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Abstract

A good representation can be crucial for finding the solution to a problem. Gigerenzer and

Hoffrage (Psychol. Rev. 102 (1995) 684; Psychol. Rev. 106 (1999) 425) have shown that representa-

tions in terms of natural frequencies, rather than conditional probabilities, facilitate the computation

of a cause’s probability (or frequency) given an effect – a problem that is usually referred to as

Bayesian reasoning. They also have shown that normalized frequencies – which are not natural

frequencies – do not lead to computational facilitation, and consequently, do not enhance people’s

performance. Here, we correct two misconceptions propagated in recent work (Cognition 77 (2000)

197; Cognition 78 (2001) 247; Psychol. Rev. 106 (1999) 62; Organ. Behav. Hum. Decision Process.

82 (2000) 217): normalized frequencies have been mistaken for natural frequencies and, as a

consequence, “nested sets” and the “subset principle” have been proposed as new explanations.

These new terms, however, are nothing more than vague labels for the basic properties of natural

frequencies. q 2002 Elsevier Science B.V. All rights reserved.

Keywords: Bayesian inference; Probability judgements; Representation of information; Natural frequencies

1. Introduction

Following the mathematician Henri Poincaré, Simon (1969) argued that “Solving a

problem simply means representing it so as to make the solution transparent” (p. 153).

If a Roman general wanted to know how many soldiers were in his legion, consisting of

LX units, each with XCV men, he could calculate the solution more easily and more

quickly with an Arabic representation, namely 60 £ 95. Similarly, when a 21st century

doctor wants to know what the chances are that women with a positive mammogram

screening actually have breast cancer, she will find the solution more easily and quickly
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when she represents the information in natural frequencies rather than in conditional

probabilities (Gigerenzer, 1996; Hoffrage & Gigerenzer, 1998).

Problems, in which the probability of a cause (e.g. cancer) has to be inferred from an

observed effect (e.g. a positive mammogram), have been termed Bayesian inference

problems. In the 1960s, it was considered an established fact that people give too much

weight to base rates in such problems. This was labeled conservatism and was tentatively

attributed to misperception or misaggregation (Edwards, 1968). In the 1970s and 1980s,

the opposite result was considered an established fact; people generally give too little

weight to base rates. This was labeled base-rate neglect and was tentatively attributed to

confusing probability with similarity (Tversky & Kahneman, 1982). Although base-rate

neglect was the antithesis of conservatism, Tversky and Kahneman looked in the same

place for an explanation, that is, a processing error inside the mind. In the 1990s, intuitive

Bayesian reasoning began to be seen in a new light, that is, from an ecological angle.

Gigerenzer and Hoffrage (1995) showed that one can facilitate reasoning from the outside

by changing the external representation from probabilities, and relative or normalized

frequencies, to natural frequencies.

This ecological view has generated a useful tool to help lay-people and experts alike to

reason the Bayesian way. In medicine, physicians’ diagnostic inferences were shown to

improve considerably when natural frequencies are used instead of probabilities (Giger-

enzer, 1996; Hoffrage & Gigerenzer, 1998; Hoffrage, Lindsey, Hertwig, & Gigerenzer,

2000). In criminal law, judges’ and other legal experts’ understanding of the meaning of

a DNA match could similarly be improved by using natural frequencies instead of

probabilities (Hoffrage et al., 2000; Koehler, 1996). Moreover, fewer legal experts

opted for a “guilty” verdict when the statistical information was presented in natural

frequencies. Training programs in which participants learn to actively translate probabil-

ities into natural frequencies have been shown to yield a strong long-term effect in their

ability to help people deal with probability problems (Sedlmeier & Gigerenzer, 2001;

Kurzenhäuser & Hoffrage, 2002). Given these results, the question arises: Are experts

usually trained to use natural frequencies? Apparently not. For instance, all AIDS coun-

selors studied by Gigerenzer, Hoffrage, and Ebert (1998) answered the client’s question

about what a positive or negative HIV test means in terms of conditional probabilities or

percentages. As a consequence, many gave inconsistent numbers without even noticing

it, and most hugely overestimated the odds that the patient would actually have the virus

given a positive test. Here, using a proper representation can mean the difference

between hope and despair for the patients, or even between life and suicide (Gigerenzer,

2002).

Since the beginnings of this work in the mid-1990s, several other researchers (e.g.

Betsch, Biel, Eddelbuttel, & Mock, 1998; Fiedler, 2000; Mellers & McGraw, 1999)

have added specific hypotheses to our approach. Developmental studies have shown

that by sixth grade, Chinese children are as good in Bayesian reasoning as adults when

the representation is in natural frequencies (Zhu & Gigerenzer, 2001). One important new

finding is that natural frequencies can facilitate reasoning in “complex” Bayesian situa-

tions, which are characterized either by two or more predictors, or predictors and criteria

with more than two values (Krauss, Martignon, Hoffrage, & Gigerenzer, 2002). This work

disproves Massaro’s (1998) conjecture that natural frequencies would no longer help in the
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case of more than one predictor. Surprisingly, the positive effect is as large with two or

three predictors as with one.

Distinct from these applications and developments, two misunderstandings about the

nature of natural frequencies have emerged (Evans, Handley, Perham, Over, & Thompson,

2000; Girotto & Gonzalez, 2001; Johnson-Laird, Legrenzi, Girotto, Legrenzi, & Caverni,

1999; Macchi, 2000). In this article, we clarify these issues.

2. What are natural frequencies?

Think of a physician who learns from direct experience rather than from books with

statistics. She observes, case by case, whether or not her patients have a new disease and

whether the outcome of a test is positive or negative. This process is known as natural

sampling, as opposed to systematic sampling in scientific research, where one might select

one-hundred people with disease and one-hundred without (Gigerenzer & Hoffrage, 1995,

p. 686; Kleiter, 1994). In natural sampling, the base rates in a sample of population (e.g.

the proportion of people who have the disease) are naturally observed, rather than artifi-

cially fixed a priori. The outcomes of natural sampling are natural frequencies (synonym:

frequency formats). In Fig. 1, there are 1000 cases, 40 of these with disease, and 960

without. Out of the 40 cases with disease, 30 have a positive test result (and ten have a

negative result); and of the 960 cases without disease 120 also test positive (and 840 test

negative). In a naturally sampled population natural frequencies are obtained by counting

individuals according to their features (e.g. disease versus not disease, positive test result

versus negative test result). Note that an isolated number, such as 30, is not by itself a

natural frequency; it only becomes one because of its relation to the other numbers in the

tree.

Now let us consider the problem of computing the probability pðHuDÞ in general, where

H stands for hypothesis (e.g. a person has a disease), and D for data (e.g. a person has a

positive test result). With natural frequencies as input, this computation is simple:

pðHuDÞ ¼
a

a 1 b
ð1Þ
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where a is the number of H and D cases out of the total sample, and b is the number of : H

and D cases out of the total sample. Eq. (1) represents the equivalent of Bayes’ rule (see

Eq. (2)), where the natural, frequentistic information has not been translated into (condi-

tional) probabilities. In Fig. 1, a and b are 30 and 120 (out of 1000), respectively. Note that

a and ða 1 bÞ are also natural frequencies.

Natural sampling is the way humans have encountered statistical information during

their history. Collecting data by means of natural sampling, results in natural frequencies.

However, once the data are collected, they need to be represented, and natural frequencies

– which simply report how many cases of the total sample there are in each subcategory –

are only one way to represent these data. With the development of probability theory

beginning in mid-17th century, conditional probabilities were introduced as Laplace’s

proportions. For instance, the conditional probability of obtaining a positive test given

the presence of infection is the proportion composed by the natural frequencies 30 (out of

1000) and 40 (out of 1000), yielding 30 out of 40. Also, the probability of having the

disease is the proportion composed by the natural frequencies 40 and 1000, yielding 40 out

of 1000. Expressing such a proportion composed of natural frequencies by means of a

single number amounts to normalizing it. For instance, probabilities in the interval [0,1] or

percentages in the interval [0,100] are results of such a normalization. Normalization

eliminates information about the base rate (e.g. 40 and 960 out of 1000, for the hit rate

and false alarm rate, respectively). As was already clarified by Gigerenzer and Hoffrage

(1995, p. 686), such normalized frequencies are not what we call natural frequencies.

Consider, for illustration, the following two text problems:

Natural frequencies: Out of each 1000 patients, 40 are infected. Out of 40 infected

patients, 30 will test positive. Out of 960 uninfected patients, 120 will also test positive.

Normalized frequencies: Out of each 1000 patients, 40 are infected. Out of 1000

infected patients, 750 will test positive. Out of 1000 uninfected patients, 125 will also

test positive.

In both versions the question is: How many of those who test positive actually do have

the disease? Or: What is the probability that a patient who tests positive actually has the

disease? With normalized frequencies, the resulting numbers no longer contain informa-

tion about the base rates, pðHÞ and pð: HÞ. As a consequence, pðHuDÞ can only be

computed when these base rates are brought back into Eq. (1) – namely by multiplying

them with the conditional probabilities pðDuHÞ and pðDu : HÞ, respectively. This results in:

pðHuDÞ ¼
pðHÞpðDuHÞ

pðHÞpðDuHÞ1 pð: HÞpðDu : HÞ
ð2Þ

Eq. (2) is Bayes’s rule for probabilities and normalized frequencies. One can easily see

that pðHÞpðDuHÞ and pð: HÞpðDu : HÞ correspond to a and b in Eq. (1). The additional

computational steps in Eq. (2) result from the multiplication of conditional probabilities

with the base rates. Thus, probabilities and normalized frequencies make Bayesian infer-

ences computationally more complex than natural frequencies. Because normalized

frequencies do not stem from the natural sampling of one population, they cannot be

displayed in a natural frequency tree (as the one shown in Fig. 1); rather three different

trees describing three different samples have to be drawn (Fig. 2).
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To sum up: natural frequencies result from natural sampling and thus carry information

about the base rates. The computation of pðHuDÞ is simpler when information is provided

in natural frequencies than in normalized frequencies and probabilities. Because the latter

no longer carry base-rate information, it has to be brought back in, thereby making the

computation cumbersome. This is why natural frequencies help people make better infer-

ences.

3. Confusing natural frequencies with any kind of frequencies

Several authors have commented on Gigerenzer and Hoffrage (1995) without explain-

ing to their readers what the concept of natural frequencies (frequency formats) means.

Instead, they have suggested or asserted that any kind of frequencies are meant. These

authors then ran experiments with normalized frequencies, found that these did not

improve Bayesian reasoning, and concluded that this result disproves the thesis that

natural frequencies facilitate Bayesian reasoning.1

The first to confuse natural frequencies with any kind of frequencies were Macchi and

Mosconi (1998) who have shown that representations in terms of normalized frequencies

do not facilitate reasoning, and conclude that the facilitating effect is not due to “frequen-

tist phrasing” (p. 84) but to computational simplification. When Lewis and Keren (1999)

promoted the same confusion between natural frequencies and frequencies per se, Giger-

enzer and Hoffrage (1999) clarified the issue in a reply and pointed out that the original

paper (Gigerenzer & Hoffrage, 1995) had already predicted (“Result 7”, p. 689) and

empirically demonstrated (Study 2) that normalized frequencies, such as relative frequen-
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cies expressed as percentages, do not facilitate Bayesian reasoning. Surprisingly, this

reiteration was still not enough for some authors. Here are examples.

In an article entitled “Frequency versus probability formats in statistical word problems”,

Evans et al. (2000) did not even mention Gigerenzer and Hoffrage’s (1995) definition of

frequency formats. Instead, they argue “we are not convinced that it is frequency informa-

tion per se which is responsible for the facilitation” (p. 200). They then ran experiments with

normalized frequencies mislabeled as “frequency formats (hard)”, and found – no surprise –

that these do not facilitate Bayesian reasoning compared to probabilities. They concluded

that frequency formats do not facilitate Bayesian reasoning.

When discussing what they call the “frequentist hypothesis”, Johnson-Laird et al.

(1999) state that “In fact, data in the form of frequencies by no means guarantee good

Bayesian reasoning” (p. 81) and refer to an experiment in which normalized, but not

natural frequencies were provided. Johnson-Laird et al. are mute on the difference

between the two, including our definition of natural frequencies.

Girotto and Gonzalez (2001) distinguish “information type” (information represented in

frequencies versus probabilities) from “information structure” (they make two more

distinctions which we ignore here). Their notion of information type does not distinguish

between natural frequencies and normalized frequencies. The notion of information struc-

ture refers to whether or not “the conjunctive events H and E and : H and E” are given (p.

251). They conclude from their experiments that it is not information type but information

structure that facilitates Bayesian reasoning, and present this as an alternative to our

explanation. However, as can be seen from Fig. 1, the natural frequencies on the lowest

level refer to conjunctive events, that is, they have the information structure that Girotto

and Gonzalez have rediscovered as something new.

Let us summarize: the first misunderstanding is the confusion between natural frequen-

cies and any kind of frequencies. Research based on this confusion has empirically redis-

covered the distinctive properties of natural frequencies, namely that they correspond to

conjunctive events and that they are not normalized.

4. Re-inventing natural frequencies: the subset principle, set inclusion, and partitive
frequencies

The second misunderstanding builds on the first. Once these authors had empirically

discovered that there are two types of frequencies they ask why one type facilitates

Bayesian reasoning but the other does not. They all look in the right place for an explana-

tion, namely the computational simplicity of Eq. (1) compared to Eq. (2), which Giger-

enzer and Hoffrage (1995, p. 687) already had described in detail. Subsequently, they

attribute the facilitating effect to some singular property of natural frequencies.

Johnson-Laird et al. (1999) extend their mental models theory from deductive to prob-

abilistic reasoning, including the facilitation of Bayesian reasoning by natural frequencies.

They are explicit that mental models theory cannot explain this effect, unless a new

principle is added, which they call the “subset principle”. Compared to Bayes’s rule,

this principle is “a simpler algorithm” (p. 80): a subset a is divided by the total set a

plus b. There is no hint in Johnson-Laird et al. that this principle is identical to Eq. (2) in
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Gigerenzer and Hoffrage (1995, p. 687), which is the same as Eq. (1) in the present article.

That is, the “subset principle” is entailed in Eq. (1), but it is presented as if it were a new

and different explanation (p. 80). Without it, mental models theory could not have

accounted for the effect of natural frequencies (see also Brase, 2002).

Girotto and Gonzalez (2001) also present the “subset principle” as an explanation for

the facilitating effect of natural frequencies, suggesting that it would provide an alternative

interpretation. The same misunderstanding persists when Macchi (2000) states that “the

fact that problems with a frequentist formulation in partitive format [as in our Fig. 1]

produced a high percentage of Bayesian responses, but also, in non-partitive format [as in

our Fig. 2], a high percentage of non-Bayesian responses, implies that a frequentist

formulation is not the crucial element for eliciting correct responses” (p. 225). Evans et

al. (2000) propose as an alternative hypothesis that “it is the cueing of a set inclusion

mental model that facilitates performance” (p. 211). Yet, set inclusion is another word for

the structure of Eq. (1).

The tree in Fig. 1 illustrates that, by definition, all natural frequencies exhibit a “nested-

set-structure” and that the Bayesian computation (Eq. (1)) always involves “set inclusion”.

Thus, the notion of nested sets or set inclusion is nothing new. Nevertheless, the new claim

could be that all nested sets facilitate Bayesian reasoning, not just natural frequencies.

However, this is not true. Not all nested sets facilitate Bayesian reasoning. An example

would be systematic sampling in scientific research, as described at the beginning of this

article, in which, for instance, one hundred people with disease and one hundred without

are submitted to some test. The resulting tree structure would have a total sample size of

200 split into two subsets of 100, which are again split into further subsets according to the

test results. This is a nested set structure, but only for this fictitious sample of 200 people.

With respect to the total population, such a fictitious tree does not contain natural frequen-

cies, nor will it facilitate the estimation of the probability (or frequency) of disease given a

positive test for a person randomly drawn from the population. Thus, the nested-set

property is not sufficient for the facilitating effect, it is just one of several features of

natural frequencies. Natural frequencies have the structure of nested sets which are

mutually exhaustive and exclusive and which still carry information about the base rate

(see Fig. 1).

Some critiques (e.g. Macchi & Mosconi, 1998) claim that natural frequencies eliminate

all need for computation. However, the story has to be told the other way round: a

representation in terms of probabilities introduces the need for computation. By observing

samples and monitoring frequencies we are naturally performing and understanding Baye-

sian inferences. Things only become cumbersome when the statistical information is

expressed in terms of probabilities. Side effects of probability formats are base-rate neglect

and the confusion of different conditional probabilities. Performing Bayesian inference by

means of natural frequencies, instead, requires no inversions, meaning base rates cannot be

“neglected”; natural frequencies carry the base-rate information implicitly. From this

viewpoint, the base-rate fallacy can be seen as a by-product or artifact of the normalization

of natural frequencies to conditional probabilities. This might also explain the seemingly

paradoxical observation that animals are good Bayesians (Real, 1991) whereas humans

appear not to be. In experiments, animals sequentially encounter single cases (whose

aggregates are natural frequencies), whereas in studies that have documented base-rate
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neglect humans were not given natural frequencies but rather normalized frequencies or

conditional probabilities.

5. Probabilities that mimic natural frequencies

Some authors attempt to show that under certain circumstances participants can also

handle probabilities. Yet, there is a specific feature introduced into the probability versions

of Fiedler, Brinkmann, Betsch, and Wild (2000), Macchi (2000), and Evans et al. (2000):

Their so-called “probability versions” contain information in terms of absolute numbers.

For instance, the statistical information of the “probability version” of Fiedler et al. (2000)

is:

The study contains data from 1000 women. Ninety-nine percent of the women did not

have breast cancer and 1% had breast cancer; of the women without breast cancer 10% had

a positive mammogram and 90% had a negative mammogram; and of the women with

breast cancer 80% had a positive mammogram and 20% had a negative mammogram.

Task: What is the probability of breast cancer, if a woman has a positive mammogram

result? (p. 417).

Providing the total sample (1000 women) serves as a starting point to mimic the

procedure of natural sampling, thereby facilitating computational demands considerably.

Computing 1% of 1000 women is a simple division that leads automatically to natural

frequencies, namely, “10 out of 1000 women have breast cancer”. The following statement

“80% of the women with breast cancer had a positive mammogram” now directly leads to

“8 out of these 10 women have a positive mammogram”, etc. The correct answer can now

easily be derived – with no danger of confusing conditional probabilities, committing the

base-rate fallacy, or struggling with any inversions. Nevertheless, the demonstration that

one can add features to a probability format that invite the participants to translate prob-

abilities into natural frequencies is a novel contribution. However, a genuine probability

format without this special feature does not invite this translation and, as Gigerenzer and

Hoffrage (1995) have already shown, participants’ performance is poor with percentages,

consistent with results in the Fiedler et al. (2000) study, when the sample size is not

provided.

Girotto and Gonzalez (2001) found a clever way to translate natural frequencies into a

language that looks like single-event probabilities. They introduced a representation in

terms of “number of chances”, which are the same as natural frequencies when one

replaces cases by chances, such as “in 4 cases out of 100” by “in 4 chances out of

100”. If “number of chances” would follow normalized frequencies, the facilitation effect

would be gone. We find it confusing that “number of chances” are called probabilities

throughout the paper, because, unlike probabilities, these are not single numbers in the

interval [0,1] but natural frequencies disguised as probabilities.

6. Epilogue

Once the misunderstandings discussed in the present paper are avoided, research efforts

can be focused on the challenging questions that are still open. These include: How far
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does the effect of natural frequencies extend beyond two-by-two tables? How can the two

explanations for the facilitating effect of natural frequencies offered in previous publica-

tions – computational simplification and evolutionary adaptation – be disentangled and

tested separately? Are the shortcuts for Bayesian reasoning (Gigerenzer & Hoffrage, 1995,

p. 689–691) used, and if so, when? What other representations – such as analogs and

pictures – foster insight, and why? We hope future research will address such new ques-

tions, rather than introduce new labels for old concepts.
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