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Hindsight Bias

A Price Worth Paying for Fast and
Frugal Memory
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Remembering is not the re-excitation of innumerable fixed,
lifeless and fragmentary traces. It is an imaginative recon-

struction, or construction . . .
Sir Frederic Bartlett

us:; “But men
Remembering
s from a

Frustration about a fallible memory is familiar to most of
are men; the best sometimes forget” (Shakespeare, Othello).
past events is not merely retrieving them from storage like book:
library. Memories can be lost or distorted, and memories for events that
never even happened can be induced (e.g., Loftus, 1997; Schacter, 1995).
Our memory is not like that of a Laplacean demon—we cannot perfectly
recall everything we have ever thought, said, or experienced. Other chap-
ters in this book deal with constraints of limited time and knowledge; in
this chapter we focus on the constraints imposed by the limited capacity
of human memory. How can memory work given its limitations? Our an-
swer is, by reconstruction: When retrieval fails, inferential heuristics are
employed. This answer is by no means new. It was already proposed by
Sir Frederic Bartlett, one of the pioneers of modern memory research. In
his classic Remembering (1932/1995, p. 213), Bartlett proposed that mem-
ory is a process of reconstruction (see—or recall if you can—the epigram
that opened this chapter).

Reconstruction, however, has its price. We focus on one, the well-
known hindsight bias, and propose a computational model for this effect
based on a fast and frugal heuristic. Hindsight bias has often been re-
garded as just another error of human information processing. We argue,
instead, that it is a by-product of two generally adaptive processes: first,
updating knowledge after receiving new information; and second, draw-

191



192 BEYOND CHOICE: MEMORY, ESTIMATION, AND CATEGORIZATION

infg fast and frugal inferences from this updated knowledge. Before speci-
fying the model, we illustrate hindsight bias by exploring a topic that con-
cerns every citizen of a modern democracy: public polling and electoral
outcomes,

Public Polling, Elections, and Hindsight Bias

The history of American political polling is closely linked to the name of
George Gallup. Gallup believed that his ideal of direct democracy called
for public information and policy evaluation not filtered through the eco-
nomic elite (Hamilton, 1995). In the early 1930s, he realized his vision
of going directly to the voter by polling for a local election in Iowa
in which his mother was a candidate. Shortly afterward, he began to
apply this technique to predicting election results for dissemination by
the public media. Since Gallup’s early polls, polling has “moved to the
epicenter of American campaigns” (Hamilton, 1995). For instance, Gallup
and Harris, giants of the polling industry, attracted Richard Nixon’s in-
terest and became prime candidates for attack and manipulation by his
administration (Jacobs & Shapiro, 1996). The acceptance of polling as a
political tool did not go unchallenged. Indeed, it has been contended that
opinion polls do not lead to political responsiveness, but are used by
elites to manufacture the public attitudes they desire (see Jacobs & Sha-
piro, 1996).

The Achilles heel of polling companies is that the public can retrospec-
tively check their predictions’ accuracy. This is fine as long as they were
accurate. In fact, for the Gallup company, the 1997 British parliamentary
elections were just such a success story. In a poll sponsored by The Daily
Telegraph, Gallup predicted the results almost perfectly. Based on inter-
views conducted a day before the elections with a randomly selected na-
tional sample of 1,810 citizens eligible to vote, Gallup forecast a 13%
margin of victory for the Labour Party over the Conservative Party. The
actual results of these historic elections, which ended the Conservatives’
18 years in power, put the final difference at 14%.

Such a post hoc reality check can, however, also be highly embarrass-
ing. A famous “miss” by Gallup and others was Truman’s victory in the
1948 presidential elections. In those first days of November, 1948, every-
one knew that Thomas Dewey would defeat Harry Truman in the upcom-
ing presidential elections. Pollsters and professional politicians alike pre-
dicted it. Daily newspapers came out eight to one in favor of Dewey. In
its desire to get a scoop, the Chicago Daily Tribune jumped the gun in its
November 4 edition and, relying on the seemingly reasonable predictions
of Gallup and other polling companies, reported that Dewey would be the
next president (Hamilton, 1995). (You may recall the photo of the smiling
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president-elect, Harry Truman, holding aloft the newspaper with the now
famous headline, DEWEY DEFEATS TRUMAN.)

What pollsters would like to do to save face in such situations is to
say: “We knew it all along—that’s what we really predicted.” But the pub-
lic memory represented in newspapers, videotapes, and other physical
media make this ploy impossible—the pollsters must stand by their past
predictions. Individuals speaking (or just thinking) in everyday life, how-
ever, usually have only their fallible internal memory to go on—and no
external records to embarrass or contradict them. This can lead to situa-
tions in which an individual inaccurately remembers a prediction or state-
ment he or she made in the past. For instance, Uncle Joe might contend
that he knew Truman would win all along, even though he had earlier
believed that Dewey would make it to the White House. This tendency to
believe falsely—after the fact—that one would have predicted the out-
come of an event is known as hindsight bias (for other systematic distor-
tions in reconstructing the past, see Johnson & Sherman, 1990). .

Recent laboratory research in psychology shows that hindsight bias is
common in laypeople and experts (e.g., voters, physicians, businesspeo-
ple), and that it is manifest across a variety of judgments (e.g., confidence
judgment, choice, categorization, or quantitative estimation; for a review,
see Hawkins & Hastie, 1990). Not surprisingly, it also occurs in predlc.-
tions of political election outcomes. For instance, before the 1982 Hawal-
ian gubernatorial election, Synodinos (1986) asked participants in a study
to indicate the probability of each of the canditates winning the election.
After the election, another group of participants was asked to make these
predictions as if they had been asked before the election. As expected,
the participants showed a “knew-it-all-along” tendency: The postelection
probability estimates for the winner were higher than those made before
the election, whereas the postelection estimates for the two losers were
lower than the preelection estimates,

Synodinos (1986) demonstrated the effect of outcome knowledge by
comparing two different groups of participants. Hindsight bias can also.be
found within a single participant. Fischhoff and Beyth (1975), for in-
stance, had a group of student participants judge a variety of possible out-
comes of President Nixon’s visits to Peking and Moscow before they oc-
curred in 1972. The possible outcomes were presented as assertions, su(?h
as: “The United States will establish a permanent diplomatic mission in
Peking, but not grant diplomatic recognition” and “President Nixon will
meet Mao at least once.” Participants rated their confidence in the truth
of the assertions on a 0% to 100% scale. After the visits, the assertions
were repeated, and the participants were asked to recall their original con-
fidence. The participants exhibited hindsight bias: Recalled confidence
for events they thought had happened was higher than original confi-
dence, while recalled confidence for events they thought had not hap-
pened was lower.
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Views of Hindsight Bias

Hindsight bias has been interpreted in various ways. We distinguish two
types of interpretations and add a third one. Fischhoff (1975), whose early
experimental studies carved out this new topic for memory researchers,
stressed that hindsight bias is not only robust and difficult to eliminate
(Fischhoff, 1982a), but also has potentially harmful consequences:

When we attempt to understand past events, we implicitly test the
hypotheses or rules we use both to interpret and to anticipate the
world around us. If, in hindsight, we systematically underestimate
the surprises that the past held and holds for us, we are subjecting
those hypotheses to inordinately weak tests and, presumably, find-
ing little reason to change them. Thus, the very outcome knowledge
which gives us the feeling that we understand what the past was all
about may prevent us from learning anything from it. (Fischhoff,

1982b, p. 343)

Rather than stressing the harmful consequences of hindsight bias, oth-
ers (e.g., Campbell & Tesser, 1983) have pointed out its potentially adap-
tive aspects. Presenting ourselves as wiser after the fact may enable us to
appear intelligent, knowledgeable, or perspicacious. In fact, as long as no
record of our previous judgments is available (which, unlike for pollsters,
is generally the case), the immediate benefits of presenting oneself as
knowledgeable outweigh the unlikely costs of being revealed as an impos-
ter. In addition to hindsight’s potential benefits in social interaction, hind-
sight bias may play an important role in creating and maintaining a coher-
ent conception of oneself. Take, for instance, the situation of people who
suddenly find themselves in a society whose value system has completely
changed. The 1990s have seen an unusual number of such rapid societal
transformations, from the fall of the apartheid regime in South Africa to
the end of the socialist regimes in the Soviet Union and East Germany,
among other countries. Many of those who held a responsible position
in the old regimes are now being asked by their families and friends, or
interrogated by official bodies (e.g., the Commission for Truth and Recon-
ciliation in South Africa), to account for their previous behavior. Under
these circumstances, hindsight bias—here the belief that one’s past con-
victions and behavior are compatible with what the new regime considers
to be right—can be an effective way of preserving the integrity of one’s
personality (and perhaps one’s skin).

We propose a third view (which does not exclude the two views out-
lined above). According to this view, hindsight bias is a by-product of an
adaptive process rather than being an adaptation itself (for a general ver-
sion of this argument, see Campbell, 1959). To introduce this view, we
first address the question: What are the alternatives to the assumption that
human memory is unbounded in its capacity?

Consider the following situation. Mr. Loman is a salesman who visits
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his clients by car. Every day, he repeatedly decides where to park his car,
then stores this information in memory, and finally, after completing his
business appointment, retrieves the car’s location from memory. He does
this very many times in the course of weeks, months, and years. How
could a memory system be designed that allows Mr. Loman quickly and
reliably to retrieve the knowledge about where he parked his car most
recently? Is a system that maintains access to the knowledge of all past
parking locations efficient? Some current conceptions of human memory
seem to assume that we do in fact keep a record of every discrete event
we have experienced and that, when we retrieve information or classify
an object, we compare a probe with all our existing memory traces. For
instance, exemplar models (e.g., Estes, 1986; Hintzman, 1988; Medin &
Schaffer, 1978; Nosofsky, 1986; Ratcliff, 1978) are based on such an as-
sumption. Although these models have provided impressive accounts of
a wide array of memory phenomena, their psychological plausibility has
been questioned, both for the extensive similarity computation, as well as
for the vast memory resources they require (Nosofsky et al., 1994; see also
chapter 11 for an alternative).

Sharing these doubts, we concur with Anderson and Schooler’s (1991)
argument that “it is just too expensive to maintain access to an un-
bounded number of items” (p. 396). In addition, a stockpile of memories
(e.g., the memories of all the previous locations of Mr. Loman’s car) may
interfere with the only information that is relevant right now (e.g., where
his car is currently parked). In this sense, forgetting may be necessary for
memory to maintain its function, insofar as it prevents us from using old
and possibly outdated information (Bjork, 1978; Ginzburg et al., 1996). A
well-known phenomenon that reflects the adaptive nature of forgetting is
the Zeigarnic effect. Zeigarnic (1927) showed that memory for tasks that
have been completed declines rapidly compared to those tasks that have
not yet been completed (e.g., a waiter’s memory of the amount of the bill,
depending on whether or not the customer has already paid). Thus, forget-
ting should most likely occur once the usefulness of some information has
passed.

An alternative to a memory system that includes an immense, continu-
ously expanding long-term storage is a system that maintains access pri-
marily to the information most likely to be needed and most likely to be
correct. For such a memory system, it is crucial to update information
constantly and automatically. This process would avoid the problems of
an exploding number of items, and the increasing retrieval time required
if memory probes were compared with stored traces in a serial manner., It
would make possible a boundedly rational memory system, which keeps
available only those items that are most likely to be needed. Such a pro-
cess of information updating is consistent with Bartlett’s (1932/1995) clas-
sical finding that schemata are constantly changing and being updated.

Besides the fact that for most experiences there is no need for later
recall (Anderson & Schooler, 1991), there is another reason why it is not
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necessary to maintain a memory trace for everything we have thought,
said, or experienced in the past: When something needs to be recalled,
there are alternatives to memory retrieval. For example, imagine that you
own 25 shares of stock in a company, which are listed in the newspaper
as being worth $378.50 each. To calculate their total value, you multiply
25 times 378.5. A couple of days later, you want to know this value again.
Can you remember $9,462.50? Probably not. However, this is not a prob-
lem, because you can compensate for your failure to retrieve it from mem-
ory by performing the same calculation again: Recall can be replaced by
recalculation. We posit that the same sort of recalculation can be done—
and, in fact, is done—when a past judgment, such as the prediction of the
outcome of an election, needs to be recalled. If it cannot be recalled, going
through the same process that led to the original judgment can provide a
good approximation, and perhaps even a perfect substitute. There is, how-
ever, an important difference between a multiplication and a judgment.
Performing arithmetic computations is a technical skill and we are trained
to do it reliably. Therefore, performing the same multiplication a second
time should yield the same result. In contrast, making a judgment often
implies drawing knowledge-based inferences. If knowledge is constantly
updated, as suggested above, inferences based on the updated knowledge
may be different from those based on past knowledge.

Updating knowledge is the key assumption underlying the model of
hindsight bias proposed below. It applies to situations where the original
judgment was a knowledge-based inference. If the attempt to remember
this original judgment directly fails, it will be reconstructed by repeating
the same process that led to this judgment. However, knowledge about
the outcome of an event, or feedback on whether an inference was correct,
leads to an updating of relevant knowledge. As a consequence, the recon-
struction based on the updated knowledge can be systematically different
from the construction based on the original knowledge. This difference is
what is known as hindsight bias. Thus, in our view, the so-called bias is
a by-product of an adaptive process, namely knowledge updating.

Previously, we proposed a model that accounts for a puzzling effect in
research on hindsight bias, namely the observation that hindsight bias is
larger for assertions where the feedback is “true” than for assertions where
the feedback is “false” (Hertwig et al., 1997). That model explained this
finding as a result of the co-occurrence of hindsight bias and the reitera-
tion effect, that is, the phenomenon that mere repetition of an assertion
increases confidence in its correctness. However, that model does not ex-
plain why there is hindsight bias in the first place. The present model
does. Although it is not the only account of hindsight bias where a hind-
sight judgment is seen as a “reconstruction of the prior judgment by ‘re-
judging’ the outcome” (Hawkins & Hastie, 1990, p. 321), it seems fair
to say that ours is the only account that has specified a process model
for knowledge-based inferences. It allows us to explain, at the level of
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individual responses from individual participants, why hindsight bias oc-
curred, did not occur, or even was reversed.

Inferring Past Judgments Fast and Frugally

What processes do people go through when they try to reconstruct their
original judgment? We suggest that asking this question is the same as
asking what processes underlie the original judgment. The theory of prob-
abilistic mental models (PMM theory; Gigerenzer et al., 1991) provides
one answer. The PMM framework applies to tasks in which a choice must
be made between two alternatives according to a quantitative criterion,
together with a judgment of confidence that the chosen alternative is cor-
rect. (In one such task, participants are asked: “Which city has more in-
habitants, Heidelberg or Bonn?” “What is your confidence that the alterna-
tive you have chosen is the correct one?”) We now extend the PMM
framework to a context in which feedback about the correct answer is
given, and the mind reconstructs the original response (both the choice
and confidence). We call this model RAFT (for Reconstruction After Feed-
back with Take The Best).

Original Response

A concrete example will help to illustrate the task and the proposed
mechanism: A friend of ours from southern California, Patricia, is trying
to reduce her consumption of cholesterol. However, she has a sweet tooth
and at a restaurant wants to order a dessert, either chocolate fudge cake
or pumpkin custard pie. She asks herself which of the two foods has more
cholesterol (in order to choose the one having less). Because Patricia does
not know the correct answer, she tries to infer it from what she knows
about the two foods. We hypothesize that to make this inference she will
construct a probabilistic mental model. Such a PMM consists of a refer-
ence class, probability cues, knowledge about the objects of the reference
class with respect to these cues, and a heuristic for processing this knowl-
edge.

Knowledge About Cues According to PMM theory, knowledge is concep-
tualized as a set of cues (e.g., amount of saturated fat), and the values
these cues have regarding the alternatives (henceforth, foods). When com-
paring the cue values of two foods, there are—in the case of a quantitative
cue—four possible relations: “larger” (e.g., cake contains more saturated
fat than pie), “smaller,” “equal,” or “unknown.” Henceforth, we refer to
these relations as object relations. (Note that it is sufficient to have an
intuition, right or wrong, concerning the object relations; whether these
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relations are directly retrieved or deduced from absolute cue values is left
open.)

PMM theory also assumes that people have intuitions about the pre-
dictive power of a cue. The predictive power of a cue can be measured by
its ecological validity. Ecological validity is defined as the relative fre-
quency with which the cue correctly predicts which object scores higher
on the criterion in a defined reference class (chapter 4). It is determined
by considering only those comparisons where the cue discriminates (i.e.,
the object relation is “larger” or “smaller”). Let us assume that Patricia’s
reference class consists of foods sampled from her local supermarket, and
let us consider saturated fat as a quantitative cue for cholesterol. When
we took a random sample of 36 food items from a supermarket and
checked all possible pairs, we found that in about 80% of these pairs, the
food item with more saturated fat (cue) also has more cholesterol (crite-
rion). This value is the ecological validity of the saturated fat cue (in our

supermarket sample).

Heuristic How can Patricia use this knowledge to infer which food has
more cholesterol? We account for her inference with a heuristic in the
PMM framework called “Take The Best” (Gigerenzer & Goldstein, 1996a;
see also chapter 4). If both foods are known, Take The Best starts with an
estimated rank order of cues according to their validities and makes the
inference on the basis of the highest ranking (“best”) cue that discrimi-
nates between the two foods. Suppose that Patricia’s PMM consists of
three cues, amount of saturated fat, calories, and protein, which are al-
ready ordered according to their validities (80%, 70%, and 60%), respec-
tively). Her original mental model about the relations between cake and
pie on these cues is depicted in figure 9-1 (in the original response col-
umn). The highest ranking cue, saturated fat, does not discriminate; there-
fore Take The Best will try the next cue, calories. Because the cake has
more calories than the pie, the heuristic stops searching and chooses cake
as the alternative with more cholesterol. Confidence in the correctness of
the decision is the validity of the cue that determined that decision (here,
70% as the validity of the calorie cue).

A defining characteristic of this fast and frugal heuristic is its simple
stopping rule: Terminate search when the first good reason is found that
speaks for one alternative over the other. No other cues are looked up
after this point, and no cost-benefit computations are made in an attempt
to determine the “optimal” stopping point for memory search. Such a sim-
ple stopping rule is crucial for memory-based inferences where much time
and effort could be spent searching for information in the fog of memory.
In the study reported below, we taught participants about only three cues
(those listed in figure 9-1) and thus have artificially limited the search. In
real-world inferences about food, there would typically be many more
cues available and search would continue beyond such a small number of
cues unless a stopping rule terminated it.
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Hindsight bias
at the level of confidence
Original Recalled
response response
Cake Pie Cake Pie

Saturated fat (80%) ? — >
Calories (70%) ‘ ;
Protein (60%) j j
Choice Cake Cake
Confidence 70% 80%

Figure 9-1: Hindsight bias at the level of confidence. The probabilistic
mental model contains three cues ranked according to their validity (spec-
ified in parentheses). The symbols “>” and “?” denote the relations be-
tween objects on these cues. For instance, in the left column, which de-
scribes the knowledge underlying the original response, the object
relation on the saturated fat cue is unknown. As indicated by the arrow
“—”), this object relation changes after feedback that cake has more cho-
lesterol than pie. The relation shifts toward feedback, that is, from “?” to
“>" in the updated mental model (right column). As a consequence, hind-
sight bias occurs. Note that Take The Best stops cue search before reaching
the shaded object relations.

Feedback and Reconstruction

Some weeks after having dinner at the restaurant, Patricia goes to the mar-
ket and finds out that chocolate fudge cake has more cholesterol than
pumpkin custard pie. She tries to remember her past choice. What is the
mechanism of recalling the original response? Figure 9-2 illustrates the
cognitive processes as assumed by the RAFT model. First, an attempt is
made to retrieve the original response directly from memory. The chance
of doing this successfully depends on factors such as time delay between
original judgment and recollection (Fischhoff & Beyth, 1975; Hertwig,
1996), and depth of encoding of the original response (Hell et al., 1988).
If the original response is directly (and veridically) recalled from memory,
no hindsight bias is obtained (upper left box in figure 9-2).

If the original response cannot be retrieved from memory, an attempt
is made to reconstruct the original PMM that led to this response. An
identical reconstruction will be obtained if (a) the type of strategy (e.g.,
lexicographic strategy, linear model, neural net, or Bayesian net) is the
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Figure 9-2: Flowchart of the RAFT model for hindsight bias.
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same for the original response and its reconstruction; (b) this strategy op-
erates with the same parameters (e.g., the same cue order, weights, or
probabilities); (c) the strategy uses the same cues; and (d) the values that
are retrieved on these cues are the same. A violation of any of these re-
quirements may lead to differences between the original and the recon-
structed response. In fact, RAFT posits a violation of requirement (d), that
is, a systematic difference between the cue values underlying the original
response and the reconstructed response. RAFT does not exclude the pos-
sibility that requirements (a), (b), and (c) may also be violated, and there
are indeed such accounts of hindsight bias (e.g., Hawkins & Hastie, 1990).
Nevertheless, we argue and provide evidence that the violation of require-
ment (d) is sufficient to account for hindsight bias.

Knowledge Updating Why should there be a change in object relations
on the cues after feedback? Usually there is more than one cue that can
be used to infer a criterion. Thus, if information on one cue is not avail-
able, this cue can be replaced by another. Egon Brunswik (1952) called
this “vicarious functioning.” Further, it is not only cues that are inter-
changeable, but also a cue and the criterion: For many cases, the possibil-
ity of drawing inferences from a cue to a criterion can also be reversed.
For instance, not only can the amount of saturated fat be used to infer the
amount of cholesterol, but the reverse is also true. Suppose you know
neither how much saturated fat nor how much cholesterol is in chocolate
fudge cake. If you now learn that cake has a lot of saturated fat, you can
use this as a cue to infer that it also has a lot of cholesterol. Similarly, if
you are told that cake has a lot of cholesterol, you can use this as a cue to
infer a high saturated fat value. Thus, new information about the criterion
can be used to update related knowledge in semantic memory—similarly
to the updating of outdated information in episodic memory (as in Mr.
Loman’s car-parking case, see also Bjork, 1978). Updating is adaptive: It
increases the coherence of our knowledge and the accuracy of our infer-
ences (since more recent information is typically more valid and more
relevant).

Thus, our conjecture is that knowledge stored in memory is in a state
of flux, constantly changing, in part because new information is acquired,
and in part because knowledge related to this new information is updated.
Next, we show how such changes in knowledge over time lead us to pre-
dict and account for hindsight bias (as depicted in the branch at the bot-
tom right of figure 9-2).

Predictions

The fact that the same variable may serve as either a criterion or a cue
offers an interesting perspective. In the restaurant, Patricia worried about
cholesterol, and her original mental model contained saturated fat as a
cue (to infer cholesterol). In an attempt to reconstruct her original mental
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model, saturated fat—or more precisely, the knowledge she had about sat-
urated fat when she was in the restaurant—becomes the criterion. In some
cases veridical retrieval of this past cue and current criterion may be pos-
sible; in others it may not. As a substitute for such a gap in memory,
Patricia could use the knowledge she has now. However, in the meantime
she found out which of the two foods has more cholesterol, and this new
information might have led to an updating of related knowledge, such as
saturated fat. As a consequence of this cue-criterion switch, the knowl-
edge in the updated mental model will show systematic shifts toward
feedback (Prediction 1). Because RAFT assumes that updating only occurs
with some probability, this prediction does not necessarily hold for each
single item.

According to RAFT, systematic changes in knowledge about cues can
explain systematic changes in recollection of choice and confidence. That
is, the occurrence of hindsight bias is contingent on the reconstructed
knowledge. After excluding cases where original and recalled responses
are identical (and thus can be attributed to direct memory), RAFT should
be able to account for individual recollections: Regardless of whether
hindsight bias or reversed hindsight bias is observed, this observation
should match RAFT’s prediction, which is derived from the recalled ob-
ject relations for this item (Prediction 2}.

Hlustrations of the RAFT Model

We now illustrate how RAFT accounts for recollections made with hind-
sight. When Patricia tried to infer at the restaurant which of the two foods
has more cholesterol, she did not know the value on the saturated fat cue
(i.e., the most valid cue, see figure 9-1). After she found out that cake has
more cholesterol than pie, this value was updated. The consequence is
that in hindsight, when Patricia tries to remember her original judgment,
the saturated fat cue—which was not available to her at the restaurant—
discriminates, and Patricia infers that she thought that cake is the one
with more cholesterol. She also infers that her confidence in this choice
was 80% (the cue validity of saturated fat). Thus, her reconstructed choice
is identical to her original choice. Her reconstructed confidence, however,
increased relative to her original confidence. This is an example of hind-
sight bias. More generally, hindsight bias at the level of confidence occurs
if a choice is correctly recalled, but recalled confidence increases after
feedback indicating the originally selected alternative was correct (or de-
creases after feedback that it was wrong).

Not only can recalled confidence differ from original confidence, but
recalled choice can differ from original choice as well. Hindsight bias at
the level of choice occurs when feedback indicates that the originally cho-
sen alternative was wrong and the recalled choice is the correct alterna-
tive (e.g., original choice is pie, feedback is cake, and recalled choice is
cake). RAFT can account for hindsight bias at the level of choice as well.
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Figure 9-3 (panel A) provides an example: At the restaurant, only the pro-
tein cue discriminated, pointing to the pie. After feedback, however, the
saturated fat cue discriminates, pointing to the cake. If the original choice
is reconstructed from this updated knowlegde, RAFT predicts hindsight
bias at the level of choice.

It is also conceivable for hindsight bias to be reversed. Reversed hind-
sight bias at the level of choice occurs when the original choice is correct
according to feedback, but recalled choice is wrong. Reversed hindsight
bias at the level of confidence occurs if recalled choice equals original
choice, but recalled confidence decreases after feedback confirming—or
increases after feedback does not confirm—the originally selected alterna-
tive. How does RAFT account for reversed hindsight bias? It does so by
allowing for random shifts in the object relations. That is, beyond system-
atic shifts due to feedback, RAFT posits unsystematic shifts due to the
imperfect reliability of one’s knowledge. Such random shifts are assumed
to be independent of feedback. For this reason they may either coincide
with the direction of feedback, or be counter to it. In figure 9-3 (panel B),
a random shift changed the object relation on the saturated fat cue counter
to the direction of the feedback. This random shift leads to reversed hind-
sight bias at the level of confidence.

To summarize, our starting point was the observation that human
memory is bounded in its capacity. An alternative to unbounded memory
is a system that maintains access to the information that is most likely to
be needed and most likely to be correct. For such a memory system, it is

Panel A: Panel B:
Hindsight bias Reversed hindsight bias
at the level of choice at the level of confidence
Original Recalled Original Recalled
response response response response

Cake Pie Cake Pie Cake Pie Cake Pie

Saturated fat (80%) ?2 = > > = ?

Calories (70%) 2 T | >
: i | ! ey

Protein (60%) < — 7?7 j § >
St an s e hamimansed - =

Choice Pie Cake Cake Cake

Confidence 60% 80% 80% 70%

Figure 9-3: Hindsight bias at the level of choice (panel A), and reversed
hindsight bias at the level of confidence (panel B). For an explanation of
the symbols, see figure 9-1.
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crucial to update information constantly and automatically. We suggest
that hindsight bias is a by-product of this adaptive updating. Assuming a
fast and frugal heuristic for reconstructing past judgments based on up-
dated knowledge, RAFT explains this so-called bias.

Empirical Evidence

We conducted a study that was designed to test Predictions 1 and 2 (see
Hoffrage et al., 1999). The experiment started with a phase in which parti-
cipants learned the values of the saturated fat, calorie, and protein cues
for various food items. They were also taught the validities of these cues
(80%, 70%, and 60%) for inferring which of the food items has the higher
amount of cholesterol. Immediately after this learning phase, the partici-
pants were given a list of food pairs and asked two questions about each
pair: “Which food do you think has more cholesterol?” and “How confi-
dent are you that your choice is correct?” (The confidence rating scale
ranged from 50% to 100%.) After they had given their responses, we
asked them to recall the amounts of saturated fat, calories, and protein
they had learned for each food item or to indicate for each food pair the
relation between the food items on each cue (this is their knowledge be-
fore feedback).

In the second session, participants in the experiment first received the
correct answer (feedback) for each of the questions they had answered in
the first session. In the control condition, no feedback was provided. Then
all participants were asked to recall (a) which food they had originally
chosen as having more cholesterol, (b) how confident they were that their
choice was correct, and—in a new questionnaire—(c) the originally learned
cue values or the foods’ relations on the cues (this is their knowledge after
feedback). Recording participants’ knowledge was important here be-
cause, according to RAFT, the occurrence of hindsight bias depends on
this knowledge.

We first investigated whether participants showed any hindsight bias.
For correct choices, hindsight bias occurred if recalled confidence in-
creased, and for wrong choices hindsight bias occurred if recalled confi-
dence decreased. In order to be able to include confidence judgments for
correct and wrong choices in a single analysis, we mapped original and
recalled confidences for wrong choices on a full-range scale. For example,
a confidence judgment of 70% that the wrong alternative was the correct
one was coded as 30% (confidence in the correct alternative). On this full-
range scale, hindsight bias would always appear as an increase in confi-
dence. Confidence increased in the feedback condition by an average of
3.4 percentage points, whereas in the no-feedback condition, it decreased
by 0.6 percentage points. The effect of the difference is of medium size
(d=0.54, Cohen, 1988, p. 20) and is larger than the average effect size
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reported in Christensen-Szalanski and Fobian Willham’s (1991) meta-
analysis.

Did relations on cues shift systematically after feedback (Prediction 1)?
Shifts can occur toward or away from feedback. A shift toward feedback
occurred when the cue originally pointed to the wrong alternative and
now points to the correct alternative, or does not discriminate anymore.
A shift toward feedback also occurred when the cue originally did not
discriminate but now points to the correct alternative. The same logic de-
fines shifts away from feedback. A cue does not discriminate if a partici-
pant did not specify the object relation on this cue (or the values for the
two objects). In the feedback condition, 66.0% of the relations remained
unchanged after feedback (across all participants, items, and cues). Did
the remaining relations shift systematically toward feedback? Figure 9-4
shows the percentages of shifts toward and away from feedback. Consis-
tent with Prediction 1, in the feedback condition, shifts toward feedback
outnumbered those away from it, whereas in the no-feedback condition,
both kinds of shifts occurred equally often.

Can we specify more precisely when shifts toward feedback occur? We
suggest that updating after feedback should occur most likely when a cue
did not discriminate at the time of the original response. To illustrate this
rationale, let us first consider those cues that discriminated. The fact that
a cue discriminated implies that knowledge was available in the original

20.8 Shifts Toward Correct Alternative
wcanisl | 7] Shifts Toward Wrong Alternative | T

N
o
|
1

156.3 15.3

Shifts in Object Relations (%)

No Feedback

Figure 9-4: Proportion of object relations shifting toward and away from
feedback. Shifts toward the correct or wrong alternative are equivalent
to shifts toward or away from feedback, respectively, when feedback is
given.
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mental model. The mere existence of knowledge provides the chance that
it can be accessed again at some later point and that the object relation is
veridically retrieved—even after feedback. In contrast, if the relation was
unknown, then feedback does not need to overcome preexisting knowl-
edge to become manifest. A similar implication holds for “equal” rela-
tions. Here, a shift in one cue value is sufficient to change the relation.
For a discriminating relation, a shift may reduce the difference between
the two values but not necessarily cause a change in the relation.

Is updating after feedback most likely when a cue did not discriminate
at the time of the original response? To answer this question, we calcu-
lated the differences in the proportions of shifts toward and away from
feedback (across all participants, items, and cues). Figure 9-5 displays the
results. In 38.7% of the cases in which cues originally did not discrimi-
nate, cues disciminate after feedback: in 27.7% of the cases, they point to
the correct alternative, and in 11.0% to the wrong alternative. This differ-
ence of 16.7 percentage points is depicted by the leftmost bar in figure
9-5. In contrast, when cues originally discriminated, shifts were almost
symmetrical—the difference between shifts toward and away from feed-
back decreased to 2.8 percentage points. In the no-feedback condition,
the difference between shifts was miniscule for both discriminating and
nondiscriminating cues. These results strongly confirm the prediction that
the impact of feedback is most pronounced when a cue did not discrimi-
nate at the time of the original response.

20

16.7 Cue Did Not Discriminate
o O] cue Discriminated

10

Shifts Toward Correct Alternative Minus
Shifts Toward Wrong Alternative (%)

Feedback No Feedback

Figure 9-5: Proportion of object relations shifting toward the correct alter-
native minus those shifting toward the wrong alternative, depending on
whether a cue discriminated when the original response was given.
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Can hindsight bias and reversed hindsight bias be predicted fr.om re-
called object relations (Prediction 2)? To test this prediction, we first ex-
cluded cases where original and recalled response are identical, because
they can be attributed to accurate memory (and are thus not subject‘ tf)
reconstruction). Next, we determined RAFT’s prediction for each partici-
pant as follows. For each food pair, we applied Take The Best to 'the up-
dated knowledge and compared the resulting choices and confldeflces
with the original choices and confidences. This comparison determined
whether RAFT would predict hindsight bias, reversed hindsight bias, or
no hindsight bias (predicted outcome). The predicted outcome was t'hen
compared with observed outcomes (hindsight bias or reversed hindsight
bias), and for each participant, we finally determined the percentage of
correct predictions across items. .

Averaged across all participants, the percentage of correct predictions
was 76.3%. RAFT correctly explains nearly as many of the observed out-
comes in the feedback and the no-feedback conditions: 76.6% and 75.9%,
respectively. This is not surprising as RAFT can also account for recon-
structed judgments based on cue values that were not updated (e.g., be-
cause no feedback was provided). To see how good the performance of
RAFT is we compared it with a chance model (for details, see Hoffrage et
al., 1999). Averaged across all participants in the feedback and the no-
feedback conditions the performance of this chance model was 67.9%
(i.e., 8.4 percentage points worse than RAFT’s performance; £=5.0, p =
.001).

Looking Back

We proposed a model of the cognitive processes underlying hindsight
bias. This model assumes that information about the correct answer lead.s
to an updating of elusive cue values. If the original response is inaccessi-
ble, it will be reconstructed based on cue values that may have been.up-
dated. As a consequence, the reconstructed response may exhibit hind-
sight bias. Consistent with Prediction 1, we found that feedback on th.e
criterion systematically influenced participants’ recollection of their
knowledge about cues. Consistent with Prediction 2, a majority of the
cases in which either hindsight bias or reversed hindsight bias occurred
was accurately predicted by applying Take The Best to the recalled (and
updated) cue values. In Hoffrage et al. (1998), we report a further study
that replicated the present results, report evidence for a third prediction
(that assisting the recall of cue values reduces hindsight bias), and discuss
how RAFT explains other findings obtained in research on hindsight bias.

Fast and Frugal Inferences

The model of hindsight bias we have proposed integrates ideas from Sir
Frederic Bartlett, Egon Brunswik, and Herbert Simon. Like Bartlett, we
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: id not
see remembering as a process of reconstruction. Bartlett hmllrslei)fu(ri view,
80 on to specify how this reconstruction can be modeled. ction i5
consistent with Brunswik’s (1952, 1957) framework, reconstr wikian
based on uncertain cues. However, in contrast to the neo-Bf.ur;S (Cook-
idea that cues are weighted and integrated by multiple reg‘ress.}: that the
Sey, 1996; Doherty, 1996: Hammond, 1955), our assumption lhe Best i
nature of the inferential mechanism is fast and frugal. quke Tle it does
such a fast and frugal mechanism. Because it has a stoppll?g rull ’ simple
not seek all the available information, and it is computat}ona };haniS n
compared with multiple regression. Thus, RAFT’s inferential me
Is a bounded rational one (Simon, 1982; chapter 1). The Best

As many of the results reported in this hook suggest, Take o of its
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psychological plausibility, we chose to model people’s recollectio " fotod
this simple heuristic, Would we have achieved a better fit of the pr ful but
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analyzed the data and tested Prediction 2 with several other stra B
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Conclusion

) dat-
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product; hindsight
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bias. But this by-product may be a relatively low P
to pay for a memory that works fast and frugally.
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Quick Estimation
Letting the Environment Do the Work

Ralph Hertwig
Ulrich Hoffrage
Laura Martignon

We may look into that window [on the mind] as through a
glass darkly, but what we are beginning to discern there
looks very much like a reflection of the world.

Roger N. Shepard

“September 30, 1659. 1, poor, miserable Robinson Crusoe, being shi{)-
wrecked, during a dreadful storm in the offing, came on shore on this
dismal unfortunate island, which I called ‘the Island of Despair, all the
rest of the ship’s company being drowned, and myself almost dead” (De-
foe, 1719/1980, p. 74). Thus begins Robinson Crusoe. Daniel Defoe’s clas-
sic novel has been interpreted as everything from a saga about human
conquest over nature to an allegory about capitalism. At a much more
mundane level, however, Crusoe’s adventures illustrate the crucial impor-
tance of being able to estimate the frequency of recurrent natural events
accurately. Of his first attempt to sow grain, he wrote in his journal: “Not
one grain of that I sowed this time came to anything; for the dry months
following, the earth having had no rain after the seed was sown” (p. 106).
From then on, Crusoe kept track of the rainy and dry days in each month,
and subsequently sowed seed only when rainfall was highest. He reaped
the rewards of this strategy, later reporting: “I was made master of my
business, and knew exactly when the proper season was to sow; and tlhat
I might expect two seed times, and two harvests, every year” (p. 107).

1. Crusoe’s story may not be completely fictitious. Before the publit_:ation of
Robinson Crusoe, Defoe might have read about Alexander Selkirk, a sailor who
survived five years on a desert island—Juan Fernandez Island off the coast of

209
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Defoe equipped the fictional Crusoe with a journal, which helped him
to predict rainfall. Are real humans equipped to estimate environmental
quantities even without the benefit of written records? One domain where
we would expect to find evidence of such an ability—if it exists—is in
foraging for food. Humans have spent most of their evolutionary history
in hunter-gatherer foraging economies in which they have had to decide
what to hunt. The Inujjuamiut, a group of Eskimos who live in Canada,
afford us an opportunity to observe how contemporary human hunter-
gatherers select strategies for obtaining food (Smith, 1991). One of the In-
ujjuamiuts’ food sources is the beluga whale. When hunting belugas, the
Inujjuamiut encircle a group of them and drive them into shallow water.
Exploiting the whales’ sensitivity to noise, the hunters then “herd” them
by pounding on the gunwales of their canoes and shooting in a semicircle
around them. While the whales are being killed with high-powered rifles
and secured with floats, the pursuit of the next group of belugas gets un-
derway.

Inujjuamiut foraging strategies—their strategies for choosing prey and
hunting methods—can be modeled by the contingency prey model. Ac-
cording to the anthropologist Eric Alden Smith (1991, p. 237), this model
is the best tool yet devised for explaining hunter-gatherer prey choice. It
suggests why the Inujjuamiut undertake time-consuming and dangerous
whale hunts rather than pursuing easier prey, such as ducks, geese, and
seals. Its basic intuition, shared by other foraging models, is that a forager
who has encountered a food item (prey or patch) will only attempt to
capture it if the return per unit time for doing so is greater than the return
that could be obtained by continuing to search for another item. Hence
prey choice depends on rankings of food items in terms of return rates
(see chapter 15). Setting aside the details of this model (see Smith, 1991),
one of its crucial assumptions is that to be ranked according to their net
return, food items (from prey) must be classified according to their statisti-
cally distinct return rates (per-unit handling time, i.e., time spent in pur-
suit, capture, and processing) and encounter rates (per-unit search time).
Thus, just as Defoe equipped Crusoe with journal entries from which to
estimate rainfall, the contingency prey model endows humans with the
cognitive abilities necessary to estimate environmental quantities (e.g., the
rate at which they encounter a certain type of prey).

But literary devices and theoretical assumptions aside, the question re-
mains: Do humans actually have this ability, and how can it be modeled?
According to Brown and Siegler (1993), psychological research on real-
world quantitative estimation “has not culminated in any theory of esti-

Chile. Selkirk was left there at his own request after quarreling with his captain.
When it was published, Selkirk’s story was a sensation. The public was fascinated
by the way this man had survived—as was Defoe, who may even have met him, as
some scholars believe (see Swados’s Afterword in Defoe, 1719/1980).
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mation, not even in a coherent framework for thinking about the process.
This gap is reflected in the strangely bifurcated nature of research in the
area. Research on heuristics does not indicate when, if ever, estimation is
also influenced by domain-specific knowledge; research on domain-spe-
cific knowledge does not indicate when, if ever, estimation is also influ-
enced by heuristics” (p. 511). In this chapter, we attempt to bridge this
gap by designing a heuristic adapted to make fast and frugal estimates in
environments with a particular statistical structure. Before describing this
heuristic, we review previous research on quantitative estimation, focus-
ing on how people estimate numbers of events (both types and tokens);
the events in question may be objects, people, or episodes.” We review
two classes of estimation mechanisms: estimation by direct retrieval and
estimation by inference.

Estimation by Direct Retrieval

The Scottish Enlightenment philosopher David Hume believed that the
mind unconsciously and automatically tallies event frequencies and ap-
portions degrees of belief in events accordingly. Hume (1739/1975)
claimed that the psychological mechanism for converting observed fre-
quency into belief was extremely finely tuned: “When the chances or ex-
periments on one side amount to ten thousand, and on the other to ten
thousand and one, the judgment gives the preference to the latter, upon
account of that superiority” (p. 141).

Recent research on human monitoring of event frequencies (Hasher &
Zacks, 1979, 1984) supports Hume’s position by suggesting that memory
is extremely sensitive to frequency of occurrence information (Hasher &
Zacks, 1984, p. 1379), although not as finely tuned as Hume suggested.
People’s sensitivity to natural frequency of occurrence has been demon-
strated using a variety of stimuli. For instance, several authors have docu-
mented that people’s judgments of the frequency with which letters and
words occur generally show a remarkable sensitivity to their actual fre-
quencies (e.g., Attneave, 1953; Hock et al., 1986; Johnson et al., 1989).°

Hasher and Zacks (1979, 1984) assumed that people automatically en-
code the occurrences of an event, store a fine-grained count of its fre-
quency, and when required to estimate its frequency, access this count.
They proposed that people can estimate frequencies accurately because

2. This chapter does not review research on estimation of psychophysical stim-
uli (e.g., Haubensack, 1992; Mellers & Birnbaum, 1982; Parducci, 1965), probabili-
ties (e.g., Kahneman et al., 1982; Peterson & Beach, 1967), or statistical parameters,
such as central tendency, variability, and correlation {e.g., Busemeyer, 1990).

3. For instance, Attneave (1953) asked participants to judge the relative fre-
quencies of all the letters in the alphabet and found a correlation of .79 between
actual relative frequencies and the medians of the judged frequencies.
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registering event occurrences is a fairly automatic process, that is, it re-
quires little to no attentional capacity. In this view, frequency is one of
the few attributes of stimuli that seems to be encoded automatically (oth-
ers being spatial location, temporal information, and word meaning). Al-
though the claim that event frequencies are automatically encoded may
be too strong and has been seriously criticized (see Barsalou, 1992, chap.
4), there seems to be broad agreement with the conclusion that Jonides
and Jones (1992) summarized as follows: “Ask about the relative numbers
of many kinds of events, and you are likely to get answers that reflect the
actual relative frequencies of the events with great fidelity” (p. 368). A
similar conclusion has also been drawn in research on probability learn-
ing, about which Estes (1976) remarked: “The subjects clearly are ex-
tremely efficient at acquiring information concerning relative frequencies
of events” (p. 51).

Estimation by Inference

Where Hasher and Zacks assume that people have access to a count of the
event, the advocates of a rival approach contend that people infer this
value from cues correlated with it. The researchers who advocate this ap-
proach may be divided into two groups according to their postulate of the
nature of these cues: ecological versus subjective.

Inference by Ecological Cues

According to Brunswik (1952, 1955), the perceptual system estimates a
distal variable (e.g., distance) by using proximal cues that are probabilis-
tically related to it (e.g., perceived size of an object, converging lines). For
the system to respond successfully, Brunswik argued that cues should be
utilized according to their ecological validity (see discussion in Ham-
mond, 1966, p. 33), and that this concept is best measured by correlational
statistics. Thus, ecological validity was defined as the correlation between
a proximal cue and a distal criterion (Brunswik, 1952).

Unlike Hasher and Zacks’s theory, Brunswikian theories of human
judgment (e.g., Gigerenzer et al., 1991; Hammond et al., 1975) assume that
the criterion—for instance, the frequency of sunny days in Rome in May—
will typically not be directly retrieved from memory. Instead, it will be
inferred based on proximal cues—for instance, the fact that Rome is lo-
cated in southern Europe. Nevertheless, the Brunswikijan research shares
an interesting link with that of Hasher and Zacks (1984): While the latter
assumes and provides evidence that people store accurate records of event
frequencies, the former assumes and provides evidence that people keep
fairly accurate records of ecological cue validities (e.g., Arkes & Ham-
mond, 1986; Brehmer & Joyce, 1988). Learning cue validities, however,
requires the ability to register event frequencies and their co-occurrences
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accurately, except when knowledge of the validities is evolutionarily built
in (e.g., in depth perception).

Inference by Subjective Cues: Availability

In a classic study by Tversky and Kahneman (1973), people had to judge
whether each of five consonants (K, L, N, R, V) appears more frequently
in the first or the third position in English words. Although all five conso-
nants are more frequent in the third position, two-thirds of the partici-
pants judged the first position to be more likely for a majority of the let-
ters.*

Tversky and Kahneman (1973) proposed the availability heuristic as
a mechanism of real-world quantitative estimation that can account for
systematic biases in people’s estimates. According to the availability ex-
planation, assessments of frequency (or probability) are based on the num-
ber of instances of the event that “could be brought to mind” (p. 207).
That is, its basic assumptions are that people draw a sample of the event
in question (e.g., by retrieving words that have the letter “R” in the first
and third position, respectively) or assess the ease with which such a sam-
ple could be drawn, and then use the sample statistics to estimate the
criterion. However, sample parameters may systematically deviate from
population parameters (e.g., if it is easier to retrieve words with a certain
letter in the first than in the third position, the sample will not be repre-
sentative of the population). In this way, use of the availability cue may
lead to systematic biases. Because the ability of a sample to predict the
criterion can only be evaluated with respect to the sample drawn by a
specific person, the availability cue is subjective rather than ecological.

Since Tversky and Kahneman (1973) proposed availability and other
heuristics as important mechanisms underlying judgments of (relative)
frequency and probability, their findings and the proposed heuristics have
stimulated a tremendous amount of research and have raised serious con-
cerns about people’s ability to estimate event frequencies and probabili-
ties accurately. At this point, the operation of availability is “one of the

4. In discussing Tversky and Kahneman’s study, Lopes and Oden (1991) ob-
served that 12 of the 20 English consonants are more frequent in the first position
than in the third position, possibly explaining their results. In contrast, if one as-
sumes that people have experienced a representative sample of letters and their
positional frequencies (e.g., during reading), then their mental models should be
well adapted to a representative sample presented by the experimenter. Sedlmeier
et al. (1998) gave participants a representative sample of consonants (i.e., some that
are more and some that are less frequent in the second position) and vowels. In
each of three studies, they found that the estimated relative frequencies in the first
versus the second position closely agreed with the actual rank ordering, except for
an overestimation of low and underestimation of high values. Neither of the two

versions of the availability heuristic that Sedlmeier et al. tested was able to account
for these results.
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most widely shared assumptions in decision making as well as in social
judgment research” (Schwartz et al., 1991, p. 195). For example, it has
been suggested that availability may account for people’s tendency to ex-
aggerate the frequency of some specific causes of death such as tornadoes
(Lichtenstein et al., 1978) and for their performance in estimating demo-
graphic parameters such as countries’ population size (Brown & Siegler,

1992, 1993).

Paradoxical Assumptions and Contradictory Findings

Here is the puzzle. Hasher and Zacks (1984) argued that people encode
occurrences of an event, store a count of its frequency, and when required
to estimate its frequency, access this count. Tversky and Kahneman
(1973), in contrast, seemed to assume that people do not keep a record of
event frequencies but construct a sample of the event in question and then
infer event frequencies from the ease with which the sample could be
constructed. Hasher and Zacks (1984) concluded that their experiments
“reliably and unequivocably [sic] demonstrate remarkable knowledge of
the frequency of occurrence of all events so far tested” (p. 1373), whereas
Tversky and Kahneman (1973) took their results as evidence that the use
of the availability heuristic leads to “systematic biases” (p. 209).

These contradictory assumptions and findings have been reported side
by side in scientific journals and textbooks, without much discussion
about how each line of research qualifies the other’s findings (for excep-
tions, see Ayton & Wright, 1994; Holyoak & Spellman, 1993; Williams &
Durso, 1986).° Suppose one tried to resolve the conflict by assuming that
the two accounts—accurate judgments based on memorized experienced
frequencies and (in)accurate judgments based on subjective cues—apply
to different situations: The former holds whenever humans have experi-
enced and encoded events one by one before making judgments, and the
latter holds whenever humans have not directly experienced the criterion
and thus have to rely on (subjective) cues correlated with it to derive a
judgment.

This resolution, however, cannot work. Tversky and Kahneman’s ex-
periments also included situations where participants actually experi-
enced the events sequentially. In one study, for instance, participants were
serially presented with names of well-known personalities of both sexes
(e.g., Elizabeth Taylor), and one group was then asked to judge whether
the list contained more names of men or women (Tversky & Kahneman,
1973). Another example is their classic study of positional letter frequen-

5. One reason why this conflict did not attract more attention may be that
Hasher and Zacks (1984) seem to have downplayed it. In a footnote they wrote:
“The conflict between our view and that of Tversky and Kahneman is more appar-
ent than real” (p. 1383; see their arguments in their footnote 9).
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cies, mentioned above, in which they asked participants to judge events
they had previously experienced sequentially. Both studies illustrate that
availability is also intended to apply to experienced events.

In our view, the conflicting findings about the accuracy of people’s fre-
quency judgments and the conflicting claims about the underlying mecha-
nisms cannot be reconciled simply by running more experiments in
which people’s estimates are observed to be either correct or incorrect.
Contexts that elicit both biased and unbiased estimates can no doubt
be found. The more interesting issue is how we can make theoretical
progress in modeling the cognitive processes underlying quantitative esti-
mation. Toward this goal, we pose two interrelated questions that are per-
tinent to both Hasher and Zacks’s and Tversky and Kahneman'’s ap-
proaches. First, what do humans need to count in order to meet their
adaptive goals? Second, what is the structure of the environments in
which quantification occurs, and what heuristics can exploit that struc-
ture?

What Needs Counting?

The world can be carved up into an infinite number of discrete events or
objects. Which of them deserve monitoring? Hasher and Zacks (1984, p.
1373) did not explicitly address this question, but proposed that for the
frequency of a stimulus to be encoded and stored, it must at a minimum
be “attended” to. The notion of “attention” was not precisely explicated.’
How plausible is such a domain-general encoding mechanism, that is, a
mechanism constrained only insofar that it requires attention (or “con-
scious” attention, as later proposed by Zacks et al., 1986)?

Consider, for instance, the processing that might occur when we walk
down the street engaged in an engrossing conversation. We are generally
successful at avoiding collisions with objects and other people, thus indi-
cating that we take note of their locations. But later, would we be able to
judge the relative frequency of their locations in relation to us (e.g., how
many objects to the right and how many to the left of us), or the relative
frequency of men and women who were wearing hats? Why should we be
able to make such judgments retrospectively if we did not consider them
useful at the time? More generally, do we encode every event and keep
track of its frequency of occurrence, just because we have experienced it?

This is a question that neither the British empiricists nor Hasher and
Zacks (1984) seriously addressed. For instance, David Hartley (1749) sug-
gested a domain-general physiological mechanism of frequency counting

6. However, we can exclude one possible definition: intentional monitoring.
Hasher and Zacks (1984) argued that a stimulus can be automatically encoded even
if it is not intentionally monitored, which implies that intentional monitoring was
not part of their definition of attention.
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designed in analogy to Newton’s theory of vibrations (Daston, 1988, p.
203). According to this mechanism, repeated occurrences of an object cre-
ate cerebral vibrations until “grooves of mental habit” are etched into the
brain, Hartley’s is a content-general mechanism, insofar as it does not put
any constraints on the type of objects to be counted. One can also find
modern “cognitive” relatives of Hartley’s physiological mechanism that
are similarly unconstrained. Take, for instance, MINERVA 2 (e.g., Hintz-
man, 1984, 1988), which has been used to model frequency judgments.
This model keeps copies (in terms of memory traces) of all events we
have experienced over a lifetime (although one may bring content-specific
considerations in through the back door by way of learning parameters,
as Hintzman, 1988, does).

Should we be able to judge the relative frequency of men and women
wearing hats? Marcia Johnson and her colleagues (Johnson et al., 1989)
suggested that this is unlikely. On the basis of a series of ingenious stud-
ies, they demonstrated that, for frequency judgments to reflect presenta-
tion frequency accurately, two conditions must be met: The exposure time
must be 2 seconds, and processing must involve directing attention to
the identity of objects as well as their spatial location. Although their find-
ings imposed an initial constraint on the mechanism, it remains essen-
tially unconstrained with respect to what is counted.

Brase, Cosmides, and Tooby (1998) have proposed a more stringent
constraint. They argued that another way to restrict the counting mecha-
nism is to consider the nature of what is counted; there are aspects of the
world that one would not expect a human inference mechanism to count
spontaneously. According to their account, individuated whole objects
rather than arbitrarily parsed objects (i.e., random chunks, nonfunctional
fragments, etc.) are the natural unit of analysis: Toddlers may spontane-
ously count teddy bears, but not teddy bears’ ears (as long as they have
not been broken off the parent object).

A variation on Brase et al.’s approach is to consider the adaptive value
of what is counted: Keeping track of event frequencies is most likely to
occur in domains where knowing frequency counts has a plausible adap-
tive value for the organism. It is easy to see the value of monitoring the
frequencies of specific events in the domains of mating and foraging (e.g.,
among the Inujjuamiut). But can considerations of adaptive value help us
to derive counterintuitive predictions in other domains? We think so. De-
spite Tversky and Kahneman’s (1973) seemingly unsupportive results (in
their letter study), there is good reason to predict that people can quantify
the statistical structure of language because of its adaptive value.

What Is Adaptive About Knowing the Statistical Structure
of Language?

In any specific language certain sound sequences are more likely to occur
within some words than in others. For instance, consider the sound se-
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quence “pretty baby”: The transition probability from “pre” to “ty” is
greater than that from “ty” to “ba.” Thus we would be more likely to ex-
pect a word break between the latter two syllables. For babies acquiring
language, keeping track of these transition probabilities may have an im-
portant function, because these probabilities help them to identify bound-
aries between words (a problem that continues to hamper attempts to
build a computer that “understands” spoken language). Recent results re-
ported by Saffran, Aslin, and Newport (1996) indicate that babies are in-
deed sensitive to such transition probabilities.

To test whether babies have access to this kind of statistical informa-
tion, Saffran et al. tested infants’ ability to distinguish between “words”
and “part-words” (using nonsensical stimuli in both cases). The stimulus
words included sound sequences such as “bidaku” and “padoti” and a
sample of the speech stream is “bidakupadotigolabubidaku. ... ” The ba-
bies listened to a two-minute tape of a continuous speech stream consist-
ing of three-syllable words repeated in random order. A synthesized wom-
an’s voice spoke the sound stream with no inflection or noticeable pauses
between words, removing the word boundary cues contained in normal
speech. The only possible cues were the relative frequencies of co-occur-
rence of syllable pairs, where relatively low relative frequencies signal
word boundaries.

After listening to the speech stream, the infants heard four three-sylla-
ble test words one at a time. Two words were from the speech stream and
two were part-words. The part-words consisted of the final syllable of a
word and the first two syllables of another word. Thus, a part-word con-
tained sounds that the infant had heard, but it did not correspond to a
word. Infants would be able to recognize part-words as novel only if the
words from the original speech stream were so familiar to them that new
sequences crossing word boundaries (i.e., the part-words) would sound
relatively unfamiliar. In fact, the infants did listen longer to part-words
than to words, indicating that they found them more novel than the
words.

This example illustrates the importance of asking what information is
adaptive to encode, store, and quantify. With this question in mind, one
can derive interesting and counterintuitive predictions, for instance, that
language learners will learn the statistical structure of language quickly.
We now turn to the second important question: What is the structure of
the environments in which quantities need to be estimated?

The Importance of “Ecological Texture”

“Although errors of judgments are but a method by which some cognitive
processes are studied, the method has become a significant part of the
message” (Kahneman & Tversky, 1982, p. 124). This quotation illustrates
Kahneman and Tversky’s awareness that the heuristics-and-bjases pro-
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gram came to focus on humans’ cognitive errors at the expense of their

cognitive successes. In fact, their initial framing of the availability heuris-
tic stressed an ecological perspective that was later largely abandoned. Of
the availability heuristic Tversky and Kahneman (1973) wrote:

Availability is an ecologically valid clue for the judgment of fre-
quency because, in general, frequent events are easier to recall or
imagine than infrequent ones. However, availability is also affected
by various factors which are unrelated to actual frequency. If the
availability heuristic is applied, then such factors will affect the per-
ceived frequency of classes and the subjective probability of events.
Consequently, the use of the availability heuristic leads to system-
atic biases. (p. 209)

Not only did Tversky and Kahneman (1973) conceptualize availability
as an “ecologically valid clue” to frequency, but they also stressed that it
exploits the structure of the environment in the sense that objectively fre-
quent events have stronger representations because these are strengthened
by event repetitions, and thus, ceteris paribus, are easier to recall than
infrequent ones. In light of its beginnings, the availability heuristic could
have been developed into a cognitive strategy that reflects the texture of
the environment as well as the mind, but was not.

Several decades ago, Egon Brunswik (1957) already emphasized the
importance of studying the fit between cognition and the environment: “If
there is anything that still ails psychology in general, and the psychology
of cognition specifically, it is the neglect of investigation of environmental
or ecological texture in favor of that of the texture of organismic structures
and processes. Both historically and systematically psychology has forgot-
ten that it is a science of organism-environment relationships, and has
become a science of the organism” (p. 6).

In what follows, we propose an estimation heuristic that differs from
those identified in the heuristics-and-biases program (e.g., availability) in
several ways. First, how it exploits a particular environmental structure
is specified. Second, it has a precise stopping rule that terminates memory
search. Finally, it is formalized such that we can simulate its behavior.
For these reasons, it exhibits bounded rationality. Before we analyze the
structure of a specific class of environments in which various quantities
have to be estimated, let us consider what adaptive value estimating one
such quantity—population size—might have. We speculate that estima-
tion of population demographics may be a descendant of an evolutionarily
important task, specifically, estimation of social group size.

Estimation: Using Ecological Cues in a J-Shaped World

Because humans have always lived in groups (e.g., families, clans, tribes),
it is very likely that social environments played a major role in shaping
the human mind. Until recently, this possibility has largely been over-
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looked in research on human reasoning and decision making., Wang
(1996a, 1996b), however, demonstrated how social cues can affect deci-
sion making in surprising ways. Using Tversky and Kahneman’s (1981)
famous Asian disease problem, he found preference reversals (often con-
sidered irrational because they violate the invariance axiom of expected
utility theory) when the text indicated that the decision was to be made
for a large group. When the text indicated that the decision would affect
a smaller group, however, most participants favored the risky outcome in
both the loss and the gain framing,

Wang's (1996a) finding suggests that humans are sensitive to group size
when making decisions. One may speculate that this sensitivity rests on
an evolved ability to estimate group sizes. In fact, the ability to estimate
the size of social groups accurately might have been of value in a number
of circumstances encountered by our evolutionary ancestors, for instance,
when they had to make quick decisions about whether to threaten to fight
over resources with other families, clans, or tribes. Humans’ social struc-
tures have changed since the time when we lived in hunter-gatherer socie-
ties. Group size has been directly affected by the shift from nomadic
bands to small agricultural and pastoral communities to large populations
of many thousands of people whose economic and social center is the city
(e.g., Reynolds, 1973). Interestingly, in samples of American and Chinese
participants, Wang (1996a) found that decision making is sensitive to cul-
turally specific features of social group structure. Evolutionary considera-
tions aside, we assume that the estimation heuristic proposed here is
adapted to modern group sizes. We now consider the statistical structure
of the environment in which the heuristic operates.

Let us start to analyze the statistical structure of population demo-
graphics by considering the following question. What distribution results
if one makes a scatterplot of people’s performance on the following task?
Name all the characters in Shakespeare’s Comedy of Errors. If we plotted
people’s performance on this task (e.g., the number of people who can
name no, one, two, three, etc. characters), we would probably find that
many people would get a low score, and that only a few people can attain
a high score. Thus, contrary to the typical assumption of educational re-
searchers that knowledge, learning, and performance generally conform
to a bell-shaped distribution across individuals, in which moderate values
are most frequent, human performance is often best characterized by the
“empirical law of the higher, the fewer” (Walberg et al., 1984, p. 90), or in
other words, by positively skewed, J-shaped distributions (where the “J”
is rotated clockwise by 90 degrees).’

7. These distributions are related to Zipf’s law (Zipf, 1949), which is the obser-
vation that frequency of occurrence of some event (P) as a function of the rank (i)
when the rank is determined by the frequency of occurrence, is a power-law func-
tion P, ~ 1/1° with the exponent a close to unity. The most famous example of Zipf’s
law is the frequency of English words. Assume that “the,” “to,” and “of” are the
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Athletic performance can also follow such J-shaped distributions. Take
the final distribution of medals in the 1996 Summer Olympics in Atlanta
as an example. A total of 197 nations competed for 842 medals in the
Atlanta games. Figure 10-1 plots the total number of medals won (gold,
silver, and bronze) by each nation, excluding those that won no medals.
The average number of medals won was 4.3. At one extreme, the United
States, Germany, and Russia won 101, 65, and 63 medals respectively; in
other words, 1.5 percent of the participating nations (and 8.5% of the
world population) won almost one-third of all medals. At the other ex-
treme, 118 participating nations won no medals at all. Highly positively
skewed distributions also characterize many processes and phenomena in
biology (e.g., fluctuations in neural spikes plotted by amplitude), geogra-
phy (e.g., earthquakes plotted by severity), psychology (e.g., distribution
of memory traces plotted by the likelihood they are needed; Anderson &
Schooler, 1991), and other fields.

Cities plotted by actual population also form J-shaped distributions. In
any given region, there are a few large settlements and a large number of
small settlements. Herbert Simon (1955b) argued that in the special case
of city population size, such a distribution is expected if the population
growth is due solely to the net excess of births over deaths, and if this net
growth is proportional to the present population size. Urban growth mod-
els that use techniques originally developed to model clumping and mo-
tion of particles in liquids and gases also predict this city size distribution
(Makse et al., 1995). Figure 10-1 also shows the populations of German
cities with more than 100,000 inhabitants ranked by their size. This distri-
bution reflects the empirical law of the higher, the fewer in three ways:
the largest value (here Berlin) is an extreme outlier; the mean (309,000),
which is strongly influenced by such extreme observations, is much
higher than the median (180,000); and the standard deviation (428,000) is
large relative to the mean.

To what extent is it plausible to assume that people actually know
about the J shape of distributions such as that of German cities? We asked
74 German participants to estimate the number of German cities in 25 size
categories (100,000-199,999; 200,000-299,999; etc.). Figure 10-2 shows
the distribution of their mean frequency judgments in comparison with
the actual frequency distribution. (Note that compared with figure 10-1
the axes are reversed.) Although participants underestimated the relative
number of cities in the smallest category (100,000-199,999), the results

three most frequent words (i.e., receive ranks 1, 2, and 3); then, if the number of
occurrences is plotted as the function of the rank, the form is a power-law function
with exponent close to 1. There are several variants of Zipf’s law, such as Pareto’s
law, which essentially form J-shaped distributions. More generally, Griineis et al.
(1989) proved that J-shaped distributions belong to a class of distributions that can
be modeled in terms of an adjoint Poisson process.
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Figure 10-1: Distribution of medals won per nation at the 1996 Summer
Olympics in Atlanta, and of the population size of the 83 largest German
cities (Fischer Welt Almanach, 1993).

indicate that they were well aware of the skewness. Now that we have
established that people have an intuition about the higher, the fewer char-
acteristic of the German city size distribution, we turn to the next ques-
tion: How might a heuristic exploit this J-shaped ecological structure so
as to reduce the computational effort needed to make an estimate?

Fast and Frugal Estimation: The QuickEst Heuristic

Let us start by considering a technical problem, namely, sorting pieces of
coal according to size. One way to sort them is to use a conveyor belt that
carries the coal pieces across increasingly coarse sieves. The belt is de-
signed so that first small pieces fall through the “small” sieve into the
crusher below, then medium-sized pieces fall through the “medium”
sieve, and so on. Pieces that make it across all the sieves are dumped into
a catchall container. Let us assume that the sizes of the coal pieces follow
a J-shaped distribution, that is, most pieces are small and only a few
pieces are (very) large. The conveyor belt’s design minimizes the time re-
quired for the sorting process by exploiting this fact, sorting out the large
number of small pieces first, then the fewer larger ones, and finally the
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Figure 10-2: Percentage of German cities in 25 size categories, along with
estimates made by participants (percentage values derived from frequency
estimates).

very few largest ones. Figure 10-3 illustrates the design features of such a
conveyor belt. We now propose an estimation heuristic, the Quick Estima-
tion heuristic (QuickEst), which exploits the J-shaped distribution in a
way similar to the conveyor belt for sorting coal.

QuickEst’s Design Properties

QuickEst’s policy is to use environmental structure to make estimates for
the most common objects (e.g., in the cities environment, the smallest
cities) as quickly as possible. What design features of the heuristic enable
it to implement this policy?
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Figure 10-3: Illustration of a conveyor belt that sorts pieces of coal ac-
cording to their size. (Although this is a fictitious example, its design re-
sembles that of actual conveyor belts advertised at the Web sites of vari-
ous manufacturers.)

How Are the Cues Ranked? When a person is asked to estimate the popu-
lation of a city, the fact that it is a state capital may come to mind as a
potential ecological cue. Cities that are state capitals (e.g., Munich, the
capital of the state Bavaria) are likely to have larger populations than
cities that are not state capitals, the major exceptions to this rule being in
the United States. For any binary cue i, one can calculate the average size
of cities that have this feature (s, e.g., the average size of all the German
cities that are state capitals) and the average size of those cities that do
not have this feature (s). Note that for the purpose of the simulations, we
calculated s; (s") from the actual sizes of the German cities that do not (or
do) have the property. The input for this calculation, however, need not
be the actual values, but could instead be imprecise subjective values.
Because positive cue values by definition indicate larger cities, s; is
smaller than s;". For this reason, cues are ranked in the QuickEst heuristic
according to s, with the smallest s~ first. This design follows the coal-
sorting analogy, insofar as the cues (sieves) are ranked according to their
coarseness, with the smallest cue first. For this ranking, the heuristic does
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not need to know s~ exactly; it only needs to estimate a relative ranking

of cues according to s

When Is Search stopped? Each cue asks for a property of a city, for in-
stance, “Does the city have a university?” QuickEst has a simple stopping
rule: Search is terminated when the first property is found that the city
does not have (i.e., the response to the question is “no”). If a city has the
property, then search continues, and its value on the cue with the next
lowest s~ is retrieved from memory. This stopping rule has a negative bias,
that is, a negative but not a positive value terminates search. This has an
important consequence: As there are only a few cities with mainly posi-
tive cue values and many with mostly negative values, a stopping rule
with such a negative bias generally enables the heuristic to stop earlier in
the search and arrive at estimates quickly.”

Owing to its stopping rule, QuickEst’s inference is based on the first
property a city does not have. In contrast to computationally expensive
strategies such as multiple regression, QuickEst does not integrate cue val-
ues. An important consequence of QuickEst’s stopping rule is that the
heuristic is noncompensatory. Further cue values (even if all of them are
positive) do not change the estimate based on the first negative cue value
encountered. By virtue of its simplicity, noncompensatory decision mak-
ing avoids dealing with conflicting cues and the need to make trade-offs

between cues.

How Coarse Are the Estimates? The estimate of QuickEst is the s of the
first property a city does not have, rounded to the nearest spontaneous
number. According to Albers (1997), spontaneous numbers are multiples
of powers of 10 {a 10" a € {1, 1.5, 2, 3, 5, 7}}, where i is a natural number.
For instance, 300, 500, 700, and 1,000 are spontaneous numbers, but 900
is not. By building in spontaneous numbers, the heuristic takes into ac-
count two frequently observed properties of people’s estimates. First,
spontaneous numbers are related to what Albers (1997) described as num-
ber “prominence,” that is, the phenomenon that in cultures that use the
decimal system the powers of 10 “are the most prominent alternatives
which have highest priority to be selected as responses, or terms by which
given responses should be modified” (Albers, 1997, part I, p. 6). Second,
spontaneous numbers relate to the phenomenon that, when asked for
quantitative estimates (e.g., the price of a Porsche Carrera), people provide
relatively coarse-grained estimates (e.g., $70,000, i.e. 7 x 10* rather than
$75,342). This graininess of estimates, or crude levels of “relative exact-

8. For instance, in the reference class of all the German cities with more than
100,000 inhabitants and for the following eight ecological cues—soccer team, state
capital, former East Germany, industrial belt, license plate, intercity train line, ex-
position site, and university (see chapter 4)—the German cities have on average
about six (5.7) negative values.
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ness” (Albers, 1997, part I, p. 12), reflects people’s uncertainty about their
judgments (see also Yaniv & Foster, 1995).”

The property that s is rounded to the nearest spontaneous number has
two implications: First, for the numerical estimation the heuristic does
not need to estimate s™. It only needs to estimate which of two neighboring
spontaneous numbers is nearer to s7, and this spontaneous number is then
given as the estimate.”® Second, the heuristic’s estimates can only achieve
the precision and not exceed the graininess of spontaneous numbers.

How Can the Heuristic Deal With the Few Very Large Cities? The present
stopping rule speeds up estimation by terminating search as soon as a
property is found that the city in question does not have. Still, there are
a handful of very large “outlier” cities that do have most properties. To
avoid an unnecessarily time-consuming search for a possible property
they do not have, QuickEst has a “catchall” category in reserve. That is,
the heuristic stops adding more cues to its cue order as soon as most cities
(out of those the heuristic “knows,” i.e., the training set) have been sifted
out. For our simulations, we assume that searching cues is stopped as
soon as four-fifths of all the cities have already been sifted out by the
heuristic. The remaining fifth of the cities are put into a catchall category
and automatically assigned an estimate of s, (where cue j is the cue by
which these largest cities were “caught” last) rounded to the nearest spon-
taneous number.

How Is QuickEst Ecologically Rational? QuickEst exploits the characteris-
tics of the city population domain in two ways. First, its stopping rule—
stop when the first negative cue value is found—limits the search process
effectively in an environment in which negative cue values predominate.
Second, its rank ordering of cues according to s, with the smallest s~ firs.t,
gives QuickEst a bias to estimate any given city as relatively small. This
is appropriate for objects that fall in J-shaped distributions, in which most

9. Because there are more of them in the range of small digits (1, 1.5, 2, 3! than
in the range of large digits (5, 7), spontaneous numbers also seem to be prfedlcated
on Benford’s law. Benford’s law (1938; Raimi, 1976) states that if numerical d.ata
(e.g., atomic weights) are classified according to the first significant digit, the nine
classes that result usually differ in size. Whereas in a randomly generated data set,
each number would be the first significant digit with frequency 1/9, in many real-
world data sets, this frequency is approximately equal to log(p + 1)/p- Thus, t.he
digit “1” is first about 30% of the time, “2” somewhat less often, and so on, with
“9” occurring as the first digit less than 5% of the time. Consistent with Benford’s
law, 57% of German cities with more than 100,000 inhabitants begin with “1,”
whereas only 1.2% begin with “9.”

10. Suppose that s~ lies in the interval between the spontaneous numbers
300,000 and 500,000. To decide whether s™ is to be rounded up or down, the heuris-
tic only needs to know whether s~ belongs to the right or to the left of the interval’s
midpoint (i.e., 400,000). This only requires a choice (i.e., is s” larger or smaller than
400,000).
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objects have small values on the criterion, and only a few objects have
(very) large values. In addition to being ecologically rational, QuickEst is
psychologically plausible in that it provides estimates with the precision
and graininess of spontaneous numbers.

Hlustration

An American colleague of ours, Valerie, knows the approximate popula-
tion size of five German cities from previous trips to Germany (Munich,
1,000,000; Frankfurt, 700,000; Nuremberg, 500,000; Bonn, 300,000; and
Heidelberg, 150,000). Valerie also knows the cities’ values on three cues
(exposition site, state capital, and university). Given her limited knowl-
edge about the reference class, German cities, how accurately could she
infer the size of, for instance, Leverkusen? To answer this question, we
first describe how QuickEst, as a model for Valerie’s inferences, learns its

parameters.

Training QuickEst ranks cues according to the average population size of
cities that have negative values (s7). Given Valerie’s knowledge, the cue
with the smallest s~ is “exposition site,” which provides the estimate
200,000." The next cue is “state capital,” which yields the estimate
500,000. Based on these two cues, the heuristic can sift out most of the
cities Valerie knows: four out the five (i.e., 80%) have a negative value on
at least one of these two cues. Thus, the only city that has positive values
on the exposition site and state capital cues, Munich, is put into the catch-
all category. The estimate for this category is derived from the last cue in
which Munich was “caught,” here the state capital cue. The estimated
size is 1,000,000 (which simply equals the size of Munich).

In sum, given Valerie’s knowledge of German cities, the realization of
the QuickEst heuristic includes two of the three cues she knows (exposi-
tion site and state capital), and a catchall category. This design allows
QuickEst to derive one of three unique estimates for any given city in the
reference class: 200,000, 500,000, and 1,000,000 inhabitants. How well
does this realization of QuickEst perform when applied to new cities, for
instance, Leverkusen and Hamburg?

Estimation To estimate the size of Leverkusen, QuickEst first retrieves
that city’s values on the exposition site cue. Because it does not have an
exposition site, search is stopped and Leverkusen is estimated to have a
population of 200,000, close to the 160,000 inhabitants it actually has. To
derive an estimate for Hamburg, QuickEst looks up its value for the expo-

11. This figure is calculated as follows: Two of the five cities Valerie knows,
Heidelberg and Bonn, do not have an exposition site. That is, s.p, equals the aver-
age size of Heidelberg and Bonn (225,000) rounded to the nearest spontaneous
number (200,000).
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sition site cue; as the value is positive, it then retrieves the value for the
state capital cue, which is also positive. As a result, Hamburg ends up in
the catchall category and is estimated to have a population of 1,000,000,
which is not very close to the 1,650,000 inhabitants it actually has.

How good-—or bad—is this performance, and how frugal is QuickEst in
comparison with other heuristics?

Test of Performance: Environment and Competitors

To test QuickEst’s performance more generally, we computed its estimates
for the real-world environment of German cities with more than 100,000
inhabitants. After its reunification in 1990, Germany had 83 such cities.
All of these cities (except Berlin) and their values on eight ecological cues
to population size (the same cues as were used in chapter 4, except the
national capital cue) were included in the test. (Berlin was excluded be-
cause it is an outlier and an error in estimating its population dwarfs er-
rors of proportionally comparable size.) To evaluate the performance of
QuickEst, we compared it with two competitors that demand considerably
more computation and/or knowledge: multiple regression and an estima-
tion tree (for quantification of the heuristics’ complexity, see chapter 8).

Multiple regression is a demanding benchmark insofar as it calculates
least-squares minimizing weights that reflect the correlations between
cues and criterion, and the covariances between cues. Multiple regression
has been proposed as both a descriptive and a prescriptive cognitive
model, although its descriptive status is debated, given the complex calcu-
lation it assumes (for references on this issue, see chapter 4).

The second benchmark is an estimation tree (for more on tree-based
procedures, see Breiman et al., 1993). With the aid of a computationally
expensive Bayesian search process (e.g., chapter 8; Chipman et al., 1998),
this tree was identified as one with a high probability of good perfor-
mance.' It collapses cities with the same cue profile—that is, the same
cue value on each of the eight ecological cues—into a class. The estimated
size for each city equals the average size of all cities in that class. (The
estimate for a city with a unique cue profile is just its actual size.) As long
as the test set and training set are identical, this algorithm is optimal, and
is equivalent to the exemplar-based algorithm model proposed by Persson
(1996).” When the test set and training set are not identical the tree will

12. The Bayesian search was limited to the subset of trees that classified each
new profile in the interval whose boundaries are defined by the cue profiles of
known cities.

13. The optimal solution is to memorize all cue profiles and collapse cities with
the same profile into the same size category. In statistics, this optimal solution is
known as true regression and approximates the profile memorization method for
optimal performance in choice tasks (see chapters 6 and 8).
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encounter new cities with possibly new cue profiles. If a new city matches
an old cue profile, its estimated size is the average size of those cities (in
the training set) with that profile. If a new city has a new cue profile, then
this profile is matched to the profile most similar to it. How is this done?

First, the cues are ordered within each profile according to their valid-
ity, with the one highest in validity first (for more on cue validity, see
chapter 6). Second, the cue profiles are ordered lexicographically such
that those with a positive value on the most valid cue are ranked first.
Profiles that match on the first cue are then ordered according to their
value on the second most valid cue, and so on. New cue profiles are filed
with the lexicographically ordered old profiles according to the same
logic. As an estimate of the size of a city with a new profile, the estimation
tree takes the average size of those cities whose profile is above the new
one in the lexicographical order. The estimation tree is an exemplar-based
model that keeps track of all exemplars presented during learning as well
as their cue values and sizes. Thus, when the training set is large, it re-
quires vast memory resources (for the pros and cons of exemplar-based
models, see Nosofsky et al., 1994).

We simulated population estimates, assuming varying degrees of
knowledge about this environment. We tested a total of 10 sizes of training
sets, in which 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 percent of the
cities {and their respective sizes) were known, In the training phase, the
three strategies—QuickEst, multiple regression, estimation tree—learned
a model (or parameters) of the data (i.e., cities and their cue values;
weights, s/, s/, etc.). To obtain reliable parameters, 1,000 random samples
were drawn for each training set. For example, we drew 1,000 samples of
41 cities (50% training set) randomly from the reference class of 82 cities.

In the test phase, we applied the strategies to the complete reference
class (i.e., test set, which includes the training set). The strategies’ task
was to estimate the populations of all the cities (assuming that the cities’
values on the cues were known). To make the simulation psychologically
more plausible, we assumed that the probability that a city belonged to
the training set was proportional to its size. This assumption captures the
fact that people are more likely to know about larger cities than smaller

ones.

How Frugal Is QuickEst?

QuickEst is designed to make estimates quickly. How many cues must
the heuristic consider before search is terminated? Figure 10-4 shows the
number of cues that had to be retrieved by each strategy for various sizes
of training sets. On average, QuickEst considers 2.3 cues per estimate—a
figure that remains relatively stable across training sets. In contrast, multi-
ple regression always uses all eight available cues. The estimation tree
uses more and more cues as the size of the training set increases—across
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Figure 10-4: Number of cues looked up by QuickEst, multiple regression,
and by the estimation tree as a function of size of training set. Vertical
lines represent standard deviations.

all training sets, it uses an average of 7.2 cues. Thus, QuickEst bases its
estimates on about 29% and 32% of the information used by multiple
regression and the estimation tree, respectively.

How Accurate Is QuickEst?

How accurate is QuickEst, which involves simple averaging and
rounding, compared with multiple regression, which involves complex
calculations? We compared the three strategies’ performance using two
different measures of accuracy. First, we used the most common measure
of estimation accuracy, according to Brown and Siegler (1993}, that is, the
(mean) absolute error (i.e., absolute deviation between actual and esti-
mated size). Second, for the (82 x 81)/2 city pairs in the complete set of
paired comparisons, we simulated choices (“Which of the two cities is
larger?”) based on the estimates generated, and then calculated the pro-
portion of correct inferences drawn.

Absolute Error

What price does QuickEst pay, in terms of absolute error, for considering
only a few cues? Figure 10-5 shows the absolute error as a function of the
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Figure 10-5: Mean absolute error (i.e., absolute deviation between pre-
dicted and actual size) as a function of size of training set. Vertical lines
represent standard deviations. Note that some of the points have been
offset slightly in the horizontal dimension to make the error bars easier to
distinguish, but they correspond to identical training set sizes.

amount of learning (i.e., sizes of the training set). The 10% training set
exemplifies a situation where knowledge is scarce (which is likely to be
the rule rather than the exception in most domains). For this set, Quick-
Est’s estimates are incorrect by an average of about 132,000 inhabitants
(about half the size of the average German city in the simulated environ-
ment), compared with 303,000 for multiple regression, and 153,000 for
the estimation tree. That is, under the psychologically relevant circum-
stances of scarce knowledge, QuickEst outperforms multiple regression
clearly and the estimation tree by a small margin.

How does performance change as a function of learning (i.e., more
cities known)? When 50% of the cities are known, for example, QuickEst
and multiple regression perform about equally well, and the estimation
tree outperforms both by a small margin. When the strategies have com-
plete knowledge (all cities are known), multiple regression outperforms
QuickEst by a relatively small margin—their respective absolute errors are
about 93,000 and 103,000—and the estimation tree outperforms both com-
petitors (absolute error is about 65,000, which equals the optimal perfor-
mance, see footnote 13). That is, under the psychologically rather unlikely
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circumstances of complete knowledge, QuickEst falls only slightly below
the performance of multiple regression but is clearly outperformed by the
estimation tree. (Even when multiple regression uses only those cues
whose weights are significantly different from zero—7.3 on average in-
stead of 8—its absolute error improves so slightly that the difference could
hardly be seen if plotted in figure 10-5, except for the 10% training set.)

This result is similar to that reported by Chater et al. (1997). They
tested the fast and frugal choice heuristic Take The Best (chapter 4), of
which QuickEst is a relative, against four computationally expensive strat-
egies, including neural networks and exemplar models. The task was to
determine which of two German cities had the larger population size.
Chater et al. found that when the training set was less than 40% of the
test set, Take The Best outperformed all other competitors. Only when the
training set grew beyond 40% did the competitors’ performance increase
above that of Take The Best.

Where does QuickEst make substantial errors? Figure 10-6 shows the
deviations between actual and estimated size (in the 100% training set)
for each strategy as a function of population size. Each heuristic has a
distinct error pattern. Whereas QuickEst estimates the sizes of the many
small cities quite accurately, it makes substantial errors on the few large
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Figure 10-6: Deviation between actual and estimated size (in the 100%

training set) for the three estimation methods on all cities, rank ordered
according to population size.
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cities because it puts them in its catchall category. Multiple regression, in
contrast, makes substantial errors along the whole range of population
size. The estimation tree makes relatively small errors for both small and
large cities.

Another aspect of figure 10-6 deserves attention. More than the esti-
mates made by the estimation tree and multiple regression, QuickEst’s
estimates are regressed toward the mean: On average, it underestimates
the size of large cities and overestimates the size of small cities. Such a
regression effect is typical in human quantitative estimation (e.g., Att-
neave, 1953; Lichtenstein et al., 1978; Sedlmeier et al., 1998; Varey et al.,
1990). In figure 10-6, the overestimation of small city sizes appears minis-
cule compared to the underestimation of large city sizes. However, if the
deviations between predicted and actual size are divided by actual size,
then the regression effect for small cities is larger than for large cities. In
the 100% training set, the median regression across all cities is 56%, 45%,
and 23% for QuickEst, multiple regression, and the estimation tree, re-
spectively (we applied the analysis described in Sedlmeier et al., 1998,
footnote 1). Thus, QuickEst comes closest to showing the regression of
about 70% observed in people’s estimates in other tasks (Sedlmeier et al.,
1998).

QuickEst uses only spontaneous numbers as estimates. What price will
multiple regression pay if it has to work with the same psychological con-
straint? Recall that under complete knowledge (i.e., when all cities are
known), multiple regression outperformed QuickEst (absolute errors of
93,000 vs. 103,000). If multiple regression also rounds its estimates to the
nearest spontaneous number, however, it performs worse than QuickEst
(absolute errors of 114,000 vs. 103,000).

To summarize, although the QuickEst heuristic involves only about a
third of the information available to its competitors and fewer complex
calculations than multiple regression, it outperforms multiple regression
and the estimation tree when knowledge is scarce. In addition, QuickEst’s
performance is relatively stable across different amounts of learning: The
absolute error is only 1.3 times higher for the 10% training set than for
the complete knowledge case. In contrast, the absolute errors of multiple
regression and the estimation tree in the 10% training set are 3.3 and 2.3
times higher than the absolute errors for complete knowledge, respec-
tively. Only in the psychologically less plausible situation of abundant
knowledge (i.e., 50% or more of the cities are known) is QuickEst
(slightly) outperformed by its competitors.

Proportion of Correct Inferences

How many correct inferences do the heuristics make when comparing
pairs of cities? Figure 10-7a shows the results for the proportion of correct
inferences excluding cases of guessing (i.e., city pairs for which the heu-
ristics chose randomly because the predicted sizes were identical), and
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Figure 10-7: Percentage of correct city comparison inferences as a func-
tion of the size of training set, both excluding guessing (a) and including
guessing (b). Vertical lines represent standard deviations. Note that some
of the points have been offset slightly in the horizontal dimension to make
the error bars easier to distinguish, but they correspond to identical train-
ing set sizes.
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figure 10-7b shows the results including guesses. QuickEst’s performance
is excellent when it does not have to guess: Across all training sets, its
proportion of correct inferences is 81%, whereas those of multiple regres-
sion and the estimation tree are 73% and 77%, respectively.

In cases in which the predicted sizes are identical, each of the strate-
gies guesses randomly between the two cities, and thus, the proportion of
correct inferences in such cases is expected to be 50%. Because this value
is lower than the performance of the strategies without guessing, we can
predict that overall performance decreases when guessing is included (see
figure 10-7b). QuickEst suffers most because it falls back on guessing more
because it has a smaller set of numerically distinct estimates available:
Across all training sets, its proportion of correct inferences with guessing
is 66%, whereas those of multiple regression and the estimation tree are

71% and 75%, respectively.

Conclusion

Let us conclude, as we began, with one of Robinson Crusoe’s journal en-
tries. Once Crusoe realized that his island was regularly visited by sav-
ages, he prepared himself for a possible confrontation with them. One

early morning, he was surprised by

seeing no less than five canoes all on shore together on my side of
the island; and the people who belonged to them all landed, and
out of my sight. The number of them broke all my measures; for
seeing so many and knowing that they always came four, or six, or
sometimes more, in a boat, I could not tell what to think of it, or
how to take my measures, to attack twenty or thirty men single-
handed; so I lay still in my castle, perplexed and discomforted. (De-

foe, 1719/1980, p. 198)

For many evolutionarily important tasks, from choosing where to for-
age to deciding whether to fight, adaptive behavior hinges partly on organ-
isms’ ability to estimate quantities. Such decisions often have to be made
quickly and on the basis of incomplete information. What structure of
information in real-world environments can fast and frugal heuristics for
estimation exploit to perform accurately? We presented a heuristic, Quick-
Est, that exploits a particular environmental structure, namely, J-shaped
distributions. We demonstrated by simulation that where knowledge is
scarce—as it typically is in natural decision-making settings (e.g., Klein,
1998)—the fast and frugal QuickEst outperforms or at least matches the
performance of more expensive methods such as multiple regression and
estimation trees. QuickEst is an ecologically rational strategy whose suc-
cess highlights the importance of studying environmental structures.



