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Rationality and optimality are the guiding concepts of the probabilistic approach to
cognition, but they are not the only reasonable guiding concepts. Two concepts
from the other end of the spectrum, simplicity and frugality, have also inspired
models of cognition. These fast and frugal models are justified by their
psychological plausibility and adaptedness to natural environments. For example,
the real world provides only scarce information, the real world forces us to rush
when gathering and processing information and the real world does not cut itself up
into variables whose errors are conveniently independently normally distributed, as
many optimal models assume.

However, recent optimal models already address these constraints. There are
many methods for dealing with missing information. Optimal models can also be
extended to take into account the cost of acquiring information. Finally, variables
with unusual distributions can be transformed into nearly normal distributions, and
outliers can be excluded. So what’s the big deal? Optimal models seem to have
met the challenge of adapting to natural environments. And if people do not already
use these models, then they would want to learn how to use them since they are,
after all, optimal.

Thus it would seem that there is no need to turn to fast and frugal heuristics,
which appear doomed to be both simplistic and inaccurate. Besides, there is an even
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stronger reason to shun simplicity and frugality as the basis for human cognition.
They deny some of the most striking self-images Homo sapiens has constructed of
itself: from “I’homme éclairé” of the Enlightenment to Homo economicus of
modern business schools (Gigerenzer et al., 1989).

These are the typical intuitive arguments in’ the debate between optimality and
rationality on the one hand and simplicity and frugality on the other. But before you
pass judgment on where you stand, move beyond these mere intuitions to consider
the real substance of the two approaches and the actual relationship between them.
This chapter provides some food for your thoughts on these issues in the form of a
review of our recent findings on fast and frugal heuristics (Gigerenzer, Todd, & the
ABC group, in press). How great is the advantage in terms of speed and simplicity?
How large is the loss of accuracy? How robust are fast and frugal heuristics under a
variety of conditions—and under which conditions should we avoid using them?
We answer these questions by comparing fast and frugal heuristics ‘with benchmark
models from the optimality and rationality tradition. Our intention is not to rule
out one set of guiding concepts or the other, forcing us to choose rationality and
optimality or simplicity and frugality. Rather, we wish to explore how far we can
get with simple heuristics that may be more realistic models of how humans make
inferences under constraints of limited time and knowledge.

But first we have to understand the guiding concepts. The fundamental
distinction in approaches to reasonableness is between unbounded rationality and
bounded rationality (e.g., Simon, 1982, 1992). Unbounded rationality suggests
building models that perform as well as possible with little or no regard for how
time-consuming or informationally greedy these models may be. This approach
includes Bayesian models and expected utility maximization models (e.g.,
Edwards, 1954, 1961). In contrast, bounded rationality suggests designing models
specifically to reflect the peculiar properties and limits of the mind and the
environment. The decision maker is bounded in time, knowledge and
computational power. In addition, each environment has a variety of irregular
informational structures, such as departures from normality.
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Figure 1. Visions of reasonableness.



83

There are, however, two approaches which compete for the title of bounded
rationality: constrained maximization and satisficing (Figure 1). Constrained
maximization means maximization under deliberation cost constraints. This
demands even more knowledge and computation than unbounded rationality
because the decision maker has to compute the optimal trade-off between accuracy
and various costs, such as information search costs and opportunity costs. The
paradoxical result is that “limited” minds are assumed to have the knowledge and
computational ability of mathematically sophisticated econometricians and their
statistical software packages (e.g., Sargent, 1993). The “father” of bounded
rationality, Herbert Simon, has vehemently rejected this approach. In personal
conversation, he once remarked in a mixture of anger and humor that he had thought
of suing authors who misuse his concept of bounded rationality to construct ever
more complicated models of human decision making.

Simon’s view of bounded rationality is that of satisficing, which he contrasts to
constrained maximization. In the satisficing interpretation, the two sides of bounded
rationality, limited minds and structured environments, are not merely two
additional complications to the optimality story. Rather, they form a happy and
beneficial marriage: subtle environmental structures that were neglected by standard
rational models are potentially exploitable by simple heuristics. (Egon Brunswik in
particular has emphasized the interrelationship of cognition and environment, e.g.,
Brunswik, 1964). Satisficing asserts that our minds have evolved all sorts of nimble
tricks to perform well in the quirky structures of the real world.

The types of models developed by the satisficing view are thus fairly simple, in
stark contrast to those of the constrained maximization view. For instance, one of
the best known examples of Simon’s satisficing is to start with an aspiration level
and then choose the first object encountered that satisfies this level (e.g., buy the
first acceptable house). Still, satisficing can employ rather computationally
expensive procedures (e.g., Simon, 1956). We use the term fast and frugal
heuristics for a subset of satisficing strategies that work with a minimum of
knowledge, time and computations. We call these heuristics “fast” because they
process information in a relatively simple way, and we call them “frugal” because
they use little information. The next section presents several examples of such
heuristics.

1. Satisficing by fast and frugal heuristics

There are infinitely many kinds of tasks that heuristics can be designed to perfc:m.
This chapter focuses on the task of predicting or inferring which of two objects
scores higher on a criterion. Which soccer team will win? Which of two cities has a
higher homelessness rate? Which applicant will do a better job? To make such
predictions, the heuristics use uncertain cues which indicate, with some probability,
higher values on the criterion.

Consider, for example, the task of inferring which of two cities has a higher
homelessness rate, using the data on 50 U.S. cities from Tucker (1987). An excerpt
from this data including the values for Los Angeles, Chicago, New York and New
Orleans on six cues and the criterion is shown in Table 1. One cue (rent control) is
binary, and the other five have been dichotomized at the median. Unitary cue values
(“1”) indicate higher values on the criterion and zero cue values (“0”) indicate lower
values. For example, since cities with rent control more often have a higher
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homelessness rate than cities without rent control, cities that have rent control are
marked with a cue value of “1” for this cue. (In contrast, if cities without rent
control more often had the higher homelessness rate, then having rent control would
be marked by a “0.”)

Of course, people generally do not have such tables of information handy; they
have to search for information, in their memories or in libraries. But how could one
construct a heuristic that cheaply (rather than optimally) limits search and
computations? Two examples of such heuristics are Minimalist and Take The Best,
which are drawn from a family of fast and frugal heuristics (Gigerenzer & Goldstein,
1996; Gigerenzer, Hoffrage, & Kleinbolting, 1991; Gigerenzer, Todd, & the ABC
group, in press).

Los Angeles Chicago New York  New Orleans

Homeless per million 10,526 6,618 5,024 2,671
Rent control 1 0 1 0
(1 is yes)

Vacancy rate 1 1 1 0
(1 is below median)

Temperature 1 0 1 1
(1 is above median)

Unemployment 1 1 1 1
(1 is above median)

Poverty 1 1 1 1
(1 is above median)

Public housing 1 1 0 0

(1 is below median)
Table 1. Cues for predicting homelessness in U.S. cities. Cues are ordered by
validity, with rent control having the highest validity (.90). Further explanation in
text. Source: Tucker (1987).

Minimalist. The minimal knowledge needed for cue-based inference is in which
direction a cue “points.” For instance, the heuristic needs to know whether warmer
or cooler weather indicates a city with a higher rate of homelessness. In the 50 U.S.
cities, warmer weather is indeed associated more often with higher homelessness
rates than with lower rates, so a cue value of “1” is assigned to cities with warmer
weather. Minimalist has only this minimal knowledge. Nothing is known about
which cues have higher validity than others. The ignorant strategy of Minimalist is
to look up cues in random order, choosing the city that has a cue value of “1” when
the other city does not. Minimalist can be expressed in the following steps:

Step 1. Random search: Randomly select a cue and look up the cue values of the
two objects.

Step 2. Stopping rule: If one object has a cue value of one (“1”) and the other
does not, then stop search, Otherwise go back to Step 1 and search for another cue.
If no further cue is found, guess.

Step 3. Decision rule: Predict that the object with the cue value of one (“1”) has
the higher value in the criterion.

For instance, when inferring whether Chicago or New Orleans has a higher
homelessness rate, the unemployment cue might be the first cue randomly selected,
and the cue values are found to be one and one (Table 1). Search is continued, the
public housing cue is randomly selected, and the cue values are one and zero.
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Search is stopped and the inference is made that Chicago has a higher homelessness
rate, as it indeed does.

So far, the only thing a person needs to estimate is which direction a cue points,
that is, whether it indicates a higher or a lower value on the criterion. But there
exist environments for which humans know not just the signs of cues, but roughly
how predictive they are. If people can order cues according to their validities—
whether or not this subjective order corresponds to the ecological order—then search
can follow this order of cues. One of the heuristics that differs from the Minimalist
in only this respect is called Take The Best; its motto is “Take the best, ignore the
rest.”

Take The Best. This heuristic is exactly like Minimalist except that the cue with
the highest validity, rather than a random cue, is tried first. If this cue does not
discriminate, the next best cue is tried, and so forth. Thus, Take The Best differs
from Minimalist only in Step 1. .

Step 1. Ordered search: Select the cue with the highest validity and look up the
cue values of the two objects. :

The validity v; of cue i is the number of right (correct) inferences, R;, divided by
the number of right and wrong inferences, R, + W, based on cue ; alone,
independent of the other cues. We count which inferences are right and wrong across
all possible inferences in a reference class of objects. That is,

right inferences R;

V; = —— - = .
' right inferences + wrong inferences R +W,

For example, since Los Angeles has a cue value of one for rent control while
Chicago has a cue value of zero, the rent control cue suggests that Los Angeles has
a higher homelessness rate; since Los Angeles does have a higher homelessness
rate, this counts as a right inference. Between Chicago and New York, the rent
control cue makes a wrong inference. And between Chicago and New Orleans, it
does not discriminate—and cannot make an inference—because both cities have zero
cue values for rent control. If we count the number of right and wrong inferences for
all possible pairings of the 50 U.S. cities, we find that 90% of the inferences based
on rent control are right; thus the cue validity of rent control is .90. Note that we
only count as inferences the cases which are discriminated, that is, in which one
object has a positive cue value and the other does not. Thus the sum of all right and
wrong inferences in the denominator is equal to the number of pairs of cities on
which the cue discriminates. In the simulations below we compute the validity from
the actual, ecological cue values. But when Take The Best is used as a model of
human inference, the validities are computed only from the cue values the person
actually knows (or believes).

For instance, when inferring whether Chicago or New Orleans has a higher
homelessness rate, Take The Best looks up first the cue values of the two cities for
rent control, since it is the cue with the highest validity (.90). Unfortunately, this
cue does not discriminate—both cities have cue values of zero (Table 1). So Take
The Best looks up the second best cue, the vacancy rate cue (validity .73). This cue
does discriminate, so search is stopped. Take The Best infers that Chicago, the city
with the unitary cue value in contrast to New Orleans’ zero, has the higher
homelessness rate,
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Take The Best and Minimalist are constructed from several building blocks of
fast and frugal heuristics (Gigerenzer & Goldstein, 1996). These building blocks
help us both in understanding the heuristics and in generating new heuristics,

The first building block is step-by-step procedures, that is, a cognitive strategy
that searches for some information and checks whether this is sufficient to make a
decision; if not, it searches for more information, checks whether this is sufficient,
and so on (e.g., Miller, Galanter, & Pribram, 1960).

The second building block is simple stopping rules, which specify
computationally simple conditions for halting the gathering of more cue
information. There are a number of heuristics which use stopping rules, especially
those that already use “attribute-based” rather than “alternative-based” information
gathering (to use the terminology of Payne, Bettman, & Johnson, 1988). In the
constrained maximization paradigm, for example, information search is halted when
the marginal cost of another piece of information outweighs the marginal gain in
accuracy expected. But calculating these marginals is a difficult game. In contrast,
we propose stopping rules that do not need such cost-benefit computations. Take
The Best and Minimalist stop gathering further cue information if one object has a
unitary (“1”) value for a cue and the other does not (i.e., has a zero, “0,” or
unknown value for that cue).

This simple stopping rule is in harmony with our third building block, one-
reason decision making. Once search is stopped, a variety of computations could be
performed on the information collected thus far. For example, multiple regression
integrates all the cue values in a linear sum, and Bayesian models usually condition
their probabilities on the values of several cues. But since Minimalist and Take The
Best stop after the first piece of information that discriminates between the two
objects, they base their decision only on this recent information, the last cue
considered. Trade-offs between cues never surface. The vision behind such one-
reason decision making is to avoid conflicts and avoid integrating information.
Thus, the process underlying decisions is non-compensatory. Note that one-reason
decision making could be employed with less simple stopping rules, such as
gathering a larger number of cues (e.g., in a situation where one has to justify one’s
decision); the decision, however, is based on only one cue.

To summarize, Minimalist and Take The Best employ the following building
blocks:

- Step-by-step procedures

— Search limited by simple stopping rules

~ One-reason decision making

In the following sections we will see how these building blocks exploit certain
structures of environments. We will not deal here with how they exploit a lack of
knowledge (see Gigerenzer & Goldstein, 1996).

Some of these building blocks appear in other heuristics, which are related to
Take The Best. Lexicographic strategies (e.g., Keeney & Raiffa, 1993; Payne,
Bettman, & Johnson, 1993) are very close to Take The Best, but not Minimalist.
The term “lexicographic” signifies that cues are loocked up in a fixed order and the
first discriminating cue makes the decision, like in the alphabetic ordering used to
decide which of two words comes first in a dictionary. Take The Best can exploit a
lack of knowledge by means of the recognition heuristic (when there is only limited
knowledge, a case dealt with in Gigerenzer & Goldstein, 1996). A more distantly
related strategy is Elimination By Aspects (Tversky, 1972), which is also an
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attribute-based information processor and also has a stopping rule. Elimination By
Aspects (EBA) differs from Take The Best in several respects; for instance, EBA
chooses cues not according to the order of their validities but by another
probabilistic criterion, and it deals with preference rather than inference. Another
related strategy is classification and regression trees (CART), which deals with
classification and estimation rather than two-alternative prediction tasks. The key
difference is that in CARTSs, heavy computation and optimizing are used to
determine the trees and the stopping rules.

In Section 1 we have defined two fast and frugal heuristics. These heuristics
violate two maxims of rational reasoning: they do not search for all available
information and they do not integrate information. Thus Minimalist and Take The
Best are fast and frugal, but at what price? How much more accurate are benchmark
models that use and integrate all information when predicting unknown aspects of
real environments?

This question was posed by Gigerenzer and Goldstein (1996), who studied the
price of frugality in inferring city populations. The surprising result was that Take
The Best made as many accurate inferences as standard linear models, including
multiple regression, which uses both more computational power and more
information. Minimalist generated only slightly fewer accurate inferences. In Section
2 we test whether these results generalize to other real-world environments and to
situations in which the training set and the test set are different. For simplicity, we
will only study the performance of the heuristics under complete knowledge of cue
values, whereas Gigerenzer and Goldstein (1996) varied the degree of limited
knowledge. In Section 3, we analyze the structure of information in real-world
environments that fast and frugal heuristics can exploit, that is, their ecological
rationality. Finally, in Section 4, we take up Ward Edwards’ challenge to compare
the performance of fast and frugal heuristics with more powerful strategies than
multiple regression, in particular with Bayesian models.

2. Fast and frugal at what price?

Some psychologists propose multiple linear regression as a description of human
Judgment; others argue that it is too complex a model for humans to instinctively
perform. Nevertheless, both camps often regard it as an approximation of the
optimal strategy people should use, Bayesian models aside. A more
psychologically plausible version of a linear strategy employs unit weights (rather
than beta weights), as suggested by Robyn Dawes (e.g., 1979). This heuristic adds
up the number of unitary (“1”) cue values and subtracts the number of zero (“0%)
cue values. Thus it is fast (it does not involve much computation), but not frugal (it
looks up all cues). For simplicity, we call this heuristic Dawes’ Rule.'

In this section, we will compare the performance of fast and frugal heuristics
against these standard linear models. We begin by describing a single task in detail:
to predict which U.S. cities have higher homelessness rates. Thereafter, we present
the full data—the average results of the contests in 20 empirical data sets. But
performance isn’t everything—we also want to know what price we must pay for
our accuracy. For example, heuristic 4 might need twice as many cue values as
heuristic B in order to make its inferences, but might be only a few percentage
points more accurate. We will determine these accuracy-effort trade-offs for our
heuristics, using measures of computational simplicity and frugality of cue use.
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Predicting homelessness

The first contest deals with a problem prevalent in many cities, homelessness, and
we challenge our heuristics to predict which cities have higher homelessness rates.
As mentioned above, the data stem from an article by William Tucker (1987)
exploring the causes of homelessness. He presents data for six possible factors for
homelessness in 50 U.S. cities. Some possible factors have an obvious relationship
to homelessness because they affect the ability of citizens to pay for housing, such as
the unemployment rate and the percentage of inhabitants below the poverty line.
Other possible causes affect the ability to find housing, such as high vacancy rates.
When many apartments are vacant, tenants have more options of what to rent and
landlords are forced to lower rents in order to get any tenants at all. Rent control is
also believed to affect ability to find housing. It is usually instituted to make
housing more affordable, but many economists believe landlords would rather have
no rent than low rent. Thus less housing is available for rent and more people must
live on the streets. The percentage of public housing also affects the ability to find
housing because more public housing means that more cheap housing options are
available. Finally, one possible cause does not relate directly to the landlord-tenant
relationship. Average temperature in a city can affect how tolerable it is to sleep
outside, leading to a number of possible effects, all of which suggest that. warmer
cities will have higher homelessness rates; warmer cities might attract the homeless
from cooler cities, landlords might feel less guilty about throwing people out in
warmer cities, and tenants might fight less adamantly against being thrown out in
more tolerable climates.

We will ask our heuristics to use these six (dichotomized) cues to predict
homelessness rates in the 50 cities.” The heuristics will be required to choose the
city with more homelessness for all 50 x 49/2 = 1225 pairs of cities. Regression
will use the matrix of cue values to derive optimal weightings of the cues (possible
causes).’ There will be two types of competitions. In the first competition, the test
set is the same as the training set (from which a strategy learns the information it
needs, such as the weights of the cues). In the second, more realistic competition,
the test set is different from the training set (also known as cross-validation). The
second competition can reveal how much a heuristic overfits the data. Only the first
type of competition was studied in Gigerenzer and Goldstein (1996).

Performance: Test set = Training set

We begin with the case of learning the entire data set and trying to fit it as well as
possible. Performance is measured by the percentage of the 1225 inferences that are
correct (which city has higher homelessness?). Sometimes the heuristics must
guess, for example between New Orleans and Miami, which have the same
characteristics on the six cues (both are one on temperature, both are zero on rent
control, both are one on poverty, etc.). When a heuristic guesses, it earns a score of
0.5 correct, on the grounds that half the time the heuristic will be correct in its
guess.
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Strategy Average number of % correct when % correct when

cues looked up test set same as  test set different

training set from training set
Minimalist 2.1 61 56
Take The Best 2.4 69 63
Dawes’ Rule 6 66 58
Multiple regression 6 70 61

Table 2. Trade-off between accuracy and cues looked up in predicting
homelessness, for two kinds of competition (test set = training set, and test set =
training set). The average number of cues looked up was about the same for both
kinds of competition.

How well do the heuristics predict homelessness? Table 2 shows the results for
the situation when the test set coincides with the training set. There are two
surprises in these numbers. The first is that Take The Best, which uses only 2.4
cues on average, scores higher than Dawes’ Rule, which uses all 6 of them. The
second surprise is that Take The Best is almost as good as linear regression, which
not only looks up all the cues but performs complicated calculations on them. So it
seems that fast and frugal heuristics can be about as accurate as the more
computationally expensive multiple regression! This confirms the findings of
Gigerenzer and Goldstein (1996) in a task of predicting city populations.

Although Take The Best’s accuracy is very close to that of regression, its
absolute value does not seem to be very high. What is the upper limit on
performance? The upper limit is not 100%, but 82%. This would be obtained by an
individual who could memorize the whole table of cue values and, for each pair of
cue profiles, memorize which one has the higher homelessness rate (but for the
purpose of the test forgets the city names). If a pair of cue profiles appears more than
once, this Profile Memorization Method goes for the profile that leads to the right
answer more often.' The Profile Memorization Method results in 82% correct
inferences for the homelessness data (see Section 4).

Performance: Test set # Training set

The prediction task we have considered thus far is limited to static situations, when
we are merely trying to “fit” a phenomenon about which we already have all
information. How well do the heuristics perform if the test set is different from the
training set? This situation is a version of one-step learning and prediction. The
data set is broken into two halves, with random assignment of cities to one or the
other half. The heuristics are allowed to use one half to build their models (calculate
regression weights, get cue orders, determine cue direction); then they must make
predictions on the other half, using the parameters estimated on the first half, and
their accuracy is scored. This process is repeated 1000 times, with 1000 random
ways of breaking the data into two halves in order to average out any particularly
helpful or hurtful ways of halving the data.

Training might not seem to affect Dawes’ Rule and Minimalist, but in fact it
does. Both strategies use the first half of the data set to estimate the direction of the
cue (whether a higher or a lower cue value signals a higher criterion value). When
the test set was different from the training set, the performance of Minimalist
dropped from 61% correct to 56%, and that of Dawes’ Rule from 66% to 58%
(Table 2). Take The Best needs to learn more than merely the direction of the cues;
it must also learn the order of the cue validities. With this slight additional
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knowledge, Take The Best scores 63% correct, down from 69%. Regression needs
to learn not only the direction of the cues but also their interrelationship in order to
determine the best linear weighting scheme. Despite all this knowledge,
regression’s performance falls more than that of Take The Best. While regression
scored 70% correct when it merely had to fit the data, it scores only 61% correct in
the cross-validated case, falling to second place.

In summary, when heuristics built their models on half of the data and inferred
on the other half, Take The Best was the most accurate strategy for predicting
homelessness, followed closely by regression. This seems counterintuitive since
Take The Best looks up only 2.4 of the 6 cues and (as we will soon see) is
computationally simpler.

Note that we no longer determine the upper limit by the Profile Memorization
Method. This method cannot be used if cue profiles that were not present in the first
half are present in the second half.

Generalization®

How well do these results generalize to making predictions about other
environments? We now consider results across 20 data sets. These data sets have
real-world structure in them rather than artificial, multivariate normal structures. In
order to make our conclusions as robust as possible, we also tried to choose as wide
a range of empirical environments as possible. So they range from having 17 objects
to 395 objects, and from 3 cues (the minimum to distinguish between the
heuristics) to 19 cues. Their content ranges from social topics like high school
drop-out rates, to chemical ones such as the amount of oxidant produced from a
reaction, to biological ones like the number of eggs found in individual fish.

Strategy Average number % correct when % correct when

of cues looked test set same as test set different

up training set from training set
Minimalist 2.2 70 65
Take The Best 2.4 76 71
Dawes’ Rule 7.4 73 70
Multiple regression 7.4 78 67

Table 3. Trade-off between accuracy and cues looked up, averaged across 20 data
sets, for two kinds of competitions (test set = training set, and test set # training
set). The average number of cues looked up was about the same for both kinds of
competition.

Table 3 shows the performance of the heuristics averaged across the 20 data sets.
When the task is merely fitting the given data (test set same as training set),
multiple linear regression is the most accurate strategy, by two percentage points,
followed by Take The Best. But when the task is to generalize from a training set
to a test set, Take The Best is the most accurate. It outperforms multiple regression
by four percentage points. Note that multiple regression has all the information
Take The Best uses, and more. Dawes’ Rule lives up to its reputation for
robustness in the literature (Dawes, 1979) by taking second place and beating
regression by three percentage points. Finally, Minimalist performs surprisingly
well, only two percentage points behind regression. In short, Dawes’ Rule is not
the only robust yet simple model; Take The Best and Minimalist are also fairly
accurate and robust under a broad variety of conditions. In fact, Take the Best is
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even slightly more accurate than Dawes’ Rule although it is more frugal. In Section
3, we will explore how this is possible—how fast and frugal heuristics can also be
accurate.

How much information processing is performed?

We established empirically that Take The Best and Minimalist are frugal-—on
average, they stopped searching and made a prediction after having looked up fewer
than one-third of the cues. But are the heuristics also fast, that is, simple in their
computations? Given that Take The Best performs so well, it must be doing some
work, perhaps hidden in the training phase of the cross-validation if not in the test
phase. Thus, we now wish to be more precise about measuring how fast
(computationally simple) our heuristics are, both in the training and test phase.

Let us begin by measuring the amount of learning required by the heuristics to
build their models in order to perform their predictions later. We can use the
suggestion of Newell and Simon (1972) and Payne, Bettman, and Johnson (1990)
to count the number of elementary information processing (EIP) units necessary for
the training phase. These EIPs include addition, subtraction, multiplication,
division, comparison of two numbers, reading a number, writing a number, and so
on. For each such operation, we count one unit. These elementary processing units
are easy to count, and Payne, Bettman, and Johnson (1990) present experimental
evidence that they are a reasonable estimate of the cognitive effort involved in
executing a particular choice strategy in a specific task environment. For our tasks,
the number of EIPs required depends on N, the number of objects, and M, the
number of cues in the data set. Table 4 specifies both the approximate number of
EIPs used, for any values of N and M that a data set has, and the number of EIPs for
the specific case of predicting homelessness, with N = 50 and M = 6.

Strategy Knowledge about Approximate Number of EIPs
cues obtained in number of EIPs in training for
training phase used in training homelessness
phase forany N M (N=50, M=6)
Minimalist Direction =~ 10NM 3,398
Take The Best Direction + order ~ 10NM 3,448
Dawes’ Rule Direction = 1ONM 3,398
Multiple regression  Beta weights = 10NM? 20,020

Table 4. Approximate number of Elementary Information Processing units
(EIPs) needed for the training phase of each strategy. The task is predicting
homelessness. N = number of objects; M = number of cues (for details see
Czerlinski, 1997).

Fast and frugal heuristics require significantly less calculation in the training
phase than multiple regression. This is the case even though in calculating the
number of EIPs in regression, we neglected the usual invertibility and computer
overflow checks, so 20,000 EIPs is really a lower bound. In practical applications,
fast and frugal heuristics might be as much as 1/100 simpler. Note that we differ
from earlier theorists such as Dawes (1979) in including learning the direction of
cues as a real problem; other theorists have assumed this is known already, making
fast and frugal heuristics even simpler.
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Strategy Process of inference ~ Number of EIPs  Number of EIPs
used in test . in inferring
phase for any N, homelessness
M M, (N=50, M=6)

Minimalist ~ Search through cues IM; ' 6.2
randomly until M=2.1)
decision possible

Take The Best Search through M, 7.2
ordered cues until (M,=2.4)
decision possible

Dawes’ Rule Count number of 8M-7 41

unitary and zero cue
values; compare
Multiple regression Linearly use beta ' 16M-7 89
weights to estimate
criterion; compare
Table 5. Number of Elementary Information Processing units (EIPs) needed for

the test phase of each strategy. The task is predicting homelessness. N = number of
objects; M = number of cues; M, = average number of cues used (for details see
Czerlinski, 1997).

Of course, learning a model of the data is only the first step. Implementing the
heuristic has a cost, too. Table 5 specifies the number of EIPs in the test phase.
Fast and frugal heuristics are always at least as efficient as the others because they
look up fewer cues and perform fewer calculations on those cues. Since fast and
frugal heuristics generally do not use all of the available cues, we also need to
consider the “actual” number of cues looked up, M,. For example, Take The Best
uses on average only 2.4 cues for predicting homelessness.

Table 5 clearly shows that the cue-based predictions of Minimalist and Take The
Best are highly efficient, about 5 times simpler than the simplest linear model,
Dawes’ Rule, and about 10 times simpler than multiple regression. We now have a
measure of how “fast” (computationally simple) the heuristics are, and we have
shown that fast and frugal heuristics can be from 5 to 10 times faster theoretically
than regression (and practically even more). The calculation of EIPs does not have
to assume serial processing; if the brain implements certain aspects of the
calculation in parallel, then the total number of calculations would be the same, but
they would be completed more quickly. For example, if we could compute the
validity of all cues in parallel, we would effectively have A/ = 1, and this could be
plugged in to the formulae above. However, even under such conditions, fast
heuristics could not be slower than regression and could still be faster, just not as
much faster as they are under the assumption of serial processing. And, of course,
they would still be more frugal.

In summary, our fast and frugal heuristics learn with less information, perform
fewer computations while learning, look up less information in the test phase, and
perform fewer computations when predicting. Nevertheless, fast and frugal heuristics
can be almost as accurate as multiple regression when fitting data. Even more
counterintuitively, one of these fast and frugal heuristics, Take The- Best, was on
average more accurate than regression in the more realistic situation where the
training set and test set were not the same (cross-validation). How is this possible?



93

3. Ecological rationality: Why and when are fast and frugal heuristics
good?

Note first that these data sets have been collected from “real-world” situations.
What are the characteristics of information in real-world environments that make
Take The Best a better predictor than other strategies, and where will it fail? When
we talk of properties of information, we mean the information about an environment
known to a decision maker. We discuss three properties. The first of these
properties is one that characterizes many real-world situations: the available
information is scarce. Take The Best is smarter than its competitors when
information is scarce.

Scarce information

In order to illustrate the concept of scarce information, let us recall an important fact
from information theory: a class of N objects contains logN bits of information,
This means that if we were to encode each object in the class by means of binary
cue profiles of the same length, this length should be at least logh if each object is
to have a unique profile. The example in Table 6 illustrates this relation for N = 8
objects. The eight objects are perfectly predictable by the three (log8 = 3) binary
cues. If there were only two cues, perfect predictability could simply not be
achieved.

Theorem: If the number of cues is less than logN the Profile Memorization
Method will never achieve 100% correct inferences. Thus no other strategy will
either.

This theorem motivates the following definition:

Definition: A set of M cues provides scarce information for a reference class of N
objects if M < logh.

Objects First cue Second cue  Third cue

TMOogawy»
OO O ek
Ot et O
Ot O D et O e

Table 6. Ilustration of the fact that 8 objects can be perfectly predicted by log8
= 3 binary cues.

We can now formulate a theorem that relates the performance of Take The Best
to that of Dawes’ Rule.

Theorem: In the case of scarce information, Take The Best is on average more
accurate than Dawes’ Rule.

The proof is in Martignon, Hoffrage, and Kriegeskorte (1997). The phrase “on
average” means across all possible environments, that is, all combinations of binary
entries for N X M matrices. The intuition underlying the theorem is the following:
in scarce environments, Dawes’ Rule can take little advantage of its strongest
property, namely, compensation. If in a scarce environment cues are redundant, that
is, if a subset of these cues does not add new information, things will be even worse
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for Dawes’ Rule. Take The Best suffers less from redundancy because decisions are
taken at a very early stage.

Abundant information

Adding cues to a scarce environment will do little for Take The Best, if the best
cues in the original environment are already highly valid, but it may compensate for
various mistakes Dawes’ Rule would have made based on the first cues. In fact, by
adding and adding cues we can make Dawes’ Rule achieve perfection. This is true
even if all cues are favorable (i.e., their validity is > 0.5) but uncertain (i.e., their
validity is < 1).

Theorem: Assume that the environment consists of N > 5 objects. If an
environment consists of all possible uncertain but favorable cues, Dawes’ Rule will |
discriminate among all objects and make only correct inferences.

The proof is given in Martignon et al. (1997). Note that we are using the term
cue to denote a binary-valued function on the reference class. Therefore, the number
of different cues on a finite reference class is finite. The theorem can be generalized to
linear models that use cue validities as weights rather than unit weights. As a
consequence, Take The Best will be outperformed on average by linear models in
abundant environments.

Non-compensatory information
Environments may be compensatory or non-compensatory. Among the 20
environments studied in Section 2, we found 4 in which the weights for the linear
models were non-compensatory (i.e., each weight is larger than the sum of all other
weights to come, such as 1/2, 1/4, 1/8, ..). The following theorem states an
important property of non-compensatory models and is easily proved (Martignon et
al., 1997).

Theorem: Take The Best is equivalent—in performance—to a weighted linear
model whose weights form a non-compensatory set.

If multiple regression happens to have a non-compensatory set of weights (where
the order of this set corresponds to the order of cue validities), then its accuracy is
equivalent to Take The Best.

Why is Take The Best so robust?

The answer is simple: Take The Best uses few cues (only 2.4 cues on average in
the data sets presented here). Thus its performance depends on very few parameters.
The top cues usually have high validity. In general, highly valid cues will remain
highly valid across different subsets of the same class of objects. Even the order of
their cue validities tends to be fairly stable. The stability of highly valid cues is a
main factor for the robustness of Take The Best, in cross-validation as well as in
other forms of incremental learning.

Strategies that use all cues must estimate a number of parameters larger than or
equal to the number of cues. Some, like multiple regression, use a huge number of
parameters. Thus they suffer from overfitting, in particular with small data sets.

To conclude, scarceness and redundancy of information are characteristics of
information gathered by humans. Humans are not always good at finding large
numbers of cues for making predictions. The magic number 7 + 2 seems to
represent the basic information capacity human minds work with in a short time
interval. Further, humans are not always good at detecting redundancies between
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cues, and quantitatively estimating the degree of these redundancies. Fast and frugal
Take The Best is a heuristic that works well with scarce information and does not
even try to estimate redundancies and cue intercorrelations. In this way, it
compensates for the limits in human information processing. If the structure of the
information available to an organism is scarce or non-compensatory, then Take The
Best will be not only fast and frugal, but also fairly accurate, even relative to more
computationally expensive strategies.

4. How does Take The Best compare with good Bayesian models?

It happened that Ward Edwards was a reviewer of one of our group’s first papers on
fast and frugal heuristics (Goldstein & Gigerenzer, 1996). Ward sent us a personal
copy of his review, as he always does. No surprise, his first point was “specify how
a truly optimal Bayesian model would operate.” But Ward did not tell us which
Bayesian model of the task (to predict the populations of cities) he would consider
truly optimal.

In this section, we present a possible Bayesian approach to the type of task
discussed in the previous sections. We do not see Bayesian models and fast and
frugal heuristics as incompatible, or even opposed. On the contrary, considering the
computational complexity Bayesian models require, and the fact (as we will see)
that fast and frugal heuristics do not fall too far behind in accuracy, one can be a
satisficer when one has limited time and knowledge, and a Bayesian when one is in
no hurry and has a computer at hand. A Bayesian can decide when it is safe and
profitable to be a satisficer.

Bayesian networks®

If training set and test set coincide, the Bayesian knows what she will do: she will
use the Profile Memorization Method if she has perfect memory. If training set and
test set are different the Bayesian has to construct a good model. Regression is not
necessarily the first model that would come to her mind. Given the kind of task, she
may tend to choose from the flexible family of Bayesian networks. Another
possibility is a Bayesian CART and a third is a mixture of these two.

The task is to infer which of two objects 4 or B scores higher on a criterion,
based on the values of a set of binary cues. Assume, furthermore, that the decision
maker has nine cues at her disposal and she has full knowledge of the values these
cues take on 4 and B. To work out a concrete example, let 4 and B have the cue
profiles (100101010) and (011000011) respectively. The Bayesian asks herself:
What is the probability that an object with cue profile (100101010) scores higher
than an object with cue profile (011000011) on the established criterion? In
symbols:

Prob(4 > B | A = (100101010), B = (011000011))=2 (%)

Here the symbol = is used to signify-“has the cue profile.” As a concrete example,
let us discuss the task investigated in Gigerenzer and Goldstein (1996), where pairs
of German cities were compared as to which had a larger population. There were
nine cues: “Is the city the national capital?” (NC); “Is the city a state capital?”
(SC); “Does the city have a soccer team in the major national league?” (SO); “Was
the city once an exposition site?” (EX); “Is the city on the Intercity train line?”
(IT); “Is the abbreviation of the city on the license plate only one letter long?”
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(LP); “Is the city home to a university?” (UN); “Is the city in the industrial belt?”
(IB); “Is the city in former West Germany?” (WG).

A network for our type of task considers pairs of objects (4,B) and the possible
states of the cues, which are the four pairs of binary values (0,0), (0,1), (1,0), (1,1)
on pairs of objects. A very simple Bayesian network would neglect all
interdependencies between cues. This is known as Idiot Bayes. It computes (*) from
the product of the different probabilities of success of all cues. Forced to a
deterministic answer, Idiot Bayes will predict that 4 scores higher than B on the
criterion, if the probability of “A larger than B” computed in terms of this product
is larger than the probability of “B larger than 4.” Due to its simplicity, Idiot
Bayes is sometimes used as a crude estimate of probability distributions. This is
not the procedure the Bayesian will use if she wants accuracy.

The other extreme in the family of Bayesian networks is the fully connected
network, where each pair of nodes is connected both ways. Computing (*) in terms
of this network when training and test set coincide amounts to using the Profile
Memorization Method. Both these extremes, namely Idiot Bayes .and the fully
connected network are far from being optimal when training set and test set differ. A
more accurate Bayesian network has to concentrate on the important conditional
dependencies between cues, as some dependencies are more relevant than others.
Some may be so weak that it is convenient to neglect them, in order to avoid
overfitting. The Bayesian needs a Bayesian strategy to decide which are the relevant
links that should remain and to prune all the irrelevant ones. She needs a strategy to
search through the possible networks and evaluate each network in terms of its
performance. Bayesian techniques for performing this type of search in a smart,
efficient way have been developed both in statistics and artificial intelligence. These
methods are efficient in learning both structure and parameters. Nir Friedman and
Leo Goldszmit (1996), for instance, have devised software’ for searching over
networks and finding a good fit for a given set of data in a classification task. Since
our task is basically a classification task (we are determining whether a pair of
objects is rightly ordered or not), we are able to make use of Friedman and
Goldszmit’s network. But a smart Bayesian network is often too complex to be
computed. The following theorem offers a way to reduce the huge number of
computations that would be, at first glance, necessary for computing (*) based on a
Bayesian network. In a Bayesian network the nodes with arrows pointing to a fixed
node are called the parents of that node. The node itself is called a child of its
parents. What follows is a fundamental rule for operating with Bayesian networks.

Theorem: The conditional probability of a node j being in a certain state given
knowledge on the state of all other nodes in the network is proportional to the
product of the conditional probability of the node given its parents times the
conditional probability of each of its children given its parents.

In symbols:

Prob(node j | other nodes) =
K x Prob(node j | parents of j) x [TProb(child k of j | parents of &) .

Here K is a normalizing constant. The set consisting of a node, its parents, its
children and the other parents of its children is called the Markov Blanket of that
node. What the theorem states is that the Markov Blanket of a node determines the
state of the node regardless of the state of all other nodes not in the Blanket.
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The theorem just stated, based essentially on Bayes’ rule, represents an
enormous computational reduction in the calculation of probability distributions. It
is precisely due to this type of reduction of computational complexity that Bayesian
networks have become a popular tool both in statistics and in artificial intelligence
in the last decade. :

Q @\@
o
(i) (i)

Figure 2. A Bayesian network for predicting population size (which of two
German cities 4 or B is larger). The cues are SO = soccer team; EX = exposition
site; SC = state capital; IB = industrial belt; NC = national capital; UN =
university; IT = intercity train,

Figure 2 shows the Bayesian network obtained with Friedman’s search method,
for the task of comparing German cities according to their population, as in
Gigerenzer and Goldstein (1996). In that paper, the reference class of the 83 German
cities with more than 100,000 inhabitants was analyzed. The Bayesian network
reveals that two of the nine cues, LP and WG, are irrelevant when the other seven
cues are known. Figure 2 illustrates the Markov Blanket of the node size, which
represents the hypothesis “city A has more inhabitants than city B” and obviously
can be in two states (the other state is “city B has more inhabitants than city 4”).
According to the theorem specified above:

Prob(size { UN, NC, IB, SO, EX, SC, IT) = K x Prob(size | SO, EX, SC) x
Prob(IB | size, UN, NC) x Prob(IT | size),

where X is a constant. In order to determine each of the probabilities on the right-
hand side of the equation the program produces simple decision trees (actually
CARTs), as illustrated in Figure 3 for Prob(size | SO, EX, SC). The program
searches among all possible trees for the one that fits the data best, pruning all
irrelevant branches. That is, this approach combines a Bayesian network with a
CART step at the end. CART models were popularized in the statistical
community by the seminal book by Breiman, Friedman, Olshen, and Stone (1984).

This method, a mixture of a Bayesian network and CART, is much more
computationally intensive than multiple regression, not to speak of Take The Best.
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In fact, if we were to compute its EIPs as we did in the previous section, we would
clearly reach a function of M and N containing an exponential term in M.

5 12 88 5 4 0 5 5 8 .5 1 5 5 0 1 5
.5 .88 12 5 8 1 5 5 4 5 0 5 S5 1 0 08

Figure 3. CART (Classification 4nd Regression Tree) for quick computation of
Prob(size | SO, EX, SC). For instance, if neither of the two cities 4 and B is an
exposition site (symbolized by the two zeros in the left branch), then the only
relevant cue is SO, that is, whether a city has a soccer team in the major league (SC
is irrelevant). If 4 has a soccer team but B does not (““1” and “0”), then Prob(4 > B
| SO, EX, SC) = .88, and Prob(4 < B | SO, EX, SC) = .12. “4 > B” stands for
“A has a larger population than B.”

How much more accurate is such a computationally complex Bayesian network
than the simple Take The Best? Table 7 shows the performance of the Bayesian
network and the Profile Memorization Method (the upper limit) when training and
test set coincide. Performance was tested in five environments: Which of two
German cities has the higher population? Which of two U.S. cities has a higher
homelessness rate? Which of two individual Arctic female charr fish produces more
eggs? Which of two professors at a Midwestern college has a higher salary?

Take The Multiple Bayesian Profile
Best regression network Memorization
Method
City population 74 74 76 80
Homelessness 69 70 77 82
Fish fertility 73 75 75 75
Professors’ salaries 80 83 84 87

Table 7. Percentage of correct inferences when test set = training set.

For predicting city populations, the Bayesian network gets 2 percentage points
more correct answers than Take The Best. The upper limit of correct predictions can
be computed by the Profile Memorization Method as 80%, which is four percentage
points above the performance of the Bayesian network. When the test set is different
from the training set (Table 8), then multiple regression takes a slightly larger loss
than Take The Best and the Bayesian network. Recall that the upper limit cannot
be calculated by the Profile Memorization Method when the test set is different from
the training set.
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Take The Best  Multiple regression  Bayesian network

City population 72 71 74
Homelessness 63 61 65
Fish fertility 73 75 75
Professors’ salaries 80 80 81

Table 8. Percentage of correct inferences when test set is different from training
set (cross-validation).

When predicting homelessness, the Bayesian network performs 8 percentage
points better than Take The Best (Table 7). This difference is reduced to 2
percentage points when the test set is different from the training set (Table 8). Here,
Take The Best is the most robust heuristic under cross-validation.

The fish fertility data set is of particular interest, because it contains a large set of
objects (395 individual fish). The cues for the criterion (numbers of eggs found in a

. given fish) were weight of fish, age of fish, and average weight of her eggs. Here, as
one would expect for a reasonably large data set, all results are quite stable when
one cross validates. :

The next problem is to predict which of two professors at a Midwestern college
has a higher salary. The cues are gender, his or her current rank, the number of years
in current rank, the highest degree earned, and the number of years since highest
degree earned. When the test set is the same as the training set, Take The Best
makes 4 percentage points fewer accurate inferences than the Bayesian network.
However, when the test set is different from the training set, then Take The Best
almost matches the Bayesian network.

Across these four environments, the following generalizations emerge:

1. When the test set is the same as the training set, the Bayesian network is
considerably more accurate than Take The Best. On average, it was only 3 points
behind the Profile Memorization Method, which attains maximal accuracy.
However, when the test set is different from the training set, the accuracy of Take
The Best is, on average, only 1 to 2 percentage points less than that of the Bayesian
network. This result is noteworthy given the simplicity and frugality of Take The
Best compared with the computational complexity of the Bayesian network.

2. Take The Best is more robust—measured in loss of accuracy from Table 7 to
Table 8—than both multiple regression and the Bayesian network.

What is extraordinary about fast and frugal Take The Best is that it does not fall
too far behind the complex Bayesian network. And it can easily compete in 20
different environments (Section 2) with Dawes’ Rule and multiple regression.

8. Conclusions

L. J. Savage wrote that the only decision we have to make in our lives is how to
live our lives (1954, p. 83). But “how to live our lives” means basically “how to
make decisions.” Are we going to adopt Bayesian decision making or use some
simple heuristics, like the satisficing ones presented in this chapter? This might not
be an exclusive “or”: fast and frugal heuristics can have their place in everyday
affairs where time is limited and knowledge is scarce, and Bayesian tools can be the
choice for someone who is in no hurry and has a computer in her bag (von
Winterfeldt & Edwards, 1986). A Bayesian who tries to maximize under
deliberation constraints must choose a strategy under a combination of criteria, such
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as computational cost, frugality, accuracy, and perhaps even transparency. Thus, it
may happen that a Bayesian herself may choose Take The Best, or another fast and
frugal heuristic, over expensive but less robust Bayesian networks in some
situations. Bayesian reasoning itself may tell us when to satisfice.

The major results summarized in this chapter are the following. First, across 20

real-world environments, the fast and frugal Take The Best outperformed multiple
regression in situations with learning (test set # training Set), while even the
simpler Minimalist came within 2 percentage points of it. Second, we specified
which characteristics of information in real-world environments enable Take The
Best to match or outperform linear models. Third, we showed that sophisticated
Bayesian networks were only slightly more accurate than Take The Best.
" The results reported in this chapter were obtained with real-world data but must
be evaluated with respect to the conditions used, which include the following. First,
we studied inferences only under complete knowledge, unlike Gigerenzer and
Goldstein (1996), who studied the performance of heuristics under limited
knowledge. Limited knowledge (e.g., knowing only a fraction of all cue values) is a
realistic condition that applies to many situations in which predictions must be
made. In the simulations reported by Gigerenzer and Goldstein, the major result
was that the more limited the knowledge, the smaller the discrepancy between
Minimalist and other heuristics becomes. Thus Minimalist, whose respectable
scores were nevertheless always the lowest, really flourishes when there is only
limited knowledge. Gigerenzer and Goldstein (1996) also develop circumstances
under which the counterintuitive less-is-more effect is possible: when knowing less
information can lead to better performance than knowing more information.

Other conditions of the studies reported here include the use of binary and
dichotomized data, which can be a disadvantage to multiple regression and
Bayesian networks. Finally, we have used only correct data, and not studied
predictions under the realistic assumption that some of the information is wrong.

Some of the results obtained are reminiscent of the phenomenon of flat maxima.
If many sets of weights, even unit weights, can perform about as well as the optimal
set of weights in a linear model, this is called a flat maximum. The work by Dawes
and others (e.g., Dawes & Corrigan, 1974) made this phenomenon known to
decision researchers, but it is actually much older (see John, Edwards, & von
Winterfeldt, n.d.). The performance of fast and frugal heuristics in some of the
environments indicates that a flat maximum can extend beyond the issue of weights:
inferences based solely on the best cue can be as accurate as those based on any
weighted linear combination of all cues. The results in Section 3, in particular the
theorem on non-compensatory information, explain conditions under which we can
predict flat maxima.

The success of fast and frugal heuristics emphasizes the importance of studying
the structure of the information in the environment. Such a program is a
Brunswikian program, but it is one that dispenses with multiple regression as the
tool for describing both the processes of the mind and the structure of the
environment. Fast and frugal heuristics can be ecologically rational in the sense that
they exploit specific and possibly recurrent characteristics of the environment’s
structure (Tooby & Cosmides, in press). Models of reasonable judgment should
look outside of the mind, to its environment. And models of reasonableness do not
have to forsake accuracy for simplicity. The mind can have it both ways.
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Footnotes

1. Dawes and Corrigan (1974) write, “The whole trick is to decide what variables
to look at and then to know how to add” (p. 104). The problem of what variables to
look at is, however, not defined; it is the job of the expert to determine both the
cues and their directional relationship with the criterion (Dawes, 1979). In our
simulations, we will use the full set of cues and simply calculate the actual direction
of the cues (rather than asking an expert).

2. In contrast to Gigerenzer and Goldstein (1996), we always provide full
information for the algorithms (no unknown cue values).

3. Note that if the optimal weight is negative, then regression says the cue points in
the opposite direction from that indicated by the ones and zeros. This can happen
because the ones and zeros are calculated for each cue independently while regression
operates on all cues simultaneously, taking their interrelationship into account.

4. The Profile Memorization Method is essentially a Bayesian method. If there are
several pairs of objects with the same one pair of cue profiles, the Profile
Memorization Method looks at all such pairs and determines the frequency with
which a city with the first cue profile has more homeless than a city with the second
cue profile. This proportion is the probability that the first city scores higher on this
criterion. If forced to give a deterministic answer, and if the penalty for incorrectly
guessing city 1 is the same as the penalty for incorrectly guessing city 2, the
method picks the object that has the highest probability of a high value on the
criterion (e.g., a higher homelessness rate). Thus, in this situation the Bayesian
becomes a frequentist making optimal use of every-bit of information.

5. The results that follow are explained in detail in Czerlinski, Gigerenzer, and
Goldstein (in press).

6. The results that follow are explained in detail in Martignon and Laskey (in
press).
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7. The software for this procedure has been kindly put to the disposition of Kathy
Laskey and Laura Martignon by Nir Friedman.
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