, TTIs make four central assumptions: (a) Cognitive
development reflects the operation and interaction of two compo-
nents, one biological and the other cultural; (b) during develop-
ment, the biological component is invested into various cultural
domains, leading to the acquisition of culturally defined and trans-
mitted bodies of knowledge (cf. investment theory; Cattell, 1971);
(c) the biological component declines after maturity; and (d) the
cultural component increases during childhood, adolescence, and
adulthood as long as knowledge maintenance and knowledge
acquisition outweigh age-based losses in biological potential. All
four assumptions have received ample empirical support (for a
summary, see Baltes et al., 1998).

The purpose of this article is to model the relation between a
marker of broad fluid abilities and one of broad crystallized
abilities (Horn, 1989), heretofore referred to as mechanics and
pragmatics of intelligence, respectively, in old and very old age.
Specifically, we test the hypothesis that old-age decline in prag-
matic abilities, if and when it occurs, is driven by negative age-
associated changes in mechanics. According to our impression,
this proposition has been silently accepted as a further assumption
of TTIs. However, to our knowledge, no attempts have been made
so far to test directly the tenability of this assumption (but see
McArdle, Hamagami, Meredith, & Bradway, 2000).

Despite the absence of direct empirical tests, correlational in-
vestigations of old-age intelligence are generally consistent with
the notion that the mechanics of cognition increasingly dominate
age changes as well as individual differences in nominally prag-
matic intellectual abilities. Most of the relevant findings in this
regard can be subsumed under the heading of dedifferentiation (see
also Baltes et al., 1980; Deary et al., 1996; Deary & Pagliari, 1991;
Reinert, Baltes, & Schmidt, 1966; Schaie, 1962; Schaie, Maitland,
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Willis, & Intieri, 1998). At the level of interindividual differences,
three forms of dedifferentiation can be set apart (Baltes & Linden-
berger, 1997; Lindenberger & Baltes, 1994, 1997). First, the di-
vergence between mechanic and pragmatic intellectual abilities in
old age, with performance decrements for mechanics and stability
or increases for pragmatics, is consistent with convergence of age
gradients in the sense that both pragmatic and mechanic abilities
are negatively related to age (directionality dedifferentiation). Sec-
ond, correlations among intellectual abilities in old and very old
age are higher and more homogeneous than during earlier periods
of the adult life span (covariance dedifferentiation within the
intellectual-ability domain). Third, the correlational link between
intellectual abilities and basic indicators of sensory and sensori-
motor functioning is much stronger than at earlier periods of
adulthood (covariance dedifferentiation across intellectual, sen-
sory, and sensorimotor domains). Taken together, generalized
cross-sectional decrements in level of functioning coupled with
increments in covariance seem to indicate an increasing domi-
nance of biological constraints with advancing age.

The aim of this study was not to examine the nature of these
constraints at the level of specific cognitive operations or brain-
related mechanisms (e.g., Cabeza, 2001; Li & Lindenberger, 1999;
Raz, 2000; Rubin, 1999) but to test their age-based structural
dynamics in the intellectual domain. Our analyses were based on
longitudinal and cross-sectional data from the Berlin Aging Study
(BASE; Baltes & Mayer, 1999), as described subsequently. In the
BASE, four intellectual abilities were assessed longitudinally:
perceptual speed, memory (i.e., episodic memory), fluency, and
knowledge (i.e., semantic memory). From these four, perceptual
speed and knowledge were selected for analysis in the present
study. This decision was guided by two considerations. First,
earlier analyses of the BASE data set have shown that perceptual
speed and knowledge are the two most divergent intellectual
abilities, in terms of both cross-sectional age relations and corre-
lates (Lindenberger & Baltes, 1997). Specifically, in the initial
cross-sectional sample of 516 adults 70 to 103 years of age,
perceptual speed had the most negative (r � �.59) and knowledge
the least negative (r � �.42) age relations. Also, perceptual speed
had significantly higher relations to a factor representing sensory
and sensorimotor functioning than did knowledge, whereas knowl-
edge had significantly higher relations to a factor representing
differences in years of education, social class, occupational pres-
tige, and income than did perceptual speed. Second, a wealth of
data strongly suggests that perceptual speed is an excellent marker
of cognitive decline during adulthood and old age (Hertzog, 1989;
Salthouse, 1991; Salthouse, Hambrick, Lukas, & Dell, 1996; Ver-
haeghen & Salthouse, 1997). This observation holds true regard-
less of whether measures of perceptual speed are seen as causally
proximal or distal indicators of brain aging.

Methodological Tools for Testing Dynamic Hypotheses
About Life Span Development

The central prediction of this study is dynamic in the sense that
one variable is hypothesized to influence changes in another over
time (Boker & Graham, 1998; McArdle & Bell, 2000; McArdle et
al., 2000; Nesselroade & Ghisletta, 2003). Recently, McArdle and
Hamagami (Hamagami & McArdle, 2001; Hamagami, McArdle,
& Cohen, 2000; McArdle, 2001; McArdle et al., 2000) developed

the dual-change score model (DCSM) to test dynamic predictions
of this sort. The DCSM relates classical repeated measures models
and discrete linear difference equations. It can also be considered
to be an extension of a larger class of models that have been
introduced into the literature under different names, depending on
statistical tradition, such as latent growth curve models (LGMs),
multilevel models, random coefficient models, and mixed-effect
models (for a comparative and integrative account of these tradi-
tions, see McArdle & Hamagami, 1996). For simplicity, this
variety of traditions is heretofore subsumed under the heading of
LGMs.

Generally, LGMs postulate a common time-based trajectory for
a group and represent the trajectories of individuals as deviations
from the group trajectory. The shape of the trajectory can be
specified beforehand on theoretical grounds, or it can be estimated
empirically. LGMs also accommodate unbalanced and incomplete
data, because modeling can be based on both raw data and first-
and second-order moments. This implies that individual longitu-
dinal trajectories need not extend over the entire time period
considered, in line with earlier versions of combined longitudinal
and cross-sectional, or convergence, analysis (Bell, 1953, 1954).
The longer the individual trajectories (e.g., the higher the number
of individual repeated measures), the more efficient the estimation
procedure (i.e., the smaller the parameter estimates’ standard er-
rors; cf. McArdle, 1994). Multivariate extensions of LGMs allow
one to investigate the degree to which interindividual differences
in level and in amounts of change are correlated across two or
more variables (Ghisletta & Lindenberger, in press; Lindenberger
& Ghisletta, in press; MacCallum, Kim, Malarkey, & Kiecolt-
Glaser, 1997; Raudenbush & Chan, 1992; Stoolmiller, 1994). By
definition, however, standard LGMs assume that population pa-
rameters are constant over time. For instance, the correlation
between change in variable A and change in variable B is assumed
to be constant across all time points. Moreover, such correlations
do not necessarily reflect dynamic processes of the kind examined
here. Therefore, standard LGMs do not allow for tests of direc-
tionality of influence but, at most, for the examination of static
structures of interindividual differences among variables’ level and
change factor scores. In this sense, we cannot derive which vari-
able, if any, is of major influence within the system considered.

In contrast, recent extensions of LGMs such as the DCSM allow
researchers to specify and test dynamic (e.g., lead-lag) relations
among two or more variables (cf. McArdle et al., 2000; for a
related two-occasion method, see McArdle & Nesselroade, 1994;
cf. Hertzog, in press; Hultsch, Hertzog, Dixon, & Small, 1998).
Within the DCSM, the direct effect of one variable on the change
of another variable can be examined empirically, because the
change in one variable is defined as a time-based function of both
itself and the other variable. Applications include the small leading
indicator role that the Peabody Individual Achievement Test read-
ing composite exerted on the Behavior Problems Inventory com-
posite (indicative of antisocial behavior) in children 6 to 8 years of
age, observed every 2 years for up to four times, in the National
Longitudinal Study of Youth (McArdle & Hamagami, 2001); the
potential leading effect of lateral ventricular size on a composite
score of episodic memory revealed in the Massachusetts General
Hospital Aging Study (McArdle et al., 2003); the leading effect of
a nonverbal composite score on a verbal composite score from the
Wechsler Intelligence Scale for Children in a sample of first-grade
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children assessed three times (McArdle, 2001); and the examina-
tion of several hypotheses of the theory of fluid and crystallized
intelligence by studying the dynamic relationships among com-
posite scores of broad knowledge, spatial reasoning, perceptual
speed, and immediate memory from the Wechsler Adult Intelli-
gence Scale (WAIS; McArdle et al., 2000).

With such models, the following questions can be formalized
and made amenable to sound statistical testing: (a) Does variable
A (or B) influence the subsequent change of variable A (or B)? (b)
Does variable A (or B) influence the subsequent change of variable
B (or A)? and (c) Does the effect of variable A on the subsequent
change of variable B differ from the effect of variable B on the
subsequent change of variable A? In this manner, the multivariate
DCSM allows for a better understanding of dynamic structures
than does the multivariate study of change achieved by two-
occasion latent difference score models (McArdle & Nesselroade,
1994) or traditional multivariate LGMs. Specifically, in the present
theoretical context, DCSMs can be used to test formally the
proposition that mechanics are the driving force of intellectual-
ability dedifferentiation in old and very old age, with respect to
both age gradients and degree of covariance.

Method

Participants

The BASE is a multidisciplinary investigation of old and very old
residents of former West Berlin (Baltes & Mayer, 1999; Baltes, Mayer,
Helmchen, & Steinhagen-Thiessen, 1993). The parent sample consisted
initially of 516 participants and originated from a random draw of ad-
dresses from the city registry (for details, see Lindenberger et al., 1999).
This initial sample was stratified across sex and age, such that 2 (sex) � 6
(age) groups (70–74, 75–79, 80–84, 85–89, 90–94, and 95 years and
older) were sampled, with 43 participants in each group. The main ratio-
nale for this design was to optimize power for detecting main effects and
interactions regarding age and gender (cf. McClelland & Judd, 1993). The
present analyses were based on the first three major measurement occa-
sions. Sample size decreased from 516 participants at Time 1 (1990–1993)
to 206 at Time 2 (1995–1996) and 132 at Time 3 (1997–1998). Therefore,
the models used must account for patterns of incomplete data due to
dropout.

The time span modeled in the present study (i.e., 34 years) was large
relative to the mean longitudinal observation period (1.98 years). There-
fore, the present analyses were not well suited to assess interindividual
differences in intraindividual change; instead, the focus was on dynamic
age changes at the population level. Hence, in the present study, the
statistical parameters operationalizing evidence in favor of or against the
dedifferentiation hypothesis were general, population-level parameters and
not interindividual-difference parameters (e.g., in multilevel terminology,
they were fixed rather than random effects). Specifically, the limited
within-person longitudinal information did not allow us to estimate indi-
vidual variations (i.e., random effects) around the dynamic parameters
expressing the dedifferentiation hypothesis at the population level. Never-
theless, within-person longitudinal change information was necessary for
proper identification of population dynamics (see the Statistical Models
section for details).

Violation of Missing-at-Random Assumption

Attrition in the BASE tended to be nonrandom, or selective (Linden-
berger et al., 1999; Lindenberger, Singer, & Baltes, 2002; Singer, Verhae-
ghen, Ghisletta, Lindenberger, & Baltes, 2003). To assess the relevance of

this issue for the present study, we examined longitudinal selectivity of
perceptual speed and knowledge following procedures described by Lin-
denberger et al. (2002). Specifically, selectivity was expressed in an
effect-size metric indicating the degree to which the individuals with data
on all three occasions (n � 132) differed from the parent sample (N � 516)
from which they originated. Two additive components were distinguished,
one related to biological mortality and the other to nonparticipation of
survivors (i.e., mortality-associated vs. experimental selectivity; for com-
putation, see Lindenberger et al., 2002). Total selectivity for perceptual
speed and knowledge measured at the first occasion amounted to 0.774
standard deviation units for perceptual speed (mortality-associated compo-
nent � 0.480, experimental component � 0.294) and 0.494 standard
deviation units for knowledge (mortality-associated component � 0.276,
experimental component � 0.218), where the standard deviation refers to
that of the parent sample of 516 people. These results indicate that attrition
in the present study was nonrandom, or selective, for both experimental
and mortality-associated reasons. Implications of nonrandom attrition for
the interpretability of the results obtained in this study are considered in the
Discussion section.

Cognitive Abilities Examined

The longitudinal cognitive battery of the BASE consisted of four cog-
nitive domains measured with two variables each, or a total of eight
variables (Lindenberger, Mayr, & Kliegl, 1993). The present study was
restricted to perceptual speed and knowledge. The Digit Letter and Iden-
tical Pictures tests were used to assess perceptual speed, whereas the
Vocabulary and Spot-a-Word tests were used to assess knowledge.

The Digit Letter test resembles the Symbol Substitution test of the WAIS
(Wechsler, 1955). Participants were shown, throughout the entire duration
of the test (3 min), a template with nine digit–letter pairings. Participants
were then shown up to 21 series of six digits; they had to pair each digit
with its correct letter according to the template, as quickly as possible. The
Identical Pictures test was a computerized version of the homonymous test
of the Educational Testing Service (Ekstrom, French, Harman, & Dermen,
1976). A target and five response alternative figures were shown on the
computer screen. Participants were asked to touch the correct response
figure, identical to the target, as quickly as possible, within 80 s. The
Vocabulary test consisted of 20 words, shown on the computer screen, that
participants were asked to define without time constraints. The definitions
were then coded (as incorrect, partially correct, or correct) by two inde-
pendent raters according to instructions provided by Wechsler (1982).
Finally, the Spot-a-Word test consisted of 20 series of one word and four
pronounceable nonwords shown on the computer screen. Participants were
asked to touch the word.

A unit-weighted linear composite of the Digit Letter and Identical
Pictures test scores (reexpressed to have analogous scaling properties at
Time 1) was computed to obtain a perceptual speed score. Likewise, the
Vocabulary and Spot-a-Word test scores were combined to obtain a knowl-
edge score. Both composite scores were rescaled to have a mean of 50 and
a standard deviation of 10 in the parent sample at Time 1. This transfor-
mation did not alter the psychometric properties of the scores, retained
longitudinal changes in mean and variance, and allowed for reasonable,
meaningful comparisons and ease of interpretability.

Table 1 presents the summary longitudinal and cross-sectional, or con-
vergence, statistics for the perceptual speed and knowledge composite
scores at each age from 70 to 104 years (the oldest person of 103 years in
the cross-sectional sample aged 1 year in the longitudinal design). The
mean and standard deviation of all observations for all individuals are
presented by age of assessment, independent of the measurement pattern of
the participants. The trajectory examined spanned 34 years, equivalent to
35 possible ages, from the first measurement of the youngest participant to
the last measurement of the oldest participant. As can be expected, neither
composite score distribution was rectangular, as would be the case if
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observations were restricted to the age-stratified first-occasion sample. At
high ages, observations are less frequent because of age-correlated attri-
tion. At very low ages, observations are less frequent because of the
age-stratified design. Figures 1 and 2 plot the individual longitudinal age
trajectories for perceptual speed and knowledge, respectively. In both
figures, lines unify longitudinal data points of the same participants, and
circles represent the scores of participants assessed only once. The reduced
likelihood of repeated individual measurements is represented by the
higher relative density of circles at older ages.

Statistical Models

Figure 3 represents a graphical depiction of an LGM in one form of
structural equation modeling (McArdle & McDonald, 1984; McArdle &
Nesselroade, 2002), adapted to the BASE longitudinal design. In this
graphical notation, squares represent manifest variables, circles represent
latent variables, and the triangle represents a constant value of unity,
inserted to represent intercepts (following Boker, McArdle, & Neale, 2002;

McArdle & Boker, 1990). Moreover, one-headed, asymmetrical arrows
represent directional regression (deterministic) coefficients, whereas two-
headed, symmetrical arrows represent variances or covariances (stochastic
coefficients). Circles inside squares represent variables that might be
manifest (e.g., measured) for some participants while being latent (e.g.,
unmeasured) for others. Squares represent the actual measurement pattern
of a given individual. For instance, the data vector of a person measured
twice, at 82 and 86 years of age, would be represented by a circle at each
age from 70 to 104 years except for 82 and 86 years and by a square at
those two ages of actual assessment.

This graphical notation allows for an efficient representation of a large
number of individual measurement schedules as well as various patterns of
data incompleteness. This notation accommodates BASE participants who
were measured on all three occasions as well as those assessed only twice
or once. For example, the same diagram can be used to represent a
participant measured on all three occasions at 72, 76, and 78 years of age;
another measured twice at 93 and 97 years of age; and a participant
assessed only once at 101 years of age. Here we are interested in the
process of dedifferentiation of cognitive abilities in old age, unfolding from
70 to 104 years of age. Hence, study of cognitive change as a function of
time in the study is not adequate in this application. The data, their
representation (i.e., Figures 1 and 2), and the analyses are thus organized
such that individual segments (averaging 1.98 years in length) are juxta-
posed to form a population curve spanning more than 34 years (as in, e.g.,
Ghisletta & McArdle, 2001).

The self-directed two-headed arrows denoted R for each circle inside a
square symbolize residual variance. It is assumed here that residual vari-
ance does not change or correlate over time. Thus, the residual variance
matrix follows a simple diagonal structure, with identical values at all ages.
The rest of the variance of each measurement is modeled by enforcing a
particular change process by means of latent level and change variables.
The circle denoted L represents the level score of the participants, and the
two-headed arrow about this circle, denoted VL, represents its variance
(thus, individual differences on level scores). Analogously, the circle
denoted S represents the slope (or change) score of the participants, which
also allows for individual deviations (VS). The two-headed arrow denoted
CLS, from the level to the slope factor, represents the covariance between
the latent level and slope variables. The regression paths ML and MS from
the triangle denoted 1 to the level and slope scores represent the estimation
of the means of the level and slope factors (i.e., the average cross product
between a constant of value 1 and the level and slope scores, respectively).

The level factor postulates no change, because the magnitude of its
relationship (i.e., loadings) to the time series (represented by subsequent
measurements) is constant. Hence, the level factor relates with constant
magnitude across all measurements of the time series. This is expressed in
Figure 3 by setting all loadings of the level factor to equal magnitude (e.g.,
1). The shape of the curve examined is defined by the loadings of the slope
factor. In Figure 3, the slope loadings are linear with respect to the time
intervals. For each successive increment in time units, the corresponding
loading augments by a constant amount (e.g., 1). In this application, the
change process is modeled as a function of chronological age (i.e., time is
chronological age). Therefore, each 1-year increment in age corresponds to
an increase in the respective loading magnitude of one. The shape of
longitudinal change is thus linear, and the figure represents a linear LGM.
This graphical notation explicitly symbolizes all parameters of the model
and allows for direct calculation of expectations by applying the tracing
rules first introduced by Wright (1918, 1920) to the average cross products
(see Boker et al., 2002; McArdle & McDonald, 1984).

Figure 4 depicts an alternative model that, under certain assumptions, is
identical to the linear LGM presented in Figure 3. McArdle and Hamagami
developed this model and called it the “dual-change score model”
(Hamagami & McArdle, 2001; Hamagami et al., 2000; McArdle, 2001;
McArdle & Hamagami, 1999; McArdle et al., 2000). Historically, this
model can be seen as a combination of LGMs and other classical repeated

Table 1
Descriptive Statistics for Perceptual Speed and Knowledge
Composite Scores Measured in the Berlin Aging Study as a
Function of Age of Assessment

Age n MS VS MK VK

70 7 59.78 83.10 56.85 53.20
71 18 59.43 40.43 54.55 46.44
72 13 58.52 29.72 56.72 53.75
73 22 59.65 49.18 55.26 66.96
74 22 57.84 73.28 53.76 72.00
75 32 57.66 47.42 53.80 62.46
76 30 56.25 56.97 56.28 44.16
77 31 57.97 65.22 56.67 76.99
78 39 56.55 40.40 51.32 68.95
79 38 57.35 50.13 54.98 79.65

80 52 56.08 71.77 51.49 84.94
81 32 53.42 11.17 53.67 94.66
82 39 56.53 36.74 53.72 67.53
83 37 51.58 90.50 48.53 104.51
84 28 55.20 28.30 52.54 69.74
85 43 52.86 103.87 52.81 99.08
86 36 52.24 106.74 51.62 105.47
87 33 48.35 108.85 48.22 88.07
88 33 51.86 82.52 52.80 70.24
89 27 48.60 90.01 49.66 68.56

90 19 46.38 76.98 52.53 60.78
91 27 47.02 72.02 50.36 75.80
92 30 44.75 64.10 46.73 85.30
93 21 46.09 74.44 49.28 76.94
94 16 41.27 74.53 44.75 89.30
95 27 44.46 47.85 48.30 84.91
96 26 43.68 55.79 45.40 117.55
97 23 41.77 69.24 46.92 12.43
98 12 45.42 17.60 48.36 36.80
99 12 40.35 24.64 45.82 42.24

100 11 45.29 80.18 44.26 68.65
101 10 42.09 73.55 41.53 102.26
102 2 36.84 38.25 40.00 122.88
103 3 54.16 12.54 56.43 27.00
104 1 46.33 0.00 58.51 0.00

Note. Age in years is participants’ age of assessment; MS is the mean of
the perceptual speed composite score; VS is the variance of the perceptual
speed composite score; MK is the mean of the knowledge composite score;
VK is the variance of the knowledge composite score.
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measures models (such as the use of latent difference scores in two-
occasion data introduced by McArdle & Nesselroade, 1994) with discrete
linear difference equations (Arminger, 1986). The model formalizes the
difference score between true measurements at adjacent time points. The
circles denoted �Yt, where t is chronological age ranging from 70 to 104
years, represent the true, or latent, difference score between Y at time t �
1 and Y at time t. This can be seen by the fact that at any time point t, Yt

is the sum of Yt�1 and �Yt (both additive elements are indicated by the
regression paths moving from them to the variable Yt with fixed weight of
1). That is, the true score at any time point is the sum of the previous true
score and the true difference (i.e., change score) to the next time point. The
traditional interpretation of difference scores would be limited by this
structure, in that it usually does not allow the previous measurement Yt�1

to be correlated to the difference �Yt . The DCSM, instead, postulates a
coefficient � representing the effect of Yt�1 on �Yt , that is, the effect (or
the proportion) of Y at any time point on the magnitude of subsequent
change during the specified unit of time (1 year in the present case). The
latent score L represents the value of Y at the beginning of the time series
(at t � 0, or 70 years of age in this application). This initial intercept allows
for individual differences (as symbolized by its variance VL). The latent
score S represents the change curve of the consecutive latent differences,
and the loadings � of this slope factor determine the shape of the curve.
The factor S thus models the shape of the longitudinal change of the
consecutive difference scores and allows for individual differences in
change (VS).

By constraining the values of � and �, several classical hypotheses of
change can be formalized. For instance, when both � and � equal 0, the
latent difference scores are not defined, meaning that the difference be-
tween any two adjacent measurements is zero. As such, the DCSM with �

� � � 0 represents a no change score model, postulating a constant
longitudinal score equal to the initial level score for the whole time series
(that is, the only one-headed arrow going into Y at any time point originates
from the latent level L score). This model estimates three parameters: (a)
mean initial level score (ML), (b) variance around the mean level score
(VL), and (c) residual variance (R). This is a traditional LGM without any
slope factor.

By setting � to 0 and estimating �, we obtain a proportional
change score model. This model formalizes the hypothesis that the dif-
ference between any two adjacent scores is directly proportional to
the previous score, through the parameter �. The previous score is
thus the only effect on the difference score, because this model postu-
lates no slope factor. A proportional change score model estimates
four parameters: (a) mean initial level score (ML), (b) variance about
the mean level score (VL), (c) residual variance (R), and (d) the pro-
portionality parameter (�). This is equivalent to a traditional reli-
able Markov simplex model (Guttman, 1954; McArdle & Aber,
1990; Wold, 1949), wherein the autoregressive parameter defining the
magnitude of the effect of the preceding value Yt�1 on Yt is equivalent to
1 � �. At times, this is interpreted as the stability component of the time
series. If � differs reliably from 0, the expected longitudinal change is
nonlinear.

When � � 1 and � � 0, the DCSM is simplified to represent a model
in which the latent difference scores are not directly proportional to the
previous measurements and do not change across time. As such, the
difference between the values of any two adjacent Y scores is a sole direct
function of the time-invariant slope S. Because the loadings �, defining the
shape of the change of the �Yt scores, are fixed at one, no change in �Yt

is postulated. The change of the difference scores is nonexistent, and thus

Figure 1. Plot of individual longitudinal trajectories on perceptual speed composite score (T score, M � 50,
SD � 10, at Occasion 1) by chronological age (years). Lines unify longitudinal data of the same participants,
and circles represent measurements of participants assessed only once.
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the difference scores are constant. That is, between each two consecutive
time points t � 1 and t, the effect of the slope score S on the difference
scores �Yt is constant. This model is called a constant change score model
(CCSM) and is equivalent to the linear LGM of Figure 3. The same six
parameters of the linear LGM are estimated, and identical estimates are

obtained. The parameters estimated are the mean of the level and slope
factors (ML and MS), the variance of the level and slope factors (VL and VS),
the covariance between the level and slope factors (CLS), and the residual
variance (R). Because this CCSM and a linear LGM are equivalent, the
same fit statistics obtain.

Figure 2. Plot of individual longitudinal trajectories on knowledge composite score (T score, M � 50, SD �
10, at Occasion 1) by chronological age (years). Lines unify longitudinal data of the same participants, and
circles represent measurements of participants assessed only once.

Figure 3. Graphical representation of a latent growth curve model (or constant change score model).
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Finally, the case of � � 1 and � estimated represents the full DCSM.
Here one additional parameter is estimated: the value of the auto-
proportion � parameter. This additional parameter defines the �Y score as
a function of the slope factor and of the previous Y score. One can thus test
the effect of variable Y on the subsequent change in Y. The parameter � is
commonly assumed, for simplicity, to be constant across time, although
this is a testable assumption. Moreover, the lag of the auto-proportion
effect can be expanded and tested as well. For instance, it might be
postulated that Yt does not influence �Yt�1 but influences �Yt�2, thus

implying a 2-year lag instead of a 1-year lag. In the present study, � was
assumed to be constant over time, and it refers to 1-year effects.

Figure 5 represents a bivariate DCSM (BDCSM). In this figure, for
simplification, paths with fixed values of 1 are not labeled. Here two time
series are represented, for variable X and for variable Y. The repeated
measures of the two time series are hypothesized to change according to
the individual best specification of a DCSM. Thus, each time series, taken
by itself, is described by at most seven parameters (depending on the
best-fitting specification of the DCSM). Moreover, the two time series are

Figure 4. Graphical representation of a univariate dual-change score model.

Figure 5. Graphical representation of a bivariate dual-change score model. Unlabeled paths are fixed at 1.
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linked to allow for correlations between the X and Y variables. Six addi-
tional parameters are estimated for this purpose. Four refer to the covari-
ance between the level of Y and the level of X, the level of Y and the slope
of X, the slope of Y and the level of X, and the slope of Y and the slope of
X. Finally, two additional parameters are estimated to allow the two
variables to affect each other in a dynamic way. These are denoted �Y3�X

and �X3�Y . The � parameters represent, respectively, the effect of Y on the
subsequent change in X and the effect of X on the subsequent change in Y.
As such, the expectations for either of the two time series are a direct
function of the variable of one time series, the change in the variable of that
time series, and the variable of the other time series.

The traditional LGM captures the constant change feature (i.e., � � 1
and � � 0) of the change process of a variable. The predicted value of a
variable at time t is defined by the sum of (a) its predicted value at time t �
1 and (b) the time-independent mean slope. For variable X, the resulting
equation is

X̂t � X̂t�1 � MS	X
. (1)

For variable Y, the equation is

Ŷt � Ŷt�1 � MS	Y
. (2)

The BDCSM combines the constant change feature (i.e., � � 1) with the
proportionality aspect (i.e., � � 0) of a change process. The predicted
value of a variable at time t is defined by the sum of (a) its predicted value
at time t � 1, (b) the auto-proportion � multiplied by its predicted value at
time t � 1, (c) the latent cross-lagged effect � multiplied by the predicted
value of the other variable at time t � 1, and finally (d) the time-
independent mean slope. For variable X, this can be represented by the
equation

X̂t � X̂t�1 � �X � X̂t�1 � �Y3�X � Ŷt�1 � � � MS	X
, (3)

which simplifies to, assuming � � 1,

X̂t � 	1 � �X
 � X̂t�1 � �Y3�X � Ŷt�1 � MS	X
. (4)

For variable Y, the equation is

Ŷt � Ŷt�1 � � � Ŷt�1 � �X3�Y � X̂t�1 � � � MS	Y
, (5)

which simplifies to, assuming � � 1,

Ŷt � 	1 � �Y
 � Ŷt�1 � �X3�Y � X̂t�1 � MS	Y
. (6)

By expanding Equation 4 and solving for �, we obtain

�X �
X̂t � X̂t�1 � �Y3�X � Ŷt�1 � MS	X


X̂t�1

. (7)

Likewise, Equation 4 can be expanded and solved for �:

�Y3�X �
X̂t � X̂t�1 � �X � X̂t�1 � MS	X


Ŷt�1

. (8)

Equations 7 and 8 include values measured at time t and t � 1, and X̂t �
X̂t�1 represents the latent change score in X. Therefore, to estimate � and
�, at least some individual repeated measurements are needed. Indeed, to
obtain full identification of the parameters � and �, longitudinal informa-
tion is needed. Cross-sectional data do not provide information about
correlations over time, which have algebraic expectations for the dynamic
parameters of the DCSM. It follows that without longitudinal data there
exist no second derivatives and, consequently, no standard errors; thus,
there is no unique estimation. Application of the DCSM to cross-sectional
data only could provide a solution, and potentially the correct one. How-
ever, because of the lack of full model identification, this solution is not
rejectable (J. J. McArdle, personal communication, December 2, 2002). As

a check, we analyzed purely cross-sectional Time 1 data, and the software
was not able to start the needed iterations, even with a wide range of
differing starting values (because of the lack of full identification). In our
empirical application, estimation of the � and � dynamic parameters was
possibly only based on the full sample (i.e., cross-sectional and longitudi-
nal) data.

The � parameters allow for testing cross-lagged effects between the two
time series at the level of reliable, true latent scores. This information is not
captured by the more familiar levels–slopes correlations of multivariate
LGMs. If we (a) limit, through parameter constraints, the BDCSM to a
no-change model (i.e., �X � �Y � 0 and �X � �Y � 0); (b) do not take into
account any unique variance of the time series (i.e., RX � RY � 0); and (c)
apply the resulting constrained model to only two time points, we are left
with the familiar cross-lagged correlational analysis, with its known limi-
tations. The � parameter then would not predict the asymmetrical effect of
the true score of one variable onto the true change score of the other
variable. Rather, it would represent the direct effect one variable at time
t � 1 exerts on the other variable at time t, without accounting for error and
unrelated variance and without separating level information (the variable’s
score at time t � 1) from change information (the variable’s change
between times t � 1 and t).

As with the auto-proportion parameters �, one need not assume that the
cross-lagged parameters � are constant over the whole time series consid-
ered. This, again, is an empirical and testable issue (if data are sufficiently
dense to permit empirical identification, for example, if the attrition is
minor and if the design is such that participants have been measured more
than three times). In this application, we assumed both auto-proportion and
cross-lagged parameters to be constant over the entire time span consid-
ered. Further details on the DCSM described here, as well as variations and
extensions, have been provided by McArdle et al. (2000, 2003), McArdle
(2001), McArdle and Hamagami (2001), Hamagami et al. (2000), and
Hamagami and McArdle (2001).

Cross-lagged correlations were very popular in the 1980s for addressing
questions of reciprocal causal effects. However, as discussed by Rogosa
(1980a), there are several problems associated with this analysis. Cross-
lagged correlations (a) can be the expression of more than one underlying
(and often unspecified) causal mechanism, (b) can be very misleading with
respect to the true causal model (a large difference between two cross-
lagged correlations in a two-wave, two-variable design may indicate un-
equal causal effects as well as the absence of or equal causal effects), (c)
rest on very strict and often untenable assumptions for straightforward
interpretation (e.g., no change in variance and synchronous correlations
over time in the most frequently assumed underlying structural model), and
(d) usually do not adjust for measurement error (however, doing so does
not necessarily eliminate the remaining limitations; Rogosa, 1980b).

The BDCSM, of course, is no panacea. However, it offers several
advantages over cross-lagged correlations. The BDCSM (a) defines ex-
plicitly the underlying structural model, which does allow for several
change functions frequently adopted in the literature; (b) allows for clearer
interpretation of the focus parameters; (c) rests on fewer, more realistic
assumptions (we provide more detail in the Discussion section); and (d)
accounts for unreliability. Moreover, the BDCSM, as is the case with any
structural equation model, can be compared statistically with different
theoretical models (e.g., with different change functions specified).

Results

First we present the results of the univariate analyses. Both the
perceptual speed and knowledge composite scores are analyzed
separately with the no change, constant change, proportional
change, and dual-change models. Then the BDCSM is presented
with the latent cross-lagged regression relationships. The central
prediction of the present study was tested through specification of
equality constraints for the two cross-lagged (�) regression
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weights. Relative to a model with freely estimated cross-lagged
regression weights, we expect these equality constraints to be
associated with decrements in model fit, because the effect of
level–speed on change–knowledge is hypothesized to be greater
than the effect of level–knowledge on change–speed.

To familiarize the reader with the kinds of inferences we are
trying to reach, we first present traditional time-lagged within-
variable and between-variables correlations. We are aware that the
interpretation of such correlations is open to methodological crit-
icism, especially if the reliabilities of the two measures are unequal
(Rogosa, 1980b). The main purpose of these preliminary analyses
was to facilitate the conceptual transition to the final BDCSM.

Temporal Correlations Over Occasion Lags

Before formally testing the question “Is the effect of perceptual
speed on later changes in knowledge stronger than the effect of
knowledge on later changes in perceptual speed?” we examine this
issue with cross-lagged correlations, a rather rudimentary analysis
that does not account, among other things, for reliability issues.
Here we correlate Time 2, Time 1, and again Time 1 scores of the
perceptual speed composite with, in order, Time 3, Time 2, and
again Time 3 perceptual speed and knowledge scores. Analo-
gously, we correlated earlier scores of the knowledge composite
with later scores of knowledge and perceptual speed. This allowed
us a first, tentative look at the question “Does perceptual speed
correlate more highly with later knowledge than vice versa?”

Table 2 presents these correlations computed across occasions
of measurement. Because the occasions of testing were not equi-
distant in time, we present them in increasing order of time
elapsed. The second and third waves were closest in time, with an
average time interval of 2.04 years; the first and second waves
were, on average, 3.87 years apart, whereas the first and third
waves were 5.90 years apart. Note that sample sizes were not the
same for the three correlations. Wave 3 included 132 people; thus,
the correlations between the second and third waves (labeled 2 and
3) and the first and third waves (1 and 3) included 132 people. The
remaining Wave 1–Wave 2 correlation (1 and 2) included all 208
participants from the second wave.

As one can immediately observe, the auto-correlations—that is,
the test–retest stability coefficients—of both cognitive composite
scores are quite high. The differential pattern in longitudinal cor-
relations is displayed in the lagged across-domain indexes (rows 5
and 6 of Table 2). At all three intervals, the correlations of earlier
measures of perceptual speed with later measures of knowledge
are greater than otherwise. The corresponding pairs of correlations
are .51 and .37 for the shortest interval, .48 and .32 for the middle
interval, and .46 and .29 for the longest interval.

The message of Table 2 seems clear: Although knowledge
correlates with itself in time at least as strongly as perceptual speed
does, the cross-lagged correlations that give temporal priority to
perceptual speed appear to be greater than the correlations that
give temporal priority to knowledge. Therefore, one’s current
perceptual speed score seems to be a stronger predictor of one’s
subsequent knowledge score than one’s current knowledge score is
of one’s subsequent perceptual speed score, regardless of the
length of the time interval considered. This correlational pattern is,
however, liable to technical criticism (Rogosa, 1980a). Neverthe-
less, we include these descriptive indexes as a first attempt to
address the dynamic assumption of the dedifferentiation hypothe-
sis as previously formulated. The BDCSM addresses this hypoth-
esis in a formal and statistically more defendable manner and
provides analogous results.

Univariate Change Models

We dealt with incomplete data patterns by using structural
equation modeling software capable of raw data maximum likeli-
hood analyses (Arbuckle, 1996; Enders, 2001). For these analyses,
we used the Mx software (Neale, Boker, Xie, & Maes, 1999). This
estimation procedure, which does not impute data but analyzes all
existing data, compares each individual’s observed data with the
relevant portion of the overall expected variance–covariance ma-
trix and mean vector estimated by the model’s parameters. In this
analysis, an individual misfit is calculated, and the overall sum of
misfits (i.e., deviance scores or �2 log-likelihood [LL]) is pro-
vided for each model. Table 3 presents the parameter estimates and
fit indices of the univariate DCSMs when applied to both the
perceptual speed and the knowledge composite scores.

The DCSM postulates that the parameter � be fixed at 1 and that
� be estimated. For perceptual speed, � is .02, which represents a
small but positive effect on change scores as previous scores
increase. The average of the initial intercept is 59.08, whereas the
yearly average decrease in latent difference scores, implied by the
negative mean of the slope factor, is �1.64. This average decrease
cannot be interpreted directly as yearly decreases in average
scores, because each score is affected not only by the latent slope
factor but also by the previous score (through the auto-proportion
parameter �). Moreover, the effects of the dynamic parameter at
each age are compounded by the effects at all previous times, so
straightforward interpretations of the parameter estimates are not
simple (see Equations 4 and 6). Individual differences are repre-
sented with respect to the initial intercept (SDL � 6.43), the slope
score (SDS � 0.09), the residual score (SDR � 4.69), and the
correlation intercept–slope (RLS � �.99). The DCSM for percep-
tual speed obtains an overall misfit index (�2LL) of 5,820 for
seven estimated parameters. Analogous results are presented for
the knowledge construct. For knowledge, the DCSM postulates a

Table 2
Time-Lagged Correlations Within and Between Perceptual
Speed Composite Scores and Knowledge Composite Scores as a
Function of Distance Between Measurement Occasions

Descriptive index

Measurement occasions

2 and 3 1 and 2 1 and 3

Average time interval (years) 2.04 3.87 5.90
n (pairwise deletion) 132 208 132
Correlations

Earlier speed with later speed .78 .69 .68
Earlier knowledge with later knowledge .76 .79 .74
Earlier speed with later knowledge .51 .48 .46
Earlier knowledge with later speed .37 .32 .29

Note. The concurrent correlation between perceptual speed and knowl-
edge averaged over the three measurement occasions was .53. All corre-
lations differ reliably from zero ( p � .01).
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slightly stronger positive auto-proportion coefficient � (.06),
whereas the mean of the slope factor is greater than for perceptual
speed (�3.29). Thus, for knowledge, the additive component is
more negative than it is for perceptual speed, but this is counter-
balanced by the more positive multiplicative component �. In both
cases, the correlation between the level and slope factors is em-
pirically underidentified (i.e., it is estimated at its preset lower
boundary). This does not affect the remaining parameter estimates
of the model, and as such we dismiss it (i.e., fixing the correlation
to other values such as 0 or .99 did not significantly alter the fit or
the other parameter estimates of the model).

Table 4 presents the summary fit indexes of the alternative
univariate change models and the change in fit relative to the fully
parameterized (i.e., dual-change score) model. As discussed pre-
viously, all other change models tested here are nested within the
DCSM, and as such direct statistical comparisons of any change
model with the DCSM are legitimate. To assess the difference in
fit, we computed the difference in �2LL deviance misfit. Such
differences can be compared asymptotically with a chi-square
distribution with as many degrees of freedom as the difference in
the number of parameters estimated by the two models compared
(McArdle & Hamagami, 1996; Rasbash et al., 2000). We then
reexpressed the difference in fit statistics as the root-mean-square
error of approximation (RMSEA; Steiger & Lind, 1980, as cited in
Browne & Cudeck, 1993). The RMSEA can be used as a measure
of absolute fit as well as comparative fit (Browne & DuToit,
1992). We applied the RMSEA fit index solely for comparative
purposes, and hence we refer to it as the comparative RMSEA
(CRMSEA). In comparisons of two nested models, a resulting
CRMSEA of 0 means that there is no reliable (i.e., significant)
difference between the fits of the models (at which point the most
parsimonious model is usually recommended). Values of 0.05 or
less can be interpreted as there being almost no statistical differ-
ence between the fits of the two models. Hence, the statistical
difference between the two fits is significant, but only slightly so.
In that case, the two models represent the structure of the data
almost equally well.

For perceptual speed, the DCSM appears to be the best-fitting
model of the four tested. The decrease in misfit when moving from

a proportional change model to a DCSM is evident (drop in
chi-square value of 20 for 3 degrees of freedom, CRMSEA �
0.105), whereas the drop in misfit from the no change score model
to the DCSM is very large (change in chi-square value of 209 for
4 degrees of freedom, CRMSEA � 0.315). However, the differ-
ence in fit between the CCSM and the DCSM is not major
(CRMSEA � 0.044). Thus, the proportion parameter � (the addi-
tional parameter of the DCSM over the CCSM), although statis-
tically reliable, is not strong. For knowledge, the supremacy of the
DCSM tested on these data is evident in all three model compar-
isons. The differences in comparison chi-square values of the
constant, proportional, and no change models with the DCSM are
8, 19, and 72 units, respectively (for 1, 3, and 4 degrees of
freedom, in that order).

From the parameter estimates of each change model, longitudi-
nal expectations can be calculated for the predicted factor scores
(as in McArdle & Hamagami, 1999). These represent the yearly
mean values of the sample examined from 70 to 104 years of age
predicted by the change models. Figure 6 plots the population true
score expectations predicted by the four change models for the
perceptual speed composite variable. Figure 7 plots the longitudi-
nal expectations for the knowledge composite variable. In both
figures, the trajectory of the no change score model is represented
with triangles; the proportional change score model, with squares;
the CCSM, with asterisks; and the DCSM, with circles.

Bivariate Change Models

This section reports the application of the BDCSM to test for
dynamic structural relations between perceptual speed and knowl-
edge. The saturated multivariate model, as presented in Figure 5,
estimates a total of 20 parameters (the 7 parameters of each
univariate model, the 4 intervariable correlations among the two
level and slope factors of perceptual speed with the two level and
slope factors of knowledge, and the 2 cross-lagged regression
paths). The parameters of major interest when examining dynamic
relationships between the two time series are the proportion pa-
rameters within each time series (i.e., �) and across the two time
series (i.e., �). As such, the different hypotheses developed to test

Table 3
Parameter Estimates and Fit Statistics of the Univariate Dual-
Change Score Model Applied Separately to Perceptual Speed
and Knowledge

Parameter estimate

Composite score

Speed Knowledge

Mean level factor 59.08 54.23
Mean slope factor �1.64 �3.29
SD level factor 6.43 8.18
SD slope factor 0.09 0.48
r: level–slope factors �.99 �.99
SD uniqueness 4.69 3.97
� .02 .06

Misfit (�2LL) 5,820 5,832
No. of parameters 7 7

Note. �2LL (log-likelihood) is the deviance measure of misfit; the mean
level factor refers to level of functioning at the age of 70 years.

Table 4
Fit Statistics of Dual-Change, Constant Change, Proportional
Change, and No Change Score Models Applied to Perceptual
Speed and Knowledge and Associated Fit Comparisons With
the Dual-Change Score Model

Model (�df )

Speed Knowledge

�2LL ��2LL CRMSEA �2LL ��2LL CRMSEA

Dual change 5,820 5,832
Constant change

(1) 5,822 2 0.044 5,840 8 0.116
Proportional

change (3) 5,840 20 0.105 5,851 19 0.102
No change (4) 6,029 209 0.315 5,904 72 0.182

Note. The no, proportional, and constant change score models are all
nested within the dual-change score model, so direct statistical model
comparisons are possible. �2LL (log-likelihood) is the deviance measure of
misfit. CRMSEA � comparative root-mean-square error of approximation.
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the dynamic relationships of the two variables can be expressed
with structural models that are alternative versions of the saturated
BDCSM. That is, all tested versions of the BDCSM differ only
with respect to the dynamic parameters � and �. Because all
bivariate models tested are nested within the saturated BDCSM
estimating 20 parameters, direct statistical comparisons are possi-
ble between any bivariate model tested and the saturated BDCSM.

For simplicity, all BDCSM results reported in Tables 5 and 6 are
limited to presentation of dynamic parameters and the total misfit
index of each model. In Table 5, the saturated BDCSM is pre-
sented first. This model estimates the auto-proportion parameters
of both time series (i.e., �S and �K) as well as the two across-time
series cross-lagged effects (i.e., �S3�K and �K3�S). The remain-
ing bivariate models are restrictions of this saturated BDCSM in
which one or more of the four dynamic parameters listed here are
constrained (the parameters examined are either set to be equal to
zero or set to be equal to each other).

Table 5 concerns the analyses aimed at refining the individual
time series within the context of the bivariate model. When the two
time series were tested independently, it was concluded that two
different models might best represent the data of the two cognitive
constructs analyzed. The time series for perceptual speed displayed
a weak auto-proportion parameter �. A more parsimonious CCSM
obtained a fit close to the fit of a less parsimonious DCSM. Thus,
it might be argued that a CCSM suffices to represent the repeated

perceptual speed measures. The time series of knowledge, on the
other hand, displayed a reliable auto-proportion parameter, such
that the less parsimonious DCSM was a better representation of
the knowledge data than was a CCSM. We first ascertained whether
the dynamic idiosyncracies of the two time series are reflected in
the same manner in the context of bivariate relationships. As such,
the models in Table 5 tested the different configurations of the
within-construct dynamic parameters � while always allowing for
the estimation of the between-constructs dynamic parameters �.
The four models were as follows: (a) auto-proportionality present
in both time series (i.e., both �S and �K are estimated; this model
is the saturated BDCSM), (b) only knowledge displaying auto-
proportionality (�S is fixed at 0, whereas �K is estimated), (c) only
perceptual speed displaying auto-proportionality (�S is estimated,
whereas �K is fixed at 0), and (d) no auto-proportionality present
(i.e., both �S and �K are fixed at 0). All four models estimate both
cross-lagged regression parameters and differ only with respect to
the within-construct auto-proportion � parameters.

On the basis of the univariate results of Table 4, one might
expect the “zero speed auto-proportion” model (with �S � 0 and
�K estimated) to be the best-fitting model among the four tested
here. We tested the significance of the �S parameter and of all
dynamic parameters in subsequent analyses by forcing �S to zero.
Then we compared the new statistical fit index with the previous
index when the dynamic parameter of inquiry was estimated (in

Figure 6. Expected mean population factor scores for perceptual speed as predicted by the dual-change score
model (represented by circles), constant change score model (represented by asterisks), proportional change
score model (represented by squares), and no change score model (represented by triangles). The best-fitting
models are the dual-change and constant change score models (see Table 4).
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this analysis, �S). The change in fit of the two nested models
represents the statistical significance test of the dynamic parameter
examined. For �S, the comparison resulted in a change in chi-
square fit of 3 with 1 degree of freedom (represented by the
dynamic parameter). According to the resulting CRMSEA (0.062),
the saturated dynamic model and the zero speed auto-proportion
model were statistically different from each other, which justifies
estimation of the additional �S parameter. Analogously, enforcing
the auto-proportionality parameter for knowledge to be zero (“zero
knowledge auto-proportion”) resulted in a considerable loss of fit
(CRMSEA � 1.211). When the dynamic parameters � of both
time series were forced to zero (“neither auto-proportion”), a
significant loss of fit was again observed (CRMSEA � 0.904).
Thus, we conclude that estimation of both �S and �K is statistically
justified. In the bivariate context, both perceptual speed and
knowledge display reliable auto-proportionality. Note that the es-
timation of �K resulting in a value of �0.99 is legitimate, in that
this parameter is an unstandardized regression weight and, as such,
is not bounded to the convenient range of �0.99 to 0.99.

Having ascertained the existence of statistically reliable auto-
proportionality parameters for both knowledge and perceptual
speed in the bivariate context, we may now tackle the questions
concerning the dynamic relationships between the two constructs.
In each analysis to follow, we apply the same single parameter
testing paradigm as we did earlier (we set the parameters of

interest to zero and ascertain the consequent drop in statistical fit).
In Table 6, five versions of the BDCSM are applied. In the first,
both cross-lagged dynamic effects are estimated (i.e., “coupling
effect”; both �speed3�knowledge and �knowledge3�speed are esti-
mated). This model postulates the full coupling effect between the
two time series. Both variables are driving the system, and there is
no unique leading indicator within the system considered. In the
second version, perceptual speed is the sole leading indicator of the
system (“speed as leader”; �speed3�knowledge is fixed at 0 and
�knowledge3�speed is estimated). In the third, knowledge is the
sole leading indicator of the system (“knowledge as leader”;
�speed3�knowledge is estimated and �knowledge3�speed is fixed at 0).
The fourth version is “equal leading effects” (�speed3�knowledge is
estimated to be equal to �knowledge3�speed). Finally, in the fifth
version, no cross-lagged dynamic effects are estimated (i.e., “no
leading effects”; both �speed3�knowledge and �knowledge3�speed are
fixed at 0). Analogously to the previous analyses, this series of
BDCSMs presents a convenient situation of nested models. The
first (saturated, coupling effect) model is the least parsimonious
model and estimates both cross-lagged regression effects; the
remaining four models are nested within it. This allows for the
statistical tests of hypotheses presented in the first column of
Table 6.

The comparison of the no leading effect model with the cou-
pling effect model is equivalent to the statistical test of the two �

Figure 7. Expected mean population factor scores for knowledge as predicted by the dual-change score model
(represented by circles), constant change score model (represented by asterisks), proportional change score
model (represented by squares), and no change score model (represented by triangles). The best-fitting model is
the dual-change score model (see Table 4).
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parameters. This comparison results in a chi-square value of
12,349 � 12,314 � 35 with 2 degrees of freedom, or a CRMSEA
of 0.179 (fifth row of Table 6). As such, we may conclude that
there is some sort of reliable dynamic feature present that links the
two composite variables analyzed (i.e., the coupling effect model,

although less parsimonious, better describes the structure of the
data).

By setting �speed3�knowledge to zero (second row of Table 6),
we obtain a misfit index of 12,345. Comparing this model with
the coupling effects model corresponds to testing the

Table 5
Alternative Hypotheses Regarding the Auto-Proportion Parameter � of the Bivariate Dual-
Change Score Model With Relative Fit Statistics and Difference in Fit Relative to the Saturated
Dynamic (Bivariate Dual-Change Score) Model

Hypothesis
Parameter constraints

in model �/� Misfit ��2LL �df CRMSEA

Saturated dynamic
model

�S � ?/�S3�K � ? �0.04/0.51 12,314

�K � ?/�K3�S � ? �0.99/0.07

Zero speed auto-
proportion

�S � 0/�S3�K � ? 0/0.50 12,317 3 1 0.062

�K � ?/�K3�S � ? �1.01/0.04

Zero knowledge
auto-proportion

�S � ?/�S3�K � ? �1.48/�3.09 13,070 756 1 1.211

�K � 0/�K3�S � ? 0/0.25

Neither auto-
proportion

�S � 0/�S3�K � ? 0/�0.45 13,158 844 2 0.904

�K � 0/�K3�S � ? 0/�0.05

Note. The zero speed, zero knowledge, and neither auto-proportion models are all nested within the saturated
dynamic model, so direct, statistical model comparisons are possible. �S and �K are the auto-proportion
parameters � of perceptual speed and knowledge, respectively; �S3�K and �K3�S are the cross-lagged regressive
parameters of earlier perceptual speed on later knowledge and earlier knowledge on later perceptual speed,
respectively; �? means that the parameter is estimated; � 0 means that the parameter is fixed at 0; ��2LL
(log-likelihood) is the difference in the deviance measure of misfit; �df is the difference in degrees of freedom.
CRMSEA � comparative root mean squared error of approximation.

Table 6
Alternative Hypotheses Regarding the Cross-Lagged Parameter � of the Bivariate Dual-Change
Score Model With Relative Fit Statistics and Difference in Fit Relative to the Saturated Dynamic
(Bivariate Dual-Change Score) Model

Hypothesis Model �/�
Misfit

(�2LL) ��2LL �df CRMSEA

Coupling effect �S � ?/�S3�K � ? �0.04/0.51 12,314
�K � ?/�K3�S � ? �0.99/0.07

Speed as leader �S � ?/�S3�K � 0 �0.01/0 12,345 31 1 0.241
�K � ?/�K3�S � ? �0.98/0.03

Knowledge as leader �S � ?/�S3�K � ? 0.02/0.48 12,324 10 1 0.132
�K � ?/�K3�S � 0 �1.02/0

Equal leading effects �S � ?/�S3�K � ? �0.02/0.08 12,339 25 1 0.216
�K � ?/�K3�S � ? �0.97/0.08

No leading effects �S � ?/�S3�K � 0 0.01/0 12,349 35 2 0.179
�K � ?/�K3�S � 0 �1.00/0

Note. The speed as leader, knowledge as leader, equal leading effects, and no leading effects models are all
nested within the coupling effect model, so direct, statistical model comparisons are possible. �S and �K are the
auto-proportion parameters � of perceptual speed and knowledge, respectively; �S3�K and �K3�S are the
cross-lagged regressive parameters of earlier perceptual speed on later knowledge and earlier knowledge on later
perceptual speed, respectively; �? means that the parameter is estimated; � 0 means that the parameter is fixed
at 0; ��2LL (log-likelihood) is the difference in the deviance measure of misfit; �df is the difference in degrees
of freedom. CRMSEA � comparative root mean squared error of approximation.
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�speed3�knowledge parameter. That is, the hypothesis that percep-
tual speed is the leading indicator of the bivariate system is
statistically tested in this fashion. The comparison yields a loss in
fit (chi-square) from the saturated coupling effect model of
12,345 � 12,314 � 31 with 1 degree of freedom. The correspond-
ing CRMSEA is 0.241, which speaks to a definite loss in fit.
Analogously, by postulating that there is no effect from knowledge
to the subsequent change in perceptual speed (i.e.,
�knowledge3�speed � 0; third row in Table 6), the misfit index
obtained is 12,324. This parameter constraint caused a loss in
chi-square fit of 10 (12,324 � 12,314) with 1 degree of freedom.
The resulting CRMSEA is 0.132, smaller than the CRMSEA
testing the “speed as leader” hypothesis. Finally, and most impor-
tant, the equal leading effect model forces the cross-lagged regres-
sion parameters � to be equal, so this model postulates each
variable to affect the change of the other variable with equal
magnitude. The misfit of this model is 12,339, and the comparison
with the full model results in a loss in fit equivalent to a chi-square
value of 25 (12,339 � 12,314) with 1 degree of freedom, corre-
sponding to a CRMSEA of 0.216. Thus, we can conclude that the
two cross-lagged regression weights differ reliably in magnitude.
Specifically, within the system of structural relations considered in
the present study, perceptual speed exerts a stronger dynamic
effect on knowledge than knowledge does on perceptual speed.

Discussion

The present article had two goals, one substantive and the other
methodological. The substantive goal was to examine empirically
and test formally the structural dynamics of ability dedifferentia-
tion in late-life cognition. The methodological goal was to famil-
iarize readers with a recently developed variant of latent growth
curve modeling that enables researchers to test dynamic structural
hypotheses on the basis of incomplete and imbalanced longitudinal
data (Bell, 1953, 1954). In the following sections, each of the two
goals is addressed in turn.

Main Finding of the Present Study

In line with our guiding hypothesis, the analyses reported in the
present study indicate that the age-associated influence of percep-
tual speed on changes in knowledge is greater than the age-
associated influence of knowledge on changes in perceptual speed.
This is seen most clearly when the freely estimated parameters of
the BDCSM are inserted into the prediction equations for the
BDCSM (Equations 4 and 6). Specifically, we obtain

Speed̂ t � 	0.96
 � Speed̂t�1

� 	0.07
 � Knowledgeˆ
t�1 � 	�2.05
 (9)

and

Knowledgeˆ
t � 	0.01
 � Knowledgeˆ

t�1

� 	0.51
 � Speed̂t�1 � 	24.01
, (10)

where the hat symbol signifies the true, latent score of the cogni-
tive ability (i.e., without unrelated residual or error variance). As is

evident on the basis of these equations, perceptual speed dominates
predictions in terms of both abilities.

Substantive Implications

Our substantive goal was to test the hypothesis that ability
dedifferentiation, defined as the convergence of age gradients and
increments in covariance between mechanic and pragmatic abili-
ties, is brought about by negative age changes in the mechanics of
cognition. Perceptual speed was used to index mechanics, and
knowledge was used to index pragmatics. The results were fully
consistent with the hypothesis. Under the assumption that percep-
tual speed and knowledge can be taken to represent mechanic
(broad fluid) and pragmatic (broad crystallized; cf. Horn, 1989)
domains of cognition, the present findings reveal, perhaps for the
first time, the structural dynamics of dedifferentiation in late-life
cognition.

To use a hydraulic metaphor, Equations 9 and 10 can be inter-
preted as a dynamic system of “variance pumps.” The cross-lagged
gamma parameters specify how much variance of a given domain
is pumped into changes in the other domain. Put metaphorically,
then, our analyses show that a comparatively large amount of
perceptual speed variance is pumped into changes in knowledge.
In contrast, a comparatively small amount of knowledge variance
is pumped into changes in perceptual speed. In the BDCSM,
variance in a given ability is modeled as the additive combination
of its own variance at the preceding time point and its change
variance. It follows that knowledge, through its own changes, acts
as a recipient of variance in perceptual speed. Thus, the influence
of perceptual speed on changes in knowledge slowly transforms
the very nature of knowledge in old and very old age. With
advancing age, variance in knowledge is increasingly dominated
by variance in perceptual speed. If generalized to mechanic and
pragmatic abilities at large, our results suggest that nominally
pragmatic abilities are increasingly governed by mechanic vari-
ance. Thus, in line with earlier interpretations of cross-sectional
data (e.g., Baltes & Lindenberger, 1997; Lindenberger & Baltes,
1994, 1997), the dedifferentiation of age gradients and covariance
structures between pragmatic and mechanic abilities can be con-
strued as the consequence of an age-associated “mechanization” of
pragmatic abilities.

In the meantime, the present pattern of results has been repli-
cated by Ghisletta and de Ribaupierre (2003) in the Swiss Inter-
disciplinary Longitudinal Study on the Oldest Old (SWILSO-O;
Lalive d’Epinay, Pin, & Spini, 2001), a parallel-cohort, longitudi-
nal study involving two samples between 80 and 85 years of age
at study inception. In the second cohort of the SWILSO-O, as-
sessed three times so far, asymmetric dynamic relations over an
average period of 1.05 years were observed between the Cross Out
test (Woodcock & Bonner Johnson, 1990; assumed to be a marker
of broad-Gf, or mechanic cognitive abilities) and the verbal flu-
ency test (Cardebat, Doyon, Puel, Goulet, & Joanette, 1990; as-
sumed to be a marker of broad-Gc, or pragmatic cognitive abili-
ties). Changes in the pragmatic ability marker were predicted by
previous states of mechanic ability, whereas the opposite was not
true. Note that the ratio of interindividual differences in initial age
over intraindividual changes in age was much smaller in the
SWILSO-O than in the BASE. Thus, the presence of asymmetric
dynamic relations in both studies, despite notable differences in
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sampling schemes, suggests that the pattern of findings observed
with the BASE sample was not induced by an undue influence of
cross-sectional information.

A further prediction based on the foregoing considerations and
some additional assumptions is that nominally pragmatic abilities,
rather than mechanic abilities, may act as ultimate (end-of-life)
indicators of mechanic decline. In the present study, the structural
dynamics between perceptual speed and knowledge were modeled
as a function of distance from birth (i.e., chronological age).
However, in old and very old age, distance from birth and distance
to death are highly correlated (e.g., mortality increases with age).
Thus, the proposed mechanization of pragmatic abilities may, in
part, form a component of an end-of-life syndrome (Anstey,
Luszcz, Giles, & Andrews, 2001; Baltes, Schaie, & Nardi, 1971;
Maier & Smith, 1999; cf. Riegel & Riegel, 1972). Whereas me-
chanic decline in nominally mechanic abilities is normative across
the entire adult life span, mechanic decline in nominally pragmatic
abilities may be the signature of impending death. Initial BASE
longitudinal results appear to be consistent with this hypothesis
(Singer et al., 2003).

Methodological Considerations

Strengths of the present dynamic approach. This article has
advocated a structural and dynamic approach to the multivariate
analysis of incomplete longitudinal data. In our view, this ap-
proach offers a number of distinct methodological advantages but
also involves some problems and limitations. The advantages fall
into two categories: those related to more general, well-known
properties of structural equation modeling and those that are more
specific to the dynamic (time-based) properties of the variant used
in this study. The following properties seem particularly relevant:
(a) formal specification and testing of structural and time-based
(dynamic) hypotheses within and between two sets of variables;
(b) representation of change at the level of true scores, which
enhances the interpretability of cross-lagged effects (e.g., Rogosa,
1980b); (c) reformulation of classical models of change (e.g.,
Markov simplex model with proportional parameters and linear
growth models with individual differences) within the structural
equation framework; and (d) accommodation of variable patterns
and degrees of incomplete data. Taken together, these benefits
underscore the utility of the BDCSM for the dynamic study of
structural change with incomplete longitudinal data.

Violations of assumptions. At the same time, the present ap-
plication of DCSMs is not without limitations and problems. The
most important problem concerns violations of statistical assump-
tions. To yield unbiased and interpretable parameter estimates,
applications of structural equation modeling generally require
sample homogeneity and random data incompleteness (McArdle,
1994; Rubin, 1974). With respect to sample homogeneity, the
unimodal and symmetrical shape of the distribution of individuals’
contributions to the overall �2LL misfit statistic for the fully
parameterized BDCSM suggests that model parameters were not
strongly influenced by a few individuals with very large residuals.
However, from a conceptual point of view, it seems likely that the
present sample was not homogeneous in nature but comprised
different forms of aging. Future analyses need to include empirical
markers of heterogeneity (e.g., dementia status and cardiovascular
disease) to examine their moderating effect on the structural dy-

namics observed in the present study. Variants of the DCSM
incorporating covariates are feasible (Ghisletta & Lindenberger,
2003; McArdle et al., 2003).

Furthermore, the assumption of random data incompleteness is
clearly inconsistent with the data analyzed in the present study. As
reported earlier, higher levels of functioning in both perceptual
speed and knowledge were related to lower mortality and to higher
participation rates among survivors. This finding is not idiosyn-
cratic to the present study. Instead, the nonrandom nature of
old-age mortality and longitudinal study participation is ubiquitous
(Lindenberger et al., 2002; Siegler & Botwinick, 1979; for a
summary, see Lindenberger et al., 1999). The crucial question in
the present context is not so much whether data incompleteness
was selective or not (because it clearly was) but whether the
existence of nonrandom missing data biased the analyses in favor
of finding the observed longitudinal supremacy of perceptual
speed over knowledge. Descriptively, the observed Time 1–Time
3 selection effects were slightly larger for perceptual speed than
for knowledge (0.774 vs. 0.494 standard deviation units). Thus,
selection was not associated with a greater reduction in variance of
knowledge than in variance of perceptual speed. On the basis of
this observation, it is difficult to see how selection could have
conditioned the data in favor of a stronger influence of perceptual
speed on knowledge than of knowledge on perceptual speed.

Limitations. An important limitation of the present analyses
concerns the sparse sampling of intraindividual longitudinal
change. As reported earlier, we used limited longitudinal informa-
tion (longitudinal observation intervals averaged 1.98 years, with a
median of 0.18 years1) to estimate the structural dynamics of an
age period spanning 34 years. Hence, the analyses relied heavily
on cross-sectional information in the estimation of a longitudinal
process (Bell, 1953, 1954; Duncan, Duncan, & Hops, 1996; Ghis-
letta & McArdle, 2001; McArdle & Anderson, 1990). In theory,
and as shown in Equations 6 and 7, mean cross-sectional changes
could provide a nonrejectable, underidentified solution for dy-
namic parameters at the population level. Empirically, however,
further sensitivity analyses of the data set with only Time 1
cross-sectional information did not yield any solutions (e.g., the
estimation algorithm implemented with the software used failed to
initiate the iteration process with all sets of starting values used
because, in the absence of longitudinal data, the DCSM is under-
identified). Thus, the dynamic information reported here could not
be estimated on the basis of cross-sectional information only.

Conversely, we obtained virtually identical values for the dy-
namic parameters when we reduced the data set to the subsample
of 132 participants assessed at all three occasions and when we
analyzed the full sample. Hence, selection did not influence the
dynamic parameters (although average levels of perceptual speed
and knowledge, for instance, were influenced by selection). More-
over, the replication obtained in a much more age-homogeneous

1 Mean times of assessment (defined with origin zero at the beginning of
BASE) were as follows: Time 1, 0.13 years (median time � 0.10 years,
n � 516); Time 2, 3.99 years (median time � 3.98 years, n � 208); and
Time 3, 6.03 years (median time � 6.03 years, n � 132). Overall mean
time was 1.98 years (median time � 0.18 years, N � 856). The overall
incongruence between mean and median is reflective of a positively
skewed distribution.
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sample of very old individuals is very consistent with the present
findings (Ghisletta & de Ribaupierre, 2003). In summary, our
control analyses show that the results reported in the present article
could be obtained only in the presence of longitudinal information.
At the same time, we acknowledge that the dynamic parameters
reported here recover both longitudinal and cross-sectional aspects
of the data. This property is in line with the general logic of
cross-sectional–longitudinal convergence models (Bell, 1953,
1954), which integrate both types of information into overall
estimates of population change. Integration of cross-sectional and
longitudinal information may produce efficient and unbiased esti-
mates of population change and may qualify as a strength rather
than as a limitation of the method, at least if certain assumptions
are met. To arrive at a full quantitative understanding of longitu-
dinal and cross-sectional influences on dynamic parameters and
the relative importance of assumption violations, future statistical
simulations need to vary systematically the relative amount and
relative direction of longitudinal and cross-sectional information,
the heterogeneity of intraindividual change trajectories, and the
degree and kind of nonrandom attrition (see also Hamagami &
McArdle, 2001; McArdle & Hamagami, 2001).

Finally, we need to acknowledge that cohort and retest effects
were left unanalyzed in the present study. Given the absence of an
association between sociobiographical indicators and chronologi-
cal age in the cross-sectional parent sample (see Lindenberger &
Baltes, 1997), our reluctance to examine cohort effects appears
permissible. Furthermore, the longitudinal rather than cohort-
sequential design of the BASE makes it difficult to isolate the
influence of retesting with sufficient power and precision (cf.
Baltes, Reese, & Nesselroade, 1988).

Conclusion and Outlook

The present analyses provide direct empirical support for the
widely held assumption that dedifferentiation of interindividual
differences in intellectual abilities in old and very old age is a
consequence of mechanic constraints. In doing so, these analyses
underscore the utility of dynamic modeling techniques in devel-
opmental research. Numerous methodological and substantive ex-
tensions of the approach pursued in the present article appear
possible, but two seem especially timely. The first is methodolog-
ical in kind and concerns attempts to extend the BDCSM to the
trivariate and more-variable case (for a four-variable example, see
McArdle et al., 2000, and Ghisletta & Lindenberger, 2003). More-
over, the possibility of modeling the dynamic parameters as ran-
dom effects, and hence allowing for individual differences in these
parameters, must be considered in future developments. This will
allow additional inferences about individual rather than group
development. The second extension is substantive and concerns
analysis of dynamic relations between perceptual speed and sen-
sory functioning in old age. Given the strong cross-sectional con-
nection between intellectual and sensory functioning in old age
(e.g., Lindenberger & Baltes, 1994), an examination of dynamic
relations between the two domains may shed some light on the
dimensionality and structure of mechanic decline in old and very
old age.
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