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Selecting indicators is as important for the generalizability of research designs as
selecting persons or occasions of measurement. Elaborating on the extant knowl-
edge base regarding indicator selection, the authors examine selection influences on
the validity and reliability of multivariate representations. A simulation that sys-
tematically varied 4 key dimensions of indicator selection was used to investigate
their effects on the fidelity of construct representations and the relative ability of
exploratory and confirmatory analyses to recover within- and between-construct
information. Confirmatory analyses, for example, yielded valid and unbiased esti-
mates of the relations between constructs, even under conditions of very low
internal consistency. Design, procedural, and analysis recommendations based on
an expanded taxonomy of indicator selection and the simulation results are pro-

vided.

Designing empirical research should oblige inves-
tigators to attend explicitly to the many measurement
attributes of their expected data. Cattell (1952,
1996a), for example, explicated this point by identi-
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fying up to 10 dimensions that characterize the “data
box”—his heuristic for distinguishing among possible
data configurations in covariation designs. Of these
dimensions, the most common and familiar attributes
are persons, variables, and occasions of measurement
(i.e., a datum is the score of a specific person on a
given variable at a particular occasion). Given that
designing an empirical study requires an investigator
to select by one means or another how many and
which persons, variables, and occasions will define
the projected data set, these selection decisions im-
pinge directly on the quality of research designs and
the value of the results. Cronbach, Gleser, Nanda, and
Rajaratnam (1972), for example, formalized many im-
plications of these issues within the general rubric of
measurement and generalizability, as did Campbell
and Stanley (1963) in their discussion of experimental
and quasi-experimental designs.

Given that measurement is, to a considerable de-
gree, a selection process, we find it surprising that
work on selection has focused more on persons and
occasions than on the selection of indicators. For ex-
ample, models of selection and selection effects (Ait-
ken, 1934; Berk, 1983; Lawley, 1943; Lawley &
Maxwell, 1971, Linn, 1973, 1983; Meredith, 1964,
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1993; Pearson, 1903: Poon, Krauss, & Bowles, 1984)
as well as conceptions of generalizability (Cronbach
et al., 1972) have alerted us to the treachery of non-
represzntative person sampling. Similarly, given cer-
tain information and assumptions, the concept of sta-
tistica- power informs the choice of sample size (J.
Coher:;, 1992; MacCallum, Browne, & Sugawara,
1996). Developmental researchers, too, have articu-
lated many issues and potential pitfalls in selecting
occasions of measurement (Baltes, Reese, & Nessel-
roade, 1977. McArdle & Woodcock, 1996). On the
other and, researchers know less about how to select
particular indicators (manifest variables) to represent
a given construct (latent variable). Although germane
notiors of validity obviously apply (Campbell &
Fiske, 1959; Gulliksen, 1950: Messick, 1982: Ozer,
1986). few formal guidelines have been offered that
can inform one’s choices of how many or which in-
dicators to use. Instead, indicator selection has typi-
cally relied on informal or intuitive reasoning and
historical precedent.

In our view, the relative lack of a formal framework
for guiding such decisions introduces an unsatisfying
ambiguity into research designs involving latent vari-
ables. [n an effort to clarify some of the issues and to
shed further light on the directions from which an-
swers might eventually come. we operationalize four
key aspects of selecting indicators to represent psy-
chological constructs and examine their impact on
research outcomes. In particular. we focus on three
primary goals in this article. First, from both a gen-
eralized selection orientation (Nesselroade & Jones.
1991) and a domain-sampling perspective (Nunnally,
1978 Nunnally & Bernstein, 1994), we identify four
specif.c dimensions of indicator selection that can af-
fect the fidelity of construct representations in multi-
variate research. Second. by means of a Monte Carlo
simulation, we systematically investigate their influ-
ences on the relative efficacy of various analytic tech-
niques. (exploratory, confirmatory, raw data) to re-
cover information about constructs that is inherent in
the relations among indicators. Third. on the basis of
the simulation results, we provide some design rec-
ommendations and cautions. Given the clear advan-
tages and current popularity of latent-variable ap-
proaches (Bentler, 1980; Little, 1997. McArdle,
1996). we believe that (re)directing attention to such
basic measurement concerns will strengthen behav-
ioral and social science research involving latent vari-
ables.

Before beginning our discussion of indicator selec-

tion, however, we must emphasize that at least two
types of indicators and constructs can be distin-
guished—effect indicators of common constructs ver-
sus cause indicators of emergent constructs (see, e.g.,
Bollen, 1989; Bollen & Lennox, 1991; P. Cohen, Co-
hen, Teresi, Marchi, & Velez, 1990; MacCallum &
Browne, 1993). With effect indicators, values on
manifest variables are presumed to be caused by one’s
standing on one or more latent variables (i.e., the cau-
sal direction is from construct to indicator). With
cause indicators, changes on one or more manifest
variables are presumed to lead to changes in one’s
standing on the emergent construct (i.e., the causal
direction is from indicator to construct). With this
distinction in mind, the focus of our study is squarely
on effect indicators of common constructs. Through-
out our discussions, therefore, we use the terms indi-
cator and manifest variable to refer broadly to any
observable measurement attribute (e.g., items, behav-
iors, responses) of the effect-indicator type, and we
use the terms construct and latent variable to refer
broadly to any underlying hypothetical abstractions of
the common type.

In a similar vein, we must also emphasize that the
domain-sampling metaphor, which we rely on below
to illustrate the various aspects of indicator selection,
is based on an effect-indicator model of measurement.
Although the domain-sampling metaphor is but one of
a number of metaphors that can be used to think about
measurement issues (Nunnally, 1978: Nunnally &
Bernstein, 1994), it and various other metaphors are
easily used to derive the central formulae of classical
test theory. In other words, these metaphors and the
fundamental logic of classical test theory are primar-
ily concerned with effect indicators of constructs.
Moreover, the bulk of the analysis machinery that is
available to researchers in the social and behavioral
sciences is, broadly speaking, geared toward explicat-
ing relationships in data that derive from such a
model. Given the substantial prevalence of effect in-
dicators of constructs in most areas ot the behavioral
sciences, this restriction would seem reasonable and
leaves room for future discussions of cause indicators.

Selecting Indicators in Psychological Research

Brief Historical Background

Selecting variables in psychological research has
been a long-standing concern, even though the vol-
ume of attention has been relatively low. For example,
the importance of variable selection can be seen in
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Thurstone’s (1938; Thurstone & Thurstone, 1941)
writings on primary mental abilities. He described
spending as much time on developing quality mea-
sures as on the factor analyses that were conducted to
evaluate them (at a time when only laborious hand
calculations were possible). Within the context of re-
search on the personality sphere, Cattell (1952) ex-
amined the matter of selecting variables at great
length. His proposals for defining a content domain
and sampling from it remain influential (Goldberg,
[993; Nunnally, 1978). Humphreys (1962}, too, dis-
cussed many key issues of selecting indicators and
proposed a rationale for constructing measures that
features the concept of controlled heterogeneity—an
sptimal (but not necessarily maximal) level of the
characteristic reflected in coefficient alpha (Cron-
hach, 1951). At about the same time, Campbell and
Fiske (1959) addressed questions about the relations
among manifest and latent variables and initiated a
line of inquiry concerning convergent and discrimi-
nant validity that continues to the present (Widaman,
1992). For instance, Campbell and Fiske’s notion of
method variance, along with Cattell’s (1961) instru-
ment-factor conception, has been brought directly into
contemporary work on trait-state distinctions (Du-
menci & Windle, 1996; Steyer, Ferring, & Schmitt,
1992). In addition, Kaiser and his colleagues (Cerny
& Kaiser, 1977; Kaiser, 1970; Kaiser & Rice, 1974)
introduced the idea of the sampling adequacy of in-
cicators—the empirical index of which is still inte-
grated into various statistical approaches (e.g., SAS
Institute, 1990).

These concepts share the concerns that the precise
lecation of indicators and constructs in multivariate
space is unknown and that their interrelations must be
inferred. In addition, these ideas highlight the fact that
the negative consequences of this uncertainty are
much alleviated by measuring more than one or two
variables to represent a given construct—the multi-
variate approach (Baltes & Nesselroade, 1973; Cat-
tell, 1966b). From this viewpoint, various relations
arnong sets of manifest variables are used to make
irferences about the relative locations of the respec-
tive constructs in multivariate space. In other words,
estimates, which are empirically derived from the se-
lected data and potentially fallible, are used to inti-
mate the true multivariate relations.' To some degree,
information such as internal-consistency measures
and factor-loading patterns can be used to judge the
adequacy with which sets of indicators (i.e., items,
behaviors, responses) represent hypothetical abstrac-

tions such as aggression, intelligence, self-efficacy,
and the like. However, as we describe in more detail
below, overreliance on such information (e.g., assum-
ing that more highly intercorrelated variables lead to
better construct representations than do less intercor-
related variables) can be misleading under specifiable
selection conditions, especially when one has rela-
tively poor knowledge about the precise location of a
construct’s centroid in multivariate space.

A Vector-Space Representation of
Multivariate Space

In addition to a generalized selection orientation,
we adopt a domain-sampling model as our substantive
heuristic. From a domain-sampling viewpoint, a given
construct has a broad universe of possible items, be-
haviors, and responses that can serve as its observable
markers or indicators (Nunnally, 1978). Moreover,
the region in multivariate space inhabited by indica-
tors of a given construct can be quite small (e.g.,
numerical facility) or relatively large (e.g., intelli-
gence). Even though we rely on the domain-sampling
model to illustrate our data generation schema (see
below), the implications for measurement are not lim-
ited to constructs for which the universe of possible
items is “infinite.” As long as some number of indi-
cators can be selected to represent a construct (even if
that number is rather small), the measurement impli-
cations derived from our taxonomy and simulation
hold for constructs represented by effect indicators.
To illustrate these ideas and to introduce concepts that
are central to our selection-based simulation, we use a
vector-space, or geometric, representation of multi-
variate space (see Gorsuch, 1988; Harman, 1967).

To avoid unnecessary complexity, we restrict our
example to three geometric dimensions and start with
the notion of the unit sphere—a ball-like space where-
in the relations among all points within the sphere can
be measured in a standardized metric. Within this
three-dimensional sphere, which is presented sche-
matically in Figure A, any observable or manifest
variable (potential indicator) is represented as a di-
rected line segment, or vector. All such indicator vec-
tors emanate from the center of the sphere (the ori-

' Throughout our discussion of indicator selection, we
use the term “true” to distinguish between real relations
among the various multivariate features (i.e., in the popu-
lation sense) and the estimated, or inferred, relations (i.e., in
the sampled sense).
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gin), extend toward the surface, and terminate at a
specific point in multivariate space. A construct (la-
tent variable, factor) is also represented by a vector,
but, because this vector emanates from the center of
the sphere and, by definition, extends to its surface,
vee refer to it as a construct axis. or centroid.

Within this representation, a construct domain can
be represented as a cone of unspecified volume sur-
rounding a given construct’s axis with the cone’s apex
falling at the origin and its base intersecting the sur-
face of the sphere in a circle.” One such possible
domain cone is represented in Figure 1A. In geomet-
ric terms, the length of an indicator vector is the
scuare root of its reliability (in the sense of classical
test theory). The correlation between any two indica-
tors is a function of their angular distance, weighted
by their respective degrees of reliability (the cosine of
the angle between the two indicators multiplied by the
respective lengths of their vectors).

Metaphorically speaking, the distribution of indica-
tors throughout the volume of a cone symbolizes the
array of possible indicators that one may select in
designing an empirical study. Other things being
equal. the closer a selected indicator falls to the con-
struct axis in the center of a cone (i.e., the construct’s
domain centroid). the more veridical is its construct
representation. As presented in Figure iB. the four
ditferent three-variable constellations vary in their
closeness to a construct’s true location in multivariate
space (i.e., a construct’s centroid), as well as in their
degree of intercorrelation, depending on the relative
locations of the indicators. On the one hand, the
sampled centroid of three variables with relatively
low intercorrelations (the widely spread unfilled
circles in Figure 1B) can yield a very good approxi-
mation of the centroid to the degree that the three
indicators diverge from the construct axis in a bal-
anced manner such as in equidistant and equidiver-
ge:nt directions (cf. the filled circles in Figure 1B). On
the other hand, the sampled centroid of three highly
correlated variables (closed grouped) may yield a bi-
ased, or off-center, representation of the construct to
the degree that their sampled centroid diverges from
the true construct centroid (cf. the filled squares, re-
flecting a biased representation, with the unfilled
squares as shown in Figure 1B).

Figure 1B illustrates that knowledge of a con-
struct’s location in multivariate space is generally im-
perfect. Moreover, this knowledge can vary consider-
ably across different research domains, depending on
the quality of prior theorizing and empirical work. For

instance, the location of the centroid of intellectual
functioning in multivariate space is, by some ac-
counts, relatively well defined (Carroll, 1993; Mar-
shalek, Lohman, & Snow, 1983). As we emphasize in
more detail below, the amount of knowledge about
construct locations has important implications for op-
timal construct representations because some of the
relevant dimensions of indicator selection interact
with the degree of certainty with which researchers
can locate their constructs in multivariate space.

Four Dimensions of Indicator Selection

To provide an operational framework that builds on
and integrates many of these issues, we define and
discuss four dimensions of indicator selection that can
affect the fidelity, or quality, of construct representa-
tions: (a) centroid distance, (b) number of indicators,
(c) selection communality, and (d) selection diversity.
In our view, these four dimensions provide a useful
way to conceptualize and understand how indicator
selection effects can arise.

Centroid Distance

Centroid distance s defined as the true distance, or
correlation, between any two constructs, which, in our
vector-space representation, corresponds to the angu-
lar distance between any two construct centroids (i.e.,
the cosine of the angle between the axes representing
the construct centroids). When the distance between
two centroids is high, their correlation is low, and
indicators of the different constructs are likely to
populate clearly separable regions of multivariate
space. When the distance between two centroids is
low, their correlation is high, and indicators of differ-
ent constructs are likely to populate adjacent, or even
overlapping, regions of multivariate space. This latter
situation, depending on the nature of the indicator
selections associated with each construct, may make it
difficult to properly recover the constructs’ locations
in multivariate space and, therefore, their true corre-
lation.

* Although the hypothetical universe of potential indica-
tors reflects an unspecified volume within a domain, both
theory and operationalization processes, by focusing on the
centroid of constructs, suggest boundary conditions that
give shape to a domain cone.
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Number of Indicators

The second selection dimension is the number of

indicators. Classical measurement theory indicates
that, all other things being equal, more items lead to
better construct representations. Stated simply, as
more and more indicators are selected, the centroid of
the sumpled indicators will lie closer to the true cen-
troid of a domain. Under unbiased (e.g., random) se-
lecticn conditions, if enough variables are selected.
the expected value of a sampled centroid will approxi-
mate the construct’s true centroid because it is un-
likely that all indicators are off-center in the same
direc:ion. For numerous practical reasons, however
(e.g.. the practical cost-benetit trade-offs among ex-
pedience. breadth of coverage, and parsimony vs.
maximal accuracy and consistency). finding an opti-
mal rather than a maximal number of indicators is a
desired feature in research design. As a consequence
of this desire for a sufficient yet small number of
indicators of a given construct, the importance and
relatve influence of the next two selection dimen-
sions. become even more relevant.

Selection Communality and Selection Diversity

The next two dimensions of indicator selection are
the degree of selection communality and the degree of
selec tion diversity. These concepts and the distinction
between them are illustrated in Figure 2. We define
these: two dimensions in relation to the concept of a
selection plane. As previously defined (see Figure
1A), a selection plane is the circular cross section of
a possible domain cone centered on the centroid (con-
struct axis) at a given altitude or height. In our frame-

Axis of the True
Construct Centroid

Maximum Possible
1.0 Commur.\ality of
an Indicator
z Selection
== Planes
- o ®
/ SE e
AE 4 1 3 5
o Selection Diversity
T T 1
-1.0 [{] 10

Figure 2. Geometric representation of selection planes de-
fined by two of the dimensions in selecting indicators
(manifest variables) of a given construct (latent variable):
selec:ion communality and selection diversity.

work, a selection plane is a flat circular area at a
specific location in multivariate space from which in-
dicators can be selected (see Figures | and 2).

The location of a selection plane is determined by
its values on two dimensions. The first dimension is
the height or altitude of the selection plane on the
construct axis and reflects its degree of selection com-
munality. Here, selection planes at higher altitudes
represent indicators that have high construct-related
variance (e.g., scales based on many items or aggre-
gated responses). whereas selection planes at lower
altitudes represent indicators that have low construct-
related variance (e.g., a single item or response). The
second defining dimension of a selection plane is its
width or circumference and reflects its degree of se-
lection diversity (i.e., the diameter of a selection plane
centered on the construct axis as shown in Figure 2;
see also Cattell & Tsujioka, 1964). Here, selection
planes of narrower diversity (i.e.. of smaller circum-
ference) represent indicators with relatively small
amounts of specific (but reliable) variance, whereas
selection planes of broader diversity (i.e., of larger
circumference) represent indicators with potentially
greater amounts of specific variance (i.e., complex,
heterogeneous indicators).

Given that the reliability of any indicator cannot
exceed 1.0. these defining dimensions of a given se-
lection plane (i.e., its communality and diversity) are
not fully independent—the higher a selection plane’s
communality (altitude), the narrower its maximal di-
versity (circumference). This necessary, albeit periph-
eral, constraint on these two defining dimensions of a
given selection plane is represented by the outer semi-
circular arc in Figure 2 and reflects the maximum
possible width of a selection plane at a given level of
selection communality. In particular, the atypical ex-
tremes of selection are constrained such that when the
communality of a selection plane is 1.0, the degree of
diversity can only be 0 (completely isomorphic indi-
cators). The maximum diversity of a selection plane
increases rapidly as selection communality decreases
such that, again in the extreme case. when selection
diversity is 1.0, selection communality must be O
(candidate indicators are perpendicular to the con-
struct axis).

Taken to the logical extreme, all manifest variables
are candidate indicants of any given construct, allow-
ing for reflection, or reverse coding. of negatively
related indicators. However, as mentioned, both prac-
tical and theoretical considerations such as reasonable
face validity, adequate construct variability, discrimi-
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nation among constructs, and specific operationaliza-
tions ljmit typical measurement designs to only a sub-
set of possible indicators. For example, although large
levels of selection diversity are possible and may ac-
tually occur in practice, very wide diversity becomes
difficult to interpret. In extreme cases, the amount of
common-construct variance would likely be very
small and perhaps nonsignificant, or the indicators
would be too highly related with other constructs in
multivariate space to disentangle the construct rela-
tions that are being pursued.

Some illustrative values of selection communality
and selection diversity are depicted in Figure 2. For
each level of selection communality (.4 and .8), three
levels of selection diversity, ranging from quite lim-
ited (.1 diversity) to quite sizable (.5 diversity), are
represented. Note that indicators whose termini popu-
late a given selection plane differ in terms of their
closeness to each other and to a domain’s true cen-
troid (see Figure 1B). At a given level of selection
communality, indicators from tighter planes (less di-
verse and therefore reflecting less specificity; i.e., re-
liable indicator-specific variance) have less variability
in their relations with one another and tend to be
closer to the construct centroid than do indicators
from wider spheres (greater diversity). Given that
wider diversity reflects greater complexity in the vari-
ance composition of an indicator, indicators from di-
verse-selection spheres would have a greater potential
to share variance with other indicators of other con-
structs.

Together, selection communality and selection
diversity determine the nature of the construct prop-
erties of a selected indicator (i.e., indicator commu-
nality, specificity, and reliability). Indicator commu-
nality refers to the degree of reliable construct
variance, or communality, shared between an indica-
tor and the centroid of a construct (i.e., true construct-
related variance). In other words, the selection com-
munality of the selection plane determines the
magnitude of a given indicator’s loading under unbi-
ased selection. Indicator specificity refers to the de-
gree of homo- or heterogeneity of a given indicator
(i.e., its distance from a construct centroid). Here,
under unbiased selection, selection diversity deter-
mines the reliable component of a given indicator’s
unique or residual variance. Finally, these two prop-
erties, together, comprise the total reliability of an
indicator. That is, indicator reliability is determined
by an indicator’s degree of communality plus its de-
gree of specificity.’

In practice, the reliability of an indicator is inferred
from such indices as item-scale correlations and fac-
tor-space communality estimates. A problem with in-
terpreting such indices, however, is that we do not
know the location of the true centroid, and therefore
we cannot be sure of the true composition of an in-
dicators’ reliability. For instance, we do not know
whether an indicator’s reliability results from a com-
bination of either a high level of communality coupled
with low specificity or of a low level of communality
coupled with high specificity. Stated another way,
analysis techniques typically attempt to decompose an
indicator’s variance into a construct-common compo-
nent and a unique component. The unique component
is assumed to contain both indicator-specific variance
and unreliable variance (both of which are assumed to
be uncorrelated with other variance components
among the multivariate indicators of a given analysis).
However, such decompositions and inferences yield
inaccurate information about the nature of a construct
if the selection of indicators is biased (see Figure 1B).

An Illustrative Example

Figure 3 further illustrates the four dimensions of
indicator selection and the operational nature of our
Monte Carlo simulation. In the top panel of Figure 3,
two constructs (A and B) are shown. To simplify this
example, the two constructs are defined to be orthogo-
nal to each other (uncorrelated), and they are stan-
dardized to reflect relations that are of unit length
(i.e., correlational relations are depicted between the
constructs and their possible indicators).*

In Figure 3, we depict one selection plane for each
construct at a high level of selection communality and
a moderate level of selection diversity. The circular
representation of a possible selection plane symbol-

3 Referring back to Figure 1A, consider any indicator
vector in the domain of the construct (and thus falling some-
where inside the cone). That vector results from two com-
ponent pieces: (a) the length of its projection on the domain
centroid and (b) the distance of its endpoint from the do-
main centroid. An indicator’s reliable variance is partitioned
between its communality with the centroid and its hetero-
geneity, or diversity, with respect to that centroid. This latter
is analogous to specificity in common-factor model termi-
nology. Using the Pythagorean theorem, one can say that an
indicator’s reliability is the square root of its squared com-
munality plus its squared specificity. .

“# Note that all aspects of this simulation hold for covari-
ance relations as well.
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Figure 3. Geometric representation of conceptual aspects of selecting indicators of con-
structs. (Note. T represents the construct trueness of the selections and is defined as the largest
possible angular distance between the centroid of the sampled indicators and the true centroid
of the desired construct that a sampled centroid may have after selection.)
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izes the radial array of potential indicators that define
a construct at a given level of selection communatity
and selection diversity. In the middle panel of Figure
3, one possible selection of three indicators for Con-
struct A is shown. In this example, the selected indi-
cators define a sampled centroid that departs from the
true construct centroid by some amount due to the
inherent variability associated with any one selection
of indicators. Finally, the selected indicators and the
-ampled centroid are projected back onto the two-
Jimensional construct plane represented in the bottom
nanel of Figure 3.

Consistent with the propositions of classical test
rtheory, the four selection dimensions (centroid dis-
1ance, number of indicators, selection communality,
and selection diversity) and their influence on the true
construct composition of indicators (true indicator
communality, specificity, and reliability) provide an
exhaustive operational categorization of a given indi-
cator’s relations in multivariate construct space. In
our view, attending to these four dimensions as ex-
plicitly as possible when choosing and operationaliz-
ing the possible indicators of the constructs in a given
study should yield a broader appreciation for the po-
tzntial Iimits to the accuracy and generalizability of a
study’'s results and thereby enhance the overall quality
ol research.

Modeling the Relations Among
Selected Indicators

In addition to the general measurement concerns
detailed above, the ambiguities associated with these
sclection dimensions can also affect the efficacy of
various analytic techniques in recovering the inherent
information about the underlying multivariate rela-
tionships (i.e.. indicator-to-indicator, indicator-to-
construct, and construct-to-construct). With the amaz-
ing growth of structural modeling applications in the
p:st tew decades, the questions and issues of indicator
selection are particularly dramatized because of their
strict dependence on multiple indicators to define a
given construct (e.g., Bentler, 1980; Bollen, 1989;
Joreskog & Sorbom, 1989: McArdle, 1996: McArdle
& McDonald, 1984; Mulaik, 1988). Therefore, to
shed some additional light on the relative virtues of
es.ploratory and confirmatory approaches, we also ad-
dress the question: Do exploratory or confirmatory
analytic techniques more accurately recover informa-
tion concerning the true relationships among latent
rzriables? More precisely. we examined whether ex-

ploratory and confirmatory analytic techniques sys-
tematically differ in their ability to yield accurate (un-
biased) and efficient estimates of the true association
between constructs.

Method

As mentioned, we focus our simulation on the com-
mon-factor model, with important roots embedded in
classical test theory, for representing the relations
among indicators and constructs. To simulate a broad
array of research-design situations, we generated
60,000 sample correlation matrices reflecting system-
atic variations of (a) centroid distance, (b) number of
indicators, {(c¢) selection communality, and (d) selec-
tion diversity. For ease of communication, we in-
cluded only two constructs, which varied in their cen-
troid distance, or true correlation, over four levels (0,
3.5, and .7). The number of indicators for the con-
structs varied over five levels (2. 3, 4. 5. and 6).
Although using only two indicators per construct is
problematic, such a situation is often found in empiri-
cal research; therefore, we included it to examine its
behavior in the broader context of our simulation.

[n addition to these two more transparent features
of our simulation. we varied the magnitude of each
selection plane’s communality (i.e., the altitude, or
location of the selection plane) over three levels (.4,
.6, and .8). To vary the degree of selection commu-
nality systematically, we selected the multiple indica-
tors at the same selection communality. That is, we
constrained the degree of indicator-to-construct com-
munality to be a constant across all indicators whose
termini populate a given selection plane (i.e., the al-
titude, or location of the plane, from which an indi-
cator is selected is the same for all indicators, regard-
less of the degree of selection diversity). However, the
results and implications of our simulation do not de-
pend on such constraints (i.e., they generalize across
mixed communality conditions). Finally, at each level
of selection communality, we also varied the maxi-
mum degree of selection diversity over five levels (.1,
.2,.3. 4, and .5). Specifically, we varied the degree of
indicator specificity uniformly from zero to the maxi-
mum defined by the circumference of the selection
plane. Thus, the several indicator vectors of a selec-
tion plane share the same selection communality but
vary in their diversity. As a result, the indicators also
vary in their reliability because an indicator’s reliabil-
ity is determined by its degree of communality plus its
degree of diversity (see Footnote 3).
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Combining the four varied features for the data
generation phase of the simulation results in a design
matrix of 300 cells. Within each cell. we generated
200 sample correlation matrices by drawing the des-
ignated number of manifest variables at random from
the pos-ible indicators of a construct’s sample space.’
At each level of selection communality, we defined
the indicators’ sampling space as a selection plane
containing 360 possible sectors (one for each degree
of arc in the circle defining a selection plane) with a
continuous range of diversity bounded by O (perfectly
accurate) to the maximum diversity of the selection
plane (:.g., .1, .2, .3, .4, or .5). Each sampled corre-
lation matrix was generated by randomly selecting
points in this geometric space and calculating all pos-
sible ve ctor distances using basic geometry. The steps
and processes involved in the data generation are il-
lustrated in Figure 3.

The rirst analytic target was to estimate the true
correlations between the two constructs on the basis
of the correlations within and between their respective
indicators. To do this, we analyzed the data using both
exploratory and confirmatory methods. Specifically,
we used a standard confirmatory structural-equations
solution (i.e., maximum-likelihood estimation using
Proc CALIS; SAS Institute, 1990) wherein only the
expected loadings were estimated simultaneously
with the latent correlation between the two constructs.
For the exploratory procedure, we report the results
from an iterated maximum-likelihood estimation with
an oblique Harris-Kaiser rotation (i.e., using Proc
FACTOR with the HK rotation option and HKP = 0;
see SAS Institute, 1990) because this factor model is
both quite common and most similar to the confirma-
tory approach.® Finally, as a further comparison, we
also est:mated the constructs’ correlation using a stan-
dard raw-data technique, namely, the Pearson corre-
lation between the unit-weighted composite of the in-
dicators (i.e., the cosine of the angle between the two
axes defined by the unit-length geometric average of
each construct’s respective indicators).

We next compared the various estimates of the con-
struct correlation with the actual construct correlation
(i.e., the correlation specified in the simulation) to
ascerta:n the influence of the manipulated design vari-
ables. The primary dependent variable across these
analyses was the difference between the estimated
correlation and the true population correlation. In
more operational terms, the dependent variable was a
measure of how precisely information about the con-
structs (e.g., their centroids and intercorrelation)

could be recovered by analyzing relationships among
their indicators chosen in various configurations.

To determine the influence of the manipulated de-
sign variables on the recovery of the true correlations,
we conducted a 3 (method of analysis) x 5 (selection
diversity) x 4 (number of indicators, with the two-
indicator case removed) x 4 (centroid distance) x 3
(selection communality) analysis of variance
(ANOVA), with a priori contrasts examining the rela-
tive differences between the methods of analysis. For
ease of communication, this full ANOVA was fol-
lowed up by a separate ANOVA for each method of
estimation. For these analyses, negative values of the
dependent variable indicate an underestimation of the
true correlation, and positive values indicate an over-
estimation of the true correlation. Because of the tre-
mendous power of the significant tests due to the very
large sampling of data, we focused only on the pro-
nounced and consistent effects (i.e., p < .0001 for each
method of analysis). Finally, we also examined the
variability of the estimates in evaluating the outcomes
of the simulation. Although two quite different com-
binations of cells in our design can yield an average
dependent variable value of zero, indicating an unbi-
ased estimate of the true correlation, the design fea-
tures may yield estimates of the true value with dif-

5 The SAS/IML modules used in this simulation, as well
as the results for each cell of the design, are available from
Todd D. Little on request or can be downloaded directly
from http://www.mpib-berlin.mpg.de/research_resources.
html.

®1In supplemental analyses, we also compared a least-
squares estimator and alternative oblique rotation methods
and found no fundamental differences from the results of
the exploratory technique that we report. We also compared
a principal-component solution and found that it performed
much like the raw-data method owing to the fact that this
factor model also does not account for measurement error
(i.e., unreliability). For the exploratory procedures, we also
specified the number of factors to be extracted to be two,
rather than attempting a full comparison of rules for deter-
mining the number of factors to extract, because we found
quite often in our preliminary analyses that, when the con-
structs were highly correlated and the selection diversity
was moderate to large, only one factor was retained. There-
fore, one should bear in mind that given the type of explor-
atory procedure that we estimated, it reflects a very close
analogue to a confirmatory model with the exception that all
possible loadings are estimated (i.e., a pseudoconfirmatory
application of the exploratory algorithm).
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ferent efficiency (i.e., greater or lesser variability
across solutions).

Results

The Influence of the Four Dimensions of
Indicator Selection

Before turning to the results of the comparisons of
the analytic techniques to recover the correlations be-
tween the constructs, we first present a summary of
the influences of the four dimensions of indicator se-
lection. The random samples of indicators drawn in
the simulation produced estimates that converged on
the true correlation in the data, offering no evidence
of systematic error in the nature of the selected data,
F(299,59700) = 1.1, p = .11, grand mean = 0.

Notably, however. the range of possible correlation
that could emerge on any one sampling of indicators
was often quite pronounced. To clarify this point, we
introduce the concept of construct trueness (T) to rep-
resent the degree of possible bias (see Table 1). Re-
ferring back to Figure 3, the level of construct true-
ness, T, is defined as the largest possible angular
distance between the centroid of the sampled indica-
tors and the true centroid of the desired construct that
a sampled centroid may have after selection (cf. Cat-
tell & Tsujioka, 1964, on factor trueness). It is a type
of validity index of the sampling bias for a given set
of indicators from a selection plane of a given cir-
cumference. The values listed in Table | are, for three
levels of selection diversity (.1, .3, and .5) and number
of indicators (2-6), the mode, standard deviation, up-
per 95% confidence threshold, and maximum degrees
of possible bias (represented as percentages: [1 — T7]
x 100).

Table 1

LITTLE, LINDENBERGER, AND NESSELROADE

Two important aspects of the information in Table
1 are (a) the reduction in the variability in the degrees
of bias that can emerge as more indicators are selected
and (b) the increases in the degrees of bias that can
emerge as selection diversity increases. As men-
tioned, these estimates of selection bias are indepen-
dent of the amount of selection communality and the
amount of domain overlap. These values are relevant
because they reflect the degree of inherent variability
that can emerge when trying to measure the centroid
of a given construct, irrespective of a chosen analytic
technique. These values can be used as a heuristic
guide to determine the degree of diversity and number
of indicators that a researcher can tolerate for a given
research question. For example, if the available indi-
cators of a construct are quite diverse, then a re-
searcher might select more indicators to counter the
effects of the indicators’ diversity.

Differences in Bias and Efficiency Among the
Analytic Techniques

The different methods of analysis showed substan-
tial differences in the ability to recover the true cor-
relation among the constructs, F(2, 143280)
20,978.5, p < .0001. The a priori contrasts showed
that each method differed from the others (all ps <
.0001). The follow-up ANOVA results are presented
in Table 2. A number of general features can be
gleaned from the information in Table 2 regarding the
differences in the various analytic techniques to re-
cover the true correlation between the constructs.

Overall bias effects. As a whole, the four dimen-
sions of indicator selection had the least influence on
the analytic efficacy of the confirmatory structural
modeling technique. Only 1.5% of the variance in the

Bias and Efficiency at Specific Levels of Selection Diversity and Number of Indicators

Low (.1) diversity

Medium (.3) diversity

High (.5) diversity

Bias Efficiency Bias Efficiency Bias Efficiency
Number of indicators Md SD 95% Max Md SD 95% Max Md SD 95% Max
. 2 0 16 .5 1.0 0 1.47 4.4 8.2 0 4.10 12.3 24.5
3 0 1 3 8 0 1.00 3.0 7.2 0 2.72 8.2 23.0
4 0 .08 2 .6 0 73 2.2 5.5 0 2.09 6.3 16.5
5 0 .07 2 .5 0 .61 1.8 4.5 0 1.66 5.0 13.6
6 0 .06 2 5 0 49 1.5 3.9 0 1.44 4.3 14.0

Note.

Md = mode of the trueness estimates expressed as a percentage: 95% = 95th percentile of the trueness values; Max = the maximum

bias that occurred across the replications. These values are symmetric. thus they reflect the degree of possible bias, either too much or too little
tor a given construct. The degree of possible bias between any two constructs with the same selection conditions would be two times the tabled

values, These values are independent of selection communality.
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Table 2
Summary Table of F Ratios From the Analyses of Variance

Source df CFA EFA Raw data
A. Selection communality 2 0.9 0.3 18,729.8**
B. Selection diversity* 4 63.2%% 299.3%* 320.6%*
C. Centrc:d distance® 3 44.3%* 206.4%* 19,532.2%*
D. Numb:r of indicators 3 0.5 0.3 1,174.7%%
AxB 8 0.9 23 58.9%*
AxC 6 1.4 1.0 2.928.7%%
AxD 6 2.7% 22 63.6*%*
B xC* 12 6.3%* 45.6** 50.6%*
BxD 12 0.6 0.7 0.7
CxD 9 2.1 1.3 167.4%%*
AxBxC 24 1.6 1.6 10.5%*
AxBxI» 24 1.4 0.9 1.0
AxCxID> 18 1.4 1.1 13.6%*
BxCxD 36 0.7 0.5 0.8
AxBxCxD 72 0.9 0.8 1.0
Full model F value 239 3.0 10.8 510.6
Variance explained 1.5 5.1 71.9
Grand mean 01 -.02 - 11

Note. Error degrees of freedom = 47760; CFA = confirmatory factor analysis with iterated maximum-likelihood estimation; EFA =
exploratory factor analysis with iterated maximum-likelihood estimation. Domain communality is the height of the domain sampling sphere
on the con-truct axis (.4, .6, or .8). Selection diversity is the maximum width of the domain sampling sphere (.1, .2, .3, .4, or .3). Centroid
distance is the degree of correlational overlap between the centroids of each construct’s respective indicator domains (0, .3, .5, or .7). Number
of indicato-s varied from three to six for both constructs: the two-indicator case was not included here, The dependent variable is the difference
between the obtained interfactor correlation and the true population correlation.

“ The nature of this trend is depicted in Figures 4, 5. and 6.
*p<.0l. **p<.0001.

recoverability of the true correlation was systemati-
cally related to characteristics of the indicators, with
the remaining 98.5% of the variance simply the ran-
dom sampling variability associated with our simu-
lated selections. Generally speaking, this minimal bias
was in the direction of a very slight overestimation of
the true correlation (.01, or .01%). Given that we did
not allow dual loadings or correlated residuals, this
degree of bias (or, rather, nonbias) is quite encourag-
ing for the confirmatory technique.

Regarding the principal axis or common-factor
techniquz, the results showed that a little more than
5% of the variance in the recoverability of the true
correlation was attributable to the influence of the
four dimensions of indicator selection. Again speak-
ing generally, the bias was in the direction of a slight
underestimation of the true correlation (-0.02, or
.04%: see Table 2).

In stark contrast, the raw-data estimates showed ex-
treme bias, as expected. Here, over 70% of the result-
ing information about the relations between the two
constructs was attributable to the four selection di-
mensions. Given that it does not account for measure-
ment error, this technique, as is well known, has a

pronounced tendency to underestimate the true corre-
lation (=0.11, or 1.2%). These results highlight the
fact that relying on raw-data techniques to draw in-
ferences about the nature of the relations among con-
structs will be biased, not only because of measure-
ment error but also because of the influences of the
other selection dimensions (see Table 2).

Effects of selection diversity and centroid dis-
tance. The two dimensions of indicator selection
that had the largest and most systematic influence on
the analytic techniques were the degree of selection
diversity and the degree of centroid distance (i.e., the
true correlation between the construct centroids). Fig-
ures 4, 5, and 6 depict the two-way interactions be-
tween selection diversity and centroid distance for the
analytic techniques. The natures of both the main ef-
fects and the interactive effects are evident in these
figures.

Regarding the confirmatory technique (Figure 4),
the degree of bias was uniformly small. On average,
the confirmatory approach recovered the true correla-
tion among the constructs. In no case did this tech-
nique show evidence of a negative bias, and the small
degree of positive bias emerged only under conditions
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Confirmatory Structural Modeling
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Figure 4. Mean, 90% confidence interval, and absolute
range obtained from the confirmatory factor analysis of the
simulated data. (Note. The plotted values are the ditferences
between the true correlation and the obtained correlation.
The observations have been collapsed across selection com-
munality [.4, .6, and .8] and number of indicators [3, 4, 5,
and 6], thus sample size for each plotted condition is 2,400.
The center line is the degree of bias. the dash mark at each
level of interconstruct correlation reflects the absolute range
of the possible correlations, and the parallel solid lines are
the 90% confidence intervals.)

of high selection diversity and low centroid distance
(i.e., high correlation). Because we did not adjust our
models to account for correlations among residuals or
allow dual construct loadings for the indicators, this
small degree of bias is particularly comforting. For
the exploratory technique (Figure 5), a degree of
negative bias exists in the estimates at all levels of
selection diversity. The degree of bias is most pro-
nounced at high levels of interfactor correlation (i.e.,
low centroid distance).” For the raw-data technique
(Figure 6), the degree of bias was quite pronounced

because, as mentioned, this approach does not account
for the unreliability of the indicators.

Effects of selection communality and number of in-
dicators. From a bias standpoint, the number of in-
dicators per construct and the magnitude of the load-
ings (selection communality) had little effect on the
recoverability of the true correlations. However, these
two dimensions did have a pronounced influence on
the efficiency (variability) of the analytic techniques
in recovering the correlation between the two con-
structs. Fewer indicators and lower communality
{both of which reflect potentially low reliability) led
to quite sizable variability in the estimated correla-
tions but did not systematically bias these estimates.

The degree of selection communality (either as a
main effect or in interaction with the other three di-
mensions) had a pronounced influence only on the
raw-data technique, given that it does not estimate the
amount of reliable construct-related variance for a set
of indicators. This basic feature of these techniques is
well known. However, the severity of the bias that can
emerge is quite startling and highlights the degree of
potential error associated with conclusions and state-
ments of generalizability using this approach.

The case of two indicators. As mentioned, we in-
cluded the two-indicator case in our design because it
is a relatively common situation facing researchers.
As presented in Table 1, the two-indicator case led to
a great deal of variability in the estimated correlation
between the two constructs. More noteworthy, per-
haps, is the general problem of two indicators when
one attempts to analyze them. For each analytic tech-
nique except the raw-data technique, the constructs
were not properly identified such that an optimal and

7 Although the variability of the exploratory procedures
was less than that of the confirmatory technique, this did not
compensate for the bias differences between the techniques.
In addition, the variability of the confirmatory technique is
mostly due to the highly restrictive nature of the model.
That is, the exploratory procedures are saturated estimates
of the relations among the constructs, whereas the confir-
matory model is highly restricted. If one were to examine
the fit of these models (e.g., residuals, modification indexes)
and allow appropriate estimates (e.g., correlated residuals
among indicators that emanate from neighboring regions of
multivariate space), it is likely that the variability in the
estimated correlations would be considerably reduced (and
perhaps the slight positive bias would be eliminated). Fol-
low-up work is currently underway to examine the influence
of these and other forms of model modification in the con-
text of indicator selection.
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Exploratory (ML) Factor Analysis
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Figure 5. Mean, 90% confidence interval, and absolute
range obtained from the exploratory factor analysis of the
simulated data using a principal axis with maximum-
likelihood (ML) estimation. (Note. The results for the prin-
cipal-axis solution with least-squares estimation were nearly
identical to those depicted here. See also the note to Figure 4.)

unique sclution could be recovered, and the overall
bias that emerged was quite pronounced. However,
for the confirmatory technique, we also estimated the
models with equality constraints on the loadings of
the respe:tive constructs’ indicators (tau-equivalence
constraints). Given that both indicators were random
selections from the same domain, the assumption of
tau equivalence is justified. The results of this con-
straint wore quite encouraging for the confirmatory
technique, showing a pattern of minimal bias mirror-
ing that presented in Figure 4.

Discussion

Selecting indicators for modeling with latent vari-
ables is, and will remain, a crucial concern in experi-

mental design. As demonstrated in our simulation,
choices related to this issue strongly and interactively
influence the accuracy of conclusions about relations
among constructs. In particular, the four design as-
pects that were defined and incorporated into the
simulation were all found in one way or another to
influence both the representation of the constructs and
the recoverability of the construct relations. In various
ways, our results support and empirically reinforce a
number of basic assumptions and principles that have
been acknowledged in the literature for some time and
highlight several points to keep in mind in designing
research involving latent variables. In addition, the
results provide several answers, or directions from
which answers might come, to a number of prevailing
questions about using multiple indicators to represent
constructs. In the following, we address some of these
questions in the form of general recommendations.

Simple Rawdata Composites
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Recommendations and Cautions

Should confirmatory or exploratory factor analysis
be used for fitting the measurement model? Our data
suggest that when a priori understanding of the
domain allows, modeling and estimation should in-
corporate known information rather than rely on data-
driven representations. Overall, our results demon-
strated that confirmatory analyses provide less
biased—in fact, nearly unbiased—estimates of the
construct correlations than do exploratory analyses.
Exploratory analyses approximated the lack of bias
achieved with the confirmatory analysis in two cases,
but they never exceeded it. The first case was under
conditions of low or medium diversity, in which no
bias (low diversity) or only little bias (medium diver-
sity) was observed. The second case concerned all
levels of diversity when the true construct correlation
was zero. Under this condition, none of the methods
produced any substantial degree of bias. In all other
situations, however, the exploratory method underes-
timated the true construct correlation to a noticeable
degree. Therefore, when one is forced to explore
rather than to take a confirmatory stance, the results of
the exploratory procedures must be considered with
reservation and evaluated in relation to the biasing
influence that the dimensions of indicator selection
can have.

Do confirmatory techniques overcorrect for mea-
surement error? In contrast to exploratory tech-
niques, bias was basically absent with the confirma-
tory method, with the exception of a small positive
bias under high diversity conditions coupled with high
construct correlations (i.e., when diverse domains
overlap considerably). On the whole, however, we
found that the discrepancies in the magnitudes of con-
struct correlations between confirmatory and explor-
atory techniques are due, on average, to a negative
bias of the exploratory techniques, rather than to a
positive bias of the confirmatory techniques. Contrary
to prevailing skepticism, we found little reason to
question the magnitude of a correlation between con-
structs based on confirmatory techniques just because
it greatly exceeds the magnitude of the corresponding
correlation obtained with other analytic techniques.

How many indicators are optimal?  In general, us-
ing more rather than fewer indicators to define con-
structs produces a more efficient representation of the
constructs and their interrelationships, although, on
average, the number of indicators showed little effect
of bias. The greater efficiency yielded through more
indicators is consistent with general sampling notions,

However, because the precision and accuracy of do-
main specifications and variable sampling do not yet
approach those of sampling persons or other entities,
more precise specification of content domains must be
developed before the matter of sampling variables is
as straightforward as that of sampling persons or other
entities (see also Velicer & Fava. 1987).

Practically speaking, the optimal versus maximal
principle of parsimony must be considered (see
McArdle, 1994). In this regard, we do not want to
imply that random sampling is the only possibility
here. Random sampling is an efficient way to produce
representativeness under conditions in which the
sample space is well defined and the number of ele-
ments sampled is large enough to give acceptable
standard errors. On the other hand, when a given do-
main is well enough specified that one can deliber-
ately select (rather than sample), a small number of
indicators may suffice to identify the construct pre-
cisely. In such situations, a large number of indica-
tors is not necessary, and one can trade off variables
in order to increase the number of other design ele-
ments such as persons or occasions of measurement in
combinations that are optimal for one’s research pur-
poses.

Here, such deliberate selections can be informed by
considering the dimensions of indicator selection that
we have articulated. All else being the same, one will
obtain more precise estimates of construct interrela-
tionships when the indicators that define a construct
surround its domain centroid (see Figure 1B). Again,
this idea presumes that a construct’s domain is well
enough specified so that the notion of a domain cen-
troid makes sense. For instance, both hierarchical
(Carroll, 1993) and radex theories of intelligence
(Marshalek et al., 1983) indicate that measures of rea-
soning ability tend to cluster closely around the cen-
troid of the intellectual-ability domain (e.g., they load
highly on Stratum III in Carroll’s terminology and are
located close to the center in the Marshalek et al.
conception). Therefore, if one wants to obtain a suf-
ficient estimate of individual differences in general
aspects of intellectual functioning using only a few
indicators, a good choice is to sample measures within
the subdomain of reasoning, which is likely to trian-
gulate on the centroid of the intelligence construct.

Under which conditions are homogeneous indica-
tors preferred? Given the guidance of a strong
theory or past research to support the contention that
the sets of indicators being used to mark the con-
structs capture the centroids and given also that the
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relationship between constructs is to be estimated
with measurement models specified and fitted by
means of contirmatory analysis, one is better off with
highly correlated indicators (i.e., high domain com-
munality and low selection diversity). Under these
conditicns, such indicators are most likely to yield
unbiased and efficient representations of constructs
and their interrelations. With the guidance of strong
theory, nigh selection communality and low selection
specificity can be achieved with. for example, scales
that are comprised of many items or numerous indi-
cators that are aggregated into domain representative
parcels {Kishton & Widaman, 1994).

Under which conditions are heterogeneous (di-
verse) indicators preferred? Given a theory that is
not strong enough to guide the selection of specific
indicators a priori but is at least capable of identifying
plausible loading patterns, one is still better off using
confirmatory techniques to fix the measurement
model. In this case, however, the selection of indica-
tors should generally span the domain rather than be
highly targeted (cf. Humphreys. 1962). Often, the
temptation is to maximize homogeneity, which
can lead to representations of constructs that are
sharply defined (i.e., highly intercorrelated indicators)
but may be off-center with regard to the domain cen-
troid.

For example, consider selection planes of moderate
diversitv. Attempting to reduce the diversity among
indicators by selecting only those indicators that con-
tribute to high estimates of internal consistency may
result in a construct that reflects not only true selec-
tion cormunality but also a considerable amount of
nonconstruct specificity (e.g., common method vari-
ance, response biases, social desirability). The allure
of a bloated-specific construct is nefarious because
the likelihood is that the sampled centroid among the
indicators, although well marked, would be biased
(i.e., wkan “good” indicators are bad). This observa-
tion may seem contradictory to those persuaded of the
unqualified virtues of homogeneity (i.e., high corre-
lations among the indicators of a latent variable).
However, choosing a set of indicators mostly on the
basis of high intercorrelations runs a significant risk
of both missing the centroid altogether and wreaking
havoc on the estimates of construct relations (i.e.,
when “good” indicators are bad). Thus, contrary to
common belief, high indicator intercorrelations are
not always better than low indicator intercorrelations.
This situation is typical of broad domains whose cen-
troid, for whatever reason (insufficient data or theory,

lack of convergence of data and theory, diffuse struc-
ture of the domain itself). is not well identified.

Can indicators with low internal consistency still
be valid? Even a set of indicators of ““poor™ psycho-
metric quality (e.g., low reliabilities, little common
variance) can produce accurate estimates of the rela-
tionships among constructs provided that they (a) are
spread out across the construct domain sufficiently to
capture the centroid, (b) yield sufficient variability on
the construct, and, again, (c) are analyzed by confir-
matory analysis. Indicators of constructs such as so-
cioeconomic status or aspects of attachment, for ex-
ample, often are faulted for their low interrelations.
Arguably, constructs such as these might better be
conceived of as emergent constructs. and, if so. our
discussions would not apply. However. if such con-
structs are presumed to give rise to effect indicators,
our simulation suggests that a confirmatory represen-
tation of such indicators not only triangulates on the
construct’s centroid but also, on average. accurately
corrects for the construct’s low measurement quality
(disattenuates) and yields unbiased estimates of its
relations with other constructs. In other words. con-
structs can be represented validly even though esti-
mates of reliability suggest otherwise (i.e.. when
“bad™ indicators are good).

What should be done with just two indica-
tors? The increasing sensitivity of researchers to the
problems associated with two indicators has brought
forward the question of how to appropriately handle
such cases in actual practice. Having only two indi-
cators to identify a construct has been recognized as
problematic for some time (e.g., Harman, 1967). In
the context of our geometric framework, the funda-
mental flaw of having only two indicators is evident.
If one locates two indicators on the periphery of a
selection plane (e.g., as in Figure IB), the line seg-
ment that joins them contains the sample centroid;
however, a centroid’s location on that line segment is
not determinable without additional information.
Even the line segment between two diametrically op-
posed indicators, although containing the true cen-
troid, would not have a uniquely defined sample cen-
troid. Placing theoretically meaningful constraints on
the defining equations of two-indicator constructs,
however, uniquely locates a centroid for that sampling
of indicators. For example. we suggest. on the basis of
our simulation, that when two indicators of a con-
struct are theoretically equivalent selections from the
domain of possible indicators, placing equality con-
straints on the respective loadings is theoretically de-
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fensible (even if the empirical data are not in strong
agreement) and, on average, leads to accurate recov-
ery of the true construct centroids.

What can be done with nonoptimal indica-
tors? When one is confronted with a less than opti-
mal set of manifest variables for marking the con-
structs of interest, any additional information that can
be brought to bear in estimating the construct inter-
relationships should be used. Specifying the represen-
tation of the constructs as precisely as possible can
help to compensate for ill-chosen indicators. For ex-
ample, the sample centroid can be weighted toward
indicators of higher validity if the validities are
known. More generally, other weighting schemes can
be used to estimate sample centroids that in turn will
produce more valid estimates of the relationships
among constructs. For instance, in the case of two
indicators, if one of them is a more theoretically im-
portant marker of a construct than the other, placing
equality constraints on the loadings of the indicators is
not appropriate. However, the lack of identifiability
and the possibility that the non-construct-related vari-
ance from the weak indicator may “sneak” its way
into construct space suggest that one should still place
theoretically meaningful constraints on the defining
equations of the construct. Here, the central indicator
could be constrained by fixing its loading and its re-
sidual error to theoretically defensible and meaningful
values (e.g., the loading could be constrained to equal
the square root of a communality estimate, and the
error could be constrained to | — communality).

How can one better select indicators? On the ba-
sis of our framework and the simulation results, as
well as on the principles of convergent and discrimi-
nant validity, we can suggest an empirically aided
heuristic for selecting optimal indicators of a con-
struct. First, on the basis of theory and available re-
search, specify the expected location of a construct
centroid relative to a set of key marker constructs. For
example, a construct under development might be ex-
pected to be moderately positively correlated with es-
tablished Construct X, moderately negatively corre-
lated with established Construct Y, and uncorrelated
with established Construct Z. Second, identify a broad
set of candidate indicators of the construct and use
them to estimate a strict confirmatory factor analysis
of the four constructs (i.e., with no unnecessary esti-
mates or restrictions). On the basis of our simulation,
the correlational structure among the constructs
should be an unbiased and quite efficient (if sufficient
indicators are used) representation of the constructs’

interrelations. With this construct space as a guide,
then select a subset of the indicators of the construct
under development that, when placed in a strict con-
firmatory factor analysis, yields the same correla-
tional structure among the constructs. We emphasize
that, with this approach, the optimal subset of indica-
tors of the construct, again, may or may not be the
same subset of indicators that would yield the highest
internal consistencies.

Is more always better? In the face of limited or
nonexistent theory and given no other information,
two recommendations seem warranted to us; More is
better, and breadth is better than homogeneity. How-
ever, the idea that more is better is not necessarily a
take-home conclusion that can be deduced from our
framework. One important goal in programmatic re-
search is to find an optimal and unbiased set of indi-
cators that allow accurate and efficient representations
of constructs. As was shown in Table 1, six indicators
under high diversity conditions are as unbiased and
efficient as two indicators under moderate diversity
conditions. Therefore, the more-is-better notion must
be considered in conjunction with the expected diver-
sity of the domain. Under high diversity, more items
or indicators are certainly better if prior research or
strong theory is not available to assist in selecting an
optimal set of indicators. Under low to moderate di-
versity, parsimony and optimality can make for good
representations. In addition, we mention that pre-
analysis procedures such as parceling techniques offer
a positive feature in that they reduce the diversity of
the indicators. Given that some recent works have
emphasized that three indicators per construct in con-
firmatory analyses is an optimal number, parceling
techniques can bring the number of indicators down to
this optimum while reducing the diversity to a level at
which the construct representation will most likely be
accurate (see, e.g., Kishton & Widaman, 1994, Marsh,
Hau, Balla, & Grayson, 1998).

Conclusions

As should be apparent throughout our discussion,
the strength of our recommendations rests consider-
ably on the availability of a strong theory concerning
the nature of the construct domain and the dispersion
of indicators through it. In our view, theory provides
the paramount source of guidance for picking a lim-
ited number of indicators to represent a construct.
Whether theory provides actual indicators or merely
defines a domain that can be representatively sampled
is a secondary question. In either case, because theory
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is never complete, we must recognize the importance
of the (hopefully) spiraling interplay between theory
and empirical research whereby both are improved
gradually (Cattell, 1966a).

In our view. measurement will be considerably im-
proved if researchers consider the centroid of a con-
struct that they desire to measure and speculate on its
place among other constructs rather than getting
caught up in the intricacies of the correlations and
consistencies among the measured items. behaviors,
or responses. Shifting attention from the trees to the
forest should free the embedded figure from its frame
and allow for better representations of constructs. In
other words, focusing attention on the centroid of a
constr.ict and then considering the various indicators
that one could select to represent the construct will, in
our view, yield better choices than would, for ex-
ample. selecting a set of indicators by convenience or
on the basis of high internal consistency estimates and
then presuming that an analysis technique will recover
the true structure. Granted. all analysis techniques at-
tempt to optimize the implied structure inherent in a
set of manifest indicators. However, their efficacy
will be only as good as the measurements provided. If
the indicators are not selected well, the recovered
structure will be misleading and biased.

Regarding limitations and future directions, the im-
plications of our simulation apply most directly to
variables that are multivariate normal and continu-
ous. We do not know, for example, how far the im-
plications can be extended to nonnormal data or to
ordinal variables. A second issue for further work has
to do with the possibility of estimating correlated re-
siduals and dual construct loadings in structural-
equations frameworks. To what degree would addi-
tional estimates such as these contribute to or
diminish the already low degree of bias with such
technijues as well as increasing the efficiency of es-
timation? A third issue has to do with representing
mean-level, or intercept, information in structural-
equations models (i.e., MACS models: Little, 1997).
Do these four selection dimensions have a ditferential
influence on estimates of the mean-level information?

These caveats notwithstanding, the results of our
simulation indicate that strong theory coupled with a
confirmatory approach will, on average, succeed in
recovering the true multivariate relations among indi-
cators and constructs, even under difficult conditions.
We eruphasize, however, that, underlying the specif-
ics of the selection framework and Monte Carlo simu-
lation, our more general aim has been to reinforce the

need for continuing efforts to develop and elaborate
the definition of constructs and thereby to improve the
measurement devices that are such an important as-
pect of our science.
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