04

Reprint:
L.-G. Nilsson and H. J. Markowitsch (Eds.) Cognitive Neuroscience of Memory
(pp. 103 — 146). Hogrefe & Huber: Seattle 1999

Cross-Level Unification:

A Computational Exploration of the Link
Between Deterioration of Neurotransmitter
Systems and Dedifferentiation of Cognitive

Abilities in Old Age

Shu-Chen Li and Ulman Lindenberger

Introduction

In the last few decades, much research progress has been made in neuroscience
and in many subfields of psychology such as cognition and development. Alas,
while empirical data and theories have been accumulating within each of these
disciplines rapidly, overarching theoretical orientations which aim at integrat-
ing subsets of these fields are scarce, the importance of cross-domain or cross-
level unification as revealed in the history of science notwithstanding. Take
psychology as a particular example of disunity either in terms of methodolo-
gies, domains of research, or levels of analysis: Not only is there a lack of
integration, to the contrary, strong bifurcations exist between the experimental
and psychometric traditions (Cronbach, 1957, 1975), between the studies of
child development and adult development/aging (Baltes, Staudinger, & Lin-
denberger, in press), and between the behavioral and biological studies of
cognition (Churchland & Sejnowski, 1988). Segregation, either within a given
discipline or between disciplines, is not optimal. According to Leibniz
(1690/1951, p. 73), who thought that scientific inquiry can be viewed as “an
ocean that is continuous everywhere without a break or division™ (cf. Giger-
enzer, 1991), interdisciplinary exchange and integration are not only desirable
but also necessary for science to progress.

Unification via Interdisciplinary Coevolution: The Example of Cognitive
Neuroscience

Although it has not been stressed until recently, a positive change towards a
zeitgeist of interdisciplinary integration among subfields of psychology and
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neuroscience is slowly emerging. Many philosophers of science. neuroscientists
and psychologists now assert that unification of theories and findings at dif-
ferent levels and in different domains is a process within which the coevolution
of theories in related fields can take place by ways of cross-level hypothesis
generation and testing (e. g.. Baltes et al..in press: Bechtel. 1988: Churchland.
1988: Churchland & Sejnowski. 1988: Llinas & Churchland. 1996: Newell. 1990:
Plude, Enns, & Brodeur, 1994; Posner, 1992; Royce, 1987: Schacter. 1992
Schneider, 1993: Shepard. 1987: Staats, 1991).

In the last decade of the 20th century, an example of a fruitful convergence
of research from formerly isolated fields is the emergence of cognitive neuro-
science. With the goal of uniting computational cognitive science,experimental
cognitive psychology and neuroscience, researchers endorsing the cognitive
neuroscience orientation have been working towards bridging the gap be-
tween the descriptions of information processing and the specifications of
brain functioning. Indeed, the various studies reported in this volume exem-
plify some attempts at more integrated views of memory functioning by
drawing together data and theories from different levels.

Given that the agenda of cognitive neuroscience is to unify empirical regu-
larities and theories of cognition at the behavioral. information processing.and
biological levels. the research strategy has been to simultaneously collect. via
neural imaging techniques, experimental data concerning both behavioral
manifestations and neuronal properties of cognitive systems. In addition to
such experimental endeavors. theoretical efforts have also been devoted to the
construction of two types of neural models serving different but complemen-
tary purposes: (a) specific models which aim at capturing the dynamics and
anatomy of particular neural circuitry (e. g..Houk,Davis. & Beiser.1995:Berns
& Sejnowski. 1998). and (b) general models which try to capture global prin-
ciples of neural information processing, such as signal coding. transmission.
and storage, that might overall apply in many different cortical networks (cf.
Churchland & Sejnowski. 1988: e. g.. McClelland, McNaughton. & O'Reilly.
1995; Servan-Schreiber, Printz, & Cohen, 1990).

Research Goal and Organization

The computational investigations described in this chapter belong to the class
of general models. Specifically. we explore, via connectionist simulations. a
potential theoretical path from the deterioration of neural information pro-
cessing to the dedifferentiation of cognitive abilities that is empirically ob-
served in old people. To investigate this theoretical link, we looked at two sets
of mechanisms. The first set concerns the effect of neurotransmitters, in par-
ticularly catecholamines, on the signal-to-noise ratio of neural transmission
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and the subsequent effect on the level of random variability within the central
nervous system (CNS). The second set has to do with the relations between
these biological processes and age-related increase in intraindividual and
interindividual variability and the concomitant dedifferentiation of ability
structure in old age.

The organization of this chapter is as follows: We first describe experimental
results regarding age-related dedifferentiation in old people’s ability profiles
and age-related increase in interindividual and intraindividual variability. A
few general conceptual accounts for these empirical findings will be presented.
along with a short description of an attempt to formally integrate these two
sets of findings and explanations at a purely descriptive level, We then present
empirical findings on aging-induced deterioration of neurotransmitter systems
(Morrison & Hof. 1997) and the increase in CNS variability at the biological
level. In trying to bridge the gap between the empirical phenomena observed
at these two levels. we propose a computational approach which varies the
responsivity of the processing units and the internal variability of connectionist
networks by manipulating the gain parameter of the sigmoid activation func-
tion. Specifically. the aging-induced depletion of catecholamines (Gabrieli.
1995) is simulated by reducing the value of the gain parameter. After describ-
ing the foundations upon which our computational model is based. we then
report two sets of simulations, each involving three groups of networks that
differ only in the means of the uniform distributions from which values of gain
parameters were sampled. Then, we examine the effect of this gain parameter
manipulation on the intercorrelations between the networks’ performances in
two task domains (i. e.. episodic memory and categorization learning). At the
end. we discuss limitations of the present formalization and its implications for
the study of lifespan cognitive development.

Dedifferentiation of Ability Structure, Variability, and Some
Conceptual Accounts

In this section. we review two separate sets of empirical findings at the behav-
ioral level that are taken from cognitive aging research and psychometric stud-
ies of intelligence. To our knowledge. these two sets of findings have been
rarely reviewed together, implying that they are formerly thought to be inde-
pendent. The first set of findings concerns the tendency towards dedifferentia-
tion of intellectual abilities from early adulthood to old age. The second set of
results pertains to age-related increase in both interindividual and intra-
individual variability in old age. General explanations previously proposed to
account for these findings are also discussed.
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Dedifferentiation of Ability Structure

At the behavioral level, one of the most replicable and important psychometric
findings about mental abilities is the positive manifold (i. e., patterns of posi-
tive correlations) between tests of different cognitive abilities. As early as the
turn of this century, Spearman (1904) identified a factor of general intelligence
(g) to indicate the degree of the positive manifold. Patterns of positive mani-
fold, as represented in factor analytical models, are usually taken as descriptive
indicators for the organizations of the mental abilities measured by intelli-
gence tests. Given that a central issue in developmental and especially lifespan
research concerns changes in the organization of behaviors, the notion that
development may modulate the degree of differentiation or lack of differen-
tiation (i. e., dedifferentiation) among mental abilities has been of great inter-
est to researchers of intelligence and its development (e. g.,Burt, 1954; Garrett,
1946; Reinert, 1970; Spearman, 1927). To date, results from cross-sectional psy-
chometric studies of intelligence show a general trend from a lack of differen-
tiation to differentiation to dedifferentiation across the lifespan. as the ontog-
eny of cognition proceeds, respectively, from childhood to adulthood and fi-
nally into old age. Empirical findings regarding the differentiation of cognitive
abilities in child development will be discussed later. Here we first focus
on data pertaining to cognitive aging. Empirical evidence for age-related
dedifferentiation of cognitive abilities has been found both with respect to
intercorrelations among tasks that are within the same domain of functioning
(i. e., intrasystemic relations) and across different domains of functioning (i. e.,
intersystemic relations).

Dedifferentiation of Intrasystemic Relations in Psychometric Studies

As people age, the statistical structural patterns involving different types of
mental abilities become less differentiable. For instance, using Wechsler's nor-
mative data, Balinsky (1941) found that differentiation increased from early
adolescence to adulthood and then reversed in later adulthood. Similarly. Lie-
nert and Crott (1964) tested adolescents (age 10-12 years), young adults (age
18-20 years), and older adults (age 45-60 years) on 14 ability tests, and found
that the percentage of variance in the first centroid factor was 45, 41 and 47.
Baltes, Cornelius, Spiro, Nesselroade and Willis (1980) found that the factor
structure of fluid and crystallized intelligence was less differentiable in old
people (60 to 89 years old). Likewise, Hayslip and Sterns (1979) found that
intercorrelations among tests of fluid and crystallized intelligence were higher
for older than for younger adults. Cunningham (1980) compared the ability
structures of several adult age groups, and found that although similar factor
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loading patterns could be obtained for adults of increasing age. there was an
age-related increase in the magnitude of factor covariance. Besides the results
from cross-sectional studies, in a longitudinal study, McHugh and Owens
(1954) found that the first unrotated principal component accounted for 53%
of the variance in the Army Alpha Test when the participants were at the age
of 19, and increased to 63.4% when the participants reached the age of 50. In
addition to these earlier findings, two very recent studies provide new support
for age-related dedifferentiation in intrasystemic relationships. For instance,
Baltes and Lindenberger (1997) found that the strengths of intercorrelations
between five intellectual abilities were stronger (median r = 0.71 vs. median r
= 0.37) for old people (age 70-103 years) than for young people (age 25-69
years). Babcock, Laguna, and Roesch (1997) examined the factor structure of
processing speed (involving a total of nine speed measures) in young (age
18-24 years) and old (age 55-80 years) people. Their results showed that al-
though the number of factors and factor loadings were invariant across the
two age groups, the interfactor correlations, the variance-covariance matrices,
and the unique variances differed between the groups, all indicating a greater
degree of dedifferentiation in the old group.

Dedifferentiation of Intersystemic Relations in Cognitive Aging Research

Besides the age-related strengthening of intrasystemic relationships that is
evident in psychometric studies, recent cognitive aging research has also iden-
tified an intersystemic relationship between cognitive and simple sensory and
sensorimotor functioning. For instance, Granick, Kleban, and Weiss (1976) re-
ported high correlations between auditory threshold at various frequencies
and scores of the verbal (r = 0.44) and digit symbol (» = 0.36) subtests of the
Wechsler’s Intelligence Scale. Baltes and Lindenberger (1997) and Lindenber-
ger and Baltes (1994) found that the relationship between the performance
measures of sensory (i. e., auditory and visual acuity) and sensorimotor (i.e.,
balance and gait) functioning and those of cognitive functioning (including
tests of processing speed, memory, reasoning, practical knowledge and verbal
fluency) was of such magnitude that, for the age range from 70 to 100 years,
practically all age differences (91%) in cognitive functioning, which corre-
sponds to about 40% of the total interindividual differences in cognitive func-
tioning, were associated with and therefore can be predicted by relatively
simple sensory and sensorimotor measures. Likewise, Salthouse, Hancock, Me-
inz, and Hambrick (1996) showed that, for the age range from 18 to 92 years,
visual acuity shared a very large proportion of age-related interindividual dif-
ferences in measures of working memory, associative learning, and concept
identification.
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Indications of Dedifferentiation in Neural Information Processing

In addition to the findings of age-related dedifferentiation of old people’s
ability structure at the behavioral level, recent results from studies of brain
imaging also gave initial indications of a parallel trend at the biological level.
For instance, Grady and colleagues (Grady et al., 1992, 1994) examined aging-
induced changes in object and spatial visual processing at the level of regional
cerebral blood flow (rCBF). Their results demonstrated that during object
matching, old people showed more activation than young people in the right
prefrontal cortex; and during location matching, old people showed more
rCBF activation than young people in several areas of prefrontal cortex (i. e.,
in bilateral inferior parietal cortex and left medial parietal cortex). Based on
these results, Grady et al. (1994) suggested that during visual processing the
neural circuitry in the occipital visual area is more efficiently used in young
people: whereas in old people there is more reliance on other additional cor-
tical networks (in particularly for spatial vision), indicating a stronger degree
of interdependence among different processes at the cortical level. Animal
models of aging also provide evidence in support of a tendency of age-related
functional dedifferentiation at the cortical level. For instance, it was found that
the receptive fields of the hind-paw representations in sensorimotor cortex
and the cortical areas excited by tactile point-stimulation to be large and highly
overlapping in old rates, but relatively small and focused in young rates
(Spengler, Godde, & Dinse, 1995).

In summary, the phenomenon of increasing interdependence among differ-
ent functions and processes in old age is relatively ubiquitous. At the behav-
ioral level. empirical evidence has been found both with respect to intrasys-
temic and intersystemic relationships: and with different types of performance
measures, ranging from standardized intelligence tests and elementary exper-
imental cognitive tasks of memory and processing speed to sensory acuity. At
the biological level, empirical supports came both from neural imaging studies
on the dynamics of brain metabolism in humans and from animal models of
brain aging.

Age-Related Increase in Variability

We now turn to describe the phenomena of age-related increase in both inter-
individual and intraindividual variability. Although the idea of relating cogni-
tive aging deficits to aging-induced increase in neural noise was first intro-
duced in about four decades ago (e. g., Crossman & Szafran, 1956; Welford,
1965), most studies of cognitive aging, however, focus only on measures of
central tendency. Issues on age-related increase in dispersion (i. e., intraindi-
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vidual variability) or diversity (i.e.. interindividual variability) and the
relationship between these two types of variability, on the other hand, have
not been emphasized in gerontological research (cf. Nesselroade, 1991a.b).
Nevertheless. meta-analyses based on longitudinal and cross-sectional studies
which reported measures of variability indicated an age-related increase in
variability.

Interindividual Variability

For instance, with respect to cognitive variables, (i. e., memory and other mea-
sures of intelligence) 79% of the studies (6 longitudinal and 48 cross-sectional)
reviewed by Nelson and Dannefer (1992) reported an increase of variability
with age. Similarly. results from Morse's (1993) meta-analysis (only cross-sec-
tional studies were included) showed that interindividual variability in mea-
sures of response time (RT). memory, and fluid intelligence increased with age.
Hale,Myerson,Smith,and Poon (1988) examined the question exclusively with
respect to RT. and found age-related increase in interindividual variability. In
addition to these meta-analytical studies, other experimental studies also
showed that interindividual variability in episodic memory, measures of fluid
intelligence (Christensen. Mackinnon, Jorm, Henderson, Scott, & Korten,
1994). and digit memory span (Rabbitt, 1993) increased with age.

Intraindividual Variability

Besides age-related increase in interindividual variability, there is also evi-
dence for age-related increase in intraindividual variability. For instance, inter-
trial variability in RT was also found to increase with age (e. g., Fozard, Thom-
as. & Waugh, 1976; Salthouse, 1993). In addition to results regarding intraindi-
vidual variability of response latency, Li, Aggen, Nesselroade. and Baltes
(1998) measured memory and sensorimotor performances in a small sample
of community-dwelling elderly (age 64-86 years) in 13 biweekly measurement
occasions that spanned across six months. Their results showed a trend in the
direction of a positive correlations between age and the magnitude of intra-
individual variability in memory (r = 0.46. p < 0.05,n = 19) and sensorimotor
(r=0.20,p = 0.4, n = 19) performance.

Indications of Increased CNS Variability

In addition to the aforementioned empirical evidence of age-related increase
in intraindividual and interindividual variability in RT and other performance
measures at the behavioral level, neurobiological studies have also shown
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indications of a trend of increased CNS variability. For instance, Kraiuhin.
Gordon, Stanfield, and Meares (1986) examined the relationship between age
and auditory P300 latency (a component of event related potentials) via a tone
discrimination task in normal adults (age 15 to 89 years). In addition to a
significant relationship between age and P300 latency, their results also showed
significantly more latency variability in the subsample of older adults (i.e.,
adults over 45 years). Kugler, Taghavy, and Platt’s (1993) review of studies
involving the P300 potential analysis of cognitive human brain aging also
indicated a trend of age-related increase in P300 variability.

In brief, although the issue of age changes in interindividual and intraindi-
vidual variability has been somewhat ignored in gerontological research. the
available empirical evidence seems to suggest a trend of age-related increase
in both types of variability. Data supporting this tendency have been found
both at the behavioral and biological levels.

Conceptual Explanations of Dedifferentiation and Increased Variability

A few explanations for the two sets of empirical phenomena reviewed above
have been suggested at the conceptual level. In this section, we present some
of these general accounts. Controversies associated with some of these expla-
nations are also discussed.

Common-Cause Hypothesis and Dedifferentiation

Regarding the phenomenon of age-related dedifferentiation of ability struc-
ture, one explanation, known as the common-cause hypothesis (Baltes & Lin-
denberger, 1997; Lindenberger & Baltes, 1994; Lindenberger, Marsiske. &
Baltes, 1998), proposes that normal aging is associated with a general loss of
cognitive capacity and plasticity that is in turn caused by aging-induced dete-
rioration of general neurobiological mechanisms which compromise the integ-
rity of the brain across a wide range of areas and functional circuitry. Mecha-
nisms and processes of brain aging are then postulated to constrict the func-
tional cerebral space (Kinsbourne & Hicks, 1978), which could manifest at the
behavioral level as the dedifferentiation of ability structure.

Some Controversies Regarding the Explanations of Increased
Behavioral-Level Variability

With respect to the phenomenon of increased variability in old age. some
researches have proposed that age-related increase in interindividual differ-
ences might be associated with individual differences in the rates of neuro-
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bioogical deterioration that are associated with aging (Birren, Woods & Wil-
liams, 1980; Rabbitt, 1981; Welford, 1980). However, within the cognitive aging
literature, this view has been specifically questioned with respect to age-related
increase in RT variability. It has been demonstrated that the correlation be-
tween age and the standard deviation of RT is greatly attenuated or, in some
cases. eliminated when the effect of mean RT is statistically controlled* (e. g.,
Hale et al., 1988; Salthouse, 1993). Therefore, it was argued that a general
mechanism of age-related slowing, in and of itself, is sufficient to cause the
increase in interindividual variability, and that increased variability in RT
should be viewed as a consequence, rather than a cause, of age-related slowing.
Nonetheless, age-related slowing itself as a phenomenon at the behavioral
level still needs to be explained. In addition, interpretations of causality that
are based on statistical control rather than direct experimental manipulation
should be taken with constraints. Specifically, with respect to the statistical
explanatory advantage of mean RT over the variability of RT in predicting
age, one should at least note that in addition to the causal relationship inter-
preted by Hale et al. (1988) and Salthouse (1993), a difference in measurement
reliability of these two types of measures, favoring the measure of central
tendency, can be one other important factor contributing to the explanatory
advantage of mean RT. Besides, central-tendency measures of RT also do not
exhibit explanatory advantage when predicting other variables. For instance,
some psychometric studies of intelligence have shown that trial-by-trial intra-
individual variability in RT consistently correlates more highly with the factor
of general intelligence than mean RT, despite the fact that the test-retest reli-
ability of the measures of variability is usually lower than that of mean RT or
median RT (e. g..Jensen, 1992; Smith & Stanley, 1987). People who show great-
er intraindividual variability in their response latencies tend to score lower on
1Q tests. In addition, it was demonstrated that although the standard deviation
of RT and median RT are highly correlated, they still reflect independent
sources of variance that are specific to each of the two variables. Using Spear-
man'’s (1904,1927) formula to compute the true-score correlation between the
standard deviation and the median of the RT distribution, Jensen (1992) found
that the overall specificity (i. e., variance specific to each of the two variables)
is still about 34.4% of the total true-score variance.

# The generalizability of this finding to performance measures other than response times is not
clear. For instance, Li et al. (1998) found that the positive relationship between age and the
magnitude of intraindividual variability in memory performance was not affected after con-
trolling for mean-level performance (r = 0.460 before controlling for mean performance, and
r=0.456 after controlling for mean performance). However, the relationship between age and
the magnitude of intraindividual variability in sensorimotor functioning was eliminated after
controlling for mean-level performance.
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CNS Variability as an Explanation for Intraindividual Response Variability

Psychologists interested in understanding biological correlates of intelligence
have proposed that intraindividual variability in RT at the behavioral level
could be related to CNS variability, which in turn is one of the biological bases
of intelligence. For instance, both Eysenck (1982) and Hendrickson (1982)
hypothesized that intraindividual response variability in RT could be caused
by random errors, or what might be called “neural noise™ in the transmission
of neural signal in the CNS. This view parallels the neural-noise hypothesis in
the gerontological literature (e. g., Crossman & Szafran, 1956; Welford, 1965.
1981, 1984). Indeed, as Hale et al. (1988) have argued, the finding that RT
variability can be predicted, independent of age, from mean RT does lend
support to the contention that there is no need to postulate an extra hypothesis
of differential rates of brain aging in order to account for age-related increase
in interindividual variability. However, such a result does not exclude the pos-
sibility that infraindividual response variability could be an indicator of some
kinds of base conditions (or more metaphorically put as “hums” of a living
system by Nesselroade, 1991a) produced by organic processes taking place
within the organism, for example, processes such as metabolic activities within
the nervous systems (Fiske & Rice, 1955, pp. 219-220). Specifically. the explan-
atory advantage of measures of central tendency over measures of variability
at the behavioral level does not preclude the possibility that at the level of the
CNS, biochemical mechanisms which increase the level of random variability
either in neural coding or neural transmission might be one of the causes for
age-related slowing and other aspects of cognitive aging. such as the dediffer-
entiation of ability structure.

Linking Dedifferentiation to Increased Variability within
Computational Frameworks

Up to this point, we have reviewed two sets of empirical findings, namely.
age-related dedifferentiation of ability structure and age-related increase in
variability at both the behavioral and biological levels. We have also presented
some conceptual explanations that have been proposed to account for these
results. As revealed in the preceding review, there is an apparent lack of inte-
gration both at the level of data and at the level of theory. Just as the empirical
phenomena themselves have been investigated independently. explanations of
these data have also been advanced separately. In addition, the theoretical
notions been offered so far have remained at the conceptual level. Therefore,
the main purpose of our study is to explore a joint platform for the explanation
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of age changes in level, variability, and covariance within formal computational
frameworks. The central issues is how aging-induced changes in the fidelity of
neural transmission may bring about, at the behavioral level, not only decre-
ments in performance level (as seen in longer reaction times and less accurate
performance) and increments in variability, but also increments in the degree
of covariation between different dimensions and domains of cognitive perfor-
mance. In other words, is it possible, or even necessary, that generalized decre-
ments in the efficacy of neural transmission simultaneously affect all three
aspects of behavior? To our knowledge, no prior theoretical work has been
done to formally address this question. However, a few general ideas hinting
at potential relationships among subsets of these phenomena have been
suggested in some researchers’ earlier writings.

For instance, Cerella (1990) suggested a possible relationship between neu-
ral connectivity and mean response latency. Specifically, Cerella proposed that
aging disrupts the connectivity between neurons, and that the loss in connec-
tivity extends the length of the pathway through which a signal travels, because
a signal must step around broken links in its path. Longer pathways lead then
to longer response latencies.

In trying to link Reed and Jensen’s (1991) finding of a positive correlation
(r=0.26. p < 0.002, n = 200) between IQ and brain nerve conduction velocity
(NCV) measured in the visual tract with Eysenck’s (1982) and Hendrickson's
(1982) views on the biological basis of intraindividual variability in RT, Jensen
(1992) speculated that:

*... 1t is a reasonable hypothesis that the correlation between nerve con-
duction velocity (NCV) in the visual tract and IQ is the indirect result of
similarity of NCV throughout different regions of the brain, including the
higher association centers involved in complex reasoning. However, the fact
that there are three synapses in the visual tract, at each of which there could
be some probability of a momentary ‘error” in transmission, means that the
Reed-Jensen finding could also possibly support Eysenck’s theory that the
average latency of the neural response registered at the visual cortex results,
not from NCV per se, but from the accumulation of delays due to random
errors in transmission, the errors presumably occurring at the synapses.”
(p. 871)

The “error” in the above quotation was taken by these researchers to repre-
sent the lack of fidelity of neural information processing (i. e., the probability
that a given message encoded in a series of pulse trains will arrive at its des-
tination in the identical form in which it was encoded, Eysenck, 1982, p.9).
From the quote, it is clear that Jensen (1992) along with Eysenck (1982) and
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Hendrickson (1982) suggested a relationship between the fidelity of neural
transmission and response latency. However, the issues of how errors in neural
transmission might affect variability observed both at the biological and be-
havioral level and what might be the relationship between variability level and
intercorrelations among different cognitive functioning were not clearly spec-
ified. Similarly, although the neural-noise hypothesis of cognitive aging
(Crossman & Szafran, 1956; Welford, 1965) suggests that age-related behav-
ioral slowing and other deficits are likely to be associated with the increased
noise level in neural transmission, the potential relationships between variabil-
ities at the biological and behavioral levels and the patterns of covariations
are not specified or discussed.

Following these lines of reasoning, we further speculate that less accurate
information transmissions would lead to a higher level of random variability
in the total information content within the system. Furthermore, increased
random variability in the CNS might in turn play a role in age-related changes
in variability at the behavioral level and in patterns of intercorrelations be-
tween different cognitive processes. We have formally instantiated these two
sets of conceptual notions at the descriptive and implementation levels. Before
presenting these formalisms, we discuss a set of recent empirical findings
which, in part, inspired our theorizing about the relationships between CNS
variability, behavioral variability, and dedifferentiation.

Intraindividual Variability and Intersystemic Relationship: Initial
Empirical Indications

In terms of initial empirical findings that are at least related, if not directly
parallel, to the above theoretical speculations, Li et al. (1998) recently investi-
gated the link between memory and sensorimotor functioning within a sample
of old adults via intraindividual response variability at the behavioral level.
They found suggestive trends of positive correlations between the strength of
a given individual's intersystemic link between memory and sensorimotor
functioning and the magnitude of his or her own intraindividual variability in
memory (r =0.29;p = 0.22,n = 19) and sensorimotor (r =0.22,p =037, n =
19) performance. Li et al. (1998) argued that such a relation between the mag-
nitude of intraindividual variability in different domains of functioning and
the strength of the intersystemic link between these functions should not be
trivialized as a mere statistical artifact.

Indeed, the topic of range restriction is commonly discussed within the con-
text of interindividual difference research, and it has to do with restricted
selectivity in sampling. If the range of a sample is selectively restricted, the
intercorrelations among a set of variables that one observes in this given
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sample might underestimate the true correlations in the population (e. g.,
Lawley, 1943; Pearson, 1903). Hence, within the context of interindividual dif-
ferences, a finding of a relationship between the magnitude of interindividual
variability in different performance measures and the strength of the intercor-
relations among these variables might not have substantive value and should
be interpreted cautiously, because such a relation, if not merely reflects the
extent of range selectivity in the sample. is at least confounded by it.

A relationship between the magnitude of intraindividual response variabil-
ity and the strength of intersystemic link is, however, conceptually different.
While sampling variability usually bears no direct relevance to many of the
theoretical constructs of cognitive functioning at the individual’s level, intra-
individual variability and its biological basis, on the other hand, have been
central to many theories of intelligence (e. g., Eysenck, 1982; Hendrickson,
1982; Jensen, 1982), cognitive development (e. g., Siegler, 1994; Siegler & Ellis,
1996: van der Maas & Molenaar, 1992) and cognitive aging (Hanno & Hoyer,
1994; Li, Lindenberger, & Frensch, 1996; Welford, 1965, 1981, 1984). Hence, it
may be of some interest to researchers in these areas, if one could more for-
mally examine the link between age-related increase in intraindividual vari-
ability. dedifferentiation of ability structure, and aging-induced degeneration
in neurotransmitter systems within computational models.

A Formalization at the Descriptive Level

As an initial attempt, Li and Lindenberger (1998) carried out Monte Carlo
simulations to quantitatively examine this issue at a purely descriptive level.
In these simulations, it was assumed that the brain state (i.e., total neural
information content within the brain at a given moment) could be represented
by a random state vector (cf. Anderson, 1983). Elements of the brain state
vector were sampled from a normal distribution with a given mean and stand-
ard deviation. Two mathematical functions, A and B, represented two different
processes: but both functions utilized the information content in the common
brain state vector. In other words, the distributional properties of the informa-
tion in the brain state vector were shared by both processes, but were trans-
formed differently, depending on the specific function types. Furthermore, it
was assumed that these two processes were not perfectly reliable, hence each
of them was associated with some processing noise. The processing noise of
each function was assumed to be independent.

The simulation results showed that across three different pairings of the A
and B function types (i. e., logistic and polynomial, linear and linear, and ex-
ponential and power) and three different levels of processing noise, the mag-
nitude of the correlation between the outcomes of the two functions increased
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as the level of variability in the random vector representing brain state in-
creased. Admittedly, this model oversimplifies many issues. However, it does
allow one to start exploring mathematical or statistical principles addressing
the issue of correlations between dependent random variables (e. g.. Zimmer-
man, 1976) as potential mathematical formalisms that could describe and sup-
port the relationship(s) between CNS variability and the intercorrelations
among different cognitive functions.

If one adopts the cognitive neuroscience orientation. it is then not satisfying
to only address these phenomena descriptively. At the empirical level. one
question still needs to be answered is what kinds of aging-induced neurobio-
logical changes are likely to increase random variability in the CNS, presum-
ably, via affecting the fidelity of neural information processing? At the level
of formal modeling, one question awaiting answers is what other types of
formalism can “implement” an increase in within system variability in ways
that capture, at least, some functional properties of the related biological
mechanisms, as opposed to a formalism, such as that of Li and Lindenberger
(1998), which treats variability as a primitive in the formulation and only de-
scribes the phenomena? Therefore, with the simulations reported in this chap-
ter we attempted to extend the descriptive results from Li and Lindenberger’s
(1998) Monte Carlo simulations to one type of processing model within which
variability does not have to be treated as a primitive that is to be manipulated
directly: rather it is the derivative of other mechanisms which mimic functional
aspects of neural information processing. We now turn to present some empir-
ical findings on aging-induced degeneration in neurotransmitter systems, and
describe the computational foundations for the simulations to be presented.

Aging-Induced Deterioration of Catecholaminergic System

Epinephrine, norepinephrine. and dopamine belong to a family of neurotrans-
mitters called catecholamines. To date, some biochemical evidence has accu-
mulated, suggesting the role of catecholamines as neuromodulators of infor-
mation processing in the brain. This is to say that catecholamines themselves
do not directly change the firing rate of a neuron; however, the release of
catecholamines enhances the responsivity of a neuron to other incoming af-
ferent signals. This effect has been interpreted as the modulation of the neu-
ron’s signal-to-noise ratio (e. g., Clark, Geffen, & Geffen, 1987; DeFrance.
Sikes, & Chronister. 1985; Mamelak & Hobson, 1989; Servan-Schreiber et al..
1990; Spitzer, 1997: Yang & Mogenson, 1990). In the course of normal aging.
the concentration of catecholamines in the striatum and basal ganglia decreas-
es by 7% or 8% during each decade of life (e. g., see Gabrieli, 1995: Morgan
& May, 1990; Rogers & Bloom, 1985, for reviews). By extension, because of
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the decline in its catecholamine concentration, the aging brain might be a
noisier (or with a higher level of random variability) information processing
system, as suggested by the neural-noise hypothesis.

Afew potential links between catecholamines and age-related behavioral
variations in rats, non-human primates, and humans, have been documented.
For instance, in training young and old rats to perform escape-and-avoidance
tasks. Spirduso and colleagues found that the density of dopamine receptors
was associated with response speed and its variance: the higher the density, the
faster and less variable the RT (MacRae, Spirduso, & Wilcox, 1988: Spirduso,
Mayfield. Grant. & Schallert, 1989). Similarly. Schultz, Studer, Romo et al.'s
(1989) results showed that depletions of nigrostriatal dopamine neurons in
monkeys not only increased motor reaction time and movement time, it also
increased RT variability. With respect to memory performance. in a delayed-
response task designed to test short-term memory capacity in non-human pri-
mates. Arnsten and Goldman-Rakic (1985) showed that memory deficits of
aged monkeys, who suffered from 50% dopamine depletion in their prefrontal
cortex, can be alleviated by catecholaminergic agonists. Similar associations
have also been found between degeneration of the dopaminergic system and
working-memory deficits (Sawaguchi & Goldman-Rakic, 1991), as well as at-
tentional impairment (Corwin, Kanter, Watson, Heilman. Valenstein, & Hashi-
moto. 1986: Rothman, 1996). In humans, Kischka, Kammer. Maier, and Weis-
brod et al. (1996) found that the injection of L-dopa. a dopamine agonist.
reduced the magnitude of semantic priming marginally and the magnitude of
indirect priming significantly. This finding suggests that the increase of seman-
tic priming effects in old age (see Laver & Burke, 1993 for review) could be
related to compromised dopaminergic mechanisms.

Formalization at the Implementation Level:
Modeling the Effects of Catecholamines

A Unit's Responsivity

Within the framework of connectionist modeling, Servan-Schreiber et al.
(1990) demonstrated that the modulatory effects of catecholamines (i. e., the
sharpening of a neuron’s signal-to-noise ratio) can be simulated by the gain
parameter of the logistic activation. Equation 1 defines the activation function,

1

1+ e—{gm’nx;re.'t'npur,+bius)

(1)

Qurtput Activation; =

Figure | shows that reducing the value of the gain parameter (simulating at-
tenuated efficacy of the catecholaminergic system) flattens the activation pro-
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Figure 1. Gain parameter’s effect on responsivity: sigmoid activation function of units in
back-propagation network for two values of gain (the bias parameter of the activation func-
tion was set to —-1.0).

file, hence the unit become less sensitive to changes in incoming afferent sig-
nals. Under conditions of static gain (i. e., gain parameters of all units are fixed
at a given value and remain the same across all processing steps), the manip-
ulation proposed by Servan-Schreiber et al. (1990) captures, however, only one
aspect of the modulatory effects of the catecholamines, namely. the fine tuning
of a neuron’s responsivity.

Intra-Network Variability

Li et al. (1996) demonstrated a second property of the gain parameter when
it is assumed to be stochastic (i. e., values of the gain parameters of units in a
network were sampled from a uniform distribution at each processing step).
When stochastic gains are used to simulate fluctuations in the concentration
of transmitter substances (e. g., Kempf, Mandel, Oliverio, & Pulisi-Allegra.
1982; Manshardt & Wurtman, 1968; Reis, Weinbren, & Corvelli, 1968), the
variability in a given unit’s output activation in response to an input signal
across different processing steps is systematically related to the mean of the
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Figure 2. Gain parameter’s effect on internal variability: distributions of output activations

with respect to a fixed Gaussian signal with small noise across 500 trials for two ranges of
gain parameter values,
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gain parameters. For example, a comparison of the top and bottom panels in
Figure 2 shows that the amount of variability in a unit’s output activation with
respect to a given Gaussian input signal that is embedded in a small amount
of background noise is much greater when values of the gain parameters are
sampled from the distribution with a smaller mean, although the ranges of
variability in the gain parameter values are identical for both distributions
(i.e.,0.4). Thus, networks with a smaller mean value for the gain parameters
undergo a greater level of random intra-network variability across time, even
if the same signal (or set of signals) were presented repeatedly. In this way. the
stochastic gain manipulation allows us to more directly implement the relation
between the reduction in catecholaminergic modulation and the increase in
CNS variability in ways that are in line with earlier speculations about the
relationship between the fidelity of neural transmission and the trial-by-trial
variability in RT (Eysenck, 1982; Hendrickson, 1982). In fact, Li et al. (1996)
already showed that a series of benchmark phenomena of cognitive aging
deficits, ranging from slowed learning rate, lowered asymptotic performance,
task-complexity effects and the increase in interindividual and intraindividual
variability can be simulated by combining both properties of the gain param-
eter (i. e, the regulations of the responsivity of a unit and the level of intra-
network variability).

Taken together, there is evidence suggesting that the efficacy of the cate-
cholaminergic system is compromised during the process of aging, and that this
might be the biological basis for some of the cognitive deficits observed at the
behavioral level. In addition, it has been demonstrated that the modulatory
effects of catecholamines (Servan-Schreiber et al., 1990) and their implications
for cognitive aging (Li et al., 1996) can be reasonably modeled by the gain
parameter. In the following, we use the stochastic gain manipulation to expli-
cate the links between the deterioration in catecholaminergic system, its im-
pact on the signal-to-noise ratio of neural information processing and CNS
variability, age-related increase in interindividual variability, and the dediffer-
entiation of ability structure observed in old age.

Simulations

Two sets of simulations are presented. Both sets of simulations involved the
standard back-propagation networks with fully interconnected layers of input.
hidden and output units. Three groups of otherwise identical networks that
differed only in the mean value of their gain parameters were trained and
tested in each simulation. Using the stochastic gain manipulation to simulate
the effect of aging-induced deterioration of catecholamine effects, the values
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of the gain parameters of the “young networks™ were randomly sampled from
a uniform distribution within the range [0.6, 1.0], the gain parameters of the
“middle networks” were sampled from the range [0.4,0.8], and lastly, the pa-
rameters of the “old networks™ were sampled from the range [0.2,0.6]. One
hundred networks, each started with a different random initial weight config-
uration, were included for each of the three network groups. It is well-known
that the initial weight configuration of a network affects learning (Baldi &
Chauvin, 1991: Kolen & Goel, 1991). At the beginning of learning, the initial
weight configuration defines a specific starting position in the hyperspace that
is jointly defined by values of all the weights and the minimum error point as
defined in downhill gradient descent learning. During learning, the network
must try to gradually minimize the difference (also called error) between its
output activation and the target output activation. Therefore, depending on
the starting location defined by the initial weight configuration, a network can
have a fast or slow rate in reaching the criterion performance. Hence, interin-
dividual differences in initial learning ability can be simulated by networks
that start with different initial weight configurations. An identical set of 100
random seeds was used to define the initial weight configurations for networks
in each of the three groups. This controls for the effect of initial weight config-
uration on learning across groups and ensures that differences observed in the
performances across the three groups of networks arise only from the gain
parameter manipulation.

Simulation 1: Intercorrelations among Paired-Associate Recall of
Different List Length

In empirical studies using the paired-associate learning paradigm (Barnes &
Underwood. 1959), participants first learn a list of word pairs, for instance,
computer and typewriter, automobile and airplane, and etc. to some perfor-
mance criterion. At test, the participants are expected to recall the second item
(or the B item) of the pair (typewriter and airplane in the example given here),
when probed with the first item (computer and automobile in the above exam-
ple) of the pair (the A item). In order to simulate paired-associate learning
using back-propagation networks, random asymmetric binary (0 1) input and
output vectors were used to represent the A and B items. In this simulation,
the architecture of the networks involved 14 input, 5 hidden, and 14 output
units. The first four input and output units represented context information of
a given list, and were kept the same across all items of a given list. The remain-
ing 10 input and output units represented unique item information. On
average, all item patterns consisted of an equal number of 1s and Os. In this
simulation, the gain manipulation was applied only to the output units. Three
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additional network parameters, learning rate, momentum, and bias were set,
respectively, at 0.1, 0.9, and ~1.0, for all networks throughout the simulations.

The networks were trained to learn three paired-associate recall tasks that
were defined by list length (i.e., 3, 5, and 8 items per list). Five lists were
included for each of the three tasks. Lists with different length were construct-
ed such that the shorter lists were nested within the longer lists. More specifi-
cally, five-item lists contained five items from the 8-item lists, and the 3-item
lists contained 3 items from the five-item lists. This nesting of shorter lists
within the longer lists was necessary to ensure that intercorrelations among
the three tasks could arise from the shared information content (i. e., the spe-
cific input-output mapping) between the lists. Learning in connectionist net-
works is adaptive. This implies that the network’s performance is jointly deter-
mined by the network architecture, parameter settings, initial weight configu-
ration, and task requirements defined by the input-output mapping of a given
task. In the simulations reported here, all of these aspects were kept constant,
with the exception that task requirements differed across task conditions.
However, if the tasks do not share some aspects of the input-output mapping.
one cannot expect that the rank order of the effects of a set of initial weight
configurations (simulating interindividual differences in initial learning ability
in a given sample) on learning in one task should relate systematically to the
rank order of the same set of initial weight configurations in a completely
different task. Therefore, it was important to ensure that different tasks at least
share some related input-output mappings.

Recall performance was determined by the similarity between target and
actual output activation patterns. Similarity of the two output vectors were
defined by the retrieved cosine. Specifically, given two vectors, a and b. the
retrieved cosine is the ratio of the dot product between a and b to the product
of the lengths of the two vectors (Goebel & Lewandowsky, 1991). Retrieved
cosine is a preferred measure of vector similarity because it is invariant of the
length of the vector and is scaled within the range of 0 to 1, with 0 representing
maximum dissimilarity, and 1 representing maximum similarity. Performances
of all networks in all three tasks were evaluated after 100 learning trials, at
which point the retrieved cosine measure of the “middle networks™in the most
difficult task (i. e., the 8-item condition) reached 0.965.

Results
Gain Parameter and Mean-Level Performance

The mean performance of each network group in recalling lists of different list
lengths are plotted in Figure 3. Results from analysis of variance (ANOVA)
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Figure 3. Neural networks" performance in the paired-associate recall task as a function of
gain parameter and list length.

of a two-way split-plot factorial design involving three treatment levels and
three groups showed that the main effects of list length and group, and the
length by group interaction were all significant with p values less than 0.001.
For all network groups, performance was best for short lists — a result that is
in line with the classical list-length effects found in a wide range of memory
performance, ranging from recognition, free recall, to cued recall (e. g., Strong,
1912: Gillund & Shiffrin, 1984). In addition, the “cost” of learning longer lists
in comparison to the shorter lists was largest for the old networks and smallest
for the young networks, as indicated by the significant interaction between
group and list length. This finding is in good agreement with the age by com-
plexity effect that is often reported in the cognitive aging literature (e.g.,
McDowd & Craik, 1988).
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Gain Parameter and Inter-Network Variability

In line with our theoretical expectations, the gain parameter also affected the
magnitude of inter-network variability and the correlational structure involv-
ing the three paired-associate tasks. For each list, the retrieved cosine measure
was first transformed, across the three network groups, into T scores (mean =
50,SD = 10). Within each list length, the average across five lists was computed
based on the T scores. Figure 4 shows that for each of the three list lengths,
inter-network variability increases as the mean value of the gain parameter
decreases. A similar set of findings involving networks with a different archi-
tecture and a different range of gain parameter values was found in Li et al.
(1996). Furthermore, the finding of quadratic declining trends as a function of
the gain parameter is also in agreement with the empirical data of age-related
declines in measures of fluid intelligence (e. g., Baltes & Lindenberger, 1997).

Gain Parameter and Patterns of Intercorrelations

Moreover, the gain parameter also affected the patterns of intercorrelations
between the three recall tasks. Figure 5 shows scatter plots of the correlation
between the performances of the networks in the 8-item and the 3-item con-
ditions as a function of the gain parameter manipulation. Going from top to
bottom in Figure 5, it is clear that the correlation between the performance on
these two tasks was weakest in the young networks (o= ¥mid > I'yvoung: 2 = 3.63).
Table 1 shows that as the values of the gain parameters decrease (simulating
aging-induced deterioration in catecholamine systems), the correlations be-
tween the three memory tasks increase. Principal component analyses of the
three correlation matrices show that the percentage of variance accounted for
by the first principle component increases as the values of the gain parameters
decrease, indicating a less differentiated structure in the performance of the
old networks.

Table 1. Correlations between performances of lists of different length

Young Networks Middle Networks Old Networks

Gain Parameter [0.6-1.0] Gain Parameter [0.4-0.8]  Gain Parameter [0.2-0.6]
8-item 5-item 8-item 5-item 8-item 5-item

5-item 031 - S-item 0.59 - 5-tem 0.74 -

3-item 0.17 0.24 3-item 0.45 0.54 3-item 0.60 0.74

Variance accounted for by Variance accounted for by ~ Variance accounted for by

1st PC: 49.3% 1st PC: 68.3% 1st PC: 79.6%
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Simulation 2: Intercorrelations among Categorization Tasks of
Different Discriminability

In this simulation we examined the effect of the gain parameter on the corre-
lational structure of the networks’ performances in three categorization tasks
with different levels of between-category discriminability. Again, three groups
of networks, with 100 networks in each group, were trained to learn 2-choice
categorization tasks involving bivariate normal stimuli. A bivariate normal cat-
egory is defined by normally distributed values (with known mean and variance)
on two stimulus dimensions (e. g.,Ashby & Gott, 1988; Ashby & Maddox,1992).
In this simulation, each network had two input, hidden, and output units. The
gain manipulation was applied to all units in the network. Each of the two input
units represented one of the two stimulus dimensions, and each of the two out-
put units represented one of the two response categories. The networks were
trained to categorize the stimuli into two categories, A and B, depending on
whether Dimension 1 was greater or smaller than Dimension 2. Training exem-
plars for each of the two categories were sampled from bivariate normal distri-
butions with means of 0.3 and 0.7 for the first and second dimensions of category
A, and a reverse set of means, 0.7 and 0.3, for the two dimensions of category
B. The networks were trained to learn categorization tasks with three levels of
between-category discriminability. Within each condition, the networks were
trained on a total of 2000 stimulus exemplars during learning. During testing,
400 testing patterns were constructed by crossing 20 values (ranging from -0.5
to 1.4 with a stepsize of 0.1) for the first input dimension and 20 identical values
for the second dimension. The degree of discriminability between categories
was manipulated by varying the extent of overlap between categories. This was
defined by the standard deviations of the two stimulus dimensions. Figure 6
shows the extent of overlap between the probability density functions of two
sets of binomial categories that are defined by less (top panel, SD =0.2) or more
spread (bottom panel, SD = 0.6) stimulus dimensions. As shown here, when the
standard deviation is large (bottom panel), the overlap between categories in-
creases and the between-category discriminability decreases. Three additional
parameters, learning rate, momentum, and bias were set, respectively,at 0.1,0.7,
and -1.0, for all networks throughout the simulations
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Results
Gain Parameter and Mean-Level Performance

Performance of the three groups of networks as a function of between-cate-
gory discriminability are plotted in Figure 7. Results from ANOVA using a
two-way split-plot factorial design involving three treatment levels and three
groups showed that the main effects of discriminability, group, and the inter-
action between discriminability and group, were all significant, with p values
less than 0.001. For all network groups, performance decreased as between-
category discriminability decreased. With respect to the main effect of group,
young and middle networks performed comparably; however the old networks
performed much more poorly in all conditions and was disproportionately
worse in the low discriminability condition.
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Figure 7. Neural networks’ performance in the two-choice categorization task as a function
of gain parameter and discriminability (chance performance is 50%).
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Gain Parameter and Inter-Network Variability and Patterns of
Intercorrelations

Similar to the previous results of paired-associate learning, Figure 8 shows that
the magnitude of inter-network variability increases as the values of the gain
parameters decreases. Concerning the gain parameter’s effect on correlations
between tasks, Figure 9 shows that performance in conditions of high and low
discriminability are most strongly correlated in the group of old networks (7o
> I'imid = Fvoung» 2 = 5.8). Table 2 shows that as the values of the gain parameter
decreases, the correlations between the three categorization tasks increases.
Results from principal component analyses of these correlation matrices show
that the percentage of variance accounted for by the first principle component
increases as the values of the gain parameters decrease.

Table 2. Correlations between categorization tasks with different discriminability.

Young Networks Middle Networks Old Networks

Gain Parameter [0.6-1.0]  Gain Parameter [0.4-0.8]  Gain Parameter [0.2-0.6]
High Med. High Med. High Med.

Medium 062 - Medium 070 - Medium 094 -

Low 031 0.80 Low 038 079 Low 081 09

Variance accounted Variance accounted Variance accounted

for by 1st PC: 72.2% for by 1st PC: 75.0% for by 1st PC: 92.8%

General Discussion

This chapter describes a set of computational investigations undertaken to
relate aging-induced deterioration of the catecholaminergic system with age-
related dedifferentiation in cognitive abilities. Effects of catecholamines on
neural transmission as indicated by some neurobiological studies (i. e., modu-
lating the signal-to-noise ratio of a neuron and consequently raising the level
of random variability in the CNS) were computationally implemented in con-
nectionist networks by the stochastic gain manipulation. Values of the gain
parameters which regulate the responsivity of the units were sampled random-
ly from distributions with different means to simulate age-related change in
the efficacy of neurotransmitter systems. Results from simulations of paired-
associate recall and a two-choice categorization task demonstrated that inter-
network variability and the intercorrelations between tasks increased as the
values of the gain parameters were reduced, regardless whether the gain ma-
nipulation was applied to a subset of the units (Simulation 1) or to all units
(Simulation 2).
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Disclaimers and Limitations

Before we further discuss the implications of our simulation results, some
disclaimers and limitations about the present implementation should be
pointed out. It should be made clear that we do not claim that the simulations
presented here are, by themselves, sufficient enough to constitute a “theory”
that relates the efficacy of neural transmission and the dedifferentiation of
ability structure in old age. Rather, we view the connectionist approach taken
here as a computational tool to aid the development of such a theory (cf.
McCloskey, 1991). We have demonstrated that connectionist networks pro-
vided a computational framework for implementing the neuromodulatory ef-
fects of catecholamines as the gain parameter’s effects on tuning a unit’s re-
sponsivity and the level of intra-network variability. With this implementa-
tion, the simulations allow us to observe two sets of relationships. First, the
relation between reducing the responsivity at the level of a single unit and
the overall level of intra-network variability during information processing
(referring back to Figures 1 and 2). And second, the relation between respon-
sivity and intra-network variability at the system's level and the extent of
inter-network variability and the magnitude of intercorrelations among dif-
ferent tasks at the performance level (refer back to Figures 4, 5, 8, and 9).
Whether these relationships between the gain parameter, a unit’s responsiv-
ity, intra-network variability and intercorrelations between tasks mimic
closely the mechanisms underlying neural information processing and their
behavioral manifestations is an open empirical question awaiting rigorous ex-
perimental validation. However, the simulation results do demonstrate a set
of computational formalisms that would support these relationships if they
indeed exist.

One additional limitation which applies to all quantitative models with even
a moderate degree of complexity is the difficulty in discerning the analytical
boundary of the specific manipulations implemented. Given that connectionist
networks are adaptive learning systems, other network parameters, such as
learning rate, momentum, bias, number of units, initial weights and even the
task requirement specified by the actual input-output mappings are likely to
interact with the gain parameter. We have kept all these other parameters
constant within each of the two simulations reported here. However, we have
not tested the generalizability of our simulation results in other parameter
settings, nor is the investigation entailing a sufficient portion of the entire
parameter space possible. Rather than searching through the parameter space,
we think a more principled research strategy is to work out analytical solutions
that could describe the simulated effects. Note, however, that such analytical
solutions are not always attainable.
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One observation from the process of implementing the simulations suggests
that the gain parameter’s effects on the level of inter-network variability and
the magnitude of cross-task intercorrelations could dependent on whether the
gain manipulation is effective enough to produce a difference in mean-level
performance. In other words, given specific task requirements and number of
training trials, is the difference in the means of the gain parameters large
enough to produce a difference in mean-level performance. On the one hand,
this suggests that the gain manipulation demonstrated in our simulations are
necessarily constrained by other parameters of the network and the task re-
quirements. On the other hand, this additional condition on the gain parame-
ter’s effects is actually not at odds with the experimental data. Results from
psychometric studies have shown that the phenomenon of differentiation and
dedifferentiation of ability structure can also be found along the dimension of
ability, besides the age dimension. Specifically, the ability structure is less dif-
ferentiated among groups of low performers than among groups of high per-
formers (e. g., Deary et al., 1996; Detterman & Daniel, 1989). In addition, age-
related decrements in the cognitive mechanics (e. g., processing speed and
memory) are pervasive phenomena. In cases where age-related increase in
variability or dedifferentiation are found, there are almost always age-related
decrease in performance level as well.

One other limitation concerns the general issue about the level of abstrac-
tion that a given task should be represented. Arbitrary random vectors have
been commonly used as the stimulus and response patterns in most connec-
tionist simulations. During learning, connection weights are adjusted to reduce
error between the network’s actual output and the target output that’s speci-
fied by the stimulus-response mapping defined by a given task. At the end of
learning, the network stores the learned internal representation of the stimu-
lus-response mapping in its weight patterns. The network’s final weight pat-
terns which determines its performance are jointly defined by a large number
of network parameters and the to-be-learned task. Even in conditions when
all other network parameters are held constant, a network can still “develop”
quite different weight patterns, depending on the differences in the input-out-
put mappings that are specified by different tasks. Relations between a net-
work’s internal representations of different tasks depend on the similarity
between the stimulus-response mappings specified by the tasks. When random
vectors are used to represent the stimulus and response patterns, there is no
guarantee that a network’s internal representations of different tasks would
be related to each other; nor would the performances, being the outward ex-
pressions of the internal representations, of a group of networks in one task
be systematically related to their performances in other tasks. In our simula-
tion of paired-associate recall, similarities between the input-output mappings
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of different tasks were created by nesting the shorter lists within the longer
lists. Hence, we first generated a certain degree of intercorrelations between
the tasks, before observing the effect of the gain manipulation on patterns of
covariation. It is foreseeable that in conditions when more realistic represen-
tations of the stimuli and responses can be used (such as in simulations of facial
recognition, pixel densities from the image of a face can be transcribed into a
matrix of values;e. g., Valentin & Abdi, 1996), overlaps between different stim-
ulus-response mappings can arise more naturally from the similarities between
the stimuli. However, in many cases it is not clear as to what would be the
realistic ways to represent the stimuli. Relatively few work has been done with
respect to this issue, and it is not within the purview of this chapter to provide
the solutions. Given that our goal is to demonstrate general principles between
the gain parameter’s effect on regulating intra-network variability, inter-net-
work variability and patterns of covariations, as opposed to answer specific
questions about performances in what types of tasks would be related, we feel
justified to stay at the more abstract level of representing task requirements.
Keeping these limitations in mind, we now turn to discuss implications of
our simulation results with respect to the possible sources of interindividual
variability and cognitive development.

Sources of Interindividual Variability

In this section, we highlight the implications of our results for the relationship
between intraindividual and interindividual variability. One early proposal for
the age-related increase in interindividual variability in cognitive performance
(Birren et al., 1980; Rabbitt, 1981; Welford, 1980) is interindividual differences
in the rate of brain aging (e. g., Birren, Woods, & Williams, 1980; Rabbitt,1981;
Welford, 1980). Results from our simulations together with some empirical
results suggest, however, this need not be the case. At least, there exist other
plausible explanations. Age-related increase in intraindividual variability or
age-related behavioral slowing are two possible alternatives.

In the simulations, we demonstrated that as the stochastic gain manipulation
increased the level of intra-network variability within each of the old networks,
the inter-network variability measured across all networks in the group at the
performance level also increased. This indicates that a greater degree of intra-
individual variability in old people’s cognitive functioning either at behavioral
or biological level is at least one alternative explanation for the greater inter-
individual variability observed at the group level. Aging-induced increase in
CNS variability alone could also lead to an increase in interindividual variabil-
ity at the group level. It is, therefore, not necessary to invoke a hypothesis about
interindividual differences in the “rate” of neurobiological deterioration, in



136 Shu-Chen Li and Ulman Lindenberger

order to account for age-related increase in interindividual variability ob-
served at the behavioral level. One should also note a principle difference
between these two hypotheses. This intraindividual-variability hypothesis ac-
counts for a group-level phenomenon by an individual-level mechanism,
whereas the hypothesis of individual differences in the rates of brain aging still
uses a group-level mechanism to account for the group-level phenomenon.
Hence, it is reasonable to argue that the hypothesis of increased intraindividual
variability, supported by the simulation results, is more parsimonious and fun-
damental than the hypothesis of individual difference in the rates of neurobi-
ological deterioration.

However, one should note that this mapping from intra-network to inter-
network variability is not “unique” in the sense that the increase in inter-net-
work variability can also be produced by reducing the network’s learning rate
(e. g, Liet al., 1996). Indeed, analyses at the behavioral level have also shown
that the relationship between age and variability in RT is, to a great extent,
channeled through age-related difference in RT itself. In other words, age-re-
lated slowing measured at the performance level is sufficient to account for
age-related increase in interindividual variability (e. g., Hale, Myerson, Smith,
& Poon, 1988; Salthouse, 1993). Both the simulation results and the empirical
findings suggest then that age-related slowing can be yet another alternative
account for age-related increase of interindividual variability.

Based on these simulation results alone one cannot choose between the two
alternatives, favoring a age-related behavioral slowing or a neural-noise expla-
nation, if the only issue of interest is whether these two alternatives can ac-
count for the phenomenon of age-related increase in interindividual variabil-
ity. Likewise, one also cannot decide which of the two parameters, gain or
learning rate, can better capture age-related increase in interindividual vari-
ability. However, these two hypotheses can be better contrasted if additional
criteria, such as the feasibility of cross-level hypothesis generation and the
scope of the explanation, are considered. These two explanations are not en-
tirely compatible in the sense that they were proposed for phenomena at two
different levels. Consequently, they also are not in direct conflict with each
other. Cognitive aging researchers who subscribe to the behavioral-slowing
view in general agree that what they take as a primitive in their explanations
(i. e., behavioral slowing) needs to be somehow instantiated at the biological
level (e. g., Salthouse, 1996). The stochastic gain manipulation has been shown
to be able to account for both age-related slowing and additional cognitive
aging phenomena that were formerly shown to be within the purview of the
age-related slowing hypothesis (Li et al., 1996). Given that the gain parameter
computationally implements the efficiency of neural information transmission,
the gain parameter account of cognitive aging deficits provides at least one
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version of computational formalism which demonstrates how behavioral slow-
ing might be instantiated biochemically. From a modeling perspective, the
learning rate parameter has a more restricted simulation scope than the gain
manipulation. Specifically, although reducing the learning rate can also simu-
late a greater degree of inter-network variability, learning rate alone was not
able (or less able in some cases) to account for some benchmark cognitive
aging deficits, such as the age difference in asymptotic performance, the age
by task complexity effect, and susceptibility to interference, all of which can
be better accounted for by the stochastic gain manipulation (Li et al., 1996).

Implications for Cognitive Child Development

The question concerning variations in the structure of mental ability has also
been investigated from a cognitive child development perspective. For in-
stance, Garrett, Bryan, and Perl (1935) found that the first unrotated factor
accounted for, respectively, 31%, 32% and 12% of the variance in a 10-tests
battery for boys aged 9, 12, and 15 years (and 31.5%,24% and 19.5% for girls
of the same ages). These findings led Garrett (1946), who coined the term
differentiation hypothesis, to state that “with increasing age there appears to
be a gradual breakdown of an amorphous general ability into a group of fairly
distinct aptitudes” (p. 375). In addition, initial biological evidence suggests that
as infants mature from 2 to 17 weeks of age, the variability in both the latency
and amplitude of the evoke potential in response to tones decreased (e. g.,
Thomas, Whitaker, Crow, Little et al., 1997). Behavioral level results with re-
spect to word and phrase duration in speech also indicate a decline in variabil-
ity from early childhood (age 7 year) to teenage (age 13 year) to adulthood
(Chermak & Schneiderman, 1985), and this effect could not be explained by
mean speaking rate.

Taken together, results both from developmental and cognitive aging studies
seem to suggest two continua as the ontogeny of cognition goes from early
childhood to adulthood and then into late adulthood. With respect to the struc-
ture issue, cognitive abilities are less differentiated in early childhood, become
increasingly differentiated from childhood to adulthood, and start to dediffer-
entiate again going from adulthood to old age. (e. g., Baltes & Lindenberger,
1997; Burt, 1954; Reinert, 1970). With respect to the variability issue, the trend
seems to be that variability is high in early childhood, decreases in adulthood,
then increases again in late adulthood. However, empirical data supporting
age-related decrease in interindividual and intraindividual variability from in-
fancy to adulthood is not as available as the findings supporting age-related
increase in variability during the aging process.

Given the similarities between the developmental and aging patterns, one
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can expect that the gain manipulation can also account for related cognitive
developmental phenomena at the formal level. However, one should ask
whether there are reasons for assuming that the general neurobiological mech-
anisms associated with aging are also operative in child development but in a
reversed direction? Empirical data at both the behavioral and biological level
indicated that this might possibly be the case. Behavioral studies of lifespan
cognitive development have shown that cognitive abilities, such as processing
speed, selective attention, and memory span, show an inverted-U shaped life-
span function. For instance, using two tests of perceptual speed from the Wood-
cock-Johnson Tests, Kail and Salthouse (1994) showed that perceptual speed
increases from age six to early adulthood, then becomes stable until mid-adult-
hood, and eventually starts to decline. In their review of lifespan development
of selective attention, Plude et al. (1994) reported that the abilities to filter
visual distractors and to search for attribute conjunctions improve throughout
childhood, remain stable in adulthood, and decline in late adulthood. Similarly,
others have shown that the ability to resist interference in paradigms involving
Wisconsin Card Sorting Test (WCST) and the Stroop Test increases from age
seven to early adulthood, remains stable until mid adulthood, then declines
again as people age (e. g., Chelune & Baer, 1986; Comalli, Wapner, & Werner,
1962; Haaland, Vranes, Goodwin, & Garry, 1987). With respect to memory
performance, a few studies have also shown a similar inverted-U lifespan de-
velopmental function for memory span (e. g., Case, 1985; Hasselhorn, 1988;
Salthouse, 1990; Siegel, 1994). In light of these data, some developmental psy-
chologists have proposed conceptual accounts to explain the phenomena of
cognitive development and aging within a unified framework. For instance,
lifespan variations in the efficacy of inhibitory mechanism (e. g., Bjorklund &
Harnishfeger, 1995; Dempster, 1992), the amount of neural noise (cf. Plude,
Enns, & Brodeur, 1994), and the speed of processing (Kail & Salthouse, 1994;
Park, Smith, Lautenschlager, Earles et al., 1996) have all been independently
proposed as the connecting thread for lifespan cognitive development. Inter-
estingly, at the biochemical level, lifespan data concerning the efficacy of the
dopaminergic system also indicated a continuum of age-related increase in
dopamine metabolites extracted from human urine samples in the age range
from 1 day old to 18 years old and a decrease from 18 to 55 years old (Dalmaz,
Peyrin, Sann, & Dutruge, 1979). Given the roles of catecholamines in regulat-
ing the spontaneous firing rate of neurons in the prefrontal cortex, the related
attentional and inhibitory mechanisms (e. g., Jay, Glowinski, & Thierry, 1995:
Mora, Sweeney, Rolls, & Sannguinetti, 1976; Shelley, Catts, Ward, & Andrews,
1997), and processing speed (e. g., MacRae et al., 1988; Schultz et al., 1989;
Spirduso et al., 1989), one might speculate that the rise and fall in the efficacy
of neural transmission as modulated by the catecholamines (or other transmit-
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ter substances showing similar functional properties) could be an important
thread at the biological level for cognitive development across the lifespan.

Conclusion

In this chapter, we have reviewed empirical evidence for age-related dediffer-
entiation in cognitive abilities and age-related increase in variability at both
the biological and behavioral levels, along with age-related differences in the
integrity of neurotransmitter systems. A computational approach capturing
the effects of the catecholaminergic system on regulating the sensitivity and
variability of neural information processing was proposed to theoretically link
findings at these different levels. Based on the simulation results, we suggest
that a causal path from the responsivity of a neuron to the level of random
variability within the CNS, and the behavioral manifestations of intraindivid-
ual variability, interindividual variability, and the ontogeny of the structure of
cognitive abilities can at least be supported by the computational formalism
specified here. We acknowledge that such cross-level theorizing runs the risk
of losing the specifics for the general, and that the cross-level links we proposed
here stay quite speculative, despite initial support from the simulations. How-
ever, we have demonstrated in this chapter that theorizing from a cognitive
neuroscience orientation offers more possibilities for cross-level data integra-
tion, hypothesis generation and testing. Hopefully this will in the future pro-
vide us with a more integrated picture of lifespan cognitive development.
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