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Forty years of experimentation on class inclusion and its probabilistic relatives
have led to inconsistent results and conclusions about human reasoning. Recent
research on the conjunction “fallacy” recapitulates this history. In contrast to
previous results, we found that a majority of participants adhere to class inclusion
in the classic Linda problem. We outline a theoretical framework that attributes the
contradictory results to differences in statistical sophistication and to differences
in response mode—whether participants are asked for probability estimates or
ranks—and propose two precise cognitive algorithms for ranking probabilities.
Our framework allows us to make novel predictions about when and why people
adhere to class inclusion. Evidence obtained in several studies supports these
predictions and demonstrates that the proposed ranking algorithms can account for
about three-quarters of participants’ inferences in the Linda problem.

INTRODUCTION

“Our minds are not built (for whatever reason) to work by the rules of
probability.” The brainteaser that brought Harvard paleontologist Stephen J.
Gould (1992, p.469) to this conclusion was the Linda problem, in which one
reads: “Linda is 31 years old, single, outspoken and very bright. She majored in
philosophy. As a student, she was deeply concerned with issues of discrimination
and social justice, and also participated in antinuclear demonstrations.” One is
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then asked to rank the following events according to their probability: Linda is a
bank teller (B), Linda is active in the feminist movement (F), and Linda is a bank
teller and is active in the feminist movement (B&F).

Gould (1992, p.469) humorously describes the conflict: “I know that the third
statement [B&F] is least probable, yet a little homunculus in my head continues
to jump up and down, shouting at me—‘but she can’t just be a bank teller; read
the description’.” Most participants in Tversky and Kahneman’s (1983) original
study of the Linda problem agreed with Gould’s homunculus. Only 10–20% of
them ranked B&F as the least probable alternative, while the rest violated the
conjunction rule, which states that the mathematical probability of a conjoint
event (e.g. B&F) cannot exceed the probability of any of its constituent events.
Tversky and Kahneman (1983) called this violation the conjunction “fallacy”.
The status of the conjunction rule as a norm for single-event probabilities, such as
the probability that Linda is a bank teller, has been vigorously debated (see
Gigerenzer, 1996; Kahneman & Tversky, 1996), but this normative issue will not
concern us here.

In the 15 years since the conjunction fallacy was first demonstrated, many
studies have found apparently strong evidence for the conclusion that our minds
are not built to work by the rules of probability. Given this evidence, it came as a
surprise to us when we found that—contrary to previous results—a majority of a
sample of students at the University of Chicago followed the conjunction rule
when asked to estimate the event probabilities in the Linda problem. Are the
minds of these students, contrary to Gould’s conclusion, built to work by the
rules of probability? Before addressing this question, we demonstrate that our
inconsistent finding is less surprising when viewed in light of 40 years of
experimentation on class inclusion and its probabilistic relatives.

A SHORT HISTORY OF CONTRADICTORY
FINDINGS AND CONCLUSIONS

Piaget and Inhelder (Inhelder & Piaget, 1959/1969; Piaget, 1952) saw cognitive
development as proceeding in an invariant series of stages culminating in logico-
mathematical abilities like those of a scientist. One of these abilities is
recognising that a set must be larger than any of its subsets (the set-theoretic
equivalent of the conjunction rule) to which we refer as reasoning in accord with
class inclusion. In one experiment, Piaget (1952) showed children a box
containing wooden beads, most of which were brown but two white, and asked:
“Are there more wooden beads or more brown beads in this box?”. Most children
under the age of 7 or 8 replied that there were more brown beads. By age 8,
however, most responded that there were more wooden beads, in accord with
class inclusion. Inhelder and Piaget (1959/1969, p.109 & p.117) concluded that at
age 8 and older children “can compare the extension of a part with that of the
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whole” and that “this kind of thinking is not peculiar to professional logicians
since the children themselves apply it with confidence when they reach the
operational level.”

Cohen and colleagues (e.g. Cohen & Hansel, 1958), unlike their con-
temporaries Piaget and Inhelder, focused on the “Achilles heels” (Cohen,
Chesnick, & Haran, 1972, p.46) of probability judgement in teenagers and adults.
In their view, reasoning in accord with the multiplication rule for independent
events, p(A&B) = p(A) p(B), a special case of the conjunction rule, is such an
Achilles heel. Cohen and Hansel (1958) had participants estimate conjoint
probabilities, for example, the probability of winning two gambles in each of
which the player has a 10% chance of winning. Participants’ responses were
compared with results calculated from the multiplication rule (in this case, .01).
Finding that most 12- to 15-year-olds (Cohen et al., 1972; Cohen & Hansel,
1958) overestimated the conjoint probability, Cohen et al. (1972, p.44) con-
cluded that a “grasp of the multiplicative character of a compound probability is
far from being in any sense a ‘primitive’ property of mental processes in relation
to the external world.”

Working in the 1960s, Peterson and Beach (1967, p.29) argued that the laws of
probability theory and statistics could be used to build psychological models that
“integrate and account for human performance in a wide range of inferential
tasks.” They marshalled people’s consistency with the multiplication rule as
evidence for this argument. In two experiments, Peterson et al. (1965) asked
participants to estimate conditional and unconditional probabilities. For example,
they presented participants with a trait such as “witty” and asked them to estimate
the number out of 100 people who are witty and the number of those witty people
who are brave. According to the multiplication rule for dependent events, the
products p(witty) p(brave | witty) and p(brave) p(witty | brave) are equal. Finding
correlations of .67 and .90 between the products of such estimates (in their
Experiments 1 and 2, respectively), Peterson et al. (1965, p.528) concluded that
participants’ probability judgements showed “a high degree of internal
consistency”.

The 1970s and 1980s witnessed the most recent challenge to the view that the
laws of reasoning can be modelled by the laws of probability and logic (see
Gigerenzer, 1996; Kahneman & Tversky, 1996). Launching a long line of
research, Tversky and Kahneman (1974, p.1124) argued that reliance on
cognitive heuristics that “reduce the complex tasks of assessing probabilities and
predicting values to simpler judgmental operations” leaves human reasoning
prone to “severe and systematic errors”. Evidence for this view in the judgement
of conjoint probabilities came from studies by Slovic (1969) and Bar-Hillel
(1973), who presented problems that demanded extensive application of
probability theory (e.g. multiplication of seven event probabilities). Later, a new
kind of problem was developed that more closely approximated real-life
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situations but was more ambiguous (Hertwig & Gigerenzer, 1997). The most
well known problem of this kind is the Linda problem, in which Tversky and
Kahneman (1982, 1983) and many other researchers found that only a small
minority of people ranked the constituent B as more probable than the
conjunction B&F.

REASONING PROBLEMS ARE NOT NEUTRAL
MEASUREMENT TOOLS

Why is there such a diversity of results and conclusions across 40 years of
experimentation on reasoning in accord with class inclusion, the multiplication
rule, and the conjunction rule, to which our results contribute? We argue that this
diversity reflects the power of problem structure to direct thought. In so claiming,
we build on the work of a number of researchers, including Hogarth (1982,
1987), Payne (1982; Payne, Bettman, & Johnson, 1992), and Lopes (1982), who
argued that judgements arise from the interaction between problem structure and
cognitive algorithms. Although all designed to test whether people adhere to a set
of related rules in logic and probability, the beads problem (Piaget), the gambling
problems (Cohen & Hansel, Slovic, and Bar-Hillel), the trait problem (Peterson
et al.), and the Linda problem (Tversky & Kahneman) differ not only in content
but in various aspects of problem structure, such as response format (whether
responses are expressed as probabilities or frequencies) and what we refer to as
response mode (whether participants have to give ranks or estimates). Different
problem structures can elicit different cognitive processes, and thereby different
judgements—not only on the part of participants, but also on the part of the
experimenters who evaluate their performance.

STUDY 1: A PUZZLING RESULT

Teigen, Martinussen, and Lund (1996, p.78) expressed a widely held belief when
they concluded that the “conjunction fallacy … [is] very robust and replicable in
a number of problem contexts.” It is therefore puzzling that we found the usual
high percentage of violations of class inclusion in the Linda problem when we
asked people to give ranks, but not when we asked them to give estimates. We
first describe Study 1, in which we found this surprising result. We then propose
a theoretical framework that accounts for how the ranking and estimation
response modes elicit different cognitive processes and therefore different
judgements. This framework allows us to derive two predictions about when and
why people adhere to class inclusion, which we tested in Studies 2 and 3. Finally,
we propose two precise algorithms to model reasoning in a ranking version of the
Linda problem and evaluate their predictive performance in Study 4.
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Method

We tested two groups of participants, each of which received a total of five
conjunction problems in one of two fixed orders. For the present purpose, we
focus on the problem that all participants received first, namely the Linda
problem. Those in the ranking group were asked to rank the event probabilities,
whereas those in the estimation group were asked to estimate them (for precise
instructions, see Appendix). The Linda problem included three alternatives: two
constituents (B, F) and their conjunction (B&F). As well as being required to
judge the probability of each alternative, participants were asked to provide
written justifications of their thinking while making the judgements. Order of
alternatives was randomised.

Participants. A total of 72 students from the University of Chicago were
randomly assigned either to the ranking or to the estimation group (n=36 in each).
They were paid volunteers recruited by advertisement from a wide range of
disciplines, and were tested in groups of up to five people.

Results

An inclusion judgement is defined here as one in which the judged probability of
the constituent alternative (e.g. B) is greater than or equal to the probability of the
conjoint alternative (B&F). In Study 1, 58% of participants in the estimation
group (21 out of 36) gave inclusion judgements (for mean probability estimates,
see Table 1). To illustrate how much this result differs from those of previous
studies, Fig. 1 plots this percentage alongside those reported in a sample of
studies that required participants to rank probabilities in the Linda problem.  The
percentages of inclusion judgements across 17 conditions in the 10 studies in Fig.
1 range from 5% to 25%. The median is 13%, 45 percentage points lower than the
percentage observed in the estimation group in Study 1.

The picture looked different in the ranking group, in which the results of
previous studies were replicated. Only 22% of participants (8 out of 36) gave
inclusion judgements—a difference of 36 percentage points relative to the
estimation group. To estimate the size of the response mode effect, we calculated
the phi coefficient and found f  =.37. According to Cohen (1988), this effect is of
medium to large size.

SUMMARY OF STUDY 1

In Study 1, we found a context in which inclusion judgements in the Linda
problem were much more common than in previous studies. With an estimation
response mode, the percentages of inclusion judgements were on average about
45 percentage points higher than those reported in other studies (see Fig. 1). With
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TABLE 1
Studies 1, 2, and 3

Inclusion Violations of
Judgements Class Inclusion

M SD M SD

Study 1
B .16 .18 .14 .09
F .58 .31 .72 .24
B&F .09 .12 .38 .20

Study 2
B .39 .32 .33 .36
F .51 .32 .49 .36
B&F .14 .18 .60 .27

Study 3
B .18 .21 .15 .16
F .56 .30 .66 .25
B&F .11 .14 .32 .23

Mean probability estimates (M) and standard
deviations (SD) for the constituent alternatives B and F
and the conjoint alternative B&F in Studies 1, 2, and 3,
split by consistency with class inclusion.

a ranking response mode, however, we replicated previous results. How can a
difference in response mode account for the increase in inclusion judgements?

Theoretical Framework

We illustrate the present account using the Linda problem, but it applies to all
conjunction problems like the Linda problem, such as the Bill problem (Tversky
& Kahneman, 1983) and the problems used by Shafir, Smith, and Osherson
(1990). Our account rests on three assumptions, which are explicated next.

Inverse Probability Assumption. Previous researchers have proposed that
instead of judging the probabilities of the alternatives B, F, and B&F given
Linda’s characteristics, many people assess the inverse conditional probabilities,
for instance, the probability of a person having Linda’s characteristics given that
the person is bank teller. Explanations for why people assess these inverse con-
ditional probabilities include conceptual pattern recognition (Massaro, 1994),
application of the representativeness heuristic (Shafir et al., 1990, Hypothesis 3),
and intuitive Bayesian reasoning, in which the hypotheses represent outcomes
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FIG. 1. Percentage of inclusion judgements in the Linda problem across 17 conditions in 10
previous studies (the three results from Tversky & Kahneman, 1983, represent only the first in a series
of studies), median percentage in those 17 conditions, and percentages of inclusion judgements in
Study 1.
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that are assumed to have already occurred (Wolford, Taylor, & Beck, 1990; but
see Bar-Hillel, 1991; Fisk, 1996). Although we espouse a different explanation,
we too assume that judgements such as those required in the Linda problem are
conditioned on the hypotheses rather than on the evidence. We  explain why now.

Many natural language terms—including, the term “probability”—are
polysemous, that is, have multiple, related meanings. Hertwig and Gigerenzer
(1997) argued that people resolve the polysemy of “probability” in the Linda
problem by applying norms of social rationality such as the relevance maxim
(Grice, 1975, 1989). According to the relevance maxim, participants expect the
experimenter’s “conversational contribution” (i.e. Linda’s description) to be
relevant. If participants assume this maxim to hold, then they are unlikely to infer
that “probability” means mathematical probability (e.g. frequency, percentage,
expected value) because such an interpretation would render Linda’s description
irrelevant to the requested judgement (Adler, 1984, 1991; Hertwig & Gigerenzer,
1997; Hilton, 1995).

Hertwig and Gigerenzer (1997) asked German-speaking participants to
paraphrase the term “probability” (which is also polysemous in German) in the
Linda problem for an imaginary non-native speaker and found that 82% of their
paraphrases were non-mathematical (e.g. possibility, conceivability, credibility).
There are several ways of modelling these paraphrases. We propose that most of
them can be captured by the notion of evidential support (Nozick, 1981). That is,
we assume that participants evaluate the degree to which Linda’s description
provides evidential support for each hypothesis. This assumption implies that
judgements in the Linda problem are not systematically constrained by class
inclusion because they are conditioned on the hypotheses rather than on the
evidence.

Strategy Assumption. The Linda problem can be conceptualised as an
inferential task in which three alternatives, B, F, and B&F, are compared to each
other on a quantitative dimension, namely the evidential support that Linda’s
description provides for each alternative. The experimenter provides
Linda’s values on various dimensions, hereafter referred to as cues. For instance,
participants are told that Linda’s value on the marital status cue is “single”. The
alternatives’ values on these same cues—for example, the probability that
feminists are single—are not provided, so that people who consider this
information relevant have to retrieve it from memory or to infer it. How might
one decide whether Linda provides most support for B, F, or B&F?

We propose two inductive strategies and assume that they are at least partly
contingent on response mode: estimation is more likely to activate the integration
strategy, whereas ranking is more likely to activate the cue-wise strategy. In the
integration strategy, (a) each alternative (B, F, and B&F) is evaluated in-
dependently of the others with respect to evidential support; (b) for each
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alternative, Linda’s values on the provided cues (marital status, age, and so on)
are compared to the memory-retrieved values for the alternative; and (c) the
outcomes of these multiple comparisons are expressed as a single value reflecting
the evidential support Linda provides for each alternative. In the cue-wise
strategy, (a) alternatives are evaluated pair-wise (i.e. B vs. F; B vs. B&F; F vs.
B&F) with respect to evidential support; (b) cue values for each alternative in a
paired comparison are retrieved from memory and compared to each other cue by
cue; and (c) the outcome of these comparisons determines for which alternative
Linda provides more evidential support. This assumption—inspired by
Tversky’s (1969) distinction between additive and additive difference models in
the evaluation of multidimensional stimuli—is supported by the consistent
finding that response mode can affect the extent to which cognitive processing is
alternative-based (as in the integration strategy) or cue-based (as in the cue-wise
strategy; e.g. Billings & Scherer, 1988; Rosen & Rosenkoetter, 1976; Schkade &
Johnson, 1989; Westenberg & Koele, 1992).

Previous studies on response mode suggest that more cues are searched in
estimation than in ranking (e.g. Billings & Scherer, 1988) and that choice (a
special case of ranking) is the faster process (e.g.  Schkade & Johnson, 1989). We
propose a specific variant of the cue-wise strategy based on this evidence and
work by Gigerenzer and Goldstein (1996) on one-reason decision making in
choice problems. Instead of assuming that in the cue-wise strategy the decision
maker evaluates a pair of alternatives such as B and F on a cue-by-cue basis and
then aggregates (for an example, see Hogarth, 1987), we assume that each choice
between alternatives is based exclusively on one reason (i.e. one cue). One-
reason decision making uses a minimum of information and eschews complex
information integration, yet is sufficient to make the ordinal judgements
necessary for a qualitative judgement (choice).

Using the inverse probability and strategy assumptions, we can explain why a
cue-wise strategy leads to a high percentage of violations of class inclusion in a
ranking version of the Linda problem. If one’s interpretation of “probability” can
be captured by evidential support, then one can reasonably rank B&F over B
because each of Linda’s cue values provides more evidence for B&F than for B.
This argument, however, should also hold for an estimation version of the Linda
problem. How can we explain why a majority of participants in the estimation
group in Study 1 judged B&F to be less probable than B?

Rule Assumption. The answer hinges on how B&F is judged. We assume
that in the integration strategy, an estimate for B&F is derived by applying rules
to the constituent estimates (e.g. multiplying p(B) and p(F)). This assumption is
based on the following argument. The integration strategy requires that Linda
and each alternative be compared on multiple cues specified in Linda’s
description. To accomplish this, the strategy must retrieve the cue values for each
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alternative from memory. In the case of B and F, this should not be problematic
because people probably have stored representations of the average bank teller
and the average feminist. In the case of B&F, however, the conceptual
combination is both novel and incompatible; thus, it is plausible that people do
not have a stored representation of it.

As yet, there exists no definitive model of how the mind combines concepts,
particularly complex social concepts (for the most precise model of conceptual
combination to date, see Smith & Osherson, 1984; Smith, Osherson, Rips, &
Keane, 1988). However, it seems fair to suggest that interpretation of conceptual
combinations such as “feminist bank teller” involves complex reasoning.1 Do
participants engage in complex reasoning in the Linda problem in order to
construct a complete representation of B&F? Gavanski and Roskos-Ewoldsen
(1991) argued that they do not. They proposed that participants circumvent
having to combine the concepts of B and F by combining the estimates for B and
F using rules instead. Consistent with this argument, they found evidence that
violations of class inclusion co-occur with participants’ reports of having applied
rules that do not follow class inclusion, such as averaging the B and F estimates.

Unlike Gavanski and Roskos-Ewoldsen (1991), we argue that rule application
depends on response mode. We propose that in the integration strategy, an
estimate for B&F is derived by application of rules to the constituent estimates.
Whether or not this process leads to a judgement consistent with class inclusion
depends on the particular rule used. It is here that we think that factors such as
degree of statistical sophistication play a role by extending the set of available
rules to include more complex statistical rules.

There are two reasons to think that rules are unlikely to be applied to judging
B&F in a ranking response mode. First, as long as participants can infer some cue
values (or as we assume, only one cue value) of B&F that discriminate between
alternatives—for example, that feminist bank tellers tend to be more outspoken
than bank tellers—they have a basis on which to decide B&F’s rank relative to B
and F. Thus, the cue-wise strategy does not require the construction of a detailed
representation of B&F: cue values that are impossible to retrieve from memory or
difficult to infer can be left out of the comparisons between alternatives. Second,

1It is widely accepted that most combined concepts cannot be characterised as the intersection of
the properties of their constituents (Chater, Lyon, & Myers, 1990; Hampton, 1988; Osherson &
Smith, 1981). Alternative characterisations have been suggested. Murphy and Medin (1985, p.306),
for instance, proposed that the interpretation of a conceptual combination “may be thought of as a
hypothesis generated by background theories”. Such a hypothesis may be particularly complex in the
case of social concepts, for which assignment of a cue value such as “outgoing” requires
consideration not only of a person’s behaviour but of the situation (Smith, 1988). There is also
evidence that when reasoning about combinations of social concepts, people infer emergent cue
values (i.e. values not part of either constituent concept; Hastie, Schroeder, & Weber, 1990) and
causal accounts (Kunda, Miller, & Claire, 1990).
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applying rules in ranking would be fairly complex.2 For these reasons, we assume
that the cue-wise strategy does not involve rule application.

Summary. The proposed theoretical framework rests on three assumptions.
First, participants’ probability judgements are conditioned on the hypotheses
rather than on the evidence. (We model these judgements using evidential
support.) Second, there are two strategies for making inferences in conjunction
problems whose elicitation is at least partly contingent on response mode.
Specifically, the estimation mode is assumed to trigger an integration strategy
and the ranking mode to trigger a cue-wise strategy. Third, the integration
strategy involves rule application, which circumvents combination of the
constituent concepts. Rule application can lead to systematic adherence to class
inclusion, depending on the rules used. In contrast, the cue-wise strategy does not
involve rule application and in the Linda problem leads to violations of class
inclusion.

Predictions

The proposed theoretical framework allows us to derive two predictions:

Prediction 1: Mode-dependent Adherence to Class Inclusion. In a between-
subjects design, participants will be more likely to give inclusion judgements
when asked to estimate probability than when asked to rank probability.

Statistical sophistication may interact with response mode in influencing the
likelihood of adherence to class inclusion. We assume that statistical education
extends the set of combination rules by adding computationally complex rules for
judging the conjoint alternative (e.g. the multiplication rules for dependent and
independent events) to a person’s repertoire. Whether the greater rule repertoire
of sophisticated participants actually leads to more inclusion judgements depends
on whether statistically naive participants use rules that are simple yet also
conform to class inclusion. If statistically naive participants apply such rules,
then the effect of response mode on adherence to class inclusion will be
independent of degree of statistical sophistication.

Prediction 2: Mode-dependent Rule Use. Participants will be more likely to
apply rules to judge the probability of the conjoint alternative in estimation than
in ranking. This prediction follows from the assumption that the estimation
response mode activates an integration strategy that triggers rule application,
whereas the ranking response mode does not.

2To calculate B&F’s rank, one would have to combine the ranks of B and F and then update the
ranks accordingly. For instance, if one ranks F and B “1” and “2”, respectively, and applies the
averaging rule, then B&F is temporarily ranked “1.5”. Next, one must update the ranks to reflect the
new order: “1” for B, “2” for B&F, and “3” for F.
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 STUDY 2: THE EFFECTS OF RESPONSE MODE
AND STATISTICAL SOPHISTICATION

In Study 2, we test Prediction 1. If Study 2 supports Prediction 1, we will have
replicated the finding in Study 1 that percentage of inclusion judgements varies
with response mode. To find out whether and how response mode interacts with
statistical sophistication, in Study 2 we assembled participants who we expected
would have different degrees of statistical education: some were university
students and others were passers-by on a busy street (henceforth laypeople).
Participants’ statistical background was measured by their performance on three
textbook probability problems (henceforth background problems) that required
application of the multiplication rule for independent events (for background
problems, see Appendix).

Method

All participants first received the Linda problem. Of the 100 laypeople, 50 were
asked to rank and 50 to estimate probability. Of the 152 students, 73 were asked
to rank and 79 to estimate probability. After completing the Linda problem,
participants received the three background problems, in which they were
required to describe the steps that would lead to an estimate but not to do the
calculations. After finishing the background problems, the laypeople were asked
for their age and whether or not they had ever attended a class in which
probability theory was taught. The Linda problem and the ranking and estimation
instructions were the same as those used in Study 1 (see Appendix). Order of
alternatives in the Linda problem was randomised; order of the three background
problems was kept constant.

Participants. Of the 252 participants, 152 were students at the Universities
of Munich and Leipzig and 100 were passers-by in downtown Munich. The
participants in both Munich groups were compensated for their participation
(with candy), and were individually tested. Participants at the University of
Leipzig received course credit for their participation, and were tested in groups of
up to five people.

Results

Statistical Sophistication. As expected, the students were more statistically
sophisticated than the laypeople as measured by performance on the three
background problems. Only 22% of the laypeople (22 out of 100) gave responses
consistent with the multiplication rule (which for brevity’s sake we call correct
solutions) for at least one of these problems (only 13, 6, and 3 participants
correctly solved one, two, and three problems, respectively). In contrast, 76% of
the students (116 out of 152) correctly solved at least one problem (37, 44, and 35
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correctly solved one, two, and three problems, respectively). This result is not
surprising given that most of the laypeople had finished school long before (mean
age: 45 years), and only 20% could remember ever having attended a class in
which probability theory was taught.

Inclusion Judgements. As measured by performance on the background
problems, the participants in Study 2 varied widely in statistical sophistication.
We therefore analysed the percentage of inclusion judgements as a function of
both response mode and statistical sophistication. With respect to statistical
sophistication we distinguished between two groups of participants: those who
did not solve a single background problem correctly (the naive group) and those
who solved at least one background problem correctly (the sophisticated group).
Only 17% of naive participants in the ranking group (9 out of 53) gave inclusion
judgements, whereas 46% in the estimation group (28 out of 61) did so, a
difference of 29 percentage points ( f  = .31; a medium effect size). We found a
similar effect of response mode among sophisticated participants: whereas 40%
in the ranking group (28 out of 70) gave inclusion judgements, 65% in the
estimation group (44 out of 68) did so, a difference of 25 percentage points
( f  = .25; a small to medium effect size). In Prediction 1, we predicted that a larger
percentage of participants in the estimation group would give inclusion judge-
ments than participants in the ranking group. In terms of both percentage
differences and effect sizes, the results of Study 2 support this prediction, and
replicate the results obtained in Study 1 (for mean estimates, see Table 1).

Among the sophisticated participants, does the effect of response mode
depend on the number of background problems solved correctly? Figure 2 shows
the percentage of inclusion judgements as a function of the number of correct
solutions. For those who correctly solved one, two, and three problems, respect-
ively, the effects of response mode on percentage of inclusion judgements are 29
( f  =.28), 16 ( f  = .16), and 33 ( f  = .32) percentage points. Except for the relatively
small effect for participants who correctly solved two problems, the results
indicate that the effect of response mode is fairly stable over a range of statistical
sophistication.

In concluding that the effect of response mode is independent of statistical
sophistication, we are not claiming that sophistication has no effect on reasoning
in accord with class inclusion. It does in two ways. First, the percentages of
inclusion judgements are 23 ( f  = .25) and 19 ( f  = .19) percentage points higher
for the sophisticated than the naive participants in the ranking and estimation
groups, respectively. Second, statistical sophistication affected the complexity of
rules used to judge the conjoint alternative. To infer rule use in the estimation
group, one can take each participant’s constituent estimates—i.e. p(B) and
p(T)—and calculate her conjoint estimate as if she had applied each of a number
of rules that yield single-point predictions (e.g. the multiplication rule rather than
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a weighted averaging rule). If the estimate predicted by a particular rule is
consistent with the actual conjoint estimate, then one can consider this as
evidence that the rule was applied. For those participants in the estimation group
who gave inclusion judgements (n = 72), we checked whether the conjoint
estimates conformed to the multiplication rule for independent events—i.e.
p(B&F) = p(B) p(F)—or to the ceiling rule, by which the conjoint estimate is set
equal to the lower of the two constituent estimates—i.e.  p(B&F) = Min(p(B),
p(F). Although both rules lead to inclusion judgements, the multiplication rule is
computationally more complex than the ceiling rule. Therefore, when both rules
correctly predicted a participant’s conjoint estimate—e.g. p(F) = 1, p(B) = 0, and
p(B&F) = 0—we inferred that the ceiling rather than the multiplication rule had
been applied.

About one-third of sophisticated participants who conformed to class
inclusion gave conjoint estimates consistent with the ceiling rule (36%; 16 out of
44), while about one-quarter gave estimates consistent with the multiplication
rule (23%; 10 out of 44). More than half of naive participants who conformed to
class inclusion gave conjoint estimates consistent with the ceiling rule (57%, 16
out of 28), but none seems to have applied the multiplication rule. Finally, a
minority of participants in both groups adhered to class inclusion without
applying either rule. These participants (14% in the sophisticated group and 18%
in the naive group) simply gave a conjoint estimate of 0 although both of their
constituent estimates were greater than 0.

Summary

The results of Study 2 support Prediction 1. Participants are more likely to give
inclusion judgements in probability estimates than ranks. We obtained this
finding in several different populations: an American student population (at the
University of Chicago), a German student population (at the Universities of
Munich and Leipzig), and a German lay population (on the streets of Munich).
We also found that the effect of response mode is independent of statistical
sophistication as measured by performance on three background problems
requiring application of the multiplication rule for independent events. A larger
percentage of both sophisticated and naive participants gave inclusion
judgements when estimating than ranking probabilities in the Linda problem.

However, statistical sophistication affected the overall percentage of inclusion
judgements. Sophisticated participants gave more inclusion judgements than
naive participants across response modes (a 21 percentage point difference).
Sophistication also affected rule complexity in the estimation group. Whereas
about one-quarter of sophisticated participants appeared to apply the multi-
plication rule for independent events, no naive participant did so, suggesting that
statistical education is needed for this rule to be in one’s repertoire. The ceiling
rule, in contrast, was used by an appreciable percentage of participants in both
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groups. We propose that the estimation response mode and statistical
sophistication combine to increase the percentage of inclusion judgements in
conjunction problems such as Linda.

STUDY 3: IS RULE USE CONTINGENT ON
RESPONSE MODE?

We now explore the issue of rule use more thoroughly. In Study 3, we tested
whether people will be more likely to apply rules to judging the probability of the
conjoint alternative in estimation than in ranking, as stated in Prediction 2. In
addition, we tested whether or not inclusion judgements in estimation co-occur
with evidence that rules consistent with class inclusion were applied to judging
the conjoint probability.

Method

Each participant was randomly assigned to one of two groups, one of which was
instructed to rank probability and the other to estimate probability. The same
version of the Linda problem was used in both groups as in Study 1, with B, F,
and B&F presented in a randomised order. Participants in the estimation group
were asked to give on-line written justifications of their judgements, and those in
the ranking group to fill out a postexperiment questionnaire that asked them to
report rule use.

We administered the postexperiment questionnaire in the ranking and not the
estimation group because of the differential informativeness of ranks and
estimates. To infer rule use from estimates, one can take each participant’s
constituent estimates and predict the conjoint estimate assuming each of a
number of rules that yield single-point predictions was applied, as we did in
Study 2. Thus, the estimates and written justifications in the estimation group can
serve as indicators of rule use.

Ranks, in contrast, are not informative with respect to rule use because a
particular set of ranks (e.g. F>B&F>B) can be predicted by multiple rules.
Therefore, we explicitly asked participants in the ranking group about rule use.
The postexperiment questionnaire explained that one of many ways to derive
ranks is to estimate p(B), p(F), and p(B&F), and then to rank the estimated
probabilities. To find out whether participants did this, we asked them if they had
used any of the following rules: averaging (mean of constituents), addition (sum
of constituents), subtraction (difference between constituents), multiplication
(product of constituents), averaging and adjusting (up or down), and ceiling
(match between conjoint estimate and lower of the two constituents). Finally, we
included a catch-all category that allowed participants to report whether they
used other rules (e.g. averaging ranks). Note that the ceiling and multiplication
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rules necessarily lead to inclusion judgements, whereas the other rules either
necessarily lead to or at least can lead to violations. Participants in the ranking
group were asked to indicate the rule that they used (if any).

Participants. Each of the 136 participants was randomly assigned to one of
two groups (n = 77 in estimation and n = 59 in ranking). They were paid
volunteers from the University of Chicago recruited by advertisement, and were
tested in groups of up to five people.

Results

Before reporting the results bearing on Prediction 2, we report a final test of
Prediction 1. In Study 3, 58% of participants in the estimation group (45 out of
77) gave inclusion judgements, whereas only 24% in the ranking group (14 out of
59) did so—a difference of 34 percentage points ( f  = .35; for mean estimates, see
Table 1). Combined with the results obtained in Studies 1 and 2, this constitutes
strong evidence that inclusion judgements are more likely in an estimation
response mode than a ranking response mode.

Mode-dependent Rule Use. As a first step, we inferred that a participant had
applied a rule only if (a) the written justification (estimation group) or post-
experiment questionnaire (ranking group) specified that a rule was used, and (b)
the given estimates or ranks were consistent with the rule reported. This analysis
stacks the deck against our prediction that rule use will be more common in the
estimation group than in the ranking group, because participants in the latter
group were explicitly questioned about rule use. By this stringent criterion, 36%
of participants in the estimation group (28 out of 77) showed evidence of using a
rule, 8 of them reporting the ceiling rule and 20 the multiplication rule. In the
ranking group, 20% (12 out of 59) showed evidence of rule use, 7 of them
reporting the multiplication rule and 5 reporting either averaging or averaging
and adjusting up or down.

As a second step, we checked each conjoint judgement in the estimation group
to see whether it was consistent with any of the rules included in the ranking
group’s postexperiment questionnaire that yield single-point estimates (e.g.
averaging). If a conjoint estimate satisfied the criteria for more than one rule, it
was counted as an instance of whichever rule assumes the least amount of
computation. By this criterion, another one-tenth of participants in the estimation
group (10%; 8 out of 77) gave conjoint estimates consistent with the ceiling rule,
while a few more gave estimates consistent with addition (2 out of 77) and
averaging (1 out of 77).

Aggregating across these two measures of rule use, 51% of participants in the
estimation group (39 out of 77) and only 20% of participants in the ranking group
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(12 out of 59) seem to have applied rules to derive their judgements for the
conjoint alternative. By Cohen’s (1988) classification, the contingency of rule
use on response mode is of medium effect size ( f  = .31). The effect is smaller
if one considers only the written justifications in the estimation group, but
is in the predicted direction ( f  = .17). The results of Study 3 thus support
Prediction 2.

Summary

Study 3 tested whether rules are more often applied to probability estimates than
to probability ranks (Prediction 2). The results are consistent with this prediction.
Roughly half of participants in the estimation group either spontaneously
reported using rules or gave conjoint estimates consistent with a rule, whereas
only one-fifth of participants in the ranking group reported rule use when directly
asked.

About one-quarter of participants in the estimation group in Study 3 (26%;
20 out of 77) reported using the multiplication rule, a percentage that is much
closer to the 23% found in the sophisticated group in Study 2 (where rule use
was inferred from the constituent estimates) than to the 0% found in the naive
group in Study 2. We argue that the participants in Study 3 look like the
sophisticated group in Study 2 because students at the University of Chicago
are relatively statistically sophisticated. According to Barron’s Profiles of
American Colleges (1994), 85% of first-year undergraduate students at the
University of Chicago in 1993 (some of whom actually participated in Study 3)
scored over 600 (centred) on the mathematics section of the Scholastic Aptitude
Test. In addition, the undergraduate curriculum requires each student to take
at least two courses in the mathematical sciences. In a background questionnaire
completed by a subgroup of the University of Chicago students in Studies 1 and
3, 78% of participants (74 out of 95) reported having taken at least one course in
one of these areas, with an average of 2.3 courses per participant. In short, there is
evidence that this population has statistical sophistication, which might explain
why about one-quarter of the estimation group in Study 3 reported using the
multiplication rule.

Study 3 contributes to a growing body of evidence that rules are sometimes
applied to making probability judgements in conjunction problems. Gavanski
and Roskos-Ewoldsen (1991) measured rule use using a postexperiment
questionnaire that included a wider range of rules than found in Study 3.
Averaged across problems, 75% and 71% of participants in their studies (in their
Experiments 1 and 2, respectively) reported using a rule to make their conjoint
estimates. In addition, Chase and Bassok (1998) performed a rule analysis of
probability estimates in the Linda and other conjunction problems in two studies
and found that more than half of conjoint estimates conformed to a rule, a result
comparable to that found in the estimation group in Study 3.
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In the next section, we propose and test two algorithms that model the
cognitive processes of the cue-wise strategy, which according to our framework
is triggered by the ranking response mode.

STUDY 4: TWO REALISATIONS OF THE
CUE-WISE STRATEGY

In the cue-wise strategy, the judge is assumed to evaluate a pair of alternatives
(such as B and F) on the basis of one cue. As observed earlier, the cue-wise
strategy is therefore an example of one-reason decision making (Gigerenzer &
Goldstein, 1996). Before proposing two precise realisations of it, we define a
good reason in the Linda problem as one that maximises the difference in
evidential support between alternatives.

Evidence has been defined in many ways (for a review, see Schum, 1994). The
definition advanced by Nozick (1981, p.252) has the virtues of simplicity and
generality. Nozick proposed the difference between likelihoods s = p(E | H) –
p(E | ¬H) as a measure of the force that evidence E provides hypothesis H as
opposed to ¬H. A positive s indicates the degree to which E supports H, and a
negative s indicates the degree to which E supports ¬H. Applied to the Linda
problem, this measure captures how much support each alternative (e.g. F)
receives from a piece of evidence E (e.g. Linda is outspoken). For instance, if
p(outspoken | F) = .5 and p(outspoken | ¬F) = .2, then sF  = .3 indicates the degree
to which Linda’s outspokenness supports the hypothesis “Linda is a feminist”. If
p(outspoken | B&F) = .3 and p(outspoken | ¬(B&F)) = .2, then sB&F = .1 indicates
the degree to which Linda’s outspokenness supports the hypothesis “Linda is a
bank teller and is active in the feminist movement”. Now one can compare the
support for F (.3) and B&F (.1), which should result in choosing F as more
probable than B&F (i.e. sF

 – sF&B > 0). This calculation, however, can be
simplified in the Linda problem in the following way.

Consider the second term of the support measure, p(E | ¬H). In the Linda
problem, ¬H can refer to, for instance, all “non-bank tellers” (¬B) or all “non-
feminist non-bank tellers” (¬(B&F)). As these hypotheses include most of the
population (e.g.  the vast majority of people are not bank tellers), the probabilities
of all of these catch-all hypotheses conditioned on the evidence are essentially
the same. Suppose we draw a random sample of 1000 people from the
general population. Five of the people are bank tellers, and one of these five
is a feminist bank teller and is outspoken, whereas only one of the four non-
feminist bank tellers is outspoken. If the base rate of outspokenness in the
sample of 1000 people is 300, then p(outspoken | B) equals .4 (i.e. 2/5)
and p(outspoken | ¬B) equals .3 (i.e. 298/995), whereas p(outspoken | B&F)
equals 1 (i.e. 1/1) and p(outspoken | ¬(B&F)) equals .3 (i.e. 299/999). That is,
spoken p(outspoken | ¬(B&F)) both approximate the base rate of outspokenness,
and the equation:
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[p(outspoken | B) – p(outspoken | –B)] – [p(outspoken | B&F) -
p(outspoken | ¬(B&F))]

reduces to:

p(outspoken | B) - p(outspoken | B&F).

Therefore, the choice between B and B&F can be made quite simply. If
p(outspoken | B) =.4 and p(outspoken | B&F) = 1, then, sB, B&F = - .6, and B&F
should be chosen as more probable than B. Note that the probability p(E | B&F)
can be greater than, less than, or equal to p(E | B), and thus need not follow class
inclusion. Using this evidential support measure, we now propose the first cue-
wise algorithm.

The One-reason Algorithm

The policy of the One-reason algorithm is “Take the best cue and ignore the
rest”. It assumes that the cues provided in the Linda problem are tested for
their ability to discriminate between B, F, and B&F. The choice between each
pair of alternatives x and y is based on the “best” cue; that is, the cue that
maximises the difference in evidential support between alternatives (i.e. sx, y).
Because in the Linda problem the cues that can be used to make a decision
are not generated by the decision maker but are instead presented by the
experimenter, we do not assume that the cues are a priori ranked according to
sx,y for each pair of alternatives. The One-reason algorithm consists of the
following steps:

1. Set up the first choice. Choose at random the first pair of alternatives to be
compared.

2. Test for the best cue. Test which cue maximises the absolute value
of sx,y.

3. Rule for choice. Choose the alternative to which the best cue points; if no
cue discriminates, then choose between the two alternatives at random.

4. Set up the second choice. Compare the alternative chosen from the first pair
with the remaining alternative.

5. Repeat Steps 2 and 3.
6. Determine probability ranks. If the initially chosen alternative “wins”

again, then rank it “1” and compare the two “losers” to determine their relative
ranks (i.e. repeat Steps 2 and 3). If the initially chosen alternative loses, then rank
it “2” and the other alternatives “1” and “3”, respectively.

In the One-reason algorithm, there is no integration across cues, alternatives
are not evaluated independently, and choices between pairs of alternatives are
determined solely by the best cue.
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The One-reason algorithm is non-compensatory in that no combination of
other cues can outweigh the best cue. There is experimental evidence that people
use non-compensatory strategies in judgement tasks. For instance, Hayes-Roth
and Hayes-Roth (1977) found that classification performance is best predicted by
the “property-set” model, which classifies solely on the basis of the most
diagnostic property.3 Russo and Dosher (1983) argued that cue-wise processing
requires less cognitive effort because it involves procedures that simplify the
decision, and reported evidence that choices are based on a single most
discriminating dimension. Finally, Billings and Scherer (1988) found that
participants looked up less information in a choice condition in which they had to
select the best candidate for a job than in a judgement condition in which they had
to evaluate each candidate on a 7-point scale.

The Minimalist Algorithm

One might object that the assumption of the One-reason algorithm that all seven
cues in the Linda problem are tested in the search for the best cue is unrealistic. A
less computationally demanding alternative to the One-reason algorithm is the
Minimalist algorithm, which simply picks a cue at random and chooses between
the two alternatives based on the evidential support the cue provides each
alternative. It differs from the One-reason algorithm only in Steps 2 and 3, which
we reformulate as Steps 2 ¢  and 3 ¢  below:

2 ¢ . Random selection. For the two alternatives, select a cue from
Linda’s description at random and compute the evidential support
it provides.

3 ¢ . Rule for choice. Choose the alternative to which the cue points; if the cue
does not discriminate, then select another cue at random.

Although the Minimalist and One-reason algorithms are only two possible
realisations of a cue-wise strategy, we focus on them because they contrast most
sharply with the integration strategy by relying on just one cue (either the best
cue or a randomly selected one). In Study 4, we test the extent to which each
algorithm can account for participants’ ranks in the Linda problem. Study 4 was
administered to participants in the ranking group of Study 3, who after giving
ranks were asked to provide the information that the algorithms require as input.

3The diagnosticity of a property set (e.g. red wagon) for any class was conceptualised as an
increasing function of its associative strength to that class (e.g. “what Jane likes”) and a decreasing
function of its associative strength to other classes (e.g. “what Sue likes”). The property-set model
assumes that the strength of association between a property set and a class is expressed as a likelihood
estimate.
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The algorithms’ predictions are made for each individual participant in Study 4
based on his or her estimation of the parameters.

Method

Participants were given a booklet in which they were instructed to estimate the
frequencies of positive values for each cue specified in Linda’s description in the
three alternative classes B, F, and B&F (see Appendix). For instance, they were
asked: “Think of all female bank tellers in the United States. Imagine a
representative sample of 100 of them. How many of these 100 female bank tellers
do you expect to be 31 years old?” This information was needed to calculate
evidential support cue by cue. Participants responded to 21 such questions, one
for each of the seven cue values specified in Linda’s description (i.e. 31 years old,
single, outspoken, very bright, philosophy major, deeply concerned with
discrimination and social justice, participated in antinuclear demonstrations) in
each of the three alternative classes (B, F, and B&F). To control for order effects,
we used all six possible orders of the three alternatives and two fixed orders of
the seven cue questions within each alternative (the order shown in the Appendix,
and its reverse).

Participants. Participants were the 59 participants in the ranking group of
Study 3.

Results

We focus on the two comparisons—B vs. B&F and F vs. B&F—in which class
inclusion can be violated. Figure 3 shows the percentages of these actual
judgements that the One-reason algorithm correctly predicted. It performed well
in predicting the violations in the B vs. B&F choice (39 out of 41) and the
inclusion judgements in the F vs. B&F choice (41 out of 52). However, it
predicted few of the inclusion judgements in the B vs. B&F choice (4 out of 18),
and few of the violations in the F vs. B&F choice (2 out of 7). Averaged across
the two comparisons that could lead to violations, the One-reason algorithm
predicted about three-quarters (73%) of participants’ actual ranks.

To test the predictions of the Minimalist algorithm, we chose one of the seven
cues in the Linda problem at random for each participant; if the first cue did not
discriminate between alternatives, we chose another at random until one that
discriminated was found. We then recorded the alternative to which the
discriminating cue gave greater evidential support. We repeated this procedure
10 times for each participant and for each pair-wise comparison. Averaged across
all trials and all participants, the average number of accurate predictions made by
the Minimalist algorithm is 70% (see Fig. 3). The performance of the Minimalist
algorithm barely suffered from assuming that the choice is based on a randomly
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selected cue instead of assuming, as the One-reason algorithm does, that all cues
are tested in the search for the best cue (70% vs. 73% correct predictions).

Why is the performance of the two algorithms so similar? We suggest that cue
redundancy, which is pronounced in the Linda problem, allowed the Minimalist
algorithm to approximate the performance of the One-reason algorithm closely:
averaged across participants and pair-wise comparisons, nearly five (4.8) out of
seven cues pointed to the same alternative. Thus, in the Linda problem, it hardly
matters whether an algorithm determines its judgement on the basis of the best
cue or a randomly selected cue.

Summary

The One-reason and Minimalist algorithms were able to account for about three-
quarters of participants’ ranks. This performance is not perfect. In particular, the
algorithms predicted only a few of the inclusion judgements in the B vs. B&F
choice. We can think of at least one possible reason. The results of Study 3 show
that a few participants reported having applied the ceiling rule in the ranking
response mode. Because the proposed algorithms do not include a step involving
rule application, they cannot predict ranks derived from correct rules. We can
nevertheless aim to have them capture most people’s responses, which they do.

GENERAL DISCUSSION

We now discuss the implications of the results reported here, as well as some of
the assumptions involved in our explanatory framework.

The Conjunction Fallacy: Impervious to Education?

According to Piatelli-Palmarini (1994, p.140), cognitive “illusions” such as the
conjunction fallacy are inevitable, one reason being that they are “independent of
intelligence and education”. We argue that the findings reported in research on
reasoning in accord with class inclusion do not justify such a categorical
statement. Although in their early work on the conjunction fallacy Tversky and
Kahneman (1982, p.93) concluded that statistical sophistication has only a
“negligible effect”, based on their subsequent studies they later concluded that
“recognition of the decisive nature of rules distinguishes … different levels of
statistical sophistication” (Tversky & Kahneman, 1983, p.300). Moreover, other
researchers have found a non-negligible effect of statistical sophistication in
conjunction problems.

One of Tversky and Kahneman’s (1983) later studies was performed on social
science graduate students at the University of California, Berkeley, and Stanford
University who had taken several statistics courses. Participants were asked to
judge the probability of B and B&F in the Linda problem on a 1–9 rating scale.
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An unusually high percentage of them—64%—gave inclusion judgements. To
explain this result, Tversky and Kahneman (1983) invoked two factors they
suggested that can highlight the inclusion relation and thereby increase the
percentage of inclusion judgements: (1) directness, that is, whether each
participant judges both the conjoint and constituent alternatives in a within-
subject design (direct test) or different participants judge the critical alternatives
in a between-subjects design (indirect test); and (2) transparency , that is, whether
the critical alternatives are presented alone (direct transparent test) or in a longer
list of alternatives (direct subtle test). They concluded that statistically
sophisticated participants such as those in the study just described particularly
profit from directness and transparency of the inclusion relation.

Agnoli and Krantz (1989) and Fisk and Pidgeon (1997) found that training in
statistical principles can make people reason in accord with class inclusion.
Using Venn diagrams, they taught participants about set relations such as
inclusion and disjunction. Agnoli and Krantz (1989, Experiment 1) found that the
percentage of inclusion judgements increased from 44% to 73% with training
(averaged across subgroups in their Table 3), and Fisk and Pidgeon (1997, Table
2) found a smaller increase from 37% to 47% (for “likely–unlikely” conjunctions
such as B&F). Because they gave one group of trained participants an indirect
test of the conjunction problem, Agnoli and Krantz (1989) were also able to
address the question of whether statistical training only benefits participants in
direct tests (as implied by Tversky and Kahneman’s explanation). Although
smaller than in the direct test, Agnoli and Krantz (1989) found a beneficial effect
of training even in the indirect test.

These researchers manipulated statistical sophistication in the laboratory by
training some participants and not others. Benassi and Knoth (1993), in contrast,
assessed participants’ level of sophistication by asking them to solve problems in
probability theory (see also Donovan & Epstein, 1997). They gave participants
three test problems that required application of the multiplication rule for
independent events (e.g. judging the probability of getting a head on the first flip
and a head on the second flip of a fair coin) to assess their sophistication, and then
gave them a direct, transparent conjunction problem similar to the Linda problem
(the Dan problem). They found that only 21% of participants who did not answer
any of the test problems in accord with the multiplication rule gave ranks that
obeyed class inclusion in the Dan problem, whereas 45% of those who answered
all three test problems according to the multiplication rule gave inclusion
judgements. (For studies in which researchers assessed participants’ sophisti-
cation simply by their field and course level, as did Tversky & Kahneman, 1983,
see Wolford et al., 1990, and Reeves & Lockhart, 1993.)

In Study 2, we found an effect of statistical sophistication on percentage of
inclusion judgements that was of small to medium size. Taken together with the
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studies just cited, this constitutes evidence that statistical sophistication plays a
role in reasoning in accord with class inclusion. Thus, contrary to Piatelli-
Palmarini’s (1994) claim, the conjunction “fallacy” is not independent of
statistical education. We know of only one explanation of the effect of statistical
sophistication, namely Tversky and Kahneman’s suggestion that it allows people
to benefit from directness and transparency. Alternatively, statistical education
might have the side effect of providing people with a technical language in which
the term “probability” is restricted to its mathematical meanings. Lacking such
education, people are free to infer any of the term’s acceptable meanings in
natural language, many of which are non-mathematical (Hertwig & Gigerenzer,
1997).

Response Mode Effects in Conjunction Problems

There is evidence beyond our studies that response mode matters to inclusion
judgements. We know of two studies that directly compared an estimation and a
ranking response mode in the Linda problem and found an effect. Morier and
Borgida (1984) observed an increase of 15 percentage points in inclusion
judgements when participants were asked to give probability estimates compared
to ranks. Similarly, Hertwig and Gigerenzer (1997) observed an increase of 20
percentage points. In addition, we can tentatively compare the results of the many
studies that employed only a ranking response mode to the few in which only an
estimation response mode was used (e.g. Fisk, 1996, Study 1; Fisk & Pidgeon,
1997; Wells, 1985). Comparing the percentage of inclusion judgements in these
studies (40% in the first two studies, see Fisk, 1996, Table 3; 27% in Wells,
1985) to the median percentage reported in the studies displayed in Fig. 1 (13%),
one again finds that people are more likely to give inclusion judgements when
asked to estimate than to rank probabilities. The only study of which we know in
which no effect of response mode was found is that of Reeves and Lockhart
(1993), who tested problems other than Linda.

In Studies 1–3, the difference between the percentage of inclusion judgements
observed in probability estimates and ranks was consistently substantial. We do
not know why Reeves and Lockhart (1993) did not find any effect of response
mode, or why others (e.g. Morier & Borgida, 1984) found only a small effect.
However, we know of at least one condition under which the effect of response
mode is likely to be overestimated. In Study 2, 17% of naive participants gave
inclusion judgements in ranks, whereas 65% of sophisticated participants (i.e.
those who solved at least one background problem correctly) did so in estimates.
We suggest that this 48 percentage point difference reflects the combined effects
of response mode and statistical sophistication. Although such a combination of
effects cannot explain the discrepancy between our findings and those of Reeves
and Lockhart (1993), it could explain why one finds different effect sizes across
studies depending on whether one or both variables are held constant.
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The Generality of the Support Measure

We used evidential support as an index of the degree to which the given evidence
supports one hypothesis over another. Specifically, we borrowed Nozick’s
(1981) difference measure, s = p(E | H) – p(E | ¬H). Researchers have found
evidence that people engage in such likelihood subtraction in several reasoning
contexts, for instance, in solving Bayesian inference problems (Gigerenzer &
Hoffrage, 1995). Moreover, Nozick’s (1981) measure is closely related to
measures proposed to underlie information selection in hypothesis testing and
classification decisions.

How can we quantify the diagnosticity of a question (e.g. “Have you ever
visited Graceland?”), that is, its informativeness with respect to the rejection or
acceptance of a hypothesis (e.g. that the respondent is an Elvis groupie)? As a
measure of a question’s diagnosticity Slowiaczek, Klayman, Sherman, and Skov
(1992) proposed the following simple estimate: Given two initially equiprobable
hypotheses, diagnosticity is proportional to the simple difference between the
probability of a “yes” (or a “no”) answer under H and under ¬H. This difference
amounts to Nozick’s (1981) support measure, and as Slowiaczek et al. (1992)
pointed out, also correlates highly with the expected log likelihood measure
(Klayman & Ha, 1987).

Skowronski and Carlston (1987) suggested that another judgement process—
social impression formation—is a probabilistic categorisation in which people
use cues (evidence) to assign a person to one or more trait categories
(hypotheses). As a measure of the diagnosticity of cues (e.g. “reports all taxable
income”) for the traits of interest (e.g. honesty), they proposed a likelihood ratio
in which the numerator is the probability that a person with trait H will exhibit a
behaviour E, and the denominator is the sum of this probability and that of an
actor with the opposite trait ¬H performing the same behaviour p(E | H) /
((p(E | H) + p(E | ¬H)). We found that the performance of the One-reason and
Minimalist algorithms barely changes if one uses Skowronski and Carlston’s
(1987) measure instead of Nozick’s (1981).

Evidential support and cue diagnosticity rest on the notion of category
validity, which is defined as the conditional probability that an entity has some
cue value given that it belongs to a class. It is the converse of cue validity, the
probability that an entity is a member of a class given that it has that cue value
(Corter & Gluck, 1992). There are at least two reasons to believe that these
measures should be based on category rather than cue validity when applied
in contexts such as the Linda problem. First, Medin, Wattenmaker, and
Michalski (1987) showed that people tend to emphasise category over cue
validity. Second, cue validity necessarily increases for more inclusive classes
(Murphy, 1982), and thus—unlike category validity—cannot account for
violations of class inclusion.
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Representativeness versus One-reason Algorithm
and Evidential Support

How do the One-reason and Minimalist algorithms, which assume that judge-
ments in the Linda problem are based on evidential support, differ from the
representativeness explanation? Although in the Linda problem they are difficult
to distinguish empirically, we see differences as well as common features.

The most important difference is that the One-reason and Minimalist
algorithms rely exclusively on one cue, whereas the representativeness heuristic
uses all of the given information. Both the representativeness heuristic (Tversky
& Kahneman, 1983) and precise models of it proposed to apply in the Linda
problem (Shafir et al., 1990; Smith & Osherson, 1989) are integration rather than
cue-wise strategies in that they assume that the similarity between Linda and the
representation of each alternative is calculated across the cues provided by the
experimenter. Shafir et al. (1990, p.237) specified one realisation of repre-
sentativeness thus: “To assess, for example, the typicality of Linda in the
category bank teller, the subject computes two weighted sums, namely: (1) the
weighted sum of the features common to Linda’s description and the category
bank teller, and (2) the weighted sum of the features found in one of the latter two
feature sets but not the other. These two weighted sums are then combined by a
linear rule.” Based on Tversky’s (1977) contrast rule, Smith and Osherson (1989)
proposed a precise version of this featural computation process in the Linda
problem.

We did not use Smith & Osherson’s (1989) model of the representativeness
heuristic to account for the probability estimates in our studies, which according
to our framework should be modelled with an integration strategy, for three
reasons. First, the representativeness explanation of reasoning in the Linda
problem is based on the assumption that people construct a novel conceptual
combination such as feminist bank teller and apply a feature comparison strategy
to B&F just as they do to the constituent alternatives B and F. We demonstrated,
however, that many people in our studies applied rules to estimating the conjoint
alternative. Second, the prototypes of B and B&F presumed by Smith and
Osherson (1989) in applying their model to the Linda problem lead it to predict a
low percentage of inclusion judgements such as those found in the previous
studies displayed in Fig. 1. In our studies, however, it is a high percentage of
inclusion judgements in estimation that requires explanation. According to our
framework, it is rule application rather than the integration strategy per se that
leads to the high percentage of inclusion judgements in estimation. Of course, we
could still have used the representativeness heuristic to model people’s
constituent estimates, but here we stumble on our third reason for not applying
the representativeness model: it sacrifices simplicity for exhaustiveness. In it, (a)
each prototype (e.g. bank teller) contains slots for a variety of attributes (e.g.
education), each of which is specified by three parameters (diagnosticity, values,
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and votes), (b) the comparison between prototype and instance (e.g. Linda)
follows complex integration rules, and (c) four free parameters (e.g. the weights
of the common and distinctive features) are available to fit the data. We suppose
that this is why no one has yet conducted an empirical test of this model in the
conjunction problem, including Smith and Osherson (1989) themselves, who
assumed parameter values instead of measuring them.

The One-reason and Minimalist algorithms have more in common with an
alternative version of representativeness outlined (and apparently favoured) by
Shafir et al. (1990): “Subjects take the typicality of instance i in category C to be
the judged probability of something’s being i-like.” According to Shafir et al.
(1990, p.238), this hypothesis “portrays the subject’s poor probability judgment
as the result of calculating the wrong probability.” Applied to the Linda problem,
it implies that people estimate p(Linda | B) rather than p(B | Linda). In other
words, this version of representativeness shares the inverse probability
assumption integral to our theoretical framework. However, the two accounts
attribute the fact that people assess this inverse probability to different sources.
Whereas this version (Shafir et al., 1990, p.238) of the representativeness
explanation seems to attribute it to the fact that “intuitive probability estimates
are not extensional”, we believe that it stems from the fact that people infer
nonmathematical meanings of the polysemous term “probability” in the Linda
problem (based on reasoning guided by conversational maxims).

Although there are seven cues available in the Linda problem, we cannot
distinguish the predictions of the One-reason algorithm from those of repre-
sentativeness because of the high redundancy across cues (e.g. most of the cues
point to F rather then B). To resolve their predictions, one could construct
problems in which several cues point to alternative a, and just one cue—the best
one (i.e. that which maximises evidential support)—points to alternative b. In
this case, an integration strategy such as representativeness predicts that people
will choose a (assuming that the sum of all cues outweighs the best cue) whereas
the noncompensatory One-reason algorithm predicts that people will choose b.

Are Our Minds Built to Work by the Rules
of Probability?

As we and others before us have demonstrated, mind design interacts with
problem design. The structure of problems shapes the cognitive processes people
use to solve them, and the multitude of problem designs therefore leads to a
multitude of contradictory conclusions about our ability to reason according to
probability theory and logic. The Linda problem illustrates this state of affairs.
Drawing on research to date, we can design a Linda problem that reliably elicits
reasoning that violates class inclusion. Components of this design include use of
the polysemous term “probability” (Hertwig & Gigerenzer, 1997), a ranking
response mode, and an invitation to participants to infer that B means B&¬F
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(Adler, 1991; Dulany & Hilton, 1991; Hertwig, 1995). We can also construct a
Linda problem that as reliably elicits reasoning consistent with class inclusion.
Such a design would replace the polysemous term “probability” with the term
“frequency” (Fiedler, 1988; Hertwig & Gigerenzer, 1997; Tversky & Kahneman,
1983), provide an estimation response mode, and block inferences such as B&¬F
(Politzer & Noveck, 1991; Tversky & Kahneman, 1983).

The lesson we draw is that by choosing to realise a problem using a particular
design we wittingly or unwittingly adopt a particular perspective on the mind.
We should remember that whatever perspective we take allows us to observe
only some of the reasoning processes in which people can engage.
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APPENDIX

Materials Used in Study 1

Estimation Instruction. Your task will be to estimate the numerical probability of each
statement. Express your probability estimate in terms of a number in the range 0 to 1, where 0
means minimal probability and 1 means maximal probability. You are free to use the whole range
(including 0 and 1); both decimal estimates (e.g., .10) and fractional estimates (e.g. 1/10) are
acceptable.

Ranking Instruction. Your task will be to rank the three statements that follow each person’s
description according to their probabilities. Assign a rank of “1” to the statement you think is most
probable, “2” to the second most probable statement, and a rank of “3” to the least probable
statement.

Linda Problem. Linda is 31 years old, single, outspoken, and very bright. She majored in
philosophy. As a student, she was deeply concerned with issues of discrimination and social
justice, and also participated in anti-nuclear demonstrations.
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Linda is a bank teller. _____
Linda is active in the feminist movement. _____
Linda is a bank teller and is active in the feminist movement. _____

Background Problems Used in Study 2

Coin Problem. Imagine you throw a fair coin two times. What is the probability that it will
come up “heads” two times in a row?

Die Problem. Imagine you throw a fair die three times. What is the probability that it will
come up “6” all three times?

Diabetic Problem. What is the probability of being both a diabetic and a smoker, if 1 in 100
people in the general population is a diabetic and 3 in 10 people are smokers (assume that the two
events are independent)?

Materials Used in Study 4

[Only the request for frequency estimates for B alternative shown here.]
Think of all the female bank tellers in the U.S. Take a representative sample of 100 of them. We

will ask you some questions about this representative sample. Please write down your best guesses.
How many of these 100 female bank tellers do you expect

as a student participated in anti-nuclear demonstrations? _____out of 100
as a student were deeply concerned with issues
of discrimination and social justice? _____out of 100

How many of these 100 female bank tellers do you expect to have
majored in philosophy? _____out of 100

How many of these 100 female bank tellers do you expect to be
bright? _____out of 100
outspoken? _____out of 100
single? _____out of 100
31 years old? _____out of 100


