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In a remote stream in Alaska, a rainbow trout spies a colorful dimple on the un-
dersurface of the water with an insect resting atop it. Darting over with mouth
agape, the fish bites down and turns in scarch of its next victim. It does not get
far, however, before the “insect” strikes back. The trout is yanked from the quiet
stream by the whiplike pull of a fly fisherman’s rod. In a world without fisher-
men, striking at all that glitters is adaptive; it increases chances for survival. Ina
world with predators, however, this once-adaptive strategy can turn a feeding
fish into a fisherman’s food.

Herbert Simon provided the metaphor of a pair of scissors for thinking about
rational behavior: one blade has to do with the psychology of the organism and
the other with the structure of the environment. In this chapter, we think of the
two blades as the simple heuristics used by organisms and the structures of envi-
ronments that govern their performance. As the case of the poor trout illustrates,
a strategy cannot be evaluated without taking into account the environment in
which it opcrates. Attempts to model just one blade of the scissors simply will
not cut it. We provide several examples of simple heuristics at work in the world
and discuss how the environment determines their success or failure. To do this,
however, we are led to ask what counts as success or failure for a strategy. Fo-
cusing on the capabilitics of the organism and the structure of the environment,
we explore the question of how organisms may choose among the heuristics
available to them. In conclusion, we generalize about the propertics of
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environments that allow heuristics to work and speculate about the psychologi-
cal building blocks of decision strategies.

SIMPLE HEURISTICS AT WORK IN THE WORLD

Strategies in the adaptive toolbox are fast and frugal. Fast refers to the relative
ease of computation the strategies entail, which has been measured as order of
complexity or with elementary information-processing steps (Payne etal. 1993;
Czerlinski et al. 1999). Frugal refers to the very limited amount of information
these stratcgies need. Each strategy is described along with a discussion of how
the structure of the environment can cause it to succeed or fail.

Imitation

Imitation is a fast and frugal strategy that saves an organism from having to ex-
tract information from the environment anew, or from calculating from scratch.
For instance, New Caledonian crows use imitation to make tools from Pandanus
trec leaves to extract grubs from trees (Hunt 1996). Evidence of imitation is seen
in the local similarity of the tools — birds of a particular region tend to make
tools of a similar shape (such as facing left or right, for instance). Humans em-
bracc imitation as well and have been observed to imitate those who are compat-
ible with themsclves. Hogarth ct al. (1980) studied industrial plant relocation
decisions of small firms in a town in southern France. The owners of these firms
had great difficulty in making these decisions and did not want to commit ther
sclves even though they could see large foreign firms taking advantage of condi.
tions offered by local government. However, when they observed the move
made by a local mid-sized firm with a high reputation and whose “values” were
compatible with theirs, they quickly adopted the same strategy and moved. A
couple of'years after these decisions; the small business-owners were glad they
had rclocated. Imitation certainly has its advantages; however, it may not lead to
desirable outcomes in all situations, as we shall soon see.

What makes it work? To answer this question, it is perhaps most illuminating
to think about when imitation will nof work. If the environment is changing rap-
idly, imitation will fail because a successful strategy at the time of observation
may no longer be effective, or even executable, at a later time. If the environ-
ment masks or obscures what individuals are doing, imitation will be impossible
or unwise. The environment also includes other organisms, and the available
choice of whom to imitate matters as well. Sometimes, this is a Hobson’s choice,
and the results can be costly if the sole alternative is not the ideal one. The
Mapuche Indians of the high country of Chile have grown wheat for several gen-
crations, but before the emergence of a crop disease long ago, they grew barley.
Today, barley would be a more profitable crop for them, and modern-day pesti-
cides have solved the disease problem (Henrich 1999). However, attempts by
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developers to reintroduce the crop have been met with the Mapuche’s response
that barley farming “is not the present custom” and that they would rather stay
with their “traditional” crop. In a world without pesticides, there is no need to
pass down knowledge of how to grow crops that are prone to diseases. Ina world
with access to new ideas and technologies from other cultures, lack of willing-
ness to try the new can hinder progress.

One cannot get specific about how the environment affects the success of im-
itation without getting specific about the exact kind of imitation at hand, as
Schlag (1998) has proven. One rule considered, called “Imitate If Better,” as-
sumes that individuals imitate all others who are more successful than them-
selves, and stick with their current strategies otherwise. Surprisingly, in risky
environments this can lead the entire population to choose the alternative with
the lowest expected payoff. On the other hand, another quite simple rule called
“Proportional Imitation” — which dictates imitating those who are more suc-
cessful than oneself with a probability that is proportional to the difference be-
tween the observed and current degrees of success — always leads the
population to the expected payoff-maximizing action. Imitation is promising as
one of the simplest and most effective heuristics an organism can employ. As
Schlag and others have shown, the success of imitation depends upon the envi-
ronment, its inhabitants, and the exact kind of imitation being applied. For a dis-
cussion of how imitation compares with individual learning, see also Boyd and
Richerson (this volume).

Equal Weighting

Multiple regression and Bayesian networks are exemplary of complex models
that capture desired properties of classical rationality: they consider all informa-
tion, and they integrate this information in a compensatory way. Additionally,

they apply complicated routines to find the optimal set of weights (the beta

weights in regression, or the internode weights in Bayesian networks) that the
model will use. Some thinkers (Dawes 1979; Einhorn and Hogarth 1975) have
considered a simpler class of model that replaces real-valued weights with sim-
ple unit weights (such as +1 and —1). Though one might expect performance to
drop appreciably, in some situations these simple models can outperform multi-
ple regression (see also Gigerenzer and Goldstein 1996).

What makes it work? As an example, imagine ranking applicants to a gradu-
ate program where candidates’ profiles are measured on a number of variables
such as test scores, quality of previous education, letters of recommendation,
and so on. If you believe that these variables are compensatory or trade-off, then
simply give all variables equal weight in the evaluation. The advantage of this
procedure is that you cannot make the error of reversing the size of weights at-
tached to two variables. In other words, if — unknown to you— one variable is
more important than another but, because of sampling fluctuations, estimation
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by regression reverses the “true” relative sizes of the weights, regression will
make inferior predictions. Equal weighting insures you against making this kind
of error. More generally, Einhorn and Hogarth (1975) showed thatequal weight
ing makes better predictions than regression as (1) the number of predictor (or
independent) variables increase, (2) average inter-correlation between predic-
tors increases, (3) the ratio of predictors to data points (on which regression
weights are estimated) increases, and (4) the R? of the regression model de-
creases. To see how equal weighting can help you pick the “all star” basketball
team or decide how many and which forecasters you should consult in making a
“consensus” forecast, see Einhorn and McCoach (1977) and Hogarth (1978).

Take The Best

Take The Best is a heuristic from the adaptive toolbox (Gigerenzer and
Goldstein 1996) that neither looks up nor integrates all available information. It
isa lexicographic procedure (similar to the LEX model tested by Payne and col-
leagues) that uses a rank ordering of cues to make inferences and predictions
(Martignon and Hoffrage 1999). Cues are searched through one ata time, until a
cue that satisfies a stopping rule is found. The decision is made on the basis of
the cue that stopped search, and all other cues are ignored. In empirical tests,
Take The Best used less than a third of all information available to it. Remark-
ably, despite its simplicity, Take The Best can make predictions that are more ac-
curatc than those made by multiple regression and approximates the accuracy of
Bayesian networks (Martignon and Laskey 1999; Czerlinski et al. 1999).
What makes it work? In Take The Best; the decision made by a higher-ranked
cue cannot be overruled by the integration of lower-ranked cues. Its predictions
are equivalent to those of linear models with noncompensatory familics of
weights (Martignon and Hoffrage 1999), e.g., consider the linear model:

y=8,\‘l +4x2+2x3+1.\"4 (10.1)

wherex;is a binary (1 or 0) cue for/ =1, 2, 3, 4. Each term on the right-hand side
cannot be equaled or cxceeded by the sum of all the terms with lesser weights. If
cues are not binary but have positive real values, which become neither infi-
nitely small nor infinitely large (i.c., bounded from below and from above by
strictly positive rcal numbers), it is always possible to find weights that deter-
mine such a noncompensatory linear model equivalent to Take The Best in per-
formance. If the “true” weights of the cues (i.c., those of an optimal model like
regression) are noncompensatory, then Take The Best cannot be beaten by any
other linear model when fitting data.

When making predictions on new data, the frugality and simplicity of Take
The Best arc responsible for its robustness. Here the predictive accuracy of Take
The Best is comparable to that of subtle Bayesian models, often surpassing opti-
mal lincar models (which tend to overfit). A variant of Akaike’s Theorem
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(Forster and Sober 1994; Martignon, this volume) explains when and why Take
The Best makes more accurate predictions than models that base their decisions
on larger sets of adjusted parameters.

Take The First

Experts, such as pilots, firefighters, and chess players, have a simple strategy at
their disposal: when faced with a problem to solve, often the best course of ac-
tion to take is the first (or only) one that comes to mind. The strategy of evaluat-
ing solutions as they come to mind, and stopping with the first one that satisfies
an aspiration level, is called Take The First. (Actually, this strategy has been de-
scribed as the recognition-primed decision [RPD] model [Klein 1998], but for
purposes of this volume, we use a language that better conforms with the
heuristics described by the ABC Research Group [Gigerenzer et al. 1999].) Ex-
periments have been carried out to test the quality of solutions that come to the
minds of experienced chess players (Klein et al. 1995). When experts were
asked to rate all possible moves from given board situations, they rated only one
in six as worthy of consideration. However, when looking at the set of first
moves that came to the minds of seasoned players, the experts evaluated four out
of six of these moves worthwhile. Furthermore, even if the first move consid-
ered was not playable, the flaws were usually discovered quickly, so the cost of
rejection was low in terms of time and effort. .

What makes it work? Take The First is argued to be effective because, for an
expert, part of recognizing or categorizing a situation as typical is to recall what
to do in that situation. Options generated are not random but may come to mind
in order of quality. Take The First is less successful in domains where the deci-
sion maker is not an expert or in completely novel situations within a domain of
expertise. (Prescriptive decision analysis methods also strugglc under these
conditions.) It has limited effectiveness in domains where learning is difficult,
such as domains with noisy feedback, or where there are low costs for making
€eITOrS.

Small-sample Inferences

We all detect meaningful covariation fairly rapidly, seemingly despite the fact
that we have only small samples to draw upon. Kareev (1995) has shown that,
for correlations, the limitation in sample size imposed upon us by work-
ing-memory capacity actually acts as an amplifier of correlations. This allows
organisms to detect relationships in the environment because of, not despite,
their limited working-memory capacity. With the degree of amplification nega-
tively related to sample size, this effect is more pronounced for children, who
both have a smaller capacity and are more in need of detccting corrclations.
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What makes it work? This model of correlation detection gets its power from
a mathematical truth, namely, that small samples tend to overestimate Pearson
corrclations. It benefits an organism in tasks and domains where the costs of
missing a relationship in the world is high.

The Recognition Heuristic

When German and American subjects were asked which of San Diego or San
Antonio had a greater population (Goldstein and Gigerenzer 1999), all of the
Germans correctly answered that San Diego was larger. Only two-thirds of the
Americans got the right answer. Many of the Germans had only heard of San
Diego, and not of San Antonio, and chose on the basis of what is called the rec.
ognition heuristic. In one formulation, the recognition heuristic dictates that
when choosing between two objects, if only one of them is recognized, then
choose the recognized object. As it did with the Germans and Americans, this
heuristic can lead to a counterintuitive state of affairs in which those who know
more perform worse than those who know less, the so-called less-is-more effect.
The adaptive advantage of this strategy is that it exploits a resource most organ-
isms have in abundance: missing knowledge.

What makes it work? The recognition heuristic depends foremost on missing
knowledge—only when some objects are not recognized can the heuristic come
into play. However, not any kind of missing knowledge will do when being cor-
rectis crucial. Only when ignorance is systematically, rather than randomly, dis-
tributed can it be used to make accurate inferences. If the cities people did not
recognize were not particularly small ones, this missing information could not
be used to increase accuracy. It could even hurt it. Luckily, in a wide array of do-
mains (such as the deadliness of diseases, the length of rivers, or the success of
sporting tcams), the objects people recognize stand out on dimensions they find
important. Indeed, it is because people find these objects important that they talk
about them, and in so doing assure them a place in the recognition memory of
others.

MEASURING SUCCESS

We have looked at a short list of simple strategies thought to be used by human
decision makers and discussed structures of the environment that affect their
chances of success or failure. A large question remains, however: What does it
mcan for a strategy to succeed, to fail, or to be optimal?

Optimality

Optimality can refer to outcomes or processcs. Optimal outcomes are consid-
ered to be the best behavioral consequences an organism can achieve given the
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information it has available. Any means may be used by scientists to compute
optimal outcomes, from analytic proof, to simulation methods, to mechanized
optimization routines. Similarly, many processes can lead an organism to
achieve these outcomes. For instance, a seedling may achieve optimal orienta-
tion towards a light source by differential growth of the two sides of its stem. Op-
timizing processes, on the other hand, are considered to be those that satisfy
various criteria of rationality, for instance, that all available information is con
sidered, or that information is weighted in an optimal (for instance, in a
least-squares minimizing) way. Optimality models of animal behavior utilize
the assumption of optimality at the level of outcomes, but not at the level of pro-
cesses. Indeed, in many cases, identification of the process used by the organism
can explain why an optimal outcome is not achieved under specific circum
stances, such as those created in the laboratory. If the process used by the organ-
ism was selected in an environment different from that in which it is being
tested, this result is not surprising.

The more accurate the specification of the optimal outcome, the more helpful
it will be in guiding research into the processes controlling behavior. In the fol
lowing example, the contrast between a predicted optimum and observed behav-
ior serves to guide research into behavioral mechanisms.

Consider an animal choosing between two foraging sites that differ in prey
distribution. In habitat 4, prey are found regularly at intervals of F seconds. In
habitat B, prey are found in pairs, so that they take intervals of either S (for short
interval) or L (for long interval) seconds between prey.

We may ask how long F should be so that the two environments will be
equally desirable to an organism. The scientist first interprets the problem faced
by the organism as that of maximizing the overall rate of gain. Equalizing rates
(Rate 4 = Rate B), an animal should be indifferent between the sites when:

1_ 2
F S+L’
With this normative solution, or “optimum,” worked out, the matter can be
tested empirically. Bateson and Kacelnik (1996, 1997) conducted a series of ex-
periments with starlings, where the birds had to choose between two colored
keys that delivered food according to schedules as shown in Figure 10.1, withS
and L equal to 3 seconds and 18 seconds, respectively. In a typical experiment,
they used a titration procedure: when the subject chosc “4,” Fgrew by 1 second,
but when it chose “B,” F' became 1 second shorter. They found that birds were in-
different when F'= 5.14 seconds. This result differs from the expected F = 10.5

or F:;—(S+L). (10.2)

Figure 10.1  The occurrence of food at different time intervals in various environments.
Each dot represents one sccond of scarch time and cach X represents a prey capture.
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seconds predicted by Equation 10.2. This proves puzzling in light of the fact that
the birds would be getting more food per time unit by acting otherwise. For in-
stance, if they faced a habitat 4 where F' = 8 seconds, thcy would choose B, even
though they would be getting one prey every 8 seconds in 4 and only one prey
every 10.5 seconds in B.

Since there was a gulf between the computed optimum and what was ob-
served in the data, it was appropriate to go back to the blackboard to make an-
other attempt at specifying an algorithm that may be a better predictor. The
empirical data turned out to match the equation:

L1111
~=—(—+—), (10.3)
F2\s L

which describes F as the harmonic mean of S and L, rather than the arithmetic
mean described by Equation 10.2. Similar results have been reported in other
species and with other experimental protocols, and the cost of employing such
policies is well known (Gilliam et al. 1982; Mazur 1984; Gibbon et al. 1988).
Why would birds use such a policy? The answer may lie in the process of choice.

The birds chose between colored keys which had no intrinsic value, other
than that acquired by association with food. The process by which these associa-
tions are acquired can be modeled as shown in Figure 10.2.

To use this model in the context of choice between the two sites, it is assumed
that choices are controlled by the subjective value of the stimulus (colored key)
signaling each place. ¥} indicates the value of option 7.

Figure 10.2 shows that when

«:%(sm, V,:<;_—(VS+VL). (104

Actually, if
N ! 1111

HI(I):;.VFZE(VS'FVL)WIK)H F=E(E+2), (]05)
as found cxperimentally. In this approach, the researchers “explain” why the
subject fails to optimize (namely, maximize rate of gain over time) by the mech-
anisms that it uses to choose. This finding leads to another target for research,
namcly the adaptive significance of the process by which stimuli acquire value.
Biologically, what needs to be explained is why natural selection has not elimi-
nated this mechanism. One answer is that associative learning is a tool that has a
much wider domain than the problem posed by the foraging task. Associative
learning is a rather general tool to predict events by temporal contiguity (thisisa
deliberate simplification of the laws of learning). In terms of the blades of Si-
mon’s scissors, one could say that the organism has evolved in environments
where the advantages of employing such an associative learning process for pre-
dicting relations between events outweigh the losses due to the occasional forag-
ing costs the mechanism may entail. In Figure 10.3, we summarize the research
path.
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Figure10.2 A simple hypothetical model for the acquisition of valuc by arbitrary stim-
uli (colored keys) while foraging in an environment as depicted in Figure 10.1. The open
circle marks the time in which the key lights up with a color and the solid symbols the
times at which food is delivered. The solid circle indicates the typical time of delivery in
site A and the solid squares the two possible times in site A. m(7) shows the “memory
trace” of the onset of the key light. We assume that the key gains associative strength in
proportion to the value of m(f) when food occurs.

In this and many other foraging examples, “optimality” is assumed and de-
fended at the evolutionary level, but is not proposed as the mechanism of choice
used by the subject. When faced with a gulf between hypothetical optimum and
outcome, the model was revised to take account of the psychological properties
of the organism. In the end, it was posited that the deviation from optimality was

Define (or redefine)
domain or problem

L Compute optimum }

Use insights from Study behavior (uncover
tool to "tool" used)

Examine match
quantitatively

Use mismatch and outside
knowledge to refine "tool"

Figure 10.3 A research path.
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due to the fact that a more general associative learning mechanism, not evolved
to handle this particular task, was being used, and thus the individual is found
performing at a less than optimal level. This explanation is reminiscent of
Campbell’s (1959) hypothesis, i.e., when one observes biases in behavior, it is
important to check whether this is not due to a competing response function of
the same mechanism. Organisms are less complex than their environments and
thus certain responses must be able to handle multiple tasks. Depending on envi-
ronmental payoffs, trade-offs should be expected.

Other ways for a researcher to explain deviations from predicted optima have
to do with changing the level of analysis. Many decisions that are considered
nonoptimal for the individual could make sensc when one considers that the in-
dividual exists within a group. Most small businesses fail, so it arguably does not
make sense for an individual to open one. A collection of overoptimistic entre-
preneurs, however, each perhaps making the “wrong” move by attempting to
open a small business, could, under certain assumptions, lead to an economy in
which they are on average wealthier than if they had all made the “right” deci-
sion, not been enterprising, and stagnated the economy. Clearly some apparent
“irrational” decisions appear more rational upon further considerations of a de-
cision maker’s goals for a task, or for instance, when looking at equilibria in-
stead of simple optima. In evolutionary biology, the computation of optima is by
no means the only or preferred research tool. The analysis of evolutionary stabil-
ity is often more useful, as the complexity of frequency-dependent problems
tends to make analytical identification of optima impossible. The vast literature
on the evolution of cooperation is dominated by the identification (mostly
through simulation) of putative evolutionarily stable interaction rules, such as
Tit-for-Tat, Pavlov, or image scoring (Nowak and Sigmund 1998a, b). The ex-
ample of how self-motivated businessmen may be led to equilibria where all
players overestimate their individual chances may require this form of treat-
ment, as might the coexistence of sellers and buyers for each share in the market.
We should add, however, that all attemptsto “rationalize” behavior are disputed
by some who belicve that ample evidence of nonoptimal decisions and
nonoptimal equilibria can be seen in both the laboratory and in the “real world”
(e.g., Thaler 1991; Tversky 1996).

Coherence

Many psychological and economic research programs concern themselves not
just with an organism’s behavior compared to an optimum, but also with how
several instances of behavior form patterns. Coherence is the degree to which an
organism’s patterns of behavior satisfy various criteria of rationality, such as
transitivity, consistency over time, and so on.

Incoherence, like deviations from optimality, can also be explained away.
Consider the example of the child who hates fish and refuses to eat it, but who
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can be tricked into eating and liking it through the use of food coloring. When
the parent accuses her of being inconsistent, she replies that she has been consis-
tent in her true objective: to nonplus the parent.

Some scholars address incoherence by observing that although a strategy
may in principle admit some flaws from the standpoint of classical rationality,
the structure of the environment is such that these deviations will have little or
no consequence in practice (Fraser et al. 1992). For instance, a heuristic called
Minimalist studied by Gigerenzer and Goldstein (1996) admits intransitivities;
however, when tested in a real-world environment, it was nearly as accurate, or
better, than some linear models that never make intransitive choices. Comn.
trasting such views, many researchers feel that coherence is a major concern for
human decision makers, since we live in a constructed economic world, rigged
with traps set by those who wish to exploit vulnerable, incoherent decision strat.
egies. Thus, unless people are consistent in their assessment of probabilities,
others may exploit their behavior so that they become, in effect, “Dutch books”
(Savage 1954). In other words, whatever bets they place, they will always lose.
Similar fates await those who would consistently use intransitive choice rules
because they could be turned into “money pumps” (Tversky 1969).

CHOOSING AMONG STRATEGIES

Areview on strategy sclection by Payne and Bettman (this volume) shows how
various structures of the environment (such as the number of alternatives,
correlational structure, or the presence of time pressure) and the concerns of the
decision maker (such as accuracy, effort, or ease of justification) affect which
decision strategies human decision makers choose. We look now at the
meta-decision problem and then suggest some ways in which the capabilities
(perceptual and cognitive) of the actor and the structure of the environment may
do much of the work in strategy selection.

Deciding How to Decide

The deciding-how-to-decide problem is inherent in the idea that there is an adap-
tive toolbox for the solving of decision problems; that is, individuals are postu-
lated to have a toolbox of different heuristics, and these different heuristics
perform differentially across task environments. If no single heuristic works
well in every environment, this suggests that an individual must choose the ap-
propriate heuristic for a given situation, i.e., decide how to decide. The question
of how people decide how to decide is an ongoing rescarch question subject to
debate. In this section we briefly review some of the issues and evidence relating
to how people select a tool or tools from the toolbox of decision strategies.
One view of strategy selection is that a decision maker, when faced with a
Jjudgment or choice task, evaluates the available tools in his or her toolbox in
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terms of relative benefits and costs and selects the one that is best fitted for solv-
ing the decision problem. This “top-down” view of strategy (tool) selection is
consistent with the evidence that people do plan how to solve problems (Ander-
son 1983) in a variety of cognitive tasks. For example, as discussed by Payne
and Bettman (this volume), there is evidence of such planning in solving deci-
sion problems as well. There is also evidence that a crucial difference among
students in terms of reading skill is the ability to adjust different reading pro-
cesses (e.g., reading approaches) to different reading tasks (Garner 1987). More
generally, Gagné (1984) argues that good problem solving requires strategic
knowledge of when and how to use procedural (tool) and declarative (fact)
knowledge.

The top-down view of'tool (or strategy) selection has the potential for infinite
regress. On the basis of benefits and costs, one decides how to decide, how to
choose, ... The infinite regress problem in deciding how to decide is similar to
the problem in game theory regarding one’s beliefs about the beliefs of others,
who have belicfs about one’s beliefs about the beliefs of others (Lipman 1991).
The potential for infinite regress in strategy selection is a serious issue. How-
cver, there are both theoretical reasons and empirical evidence to suggest that
the sequence of decisions on deciding how to decide may quickly converge to
some fixed point (Lipman 1991; Nagel 1995). In her work on games, for exam-
ple, Nagel (1995) reports that the depth of reasoning about what others are think-
ing about what you are thinking does not extend much beyond one or two levels.

Adifferent view of stratcgy selection sees the issue of deciding how to decide
as involving a much more bottom-up process. Instead of a conscious decision on
how to dccide, the sclection of a tool from the toolbox may reflect a learned re-
sponse that has rclated various task factors to the effectiveness and efficiency of
various strategies (for a related view, see Rieskamp and Hoffrage 1999). For in-
stance, pcople may have learned that the Take The Best rule works very well for
certain tasks, and that rule is then typically evoked whenever those situations are
encountered. This bottom-up view of strategy selection avoids the infinite re-
gress problem. However, the Icarned responsc approach does raise the problem
of deciding how to decide when faced with a novel situation.

Of course, it is quite likely that the strategy sclection problem is sometimes
solved in a top-down way and at other times in a much more bottom-up fashion.
Onc possibility is that the top-down approach to strategy selection will be seen
morc often when pcople are faced with complex problems and have the time to
decide how to decide. It isalso possible that pcople may start with an approach to
a decision problem and then constructively adjust their processing during the
course of making the decision as they learn morc about the problem structure.
Processing, in other words, can change on the spot in an “opportunistic” fashion
(Hayes-Roth and Hayes-Roth 1979). In any event, asking the question of “when
do simple heuristics work?” clearly raises important issues, such as when and
how heuristics that work differentially in different situations are more or less
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likely to be selected. Below, we explore the strategy selection question as it is af.
fected by the interplay between the capacities of the organism (both perceptual
and cognitive) as well as the structure of the environment.

Perceptual Specialization as a Strategy Selector

The particular perceptual system of an organism might cause it to choose among
strategies in a way an onlooker will not suspect. Heyes and colleagues (Heyes
1993; Heyes and Dawson 1992) studied imitation by placing two rats face to
face in adjoining cages. One rat, the demonstrator, learned to push a joystick to
the left to be rewarded with food, while another rat, an observer, looked on.
From the observer’s head-on perspective, the joystick appeared to move to the
right, not left, to trigger the release of food. Later, the observer was later placed
in the demonstrator’s cage. Which way would it push the joystick? It correctly
pushed the joystick to the left. What perceptual strategy did the rat use to com-
pute the direction? The scientists wondered if rats could map observed actions
onto their own bodies when undertaking imitative behavior. However, in later
experiments, the experimenters learned that by giving the joystick a twist, they
could make the observer push the joystick in the opposite direction (Heyes, pers.
comm.). The observed behavior was caused by sniffing at the side of the joystick
where it detected the scent of the demonstrator. The tendency to show olfactory
interest in places where there were signs of conspecific activity was capable of
reaping the benefits of imitation, but by another means than the human observ-
ers originally suspected. The specialization of a perceptual system can keep
classes of strategies out of the choice set (and thereby reduce the meta-decision
problem without any utility computations) and favor the selection of strategies
other organisms might not have at their disposal.

Cognitive and Knowledge Limitations as Strategy Selectors

In addition to perceptual capacities, cognitive capacities vary between species
and individuals. Humans differ in their working memory capacity, and experi-
ments performed by Karcevand his associates (Kareev etal. 1997), on the detec-
tion of correlations, show how these differences in cognitive capacity lead to
different outcomes in the detection of correlation. The larger a person’s work-
ing-memory capacity, the larger the sample they were assumed to consider in as-
sessing correlations. Individuals with smaller working memories were actually
more effective at detecting correlations. This is a surprising result, but predicted
by the simple mechanism Kareev proposes: people with small working memo-
ries consider small samples, which in turn amplify correlations to a larger degree
than do the larger samples likely to be considered by people with larger capacity.
Another little-studied dimension on which individuals differ is their degrec of
ignorance (lack of recognition) in certain domains. The recognition heuristic
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depends on a lack of knowledge to be applicable, and can become less and less
effective as recognition knowledge is gained. Here again, a deficit on the part of
the organism (missing knowledge) enables a strategy which can lead to better
performance in specific environments than can be achieved without the deficit
(for an explanation of why this happens, see Goldstein and Gigerenzer 1999).

Domain Specificity as a Strategy Selector

The research program that has come to be known as evolutionary psychology
has emphasized the existence of modules of the mind that are domain specific,
that is, are concerned with solving specific tasks (see, e.g., Cosmides and Tooby
1997). These modules are assumed to have evolved in the so-called Environ
ment of Evolutionary Adaptation (EEA) and arc hence capable of quite inappro-
priate performance in different circumstances. Domain-specific strategies are
advantageous because they circumvent the meta-decision problem: they restrict
the set of strategies. Furthermore, heuristics from the adaptive toolbox may be
specialized for solving particular tasks. For instance, Take The Best is designed
for choosing between two alternatives— the question would not arise whether it
should be applied to an estimation or categorization problem.

When Will Strategics Be Learned?

Any discussion of strategy selection would be incomplete without mentioning
how new strategies may enter an organism’s vocabulary through learning. A
conception of Hogarth (unpublished) helps us think about which environments
will lead to the learning of strategies. There are situations in which the conse-
quences of errors are large or small, and there are situations in which the quality
of feedback one gets from the environment is perfect or noisy, as shown in Fig-
ure 10.4.

Common sense tells us that learning should occur most rapidly on the left
side as opposed to the right, and in the upper half as opposed to the bottom. One
question we found quite provocative is to speculate about what types of

Quality of Feedback

Perfect

Noisy

Pressure for valid

Difficult for valid

Large |strategies —good | strategies to
Consequences strategies can emerge
of Errors emerge
Little pressure for | Superstitious

Small | valid strategies — | learning quite
good and bad likely
strategies can

coexist

Figure 10.4 Quality of feedback and the consequences of errors.
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strategies would be learned in environments denoted by the various quadrants.
For example, in which quadrant would one expect complex strategies to be
learned, and in which would one expect fast and frugal heuristics to be learned?
One view is that complex strategies would be essential in the top half, because
being correct counts a great deal in this region. An aiternative view would sug-
gest that fast and frugal heuristics would be learned in the top half, because some
issues are so grave that only stubborn, inflexible strategies can be trusted to ad-
dress them. Consider the strategies “learned” through natural selection. A com-
plex, compensatory strategy— in which, for instance, a prey animal would learn
through trial and error the optimal escape distance from a predator, as opposed to
simply always reacting in an overcautious way — might cost a creature its life. A
useful model of the relative advantage of learning and nonlearning strategies ac-
cording to environmental parameters has been discussed by Stephens (1991).

WHAT MAKES SIMPLE HEURISTICS WORK?

The general point that has been introduced with Simon’s metaphor of the two
blades of the pair of scissors is that the success and failure of heuristics depends
on their match with the structure of environments. We summarize here, without
claim for completeness, some heuristics, some structures of environments, and
their match. Note that the term “structure of environment” is shorthand for the
information a person, animal, or institution knows about a physical or social
environment,

Systematic lack of knowledge. The recognition heuristic is a mechanism that
exploits lack of knowledge. In the simplest case, the task is to predict which of
two alternatives scores higher on a criterion X. The heuristic will perform above
chance ifthe lack of recognition of alternatives is not random, but systematically
correlated with X. The precise proportion of correct inferences is a function of
the recognition validity and the number of objects recognized among all alterna-
tives (see Goldstein and Gigerenzer 1999).

Presence of others to imitate. In noisy but stable environments, imitation can
allow one to find the best action among those currently being employed. Imita-
tion reduces decision costs by leaving to others the task of discovering new
choices. A necessary condition for the good performance of imitation is the exis-
tence of observable individuals in similar situations to the obscrver.

Noncompensatory information. Take The Best is a heuristic that exploits sit-
uations in which the cues (predictors) are noncompensatory (or approximately
s0). For instance, in an environment where binary cues have the weights 1, 1/2,
1/4, 1/8, ..., the simple Take The Best achieves the same predictions as multiple
regression (Martignon, this volume; Martignon and Hoffrage 1999).

Scarce information. Information is scarce when the number of cues is small
compared to the number of objects one has to make predictions about. Spe-
cifically, if the number of cues is less than logzN, Take The Best outperforms on
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average a class of linear models including unit-weighting strategies (Martignon
and Hoffrage 1999).

Abundant information. Simple unit-weighting tends to outpredict lincar re-
gression as the number of cues increases (Einhorn and Hogarth 1975).

Redundant information. Unit-weighting tends to outpredict linear regression
as the average intercorrelation between the predictors increases (Einhorn and
Hogarth 1975).

Noisy information. The larger the noise in a set of training data, the better the
accuracy of a simple strategy relative to a complex strategy (where simpler
means fewer frec paramecters) when making predictions about new data (Akaike
1973; Forster and Sober 1994).

J-shaped Distributions. Many distributions are not normal, but J-shaped,
that is, most objects have small values and only a few have large values (con-
sider the population of cities, or number of publications per person). Ifthe distri-
bution of objects is J-shaped on a criterion, a simple heuristic, QuickEst, can
exploit this structure to make fast and frugal quantitative estimates of individual
objects on the criterion that are highly accuratc (Hertwig et al. 1999).

This is an incomplete catalogue of when and why simple heuristics work. We
agree that their secret is in the environment.

WHAT WE DO NOT YET UNDERSTAND

As the various examples in this chapter show, simple strategies can be quite ef:
fective in the right environments. However, there is work to be done. We still
need a conceptual language to measure and communicate the structure of envi-
ronments. We still need precise models of heuristics built with respect to the
cognitive architecture of organisms. We still nced to understand how the two
blades of the scissors fit together, i.c., which heuristics are suited to which envi-
ronments. Finally, there is the large question which kept us arguing days and
nights, lunches and dinners, coffees and teas: which homunculus selects among
heuristics, or is there none?
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