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Abstract

Modern diagnostic technologies such as cancer screening tests or forensic DNA tests confront
users with a basic problem, namely that of inferring the accuracy of a diagnostic test on the
basis of statistical information about the test. The required statistics can be presented in
a wide variety of ways. While these modes of presentation of statistical information are
mathematically equivalent, psychologically they are not. In this chapter, we show that
supplementing diagnostic technology with psychological knowledge about how people
process frequency information provides us with a very simple—but powerful—method for

improving diagnostic inferences.

New technologies often exceed the limits of our imagination. As a result, their advent
can evoke unanticipated public responses, ranging from repulsion and hostility to fas-
cination and even mystical attributions. Let us use the debut of the X-ray machine as an
illustration. According to an historian of medicine, Joel Howell (1995, pp. 135-137), at
first many people were merely fascinated by it. They lined up for one hour sittings to
view their own bones. Coin-operated machines let people glimpse the insides of their
hands and feet. Wealthy young women had X-ray pictures taken of themselves holding
hands with their betrothed. Not everybody, however, responded so enthusiastically, and
as we know in hindsight, so riskily. In particular, the power of the X-ray machine to
invade privacy met with alarm. Coming close upon the heels of other technological
inventions of the period, including the telephone and the photograph, the X-ray was
sometimes viewed as evil in its ability to, in the words of one critic cited by Howell
(1995, p. 140) ‘render privacy a mere tradition of an unscientific past.

What this mixture of fascination about and hostility toward technological innovation
suggests is that new technologies often outstrip our ability to use them properly, let
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alone to comprehend them completely. If using the technology requires no specific
expertise, however, then such lack of comprehension need not be of concern. In fact,
many technological tools are designed to be easy to use. Think of the microwave oven
or the television: few of us know how either actually works, but that does not mean we
cannot use them properly—basically, all we need to know is how to switch them on and
off. Sometimes, however, the proper use of a new technological tool or of its end prod-
uct cannot be reduced to pushing a button but instead requires specific knowledge that
is not necessarily part of the human mind’s intuitive repertoire. Our argument is that
when this is the case, technology needs psychology because the best technology is of
little value if people do not comprehend what the results it produces mean.

Some technological tools yield results that need to be interpreted in the context of
statistical information. We will show that understanding how laypeople and experts
tend to process frequency and probability information can greatly improve people’s
comprehension of these results. The tools we are concerned with are (1) medical diag-
nostic tests (e.g. hemoccult test), which play an ever more important role in the diag-
nosis of specific diseases (e.g. colorectal cancer) and (2) forensic DNA analysis, which in
the 1990s revolutionized the criminal investigation process. Note that in the present
context the user of the tool is not the lab technician who conducts the actual analysis
but, for example, the doctor, patient, judge, or juror. They receive information gleaned
from the technology—for instance, a mammography test or a DNA match—and they
have to determine what these results could possibly mean.

Medicine: how to improve the use of diagnostic tests

What does a positive medical test result—for instance, a positive mammography test—
mean? Multiple studies suggest that physicians often do not properly infer the prob-
ability of a disease given a positive test result (Casscells et al. 1978). In a seminal article
on statistical inferences based on results of mammography tests, David Eddy (1982)
reported an informal study in which he provided physicians with information that can
be summarized as follows (numbers are rounded): for a woman at age 40 who partici-
pates in routine screening, the probability of breast cancer is 0.01. If a woman has breast
cancer, the probability is 0.8 that she will have a positive mammogram. If a woman does
not have breast cancer, the probability is 0.1 that she will still have a positive mammo-
gram. Now, imagine a randomly drawn woman from this age group with a positive
mammogram. What is the probability that she actually has breast cancer?

This probability, also called the positive predictive value (PPV) of a test, can be calcu-
lated from Bayes’ rule. This rule is named after Thomas Bayes (1702-1761), an English
dissident minister, to whom the solution of the problem of how to make an inference
from data to hypothesis is attributed (Stigler 1983). Equation 1 represents Bayes’ rule,
applied to the medical context:

p(disease) p(pos|disease)
PPV= : : 5 (1)
p(disease) p(pos|disease)+p(~disease) p(pos|-disease)

In this equation, p(disease) is the base rate (or prevalence) of the disease (0.01 in
Eddy’s example); p(pos|disease) is the hit rate (or sensitivity) of the test, that is, the
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proportion of positive results among people suffering from the disease (0.8); and
p(pos|disease) is the false-positive rate of the test, that is, the proportion of positive results
among people not suffering from the disease (0.1). Inserting the statistical information
into Bayes’ rule results in a positive predictive value for a mammography test of 0.075.

(0.01)(0.8)
PPV= =0.075
(0.01)(0.8)+(0.99)(0.1)

Yet most of the physicians in Eddy’s study (95 out of 100) estimated the positive pre-
dictive value of the test to be between 0.7 and 0.8. That is, their estimates of the proba-
bility of breast cancer given a positive mammography test exceeded the correct value by
a factor of 10. Eddy (1982) argued that the physicians drew the wrong inference based
on mammography because they had confused the hit rate of the test with its positive
predictive value. In his view, ‘these errors threaten the quality of medical care’ (p. 249).
Given this and other demonstrations that physicians make errors when interpreting
the outcomes of medical diagnostic tests (see also Windeler & Kobberling 1986), what
can be done to improve their inferences? As we argue next, supplementing diagnostic
technology with psychological knowledge about how people process probability and
frequency information provides us with a very simple—but powerful—method for
improving diagnostic inferences.

Natural frequencies help in making diagnostic inferences

Studies concluding that physicians (Berwick et al. 1981; Politser 1984) and laypeople
(see Koehler 1996) make poor diagnostic inferences based on statistical information
have typically presented information in the form of probabilities and percentages. From
a mathematical viewpoint, it is irrelevant whether statistical information is presented in
probabilities, percentages, absolute frequencies, or some other form because these dif-
ferent representations can be mapped onto one another in a one-to-one fashion. From a
psychological viewpoint, however, the representation of information matters. Although
different representations of statistical information are equivalent mathematically, psy-
chologically they are not. This observation is central to our argument. In particular, we
argue that a specific class of representations that we call natural frequencies (Hoffrage &
Gigerenzer 1998) helps experts to make inferences the Bayesian way.

We now illustrate the difference between probabilities and natural frequencies using
the diagnostic problem of inferring the presence of colorectal cancer (C) from a posi-
tive result of the hemoccult test (T), a standard diagnostic test. Let us assume that, in
terms of probabilities, the base rate for colorectal cancer p(cancer) is 0.003; the test’s hit
rate, p(pos|cancer), is 0.5; and the false-positive rate, p(pos|-cancer), is 0.03. Armed
with this information, people are then typically asked, ‘What is the probability that a
randomly drawn person who tested positive actually has colorectal cancer?’

In natural frequencies, in contrast, the same information would read “Thirty out of
every 10,000 people have colorectal cancer. Of these 30 people with colorectal cancer,
15 will have a positive hemoccult test. Of the remaining 9,970 people without colorectal
cancer, 300 will still have a positive hemoccult test. The question is, ‘How many of the
people who tested positive actually have colorectal cancer?’
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What exactly are natural frequencies? They are absolute frequencies of events as
directly experienced and they have not been normalized with respect to the base rates of
the disease and its absence (Gigerenzer & Hoffrage 1995, 1999). For example, imagine
an old, experienced physician in an illiterate society. She has no books or statistical sur-
veys and therefore must rely solely on her direct experience. Her people, for instance,
may have been afflicted by a previously unknown and severe disease. Fortunately, the
physician has discovered a symptom that signals the disease, although not with cer-
tainty. In her lifetime, she has seen a large group of patients, few of whom had the dis-
ease. Of those who had the disease, some showed the symptoms; of those who were not
afflicted, some also showed the symptoms. Thus, on the basis of her experience, the
physician acquired representative information about the structure of her environment
by sequentially encountering (randomly drawn) instances in the population. This is
what we call natural sampling. The outcome of natural sampling is natural frequencies.
Natural frequencies are not to be confused with probabilities, percentages, relative fre-
quencies, or other representations where the underlying natural frequencies have been
normalized with respect to these base rates.

Why and how should natural frequencies facilitate diagnostic inferences? There are two
related explanations (for alternative views see Fiedler et al. 2000; Macchi 2000; for a dis-
cussion of those alternative views see Hoffrage et al. in press). The first is computational.
Bayesian computations are simpler when the information is represented in natural fre-
quencies than in probabilities, percentages, or relative frequencies (Christensen-
Szalanski & Bushyhead 1981; Kleiter 1994). Consider the calculations when the
information concerning colorectal cancer is represented in probabilities. A cognitive
algorithm to compute the PPV of the hemoccult test based on probabilities amounts to
Equation 1:

p(cancer) p(pos|cancer)
PPV=

p(cancer) p(pos|cancer)-+p(—cancer) p(pos|-cancer)

(0.003)(0.5)
= = 0.048
(0.003)(0.5)+(0.997)(0.03)

Now compare these computations with those necessary when the same information is
presented in natural frequencies. Because natural frequencies do not require figuring in
base rates, the computations are much simpler—that is, fewer operations (multiplica-
tion, addition, or division) need to be performed, and the operations can be performed
on natural numbers rather than fractions. Now the algorithm amounts to Equation 2:

pos&cancer 15
PPV = = =0.048 (2)
pos&cancer + pos&-icancer 15+300

Equation 2 is Bayes’ rule for natural frequencies, where pos&cancer is the number of
cases with cancer and a positive test, and pos&-cancer is the number of cases without
cancer but with a positive test.
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The second argument as to why natural frequencies facilitate diagnostic inferences com-
plements the first. [t suggests that people’s cognitive algorithms are designed to make infer.
ences from natural frequencies rather than from probabilities and percentages. This
argument is based on the observation that for most of their existence, humans and animals
have had to make inferences based on information encoded sequentially through their
direct experience. Natural frequencies are the result of this process. Mathematical prob-
ability, in contrast, emerged only in the mid-seventeenth century (Daston 1988), and per-
centages seem to have become common representations only in the aftermath of the
French revolution—when the metric system was adopted—mainly for calculating taxes
and interest, and only very recently for expressing risk and uncertainty (Gigerenzer et 4
1989). Thus one might argue that minds have evolved to deal with natural frequencies:.
rather than with probabilities. This argument is consistent with developmental studies
indicating the primacy of reasoning about discrete numbers and counts over fractions
and with studies of adult humans and animals showing that they can monitor frequenc;
information in their natural environments in fairly accurate and automatic ways (eg.
Gallistel & Gelman 1992; Jonides & Jones 1992; Real 1991; Sedlmeier et al. 1998).

Do natural frequencies improve physicians’ statistical reasoning?

Can medical experts’” use of diagnostic technologies be improved if they reason in terms
of natural frequencies rather than probabilities? The following study with experienced
physicians who treat real patients provides an answer. Hoffrage and Gigerenzer (1998)
asked 51 physicians from Munich and Diisseldorf to participate. Three physicians did not
give numerical responses to the diagnostic tasks they were asked to complete, either
because they considered statistical information to be meaningless for medical diagnosis or
because they said that they were unable to think with numbers. The remaining 48 physi-
cians had practised medicine for an average of 14 years, had a mean age of 42 years, and
worked in university hospitals, in private or public hospitals, or in private practice. The
sample included internists, gynaecologists, dermatologists, and radiologists, among other
specialists. The physicians’ status ranged from directors of clinics to beginning physicians.

Each physician was given four diagnostic tasks. In two of them, the information was
presented in probabilities, whereas in the other two it was presented in natural frequen-
cies (task order was systematically varied). The four diagnostic tasks were to infer the
presence of (1) colorectal cancer from a positive hemoccult test (see above), (2) breast
cancer from a positive mammogram, (3) phenylketonuria from a positive Guthrie test,
and (4) ankylosing spondylitis (Bekhterev’s disease) from a positive HL-Antigen-B27
(HLA-B27) test (for the texts, see http://www-abc.mpib-berlin.mpg.de/users/hoffrage/
papers/4tasks.html).

Each physician gave an estimate for each of the four diagnostic problems. Thus, the
study yielded a total of 48 estimates for each problem and 24 estimates for each format
of each problem. When a physician’s estimate was within five percentage points (or the
equivalent in frequencies) of the Bayesian answer, and additional information (from
physicians’ notes and/or an interview) indicated that the estimate was arrived at by
Bayesian reasoning (or a shortcut thereof; see Gigerenzer & Hoffrage 1995) rather than
by guessing or other means, then the response was classified as a Bayesian inference.
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Figure 18.1 Physicians’ percentage of Bayesian inferences in the probability and natural frequency versions
of four diagnostic tasks (Hoffrage & Gigerenzer 1998).

Figure 18.1 shows that for each diagnostic problem, the physicians reasoned the
Bayesian way more often when the information was communicated in natural frequen-
cies than in probabilities. The size of this effect varied between problems, but even in the
problem showing the smallest effect (phenylketonuria), the proportion of Bayesian
answers was twice as large in the natural frequency than in the probability version. For
the two cancer problems, natural frequencies increased Bayesian inferences by more
than a factor of five. Across all problems, the physicians gave the Bayesian answer when
provided with probabilities in only 10% of the cases; when they were provided with
natural frequencies, this value increased to 46%.

As these results demonstrate, natural frequencies are a powerful tool for improving
doctors’ statistical inferences. Using natural frequencies also paid off in terms of time
efficiency and an increased sense of self-efficacy. Given probabilities, the physicians in
the study spent an average of 25% more time solving the diagnostic problems than they
did when given natural frequencies. Comments made by the physicians revealed that
they were more often nervous, tense, and uncertain about solving the tasks when they
were working with probabilities than with natural frequencies. In addition, their spon-
taneous remarks revealed that they were less sceptical about the relevance of statistical
information when it was expressed in natural frequencies. The physicians were aware of
their better and faster performance with natural frequencies, as illustrated by comments
such as the following: ‘Now it’s different. It’s quite easy to imagine. There is a fre-
quency—that’s more visual’ and ‘a first grader could do this!’

Different expressions of statistical information affect how people process and under-
stand information. Are the benefits of representing statistical information in terms of
natural frequencies specific to medical inferences or do they generalize beyond the med-
ical domain? We believe they do. A particularly important professional context—in
which statistical inferences can literally determine whether a person lives or dies—is
that of forensic DNA analysis. Since the early 1990s, this technology has dramatically
altered the criminal investigation process in cases where biological evidence (e.g. semen,
blood, saliva, hair) is found at the crime scene. Forensic evidence unearthed by this
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technology is currently challenging the practice of capital punishment in the United
States. We next explore the nature of this technology-driven challenge and then ask hovy
natural frequencies can improve statistical inferences drawn from DNA test results

Forensic DNA analysis and the death penalty

In recent years, the US criminal justice system has applied its most severe penalty—the
taking of the convict’s life—ever more frequently. In 1999, ninety-eight prisoners were
executed for capital crimes in the United States, more than in any other years since 1951
(The Economist, 10 June 2000). The increased rate of executions in the United States js
particularly striking at a time when the US capital crime rate has been dropping and
when, according to Amnesty International, over half of the countries in the world have
abolished the death penalty in law or practice. Among the big democracies, only the
United States, India, and Japan still put prisoners to death.

The increase in executions also contrasts with an important shift in public opinion doc-
umented in a Gallup survey conducted in February 2000. Though a majority of Americans
still support the death penalty, the public support has been gradually decreasing since its
high point in 1994 and at 66% has reached its lowest level since 1981.! Coinciding with
the waning support for the death penalty is the growing belief—expressed by 91% of all
respondents (i.e. even many of those who favour the death penalty)—that innocent peo-
ple are at Jeast occasionally wrongly sentenced to death. What fuels this belief in the falli-
bility of the criminal justice system, according to the Gallup researchers, is the advent of
modern DNA technology (which was not used in US courts until 1989; see Wells et al.
2000)—specifically the fact that DNA testing has produced new evidence suggesting that
innocent people were sentenced to death in American courts.

The public debate concerning the sentencing of innocent people to death has to a large
extent been fueled by the Innocence Project. Founded in 1992 by two prominent New York
criminal defence lawyers, Barry Scheck and Peter Neufeld, this organization at the Yeshiva
University’s Benjamin N. Cardozo School of Law provides pro bono legal assistance to
people who challenge their convictions by using DNA testing. In the almost 10 years of
its existence, the Innocence Project has represented or assisted in 36 of the 63 cases where
convictions have been reversed or overturned in the United States over this period. In a
recent book, Scheck, Neufeld, and The New York Daily News columnist Jim Dwyer (2000)
recount the harrowing stories of men who were wrongfully convicted of crimes and, after
many years and much resistance from prosecutors and judges, exonerated by DNA test
results. In most of these cases, the charge was rape and the penalty a prison term, though
some who were wrongfully convicted of murder were sentenced to death.

The Innocence Project and similar initiatives throughout the United States have stirred
up a political debate about the death penalty (see Lifton & Mitchell 2000). In response to
the mounting evidence of serious flaws in the capital punishment system, the governor
of Illinois, for instance, declared a moratorium on executions in that state. And, for the
first time in American legal history, a judge (at the Houston County Superior Court)

! For the detailed results of this survey, see http://www.gallup.com/poll/releases/pr000224.asp.
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recently authorized DNA analysis of evidence from a death penalty case in which the
convicted man has already been put to death. Prior to this order, advocates of the death
penalty could argue that there exists no incontrovertible proof that an innocent person
was ever wrongfully executed, as did Edwin Meese, Attorney General in the Reagan
Administration: ‘I a person is innocent of crime, then he is not a suspect’ (quoted in
Scheck et al. 2000, p. xi). The judge’s order to analyse the DNA of the executed man will
soon determine whether or not this argument is valid and can still be made in the future.

DNA tests—a gold standard for truth?

Wrongful convictions have been exposed in the past, but cases in which DNA analysis
led to exoneration after conviction are particularly impressive, ‘perhaps, because they all
used a single, definitive technology to establish innocence’ (Wells et al. 2000, p. 589).
In Scheck et al’s (2000) view:

DNA testing is to justice what the telescope is for the stars: not a lesson in biochemistry, not a
display of the wonders of magnifying optical glass, but a way to see things as they really are. It is
a revelation machine. (p. xv)

Given that Scheck and Neufeld have witnessed the exonerating power of DNA evi-
dence first hand, their enthusiastic appraisal of DNA technology is more than under-
standable.? But it is nevertheless important to realize that, like medical testing, DNA
testing is based on statistical information and does not necessarily produce incontro-
vertible proof. For this reason, insight into the aspects of DNA testing that call for statis-
tical inference is crucial—not least because the belief that it is ‘a gold standard for truth
telling’ (Scheck et al. 2000, p. 122) could itself become the source of wrongful convictions.
In each of Scheck et al’s exoneration cases, the lack of a match between a convict’s DNA
profile and traces found at the crime scene excluded him as the source of the trace. But
what if a trace had matched? Would that have provided ironclad proof that the convict
was the source? As with the outcome of a medical diagnostic test, interpreting the out-
come of a DNA analysis requires statistical reasoning, and the statistical reasoning of
judges, jurors, and possibly even DNA experts may be facilitated by natural frequencies.

How natural frequencies can help in interpreting DNA evidence

Although it is unlikely that a criminal suspect would coincidentally share a DNA profile
with a piece of incriminating evidence, just how unlikely that coincidence is

? Scheck and Neufeld’s unconditional support for DNA evidence may come as a surprise given
the role they played in the O.J. Simpson defence team. There, they succeeded in thoroughly dis-
crediting the DNA evidence presented by the prosecution, How do their past criticism of DNA
testing and their present enthusiasm for it go together? In fact, Scheck and Neufeld’s position
on DNA technology actually has not changed, as a closer look at the Simpson trial transcripts
(available on the Internet) shows. In his closing arguments, Scheck did not question the DNA
technology per se—DNA is a sophisticated technology. It is a wonderful technology’—but the
evidence analysed in that case. Specifically, he argued that the DNA evidence against Simpson
was mishandled and even fabricated.
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depends on the frequency of a specific combination of genetic features in a specified
reference class. This reference class may be a racial group, or an artificial probability space
created by multiplying together the frequencies with which the individual genetic features
of the profile appear in a population. The statistic usually reported at trial is the frequency
with which the specific combination of genotypic features occurs in a specified reference
class (e.g. an expert witness in the O.]. Simpson case stated that Simpon’s DNA profile,
which matched that of droplets of blood leading from the bodies, occurs in only 1 in 170
million people).”

This frequency may be interpreted as the chance that someone selected at ran-
dom would have the profile in question. Unfortunately, this statistic seems to be widely
misinterpreted by judges, jurors, and even DNA experts themselves. The low frequency
of a DNA profile in some populations is sometimes misinterpreted, for example, as the
likelihood that an accused person is innocent. While the estimated frequency of a DNA
profile might be one in 5 billion, one DNA expert testifying in a US court misinterpreted
this figure as ‘a one in 5 billion chance that anybody else could have committed the
crime’ (see Koehler 1993, p. 32, for this and many other examples), and in Germany, the
President of the Deutschen Gesellschaft fiir Rechtsmedizin claimed that a DNA match
identifies a perpetrator with ‘100% certainty’ (for this and other examples from the
German legal system, see Krauss & Hertwig 2000). Other DNA experts have misinter-
preted the profile frequency as the probability that the DNA evidence came from any-
one other than the defendant, leading judges likewise to misuse it in their opinions as,
for example, ‘the probability of someone else leaving’ the genetic trace.

Even if judges, jurors, and DNA experts could avoid such misinterpretations, the
estimated frequency of a specific DNA profile would still be misleading for yet another
important reason: it ignores the chance of a laboratory error. Despite occasional expert
testimony declaring that laboratory errors are impossible, such laboratory errors do
occur—with a frequency several orders of magnitude larger than the chance of a coin-
cidental match (e.g. Koehler et al. 1995).* To see how laboratory errors affect the

3 Much controversy about the use of DNA fingerprinting has centred on two questions: (1) what is
the frequency of a particular type of DNA marker in the appropriate population, and (2) how
should the frequencies of individual markers be combined to calculate the probability of a spe-
cific person’s DNA profile (e.g. Lander 1989; Lander & Budowle 1994)? Each question hinges on
the other. For instance, using the ‘product rule’ to combine the frequencies of the individual
markers requires assuming that the individual alleles at different loci can be treated as statistically
independent. This assumption has been hotly disputed (e.g. Lewontin & Hartl 1991). If a pop-
ulation (e.g. total US population) is made up of subpopulations with different gene frequen-
cies (e.g. people of Italian, German, Vietnamese, African decent), then independence cannot be
assumed. In response to this argument, a ‘ceiling principle’ has been proposed according to
which the probability of a DNA profile is estimated by combining the largest known allele fre-
quencies from a wide variety of populations (in other words, the figures are chosen from the
range of probabilities that are most favourable to the accused). According to Kaye (1997), how-
ever, the product rule has recently experienced a comeback, at least in situations in which the
class of plausible suspects is as broad as a racial group (see also NRC 1996).

* In analysing DNA evidence, technical and human errors can occur. On the technical side,
enzyme failures, abnormal salt concentrations, and mischievous dirt spots can produce
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calculations, let us look at the necessary Bayesian computations. We first provide the
information in probabilities and then in natural frequencies.

In terms of probabilities, the information in this hypothetical case is as follows:
first, the base rate of the DNA profile is 0.00001. Second, if someone has that DNA
profile, a DNA analysis would reliably show it to match any samples that share it
(i.e. p(match|profile)=1.0). Third, if the chances of a false-positive laboratory error are
as high as sometimes found, the probability of a false-positive match, p(match|~profile),
could be 0.003. To calculate the probability of a person having a particular DNA profile
given there is a match with the incriminating evidence, Bayes’ rule is required:

p(profile)p(match|profile)

p(profilelmatch)=
p(profile) p(match|profile)+p(—profile) p(match|-profile)

Inserting the statistical information into Bayes’ rule results in a probability that the
person who matches actually has the profile of 0.003:

{0.00001)(1.0)
p(profile|match) = = 0.003.
(0.00001)(1.0) + (0.99999)(0.003)

These computations are relatively complex, and, as shown earlier, they can be simpli-
fied when the information is presented in natural frequencies. In natural frequencies, the
same information would be expressed as follows: first, in a population of 10 million, a
particular DNA profile occurs with a frequency of 10 in a million. Thus, one might
expect approximately 100 people in this population to have the DNA profile. Second, if
someone has this profile, a DNA analysis would show it to match any samples that share
it. Third, owing to false-positive laboratory errors, however, there could be up to 30,000
people in the population who do not have the same DNA profile but who would
nonetheless be found to match in the DNA analysis.

To compute the probability of a person’s having a particular DNA profile given a
match, one requires merely a count of the people who actually have the profile out of all
the people who match. The calculations amount to solving Equation 2 (here adapted to
the DNA context):

match& profile 100

= =(.003
match & profile +match & —profile 100-30,000

p(profile|match)=

The confusion over statistical evidence reviewed earlier suggests that judges, jurors,
and sometimes even DNA experts do not spontaneously understand evidence presented

misleading DNA banding patterns. In terms of human errors, inadvertent switching, mixing,
or cross-contamination of samples may lead to false positive errors. The likelihood of these and
other errors are estimated on the basis of blind proficiency tests (described in more detail in
Koehler 1993, pp. 24-25).
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in terms of probabilities. Because Bayesian calculations are simpler when numbers are
expressed as natural frequencies, these expressions may yield insight into the uncerta(in-
ties of forensic scientific analyses with laboratory errors, but also with the choice of the
reference class. Ultimately, choosing different ways to express the evidence could influ-
ence decisions about guilt and innocence.

Do natural frequencies improve statistical reasoning
in the legal context?

Can legal experts profit from natural frequencies in making inferences, just as medical
experts do? In a study conducted at the Free University in Berlin, we (Lindsey et al. in press;
Hoffrage et al. 2000) asked 27 professionals who would soon qualify as judges (‘jurists’)>
and 127 advanced law students to evaluate two criminal court case files involving rape.
In both cases, a DNA match was reported between a DNA sample from the defendant
and one recovered from the victim. Aside from this evidence there was little reason to
suspect that the defendant was the perpetrator. Expert testimony reported the frequency
of the recovered DNA profile as 1 in 1,000,000 and then stated that it was practically cer-
tain that the analysis would show a match for a person who indeed had the DNA pro-
file (i.e. the test’s hit rate = 100%). The expert also reported the rates of technical and
human errors that would lead to false-positive results.

The expert stated all the statistics as either probabilities or frequencies (see
Appendix). Based upon these statistics all participants had to estimate two probabili-
ties—that of having a particular DNA profile given a DNA match and that of being the
source of the evidence given a DNA match. Immediately after their estimates, the par-
ticipants rendered a verdict for the case: guilty or not guilty.” After reading one case file
in one format, each participant was given a second case file with expert testimony in the
other format. They then answered the same questions as before.

Similar to physicians’ inferences, the estimates of the legal decision makers are
strongly affected by how the statistical evidence was presented. Figure 18.2 shows the
percentage of Bayesian inferences as a function of information format. We found a simi-
lar pattern across all estimates participants were asked to produce. Consider, for exam-
ple, participants’ estimates of the probability that the defendant was actually the source
of the trace. When the statistics were expressed as probabilities, only 13% of the profes-
sionals and fewer than 1% of the law students made the correct inference. But when the

5 The two probability judgments and the verdict correspond to the stages in the chain of infer-
ences that arise when DNA evidence is presented in court. From a reported match, one may
want to infer (1) the probability that the person for whom the match is reported actually has
the DNA profile, (2) the probability that this person is the source of the trace recovered from
the crime scene, and finally (3) the probability that the person is guilty. It is important to note
that the first two probabilities are 10t sufficient to allow an inference of the probability of guilt.
To see why, imagine one knows for certain that a particular person is the source of a DNA sam-
ple recovered from a crime scene. Thus, this probability (source given match) would equal 1.
However, it is still possible that the person left the trace innocently either before or after the
crime was committed or that someone else planted it there.
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identical statistics were stated as natural frequencies, 68% and 44% of these same par-
ticipants made the correct inference.

Participants’ statistical reasoning also had a clear and important effect on judicial
decision making. The mathematically identical statistical evidence led to a higher con-
viction rate in the probability format than in the natural frequency format. As Fig. 18.3
shows, in both participant samples the proportion of guilty verdicts was substantially
higher in the probability format than in the frequency format (13 and 22 percentage
points, respectively). Why does the probability format produce more guilty verdicts?
There appears to be a simple answer. The estimates that participants calculated from the
probability information far exceeded those computed from the frequency information.
For instance, jurists, on average, estimated the probability of having the DNA profile in
question given a DNA match to be 0.63. In contrast, the average estimated probability
in the natural frequency format was 0.05. Thus, it is not surprising that the larger

6 Based on the statistics reported in the Appendix, the probability that a person who is found to
match in a DNA analysis (with the evidence from the crime scene) actually has the DNA profile
in question is .09 (i.e. 10/110); the probability that a person is the source of the trace recovered
from the crime scene given that he is found to match in the DNA analysis is 0.009 (i.e. 1/110).
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estimates that were made based on the probability information—when taken as the
source probability—led to a higher proportion of guilty verdicts. ‘

Why did participants make higher estimates when given statistical evidence in prob-
abilities? From participants’ written explanations of how they derived their estimates we
were able to identify two major non-Bayesian algorithms that participants used in the
probability format. In the sample of jurists, for instance, about two-fifths (38%) of all
responses (not just of those responses where a cognitive algorithm could be identified)
were produced by likelihood subtraction and the hit rate minus base rate algorithm.
Likelihood subtraction (see also Gigerenzer & Hoffrage 1995), which involves computing
the difference p(match|profile)— p(match|-profile), makes no use of base rate informa-
tion (here the base rate of the profile). In a context in which hit rate is very high, as in the
case of forensic DNA analysis, and the false-positive and base rate are relatively low, both
non-Bayesian algorithms will thus generate erroneously high probability estimates.

Where to go from here

Although uncertainty is deeply entrenched in many legal and medical decisions, the
means to reckon with uncertainty have not necessarily been well understood or appreci-
ated by professionals in either discipline. Take one of the first applications of probability
theory to legal evidence in history as an example. The famous Howland Will Case fig-
ured the female heir to one of the greatest fortunes in the United States, Hetty Robinson,
ﬁghting to gain control of every last penny. The trial, which took place shortly after the
end of the Civil War, turned into a protracted battle over a single piece of evidence: the
signature of Hetty Robinson’s aunt on a document that effectively left most of her prop-
erty to her niece (for a description of the trial and its circumstances, see The New Yorker,
23 & 30 April 2001, pp. 62-70). The opposite side claimed that the aunt’s signature had
been forged. An impressive number of expert witnesses was enlisted to litigate the mat-
ter. Among them were Benjamin Peirce, Harvard professor, and his son, Charles Sanders
Peirce (who later became a famous logician and philosopher).

To determine the validity of the signature in dispute, the Peirces identified thirty
places in the aunt’s verified signature where she had made a downstroke with her pen
(thus forming a letter). When they superimposed the disputed signature on the verified
signature, all thirty downstrokes started at exactly the same point on each letter. How
likely is that to happen by chance? To estimate this likelihood they analysed previous sig-
natures of Robinson’s aunt and found that, on average, one out of five downstroke posi-
tions overlapped. With this base rate, they argued that the chance that Robinson’s aunt
could have unintentionally produced two signatures in which all thirty downstrokes
overlapped, was 1 in 5°°—‘so vast an improbability, is practically an impossibility .. .. It
is utterly repugnant to sound reason to attribute this coincidence to any cause but
design’ (Benjamin Peirce in his deposition, as cited in the The New Yorker, 23 & 30 April
2001, p. 69). The time, however, was not ripe for such reasoning. Both the lawyers for
Hetty Robinson and the public treated this argument as mathematical voodoo; it was
ridiculed, and some even felt that it transgressed a boundary by applying the laws of
probability to ‘elements of will and desire unfit... for judgment by such laws’ (The New

Yorker, 23 & 30 April 2001, p. 69).
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Are those reactions just reminders of a distant past in which both the legal profession
and the public were not educated to think about uncertainties? Unfortunately, there is
plenty of evidence that suggests that the justice system has not yet overcome the illusion
of certainty. Take eyewitness identification as an example. Eyewitness identification can
be highly persuasive to jurors, although it is the major source of wrongful convictions
{Borchard 1932; Rattner 1988; Wells et al. 2000). Despite this knowledge, the criminal
justice system, and in particular the prosecutors (see Wells et al. 2000), seem to be utterly
reluctant to adopt new (and empirically validated) procedures in collecting eyewitness
testimony, which were designed to increase the reliability of eyewitness identification
(e.g. sequential lineups; see Wells et al. 2000).

Why do legal and medical decision-makers seem to have difficulties reckoning with
uncertainties? The problem starts in their training. Medical schools teach statistics, but
their focus is on methods of data analysis such as significance testing. But even if they
are taught statistical procedures needed for risk assessment, students are typically
instructed to mechanically insert probabilities into mathematical formulas such as
Bayes’ rule. In law, the case for statistical reasoning seems to be even worse. With few
exceptions, law schools do not teach students how to reason on the basis of uncertain
evidence—although virtually all evidence is uncertain. If, then, statistical illiteracy
has its roots in training or in the lack thereof, what can be done? We suggest that the
endeavour to bring about statistical literacy is more likely to succeed if training of
statistical reasoning is based upon information representations that are suited to the
human mind.

It is noteworthy that the beneficial effects of natural frequencies on statistical reason-
ing in the studies reported above occurred without any training or instruction.
Naturally, this raises the hope that systematic training in the use of natural frequencies
may improve people’s ability to reason statistically even more dramatically. The key is to
teach representations rather than rules; that is, to solve problems—such as the medical
and legal ones described here—by translating probabilities into natural frequencies. In
fact, Sedlmeier and Gigerenzer (2001) showed that such ‘representation training’ can
make an enormous difference. In contrast to a traditional ‘rule training) their two-hour
representation training was both much more successful in improving people’s perform-
ance in the short run and in keeping people from forgetting how to solve such problems
in the long run. Thus these results suggest that the teaching of representations—in high
schools, colleges, and universities—can be an important pedagogical tool to faster, more
reliable, and more comprehensibly attainable statistical literacy.

Being able to reason statistically is important not only for professionals but also for
their clientele, that is, us. During consultation with their patients, for instance, in the
United States doctors are increasingly more likely to say ‘I can’t tell you what to do’
According to George J. Annas, the chairman of the health law department at Boston
University’s School of Public Health, ‘many doctors are comfortable now saying, “It’s not
me, it’s you, and you are the one who has to decide”” (quoted in The New York Times, 25
June 2000, Section 15, p. 1). Two factors seem to be driving this transfer of decision-
making responsibility from the doctor to the patient. According to medical professors
interviewed in a recent article in The New York Times (25 June 2000, Section 15, pp- L,
10), one is the fear of lawsuits: ‘Doctors, after all, can be sued over whatever decision
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they make. But if the patient makes the decision, who is to blame?’. The second factor is
the burgeoning variety and complexity of technological tools in medicine: ‘In a world
where medical technology is getting all the more powered, and often accompanied by
risks, nobody can decide for you.

Radiation-based diagnostic procedures are a case in point. According to Horst Kuni
(Siiddeutsche Zeitung, 3 August 2000, p. B-2), professor of nuclear medicine at the
University of Marbug, in Germany up to 50,000 people (!) per year fall ill with cancer
because of radiation-based medical examinations of sometimes questionable utility
{such as mammography, see Gotzsche & Olsen 2000). What this figure makes abundantly
clear is that any exposure to radiation carries risk. This is a fact that neither the public
nor scientific experts recognized when they celebrated the advent of the new technology
in the early decades of the twentieth century (Howell 1995), but it is well known today.
Thus, patients and health care providers must decide on a case-by-case basis whether the
information gleaned from a medical diagnostic procedure using radiation justifies its use.
Needless to say, it is therefore essential that patients have a proper understanding of the
available statistical information (e.g. the positive predictive value of a test). We suggest
such an understanding is more likely to be achieved if doctors communicate statistical
information in terms of natural frequencies instead of probabilities.

Conclusion

Increasingly, modern technologies are shaping many aspects of our lives. Yet these rapid
technological developments have not always delivered their intended benefits—often
because of the limited understanding of how the results that the technologies produce
ought to be communicated. It is here that technology needs psychology. For instance, to
improve doctors’ and patients’ interpretation of a positive mammogram, we need to
understand how the way this result is communicated relates to, and interacts with, the
way the human mind works. We showed that psychological research on how people
process frequencies allows us to improve the reasoning of those who need to make sta-
tistical inferences from the results of diagnostic technologies. Although representing
those results one way or another may not make much of a difference for a mathemati-
cian, it can make one for a juror and a physician, and ultimately for a defendant and
a patient.
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Appendix

We present the text for the probability and natural frequency versions of one of the two
cases involving forensic DNA analysis used by Lindsey et al. (in press). Each case descrip-
tion included the testimony of an expert who performed a DNA analysis. The expert tes-
timony provided numerical information about the base rate of the DNA profile, and the
analysis’ hit rate and false-positive rate. The numerical information was presented in
either probabilities or natural frequencies. Participants were asked to estimate two prob-
abilities (or proportions): (1) the probability that a person who is found to match in a
DNA analysis (with the evidence from the crime scene) actually has the DNA profile in
question, and (2) the probability that a person is the source of the trace recovered from
the crime scene given a match in the DNA analysis.

Probabilities

In a country the size of Germany there are as many as 10 million men who fit the
description of the perpetrator. The probability of a randomly selected person having a
DNA profile that matches the trace recovered from the crime scene is 0.0001%. If some-
one has this DNA profile it is practically certain that this kind of DNA analysis would
show a match, The probability that someone who does not have this DNA profile would
be shown to match in this type of DNA analysis is 0.001%. In the present case, the DNA
profile of the sample from the defendant matches the DNA profile of the trace recovered
from the crime scene.

Natural frequencies

In a country the size of Germany there are as many as 10 million men who fit the
description of the perpetrator. Approximately 10 of these men would have a DNA pro-
file that matches the trace recovered from the crime scene. If someone has this DNA
profile it is practically certain that this kind of DNA analysis would show a match. Of
the 9 999 990 people who do not have this DNA profile, approximately 100 would be
shown to match in this type of DNA analysis. In the present case . ..



