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ABSTRACT

Recently we proposed an explanation for the apparently inconsistent result that
people sometimes take account of sample size and sometimes do not: Human
intuitions conform to the ‘empirical law of large numbers,” which helps to solve
what we called ‘frequency distribution tasks’ but not ‘sampling distribution tasks’
(Sedlmeier and Gigerenzer, 1997). Keren and Lewis (2000) do not provide an
alternative explanation but present a three-pronged criticism of ours: (1) the
normative argument that a larger sample size will not invariably provide more
reliable estimates, (2) the descriptive argument that under certain circumstances,
people are insensitive to sample size, and (3) the claim that sampling distributions
are essential for solving both frequency and sampling distribution tasks. We argue
that (1) the normative argument is irrelevant for our descriptive hypothesis and, as
a normative claim, only valid for a specific situation, (2) the descriptive argument
is correct but consistent with our review, and (3) is incorrect. Bernoulli’s assertion
that the intuitions of ‘even the stupidest man’ follow the empirical law of large
numbers may have been rather on the optimistic side, but in general the intuitions
of the vast majority of people do. Copyright © 2000 John Wiley & Sons, Ltd.
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Do people take into account information about sample size in statistical reasoning tasks? The literature exhibits
seemingly contradictory results: in one group of studies people do and in another they do not. Recently we
suggested an explanation for a substantial part of these inconsistent findings (Sedlmeier and Gigerenzer, 1997). We
proposed the hypothesis that human intuition conforms to the empirical law of large numbers, which expresses the
empirically observable fact that larger samples generally (but not always) lead to more accurate estimates of
population means (Sedlmeier and Gigerenzer, 1997, p. 35; see also SedImeier, 1998, p. 281). We further argued that
this intuition works only with what we termed ‘frequency distribution tasks’ and not with ‘sampling distribution
tasks.’
Consider, for example, Kahneman and Tversky’s (1972) maternity ward task:

A certain town is served by two hospitals. In the larger hospital about 45 babies are born each day, and in the
smaller hospital about 15 babies are born each day. As you know, about 50% of all babies are boys. The exact
percentage of boys, however, varies from day to day. Sometimes it may be higher than 50%, sometimes lower.
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In the original, that is, a sampling distribution task, it continues:

For a period of 1 year, each hospital recorded the days on which more than 60% of the babies born were boys.
Which hospital do you think recorded more such days?

The corresponding part in a frequency distribution task reads:

Which hospital do you think is more likely to find on a randomly chosen day that more than 60% of babies born
were boys?

The relevant difference between the two tasks lies in the kind of distribution involved. Whereas in the sampling
distribution task the relative variance of sampling distributions (of proportions of babies who are boys) has to be
judged, in the frequency distribution task two proportions based on frequency distributions (of numbers of babies
who are boys and girls) have to be judged. The intuition that larger samples usually lead to more exact estimates
of the population mean or rproportion (here: 50% boys) helps in the solution of the frequency rather than the
sampling distribution tasks.” Therefore we derived the hypothesis that researchers who reported that people attend
to sample size used predominantly frequency distribution tasks whereas those who concluded that people largely
ignore sample size used mainly sampling distribution tasks. This is what we found. The hypothesis that frequency
distribution tasks yield higher solution rates than corresponding sampling distribution tasks was subsequently
supported in independent studies (Sedlmeier, 1998).

Note that the hypothesis that people use an intuition corresponding to the law of large numbers when solving
sample size tasks is descriptive, not normative. However, we also addressed the normative argument frequently
found in sample size research: that the (mathematical) law of large numbers can be used as a yardstick to evaluate
people’s judgments. We explained why the law of large numbers cannot serve as such a normative yardstick and
pointed out that there exists no general normative model for sample size tasks — only partial mathematical
justifications for the superiority of larger samples, such as the variance of the sample mean, Chebychev’s
inequality, and the central limit theorem. None of these results justify a strictly monotonic relation between sample
size and the confidence accruing therefrom.

Keren and Lewis now argue that Bernoulli (and we) may have been wrong on the following points: ‘(i)
Normatively, an estimate from a larger sample is not necessarily closer to the corresponding population value that
it attempts to estimate, and (ii) Descriptively, under certain circumstances, people are indeed insensitive to sample
size’ (p. 125). In addition, they argue that the concept of a sampling distribution is essential for solving frequency
distribution tasks.

THE NORMATIVE ARGUMENT

Keren and Lewis mistakenly think that we argue that the empirical law of large numbers is (1) a normative model
that (2) says that an estimate from a larger sample would be invariably closer to the population value. Based on this
misunderstanding, they argue against these two points by presenting an example that shows a nonmonotonic
relationship between sample size and the accuracy of estimates, using the binomial distribution. From that
example, they also draw some implications about statistical power. But (1) the empirical law of large numbers is
not a norm — we used it as a hypothesis about the intuitions of ordinary people, that is, a descriptive statement.
Concerning point (2), Keren and Lewis criticize us (and Bernoulli) that ‘it is inaccurate to assume that a larger
sample size will invariably provide a more reliable estimate than the smaller one’ (p. 128; italics ours). This implies
incorrectly that we actually made this claim. What we said was ‘This intuition — that larger samples generally lead
to more accurate estimates of population means — is commonly referred to as the “empirical law of large
numbers”’ (Sedlmeier and Gigerenzer, 1998, p.35; italics ours). There is a difference between generally and
invariably.

Although Keren and Lewis’s normative argument is rather peripheral to our hypothesis about people’s
intuitions, in the following we clarify it and the related comment on statistical power.

'To solve the frequency distribution task, the intuition conforming to the empirical law of large numbers would lead to the
conclusion that the proportion of boys in the larger hospital can be expected to lie closer to 50% and that therefore, the
proportion in the smaller hospital is more likely to have a deviation of 60% or more. Of course, one could apply the intuition
repeatedly to solve the sampling distribution task but this implies additional reasoning processes and is apparently not what
people commonly do.
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Can smaller samples be closer to the population mean than larger ones?

There is no normative model that excludes the possibility that a smaller sample may be closer to the population
value than a larger sample. The law of large numbers (here Keren and Lewis seem to be in full agreement with us)
says nothing about such a comparison; it just says that as the sample size approaches infinity, the probability that
the deviation of the mean of the sample from the population mean exceeds an arbitrarily small and fixed number
approaches 0. As von Mises (1957/1981, p. 115) wrote: * “The Law of Large Numbers” ... says nothing about the
course of a concrete sequence of observations.” Likewise, none of the partial justifications we mentioned allows one
to conclude that as sample size increases, the sample mean monotonically approaches the population mean. How
about the empirical law of large numbers? As the name implies, this is an empirical law that everybody can observe,
not a normative yardstick. Keren and Lewis have incorrectly understood us as establishing a formal link between
the central limit theorem and the empirical law of large numbers, possibly because we spoke of the central limit
theorem as a partial mathematical justification for the superiority of larger samples. We reiterate that there is no
mathematical connection between the two. Exhibit 1 shows a manifestation of the empirical law of large numbers
where with increasing sample size the difference between the sample mean and the population mean generally, but
not invariably, decreases ( for similar examples, see Freedman et al., 1991, p. 250, and Freudenthal, 1972, p. 484).
Anybody can produce results similar to those shown in Exhibit 1 by tossing a coin 50 times and calculating the
proportion of heads after every trial. Of course, one cannot expect that this proportion approaches the population
value (p = 0.5) monotonically.
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Exhibit 1. Proportions of ‘successes,” calculated over 50 consecutive results from a Bernoulli distribution
(i.e. possible outcomes of 0 and 1) with p = 0.5. For instance, in this special case, the outcomes of the first four
trials were 0, 0, 1, and 1 (with 0 corresponding to ‘failure’ and 1 to ‘success’) yielding proportions of successes of
0, 0, 0.33, and 0.5 for trials 1 to 4, respectively

What is the criterion: arbitrarily fixed boundaries or mean absolute deviations?

Keren and Lewis claim that in the maternity ward task a larger sample does not necessarily provide an estimate
that is closer to the population value. In their demonstration, they use a binomial distribution with p = 0.5 and
sample sizes from n = 2 to n = 50. In analogy to one specific version of the maternity ward task, they examine the
probability that the outcome of a sampling process lies between 0.4n and 0.6n. They find that this probability does
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not increase monotonically with increasing sample size. Is this demonstration a good argument against the claim
that, generally, the accuracy of an estimate increases with increasing sample size? We think not. Consider sample
sizes of n = 2 and n = 3. The possible outcomes for n = 2 are 0, 1, and 2 successes out of 2. How many of these
outcomes lie within 0.8 (0.4n) and 1.2 (0.6n) and what is their probability of occurrence? The only outcome that
satisfies their criterion is 1 and its probability of occurrence is 0.5. Now consider the same for n = 3. Here, none of
the possible outcomes lies within 1.2 (0.4n) and 1.8 (0.6n), and therefore, the probability that the result of a
sampling process lies within the interval is 0. This is due to the fact that the size of the deviation from the expected
mean or proportion of a discrete distribution is expressed in multiples of arbitrarily fixed proportions.> Moreover,
the empirical law of large numbers is about the closeness between an estimate and the corresponding population
value and not about a specific kind of deviation from it. So, we recommend looking at more general measures of
deviation.

Exhibit 2 shows what happens when one examines just such a measure, the expected values for mean absolute
deviations between proportion estimates and corresponding population values.®> The example illustrates that the
nonmonotonicity observed by Keren and Lewis disappears if one does not use arbitrarily fixed boundaries.
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Exhibit 2. Expected values for mean absolute deviations between proportion estimates and corresponding
population values for sample sizes from n = 2 to n = 50, using a binomial distribution with p = 0.5 (see also
footnote 3)

2 In the original maternity ward task, which also deals with a fixed deviation from the proportion of 0.5, this problem does not
arise, because the size of the larger sample is a multiple of the size of the smaller one (15 versus 45), and the fixed boundaries
coincide with possible outcomes in the smaller sample (0.4 x 15 = 6, and 0.6 x 15 =9).

3 For any sample size n, the mean absolute deviation (MAD) is calculated as:

3 n\ k n—k k
map, =3[ (1)t = (| -]

k=0
For instance, to calculate the MAD for n = 2, one has possible values for k of 0, 1, and 2. The absolute deviations of the k/n
fromap = 0.5are 0.5, 0, and 0.5, and their respective probabilities according to the binomial distribution with p = 0.5 are 0.25,
0.5, and 0.25. Thus MAD, = 0.25 x 0.5+ 0.5 x 0 + 0.25 x 0.5 = 0.25.
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Statistical power
Keren and Lewis argue that the nonmonotonicity they found has implications for statistical power. Again, this
argument is only indirectly linked to our hypothesis that people’s intuitions conform to the empirical law of large
numbers. It deals with how formal statistical properties depend on the variation in sample sizes, not with people’s
intuitions. Here, the issue is the same as in the previous section: the restriction of possible outcome values when
expressed in multiples of fixed proportions. Consider one of Keren and Lewis’s examples in which, using binomial
distributions, they find that for Hy:u = 0.5 and H, :u = 0.7, and alpha = 0.05, the power for n = 18 is larger
than that for n = 25. How can this be? The reason is that, because of their discrete values, the possible outcomes
closest to and smaller than alpha differ from alpha by different amounts. Thus, the power calculation uses different
‘true alphas.” For instance, for n = 18, the value closest to and smaller than alpha is p(13 < X < 18) = 0.048 with
a corresponding power of 0.534. However, for n = 25, the corresponding value is only half the size:
p(18 < X < 25) = 0.022; and not so surprisingly, the power is not larger than in the prior case — 0.512. If, for
n = 25, one took an alpha slightly larger than 0.05, that is, p(17 < X < 25) = 0.054, then the corresponding power
would jump up to 0.677. Keren and Lewis’s argument concerning power shows that one should not slavishly stick
to an alpha of 0.05 (or 0.01) because ‘Good loves the 0.06 nearly as much as the 0.05° (Rosnow and Rosenthal,
1989, p. 1277; see also Gigerenzer, 1993). Anyway, the problem of differently spaced values in discrete distributions
(depending on sample size) ceases to exist with continuous sampling distributions such as the ¢ or the F distribution
mostly used in behavioural research.

To sum up, the empirical law of large numbers is neither a mathematical theorem nor a norm for how people
should solve sample size tasks. Instead, we used it as a hypothesis for the intuitions people use to answer frequency
distribution tasks.

THE DESCRIPTIVE ARGUMENT

Keren and Lewis’s descriptive conjecture is quite modest: ‘under certain circumstances, people are indeed
insensitive to sample size’ (p. 125). In our article (Sedlmeier and Gigerenzer, 1997), we started out from exactly this
observation — that people are sometimes sensitive and sometimes insensitive to sample size — and proposed an
answer to what “‘under certain circumstances’ means: sampling distribution tasks. The challenging question is not
whether or not people are ‘sometimes’ insensitive, but why and when (Gigerenzer, 1996). Our review of the
literature indicated that insensitivity is particularly acute when the judgement is about the variability of a sampling
distribution, that is, when people were asked to solve sampling distribution tasks.

Keren and Lewis mention a study of their own where they used the frequency distribution version of the
maternity ward task. Although they do not provide exact values, they report (1) a relatively high proportion of
‘equally likely’ responses and (2) that the participants who did not choose the ‘equally likely’ category generally
were sensitive to sample size. Given that they used arbitrarily fixed boundaries in their experiment, the choice of
‘larger sample’ was not always normatively correct, but consistent with our hypothesis that people use an intuition
conforming to the empirical law of large numbers. The result of their study seems to be within the range of those
which we have reviewed (Sedlmeier and Gigerenzer, 1997; Sedlmeier, 1998).

In sum, Keren and Lewis’s conjecture that people are ‘sometimes’ insensitive to sample size is consistent with
our previous review. But the challenging question is, rather, why and when?

FREQUENCY DISTRIBUTION TASKS VERSUS SAMPLING DISTRIBUTION TASKS

According to Keren and Lewis, both frequency and sampling distribution versions of sample size tasks (e.g. the
maternity ward task cited above) require statistical inference for which the concept of sampling distribution is
indispensable. Of course, both versions of the task can be solved by recourse to sampling distributions. But they
need not. After a fair amount of statistical training, sampling distributions may indeed become a natural way to
think about the two kinds of tasks. We agree that the concept of a sampling distribution is necessary to solve the
sampling distribution version of the task, but is it also necessary to solve the frequency distribution version? A
glance at Exhibit 1 shows that a frequency distribution task can be solved without sampling distributions: from
intuitively knowing that generally, the estimate from a larger sample lies closer to the population value than that
from a smaller sample. This solution is less elegant than the one relying on the concept of sampling distributions,
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but this seems to be the way laypeople solve the task. It is also evident that the empirically observable law
illustrated in Exhibit 1 does not give much help in solving sampling distribution tasks.

To sum up, frequency distribution tasks can be solved without recourse to sampling distributions. How? By an
intuition that conforms to the empirical law of large numbers, just as Bernoulli proposed. This might be difficult to
conceive for statistically trained professionals, whose statistical education has replaced ‘satisficing’ statistical
intuitions (Fischbein, 1975).

CONCLUSION

We have argued that Keren and Lewis’s normative argument that ‘an estimate from a larger sample is not
necessarily closer to the corresponding population value’ (p. 125) is of little, if any, relevance to the descriptive
hypothesis we have put forward. Nevertheless, we tried to clarify the preconditions of situations in which this can
happen. The descriptive argument that “‘under certain circumstances, people are indeed insensitive to sample size’
(p. 125) is entirely consistent with the studies we have reviewed. The argument that ‘the concept of a sampling
distribution is equally essential for answering either of the two versions [i.e. sampling and frequency distribution
tasks]’ (p. 128) is incorrect, if ‘essential’ means necessary for solving the task.

However, the major issue remains how to explain the discrepant results in research on intuitions on sample size.
Keren and Lewis conclude that we are still lacking the theoretical knowledge that enables us to predict under which
circumstances people will or will not be sensitive to sample size. We do not think that one has to be so pessimistic.
There are several variables that have been shown to influence sample size judgements to a certain extent (Keren and
Lewis, 2000; Sedlmeier and Gigerenzer, 1997) and these variables might also be used in prediction. However, the
strongest variable so far is the type of task: one can predict that frequency distribution tasks will be solved more
easily than sampling distribution tasks. We have offered an explanation for why this is so. Human intuition
conforms to the empirical law of large numbers, which helps much more in the solution of frequency than
sampling distribution tasks.

The challenge is now either to find more evidence for this explanation or to come up with an alternative. Such an
alternative does not seem to exist, so far, nor have Keren and Lewis proposed one. Meanwhile, we have elaborated
our initial explanation into a computational model based on associative learning mechanisms, the PASS model
(Sedlmeier, 1998, 1999). PASS models the cognitive processes underlying human probability judgement for the
case of serially encoded events. Consistent with the empirical law of large numbers, PASS’s confidence judgements
increase with increasing sample size. In a single run, that is, in the process of being presented successive events,
PASS’s confidence estimates do not always increase strictly monotonically, similar to the example shown in
Exhibit 1. The average result over many runs, however, conforms to the results shown in Exhibit 2. Because the
input to PASS consists of serially presented events, it can only make judgements about frequency distributions and
not sampling distributions. This model provides a possible explanation for why people’s intuitions about sample
size conform to the empirical law of large numbers.

Several hundred years ago, Jacob Bernoulli argued that ‘even the stupidest man knows by some instinct of
nature per se and by no previous instruction’ that the greater the number of confirming observations, the surer the
conjecture (Gigerenzer et al., 1989, p. 29). Bernoulli may have been rather on the optimistic side, but in general the
vast majority of people reason in accord with this intuition.
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