GERD GIGERENZER

PSYCHOLOGICAL CHALLENGES/EOR
NORMATIVE MODELS

Some years ago, at the Center for Advanced Study at Stanford, one of my
economist colleagues concluded a discussion on cognitive illusions with the fol-
lowing dictum: ‘Look, either reasoning is rational or it’s psychological’. In this
chapter, I argue against the widespread view that the rational and the psychological
are opposed. According to this view, the rational is defined by the laws of prob-
ability and logic — that is, by content-free axioms or rules, such as consistency,
transitivity, Bayes’s theorem, dominance, and invariance. The irrational is left to
be explained by the laws of psychology. Here I present examples that are intended
to illustrate that defining human rationality independent of psychology is myopic.
The ‘challenges’ in the title of this chapter are not directed against probability the-
ory and logic, or specific versions thereof, but against using these systems as psy-
chologically uninformed, content-free norms. Before I tumn to these challenges, I
begin with a historical example that illustrates how norms have been revised and
made more realistic by the introduction of psychological concepts.

Back to the Blackboard

In the 17th century, a new conception of rationality emerged. This was a modest
kind of reasonableness that could handle everyday dilemmas on the basis of uncer-
tain knowledge, in contrast to the traditional rationality of demonstrative certainty
[Daston, 1981; 1988]. Those dilernmas were numerous: Believe in God? Invest in
~ an annuity? Accept a Gamble? The mathematical theory of probability was to cod-
ify this new brand of rationality, and its primitive concept was rational expectation,
with expectation defined as expected value. Soon, however, it became apparent that
minds do not always follow the dictates of the expected value. The St. Petersburg
paradox, explicated below, marked the celebrated clash between the new theory of
expected value and human intuition.

Pierre offers to sell Paul an opportunity to play the following coin-tossing game.
If the coin comes up heads on the first toss, Pierre agrees to pay Paul § 1; if heads
does not turr:l up until the second toss, Paul receives $ 2; if not until the third toss,
$ 4; and so on. According to the standard method of calculating expected value,
Paul’s expectation E—and therefore the fair price of the game—is

(1) E=1/281+1/482+1/8%4 + 1/1688 + ...+ (1/2)"82" "1 + ...

D.M. Gabbay and Ph, Smets (eds.),
Handbook of Defeasible Reasoning and Uncertainty Management Systems, Vol. 1, 441-467.
© 1998 Kluwer Academic Publishers. Printed in the Netherlands.



442 GERD GIGERENZER

Paul’s monetary payoffs increase with decreasing probabilities of occurrence:
Each of the terms is equal to 50 cents, and the expected value E is infinite. This
calculation is straightforward, and there is nothing in the definition of expectation
that excludes an infinite value. Nicholas Bernoulli, who first proposed this game
in 1713, however, observed that no reasonable person would pay a large amount of
money to play the game. '

What should be done when the dictates of a norm (E) deviate from human in-
tuitions about the reasonableness of a behaviour? One can either stick to the norm
and declare the behaviour irrational, or incorporate the psychological into the norm.
In 1738, Nicholas’s cousin Daniel Bernoulli published a resolution of the paradox
in the annals of the Academy of St. Petersburg (hence the name). Daniel Bernoulli
psychologized the norm. He proposed that in situations such as the St. Petersburg
gamble, the prospect of winning a certain amount of money, say $16, means some-
thing different for the rich and the poor man. Therefore a theory of reasonable-.
ness needs to incorporate personal characteristics such as a person’s current wealth,
whereas the concept of expected value was based on the impersonal notion of fair-
ness. Bernoulli proposed replacing expected value, which excluded personal cir-
cumstances that might prejudice equal rights in legal contexts, with the ‘moral” ex-
pectation of prudence, defined as the product of the probability of an outcome and
what later became known as its u#ility. The utility of money, Bernoulli argued, de-
creases the more you have.

In modern terminology, let U be the utility of an outcome, w a person’s current
wealth, and g the sure gain that would yield the same expectation as the St. Peters-
burg gamble. Then

@ U(wl—}-y) = 1/2U(w+1)+1/4U (w+2)+1/8U (w+4)+. . +(1/2)*U (w+
277+ ...

Suppose that U(z) = In(z), that is, the utility of money for Paul diminishes
logarithmically with the amount of money he has. Then, if Paul’s current wealth is
$ 50,000, ¢ is about $ 9. On this psychological assumption, Paul should be willing
to pay no more than $ 9 for the St. Petersburg gamble.!

Daniel Bernoulli’s revision of expected value theory into what is today known
as expected utility theory exemplifies the Enlightenment attitude toward the rela-
tion between the rational and the psychological. By putting psychology into the
equations, Bernoulli reunified the rational with the psychological. Expected value
theory was a model, not arigid norm, of rationality. When educated minds reasoned
differently from what the theory predicted, this was seen as a problem for the the-
ory, not for the mind, and mathematicians went back to the blackboard to change
the equations. Today, as we will see, few researchers respond to such discrepancies
by going back to the blackboard and revising their equations. The blame is placed
on the mind, not on the model.

1Daniel Bernoulli’s psychological solution was not the only one, and there exists a large literature
on the St. Petersburg Paradox (e.g. [Daston, 1988; Jorland, 1987; Lopes, 1981]).
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Separating the mathematical theory of probability from its applications would
have seemed foreign to Bernoulli and the Enlightenment probabilists: Their the-
ory was at once a description and a prescription of reasonableness. Along with hy-
drodynamics and celestial mechanics, the calculus of probability was part of what
was then called ‘mixed mathematics’, a term stemming from Aristotle’s explana-
tion of how optics and harmonics mixed the forms of mathematics with the matter
of light and sound [Daston, 1992]. Classical probability theory had no existence
independent of its subject matter—the beliefs of reasonable men. This is why clas-
sical probabilists perceived problems of the St. Petersburg kind as paradoxes—not
because there was a mathematical contradiction, but because the mathematical re-
sult contradicted good sense.

Tinvite you in the following pages tolook witha Bernoullianeye at some present-
day uses of normative models. I proceed by means of examples, each one chosen
to illustrate how psychology can be brought to rationality. Some believe thatis im-
pure; but don’t be misled.

1 CHALLENGE ONE: ALGORITHMS WORK ON INFORMATION THAT
NEEDS REPRESENTATION

Probability theory is mute about the representation of the information on which
its rules should work. But systems that calculate, machines and minds alike, are
sensitive to the representation of numerical information [Marr, 1982]. Computa-
tional algorithms work on information, and information needs representation. For
instance, my pocket calculator has an algorithm for multiplication. This algorithm
is designed for Arabic numbers as input data and would perform badly if I entered
binary numbers. Similarly, mental algorithms are designed for particular represen-
tations. Consider, for example, how difficult it would be to perform long division
with Roman numerals. Arabic, Roman, and binary representations can be mapped
onto each other one-to-one and are in this sense mathematically equivalent, but that
does not mean they are psychologically equivalent. Physicist Richard Feynman
[1967] made this point more generally, explaining that new discoveries can come
from different formulations of the same physical law, even if they are mathemati-
cally equivalent: ‘Psychologically they are different because they are completely
unequivalent when you are trying to guess new laws’ (p. 53). Let us consider the
issue of information representation in research on Bayesian inference.

1.1 The Norm

The question whether humans reason the Bayesian way has been studied in prob-
lems with two hypotheses, H and —H (e.g. breast cancer and no breast cancer),
and one datum D (e.g. a positive mammogram). Here is one example:

The probability of breast cancer is 1% for a woman at age forty who
participates in routine screening. If a woman has breast cancer, the
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probability is 80% that she will have a positive mammogram. Ifa
woman does not have breast cancer, the probability is 9.6% that she
will also have a positive mammogram. A woman in this age group had
a positive mammogram in a routine screening. What is the probability
that she actually has breast cancer? %

If one inserts these numbers into Bayes’s theorem, the posterior probability
p(H|D) is:

p(H)(D|H)
p(H)p(D|H) + p(—H)p(D| - H)

(.01)(.80)
(.01)(.80) + (:99)(-096)

The result is .078, or 7.8%. In sharp contrast, Eddy [1982] reported that
95 out of 100 physicians estimated the posterior probability p(cancer|
positive) to be between 70% and 80%. Psychology undergraduates tend to give
the same estimates. Staff at the Harvard Medical School showed not much more
insight into a similar problem [Casscells e? al., 1978). In short, very few people
have an intuitive understanding of what to do with these probabilities.

Because many people estimated the posterior probability as being close to the
hit rate (80%), it has been concluded that mental algorithms generally neglect base-
rate information [see Gigerenzer and Murray, 1987, Ch. 5; Koehler, 1996]. Results
from these and other studies have been taken as evidence that the human mind does
not reason with Bayesian algorithms. Yet this conclusion is not warranted, as the
pocket calculator example illustrates. If I feed my pocket calculator binary num-
bers, and garbage comes out, it does not follow that the calculator has no algorithm
for multiplication. Similarly, it would be impossible to detect a Bayesian algorithm
in a system by feeding it information in a representation to which it is not tuned.
A normative model must therefore specify both the information representation and
the algorithm that works on this representation. What are the external representa-
tions of information for which cognitive algorithms are designed?

(3 p(H|D)

1.2 Psychologizing the Norm: Ecological Bayesianism

The problem we need to solve has one more unknown than the pocket calculator
example. Inthe latter, we know the input representation and so can make informed
guesses about the nature of the algorithm. In the case of human minds, we must
also speculate about the external representation of statistical information for which
cognitive algorithms are designed. We know some candidate representations, and
some facts about them. In the mammography problem, information is represented
in single-event probabilities (percentages). We know that probabilities and percent-
ages are very recently invented means of representing information. The notion of
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‘probability’ did not gain prominence in probability theory until the 18th century,
a century after the calculus of chance was invented [Gigerenzer et al., 1989]. Per-
centages became common ways to represent numerical information during the 19th
century (mainly for interest and taxes), after the metric system was introduced dur-
ing the French Revolution, and became common tools for representing uncertainty
only in this century. Therefore, it is unlikely that cognitive algorithms were de-
signed for probabilities and percentages, if we think in evolutionary terms. In what
representation have humans (and animals) acquired numerical information during
most of their history? I assume here that they acquired it in terms of natural fre-
quencies as actually experienced in a series of events, rather than probabilities or
percentages [Cosmides and Tooby, 1996; Gigerenzer and Hoffrage, 1995]. By ‘nat-
ural frequencies’ I mean absolute frequencies (rather than relatie frequencies), as
defined by natural sampling (see the right side of Figure 1; [Gigerenzer and Hof-
frage, 1995; Kleiter, 1994]).

For a simple demonstration of the role of representation in reasoning, let us rep-
resent the information about the base rate (1%), hit rate (80%), and false alarm rate
(9.6%) of the mammography problem in natural frequencies rather than percent-
ages. Imagine 100 women. One has cancer (the base rate) and will possibly test
positive (the hit rate). Of the 99 women without cancer, about 10 will also test pos-
itive (the false alarm rate). So altogether 11 women will test positive. Question:
How many of those who will test positive actually have breast cancer? Now most
people easily ‘see’ the answer: one out of 11.

Why is this? Consider Figure 1. On the left side are probabilities (as in a typ-
ical medical text), and the Bayesian algorithm a physician would have to use to
compute the posterior probability from a probability representation. On the right
side, the same information is represented in terms of natural frequencies. The in-
teresting difference is that the Bayesian algorithm is computationally simpler when
informationis expressed in natural frequencies than in probabilities or percentages.
Furthermore, only two kinds of frequencies need be attended to—*‘symptom & dis-
ease’, and ‘symptom & no disease’. Base rates (e.g., 10 out of 1,000 in Figure 1)
need not be attended to; they are implicit in these two frequencies.

The simple demonstration above used approximate figures; a frequency repre-
sentation of the mammography problem that is numerically equivalent to the prob-
ability representation can be constructed by using a class of 1,000 instead of 100
women, as in the ‘natural sampling tree’ in Figure 1:

Ten out of every 1,000 women at age 40 who participate in routine
screening have breast cancer. Eight out of these 10 women with breast
cancer will get a positive mammogram. Of the 990 women without
breast cancer, 95 will also get a positive mammogram.

Here is a new representative sample of women at age 40 who got a pos-
itive mammogram in routine screening. How many of these women do
you expect actually to have breast cancer? out of

Ulrich Hoffrage and I have given 15 problems of this kind (concerning cancer,
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Probabilities Natural Frequencies

p(disease | symptom) p(disease | symptom)
— .01 .80 _ _8
= T01x.80+.99x.096 = B+95

Figure 1. Bayesian inference and information representation (probabili-
ties and natural frequencies). Adapted from ‘How to improve Bayesian
reasoning without instruction: Frequency formats’, by G. Gigerenzer
and U. Hoffrage, [1995, p. 689] Copyright 1995 by APA.
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HIV, pregnancy, and other everyday matters) to students who had never heard of
Bayesian inference, using various frequency and probability representations (but
no visual aids such as the tree in Figure 1). When information was represented in
terms of natural frequencies, in 46% of cases students found the exact numerical an-
swer and used a Bayesian algorithm, as revealed by protocols. The corresponding
value when information was represented in terms of probabilities was only 16%
(for details see [Gigerenzer and Hoffrage, 1995]). In a second study, we tested
whether natural frequencies improve Bayesian reasoning in physicians, using four
medical problems, including mammography. Forty-eight physicians (mean profes-
sional experience was 14 years) worked an average of 30 minutes on these prob-
lems. Despite the fact that these physicians were experts, the results were simi-
lar. When information was represented in a probability format, in only 10% of
the cases did the physicians reason the Bayesian way, but when the information
was in natural frequencies, Bayesian responses increased to 46% (for details see
[Gigerenzer, 1996a; Hoffrage and Gigerenzer, 1996]). These results are consistent
with the claim that cognitive algorithms are tuned to natural frequencies (as defined
by the tree in Figure 1).2 The practical consequences are straightforward: Physi-
cians, patients, and students should be taught to transform probabilities into natural
frequencies, in which they can ‘see’ the solutions to diagnostic problems. We have
designed such a computerised tutorial program that teaches people how to repre-
sent probabilities in natural frequencies. Students using this tutorial scored about
twice as high as those who used a traditional program that taught them how to in-
sert probabilities into Bayes’s rule. Five weeks later, students who had learned to
construct frequency representations still maintained their high level of accuracy,
but the others showed the usual steep forgetting curve [Sedlmeier and Gigerenzer,
1996]. It is easier to be a Bayesian when working with frequencies.

To sum up: Bayes’s theorem is often used as a norm for rational reasoning, but
this rule is mute about the representation of information it is supposed to work on.
If evolution has shaped mental algorithms that make inferences about an uncertain
world, then it is likely that these algorithms were designed for natural frequen-
cies, as encoded by natural sampling, and not for probabilities and percentages.
Comparing human judgment to Bayes’s theorem without considering the represen-
tation of the numerical information is, according to this argument, like compar-
ing the outputs of a pocket calculator to multiplication tables without considering
whether the numbers were entered in Arabic numerals, binary numerals, or in an-
other representation. Challenge One is to come up with normative models for hu-
man reasoning that deal with algorithms and the input representations on which the

2Note that this result applies to the simple type of Bayesian inference with binary hypotheses and
data and to one piece of information (e.g. one test result). In situations with multiple pieces of informa-
tion that are not independent but redundant, however, Bayes’s theorem quickly becomes mathematically
complex and computationally intractable-at least for an ordinary human mind. In these situations, even
frequency representations may not be able to reduce the complexity sufficiently to enable minds to “see’
the Bayesian way. In Challenge Six, I will deal with such complex situations and present evidence that
simple psychological mechanisms can make inferences as accurate as sophisticated statistical models
that use large amounts of knowledge.
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algorithms are designed to operate. Rules per se are incomplete normative models
for machine and mental computers alike.

2 CHALLENGE TWO: PSYCHOLOGICAL MECHANISMS DETERMINE
THE RELEVANT NUMBERS

So far we have linked algorithms to the representation of numerical information
but have not thought about the numerical information itself. Let us now put some
psychology into the numbers. I illustrate this by summarising Bimbaum’s [1983]
application of a standard psychological theory, the theory of signal detectability
(TSD), to a Bayesian inference problem. TSDis formally equivalent to the Neyman-—
Pearson theory of hypotheses testing [Gigerenzer and Murray, 1987]. The impor-
tant point is that TSD can direct our attention to psychological mechanisms which
determine the relevant numbers that should be inserted into Bayes’s theorem.

2.1 The Norm

The following version of the cab problem is from Tversky and Kahneman {1980,
p. 621: v

A cab was involved in a hit-and-run accident at night. Two cab com-
panies, the Green and the Blue, operate in the city. You are given the
following data:

1. 85% of the cabs in the city are Green and 15% are Blue.

2. A witness identified the cab as a Blue cab. The court tested his
ability to identify cabs under the appropriate visibility conditions.
When presented with a sample of cabs (half of which were Blue
and half of which were Green) the witness made correct identi-
fications in 80% of the cases and erred in 20% of the cases.

Question: What is the probability that the cab involved in the accident
was Blue rather than Green?

Tversky and Kahneman assumed that the cab problem has one and only one correct
answer, which is obtained by inserting the given numbers into Bayes’s theorem in
the form of Equation 3. Let G and B stand for the two hypotheses (‘Cab was Green’
and “Cab was Blue’), and “B” for ‘Witness testified that cab was Blue’. Inserting
the numbers into Bayes’s theorem results in the following probability p(B|"B”)
that the cab involved in the accident was Blue:
B)p(”B”|B
@  p(BI'B") p(B)p("B"|B)
p(B)p("B"|B) + p(G)p("B"|G)

(.15)(.80)
(.15)(.80) + (.85)(-20)
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The result is .41. Tversky and Kahneman [1980] reported that the modal and me-
dian response of several hundred subjects was .80. The median response was iden-
tical to the witness’s hit rate—much as in the mammography problem. This result
has been interpreted as evidence that subjects neglect base rates.

Tversky and Kahneman’s use of Bayes’s theorem assumes that the content of
the problem is merely decorative—for instance, what we know about the cognitive
mechanisms of eyewitnesses in visual discrimination tasks is assumed to be not rel-
evant for a normative model. In this content-independent application of Bayes's
theorem, there is no need to distinguish between a mammography test and an eye-
witness report, except for the numbers. Now, let us have a second look at the norm.

2.2 Determining the Relevant Numbers: Psychological
Assumptions

Figure 2a illustrates the cab problem from the point of view of the theory of signal
detectability (TSD), a theory of sensory discrimination and detection [Birnbaum,
1983]. TSD assumes that each colour, G and B, produces a normal distribution
of sensory values on a sensory continuum (although other distributions are possi-
ble). The two distributions overlap, which is why errors in identification can occur.
There is a decision criterion that balances the probabilities of the two possible er-
rors a witness can make, the probability p(“B”|G) of a false alarm, and the prob-
ability p(“G”| B) of a miss. (The complement of the miss rate is the probability
p(“B"|B), called the hit rate.) If on some occasion the value on the sensory con-
tinuum is to the right of the criterion, the witness says ‘Blue’; otherwise, the witness
says ‘Green’. If it is important to reduce the probability of false alarms, then the
criterion is shifted to the right, causing the probability of misses to increase. The
reverse follows if the criterion is shifted to the left. As one shifts the criterion from
the very left side of the sensory continuum to the very right side, one gets a series
of pairs of hit and false alarm rates, one of which is shown in Figure 2a. The dis-
tance between the means of the two distributions is known as the sensitivity d' of
the witness.

When we look at the cab problem from the point of view of TSD, we notice two
key differences between Birnbaum’s content-based model and Tversky and Kah-
neman'’s content-free model. The first is the decision criterion, which is central to
TSD and is absent in the content-free norm. In the content-free approach, the wit-
ness is characterised by a single pair of likelihoods (a false alarm and a miss rate),
whereas in TSD the witness is characterised by a continuum of such pairs. The sec-
ond difference is linked to the first: no prior probabilities or base rates are explicit
in Neyman-Pearson theory, and consequently, in TSD. However, TSD allows for
shifting the decision criterionin response to a shift in base rates, consistent with the
empirical finding that the ratio of the hit rate to the false alarm rate varies with the
signal probabilities, that is, with the base rates [Birnbaum, 1983; Luce, 1980]. Note
that this finding is inconsistent with the independence of base rates and likelihoods
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say “Green” ~ say “Blue”

Figure 2a
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sensory continuum
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Figure 2b

Figure 2a: The theory of signal detectability (TSD) applied to the cab problem:
Representation of the sensory continuum of a witness. From Cognitionas Intuitive
Statistics , p. 168. G. Gigerenzer and D. J. Murray, Erlbaum, Hillsdale, NJ, 1987.
Copyright 1987 by Lawrence Erlbaum. Reprinted with permission.

Figure 2b: Location of the criterion clthat minimises the overall error when the
base rates of Blue and Green cabs are different (see text).
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assumed in the content-free norm. According to TSD, a change in base rates can
be manifested as a change in the criterion (the likelihood ratio). According to the
content-free norm, in contrast, a change in base rates does not affect the likelihood
ratio.

With this background, we can now address the question: What are the relevant
numbers to be inserted into Bayes’s theorem? TSD suggests that some of the de-
tails in the Cab problem are relevant for finding these numbers—whereas the entire
content was irrelevant to the way the “normative” answer of .41 was calculated. Re-
member that there were two points in time: the night of the accident and the time
when the court tested the witness. If the criterion was set at ¢ at the time of the test,
where was it set at the critical time of the accident? We are told that the visibility
conditions of the test were appropriate; thus we can assume that the sensitivity d’ of
the witness was similar during the test and on the night of the accident. That is, on
the night of the accident, the distance between the means of the two distributions
was the same. But where was the criterion? To answer this, we need a psycholog-
ical theory of criterion shift.

In the absence of further information, we may start with the plausible hypothesis
that the witness adjusted his criterion so as to minimize incorrect testimony. During
the test, when the base rates of Green and Blue cabs were equal, the criterion (co)
was at the intersection of the two curves in Figure 2a. Now it becomes clear how
crucial itis to know whether or not the witness knew the base rates. Assume that the
witness knew the base rates of cabs in the city and attempted to minimize incorrect
testimony. This implies that on the night of the accident the criterion was to the
right of ¢y because there were many more Green cabs, and the most likely error
was to mistake a Green cab as Blue. The criterion that minimises the sum of the
overall proportion of errors is called c; in Figure 2b. It is defined by a false alarm
rate of .03 and a hit rate of .43 [Birnbaum, 1983).3 From the assumption that on

3The false alarm rate p(“B”|G) and the hit rate p(“B”|B), which minimize the error
85p(*B"|G) + .15p(“G”|B), are calculated as follows. First, d’ is determined from the test
situation. Here we know that the base rates of Green and Blue were the same, and we can assume that
the two errors p(“B”|G) and p(“G”|B) were both equal to .20. Assuming that the two distributions
are normal distributions with variance 1.0, we can find the difference (co — g) (Figure 2a) using the
fact that the cumulative distribution function ®(z) of the standard normal distribution takes the value
8atz = (cg — g). Thus, (co — g) = .84. From the symmetry of the test situation, we can conclude
that the difference (b — cq) is also equal to .84, Because d’ = b~ g = (b— co) + (co — g), d'is
equal to 1.68.

Now for the situation on the night of the accident where the base rates of Blue and Green are different,
we use this value of d’ to find the value of the criterion ¢; , which determines the minimum value of the
error .85p(“B”|G) + .15p(“G™|B). Notice that p(*B*|G) = 1 — ®(c1 — g), and p(“G”|B) =
®(c; - b), where & is the area under the cumulative normal distribution. So, the error to be minimised
canbe recast as .85(1 — ¢y — g)) +.15®(cq — b). We use standard techniques of differential calculus
to minimize this expression. Iis derivative is 712—"{—-.85exp;- (e1—9)2+1 5exp~;- (c1 —b)?}, which
is zero onlyatc; = g + 1.87. This point corresponds both to the minimal value of the error and
the intersection of the two curves in Figure 2b. With this value of ¢;, the false alarm rate is equal to
P(“B"|G) = 1—-&(c; —g) = 1—&(1.87) = .03,andp(“G"|B) = ®(c1-b) = ®(9+1.87-b) =
$(1.87~d’) = ®(1.87 —1.68) = &(.19) = .57. Therefore the hitrate p(“B”|B)is1 ~ .57 = .43.

Note that Bimbaum [1983] has reported a slightly different value, which seems to be based on a cal-
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the night of the accident the witness set his criterion at ¢; rather than cg, these two
values are the relevant numbers to be inserted into Bayes’s theorem:

(5) p(B[“B”) = (.15)(:43)/[(-15)(.43) + (.85)(.03)]

The result is .72. Note that this result could be mistaken as an instance of base-rate
neglect because it is again close to the hit rate (80% in the text of the cab prob-
lem). Ironically, the value of .72 was computed based on the assumption that the
witness knows and uses the base rates. The TSD analysis of the cab problem illus-
trates how psychological assumptions (e.g. the criterion setting) and mathematical
assumptions (e.g. the identical normal distributions of the perceptual processes) go
hand in hand in a content-sensitive normative model. Good statistical reasoning
cannot be reduced to the mechanical insertion of numbers into a formula, an insight
that the intellectual parents of TSD, Jerzy Neyman and Egon S. Pearson, empha-
sised repeatedly [Gigerenzer, 1993].

If the witness adjusts the criterion in a different way than minimising incorrect
testimony, this will lead to a different posterior probability. Birmbaum [1983] has
studied various such psychological strategies a witness might use. I should men-
tion that the criterion shift is not limited to situations in which the base rates at the
time of the accident and at the test differ. Even if the base rates were identical, the
witness who testified ‘Blue’ knows that he can be accused of making one and only
one error, that is, of saying ‘Blue’ although the cab was Green (a false alarm). The
other possible error, a miss (mistaking a blue cab for a green one) is excluded, be-
cause he testified that the cab was blue. If he wants to protect himself from being
accused of erroneous testimony, he may shift the criterion far to the right so that
the probability of a false alarm is minimised. Shifting the criterion to the right also
increases the posterior probability (this can be inferred from Figure 2a).

Challenge Two is to build normative models from psychological assumptions,
rather than to insert numbers into a formula, purified of the content of the situa-
tion. The fundamental normative role of the assumptions a person makes is not
peculiar to the cab problem; for instance, it is crucial for the normative evaluation
of the three-doors problem [Falk, 1992], the four-cards problem [Gigerenzer and
Hug, 1992; Oaksford and Chater, 1994], gambler’s fallacy, and ‘conservatism’ in
information processing [Cohen, 1982].

To emphasise psychology is emphatically not to say that ‘anything goes’. The
contrast I wish to draw is not between a norm that is created mechanically in 2
content-frec way and no norms at all. My point is that psychological assumptions
(the semantics and pragmatics of the situation) are indispensable for constructing
a sensible norm. The particular assumptions that are made about a situation deter-
mine the choice among possible candidates for a normative model. A consequence
is that claims of the kind ‘this is the only correct answer” need to be based on flesh-
ing out the psychological assumptions [Levi, 1983]. The cab problem is of partic-
ular interest here because it illustrates how two different statistical approaches, the

culation error.
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Neyman-Pearson theory of hypotheses testing (which is formally equivalent with
TSD) and (the content-free application of) Bayes’s theorem, can highlight different
aspects of the problem as important, such as the decision criterion of the witness.

Challenge One adds to Challenge Two. When the information in the cab prob-
lem is represented in natural frequencies as opposed to probabilities or percentages,
people can ‘see’ the numerical answer much more easily, whatever numbers they
chose as relevant [Gigerenzer and Hoffrage, 19951

3 CHALLENGE THREE: THE INDETERMINACY OF CONSISTENCY

The take-home message so far is that modeling rational judgment involves
(a) assumptions about the information representation for which cognitive
algorithms are designed, and (b) assumptions about psychological mechanisms that
determine which numbers (prior probabilities, likelihoods) enter an algorithm. Let
us now extend our discussion of the role of content in defining sound reasoning and
turn to internal consistency of choice. Internal consistency is often seen as the re-
quirement of rational choice in decision theory, behavioural economics, and game
theory. Challenge Three is to define consistency in terms of something external to
the choice behaviour, such as social objectives and values, rather than in terms of
content-independent formulations (axioms). Only then can we decide whether a
behaviour is actually consistent or not.

3.1 The Norm: Property Alpha

One basic condition of internal consistency of choice is known as ‘Property Alpha’,
also called the ‘Chemnoff condition’ and ‘independence of irrelevant alternatives’
[Sen, 1993]. The symbols S and T denote two nonempty sets of alternatives, and
z(S) that alternative z is chosen from the set S.

Property Alpha:
6) z(S)andzeT C S = z(T).

Property Alpha demands that if  is chosen from S, and z belongs to a subset
T of S, then z must be chosen from 7" as well. For instance, assume you won a
free subscription to any weekly magazine in the world (S) of your choice. You
choose the Economist (z). Now you learn that you can actually only chose a weekly
magazine published in English (T°). You still chose the Economist. The following
two choices would be inconsistent in that they violate Property Alpha:

1. z is chosen given the options {z, y}

2. yis chosen given the options {z, y, 2}
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Property Alpha is violated because x is chosen when the two altematives {z,y}
are offered, but y is chosen when z is added to the menu. (Choosing z is inter-
preted here as a rejection of y, notas a choice that results from mere indifference.)
It may indeed appear odd and irrational that someone who chooses = and rejects y
when offered the choice set {z, y} would choose y and reject z when offered the set
{z,v, z}. Such violations are known as preference reversals. For illustration, here
is a story told about the Columbia University philosopher Sidney Morgenbesser.
Sidney went to the donut store on 116th Street. “Would you like a plain or a glazed
donut?’ the waitress asked. ‘I'll have a plain donut’, responded Sidney. ‘Oh, I for-
got, we also have a jelly donut’, the waitress added. ‘In this case,’ Sidney replied,
‘I'Il take the glazed donut’. My philosopher friends laugh at this story: Sidney has
violated Property Alpha.

3.2 Psychologizing the Norm: Making Consistency Work

Sen [1993] has launched a forceful attack on internal consistency as defined by
Property Alpha and similar principles, and what follows is based on his ideas and
examples. Property Alpha formulates consistency exclusively in terms of the inter-
nal consistency of choice behaviour with respect to sets of alternatives. No refer-
ence is made to anything external to choice, for instance, to intentional states such
as a person’s social objectives, values, and motivations. This exclusion of every-
thing psychological beyond behaviour is in line with Samuelson’s [1938] program
of freeing theories of behaviour from any traces of utility and from the priority of
the notion of ‘preference’.

But consider Property Alpha in the context of social politics at a dinner party.
Everyone makes his or her way through the main course and conversation. Finally,
a fruit basket is passed around for dessert. When the basket reaches Mr. Polite, there
is only one apple left. Mr. Polite has the choice of taking nothing (z) or taking the
apple (y). Mr. Polite loves apples, but because there is only one left he decides
to behave decently and take nothing (), because this would deprive the next per-
son from having a choice. If the basket had contained another piece of fruit (z), he
could have chosen y over z without violating standards of good behaviour. Choos-
ing x over y from the choice set {z, y} and choosing y over z from the choice set
{z,y, 2} violates Property Alpha, even though there is nothing irrational about Mr.
Polite’s behaviour given his values regarding social interaction. If he had not held
to such values of politeness in company, or had chosen to dine alone, then Property
Alpha would not have been violated. It is social values that determine what the
perceived alternatives in the choice set are: For the selfish person it is apple versus
nothing in both choice sets, but for Mr. Polite it is last apple versus nothing in the
first set. Property Alpha tells us little about consistency unless one looks beyond
choice behaviour to a person’s intentions and values.

Sidney Morgenbesser’s reversal of preference looks irrational. However,
consider the following. I grew up in Bavaria and I love roasted pork with potato
dumplings. In a restaurant in Illinois I once had a choice between roasted pork
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and steak, and I chose the steak over roasted pork (from bitter experience). But
when the waiter added ‘It’s not on the menu, but we also have blood-and- liver
sausages with sauerkraut’, then I switched and chose roasted pork over steak. The
third alternative, although I did not choose it, indicated by its very existence that
this restaurant’s cook might really know how to make Bavarian roasted pork with
potato dumplings. Again, choosing z over y from the choice set {x, y} and choos-
ing y over z from the choice set {z,y, z} violates Property Alpha, even though
there is nothing irrational about this behaviour. The mere emergence of a new al-
ternative may carry information about the previous alternatives.

To summarize the argument: Consistency, as defined by Property Alpha, deals
only with choice behaviour. However, consistency in observed choice can be a
poor indication of consistency, as the examples illustrate (for more see [Gigerenzer,
1996b; Sen, 1993]). Only once a person’s social values, objectives, and expecta-
tions are known can axioms such as Property Alpha capture consistency. Challenge
Three is to develop concepts of consistency that are not merely syntactical and leave
out semantics and pragmatics, but start from psychological entities such as a per-
sons expectations and social values.

4 CHALLENGE FOUR: SEMANTIC INFERENCES

Challenges Two and Three emphasised the role of content in building normative
models. So far I have dealt with content that did not look relevant from the point
of view of content-free normative models. In this view, the relevant information is
assumed to be reducible to those words in a problem description that sound sim-
ilar to concepts in logic and probability theory, such as ‘AND’, ‘OR’, ‘probable’,
and ‘likely’. In this section, I deal with these key terms. Unlike logic and prob-
ability theory, natural languages are polysemous, and the meaning of these terms
must be inferred from the content in which they occur. Challenge Four is to analyze
the semantic inferences people make about the meaning of terms, and to judge the
soundness of a person’s reasoning on the basis of these inferences, rather than as-
suming that natural language terms map one-to-one into similar-sounding concepts
in probability theory and logic.

4.1 The Norm

Consider the following, known as the Linda problem [Tversky and Kahneman,
1983]:

Linda is 31 years old, single, outspoken and very bright. She majored in phi-
losophy. As a student, she was deeply concerned with issues of discrimination and
social justice, and also participated in anti-nuclear demonstrations.

Which of these two alternatives is more probable?

¢ Linda is a bank teller. (T')
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e Lindais a bank teller and active in the feminist movement. (T&F)

In numerous experiments, a majority of subjects (often 80% to 90% ) chose T&F
as more probable. Tversky and Kahneman [1983] argued that this choice is an er-
ror in reasoning: T'& F is the conjunction of two propositions, namely that Linda
is a bank teller (7') and that she is active in the feminist movement (F), whereas
T is one of the conjuncts. The mathematical probability of a conjunction cannot
be greater than that of one of its conjuncts—this rule has been referred to as the
conjunction rule:

(M p(T&F) < p(T)

Tversky and Kahneman argued that because of this rule, the correct answer to the
problem is T. They therefore concluded that the majority of their subjects, who
chose T& F, had committed a reasoning error they called the ‘conjunction fallacy’.
The explanation of the phenomenon was that people do not reason by the laws of
probability, and instead use similarity to judge probability, a strategy termed the
‘representativeness heuristic’.  The Linda problem has been used by other
researchers to draw hefty conclusions about human rationality, for instance, that
‘our minds are not built (for whatever reason) to work by the rules of probability’
[Gould, 1992].

4.2 Psychologizing the Norm: Semantic Inferences

This use of the conjunction rule as a normative model for the Linda problem (and
other similar problems) assumes that (a) all that counts for rational reasoning are
the English terms ‘and’ (in ‘T and F’) and ‘more probable’, and (b) these natural
language terms can be mapped in a one-to-one fashion into logic and probability
theory: The English ‘and’ is assumed to be immediately translatable onto the logi-
cal ‘AND’, and the English ‘probable’ onto mathematical probability. Everything
else, including Linda’s description and the content of the two propositions, is con-
sidered irrelevant for sound reasoning.

The critical point here is that this one-to-one mapping from natural language to
logic or probability theory cannot capture sound reasoning. All natural languages
embody polysemy. For example, connectives such as ‘and’, ‘or’, and ‘if” have sev-
eral meanings, such as the inclusive and exclusive meanings of ‘or’. Consider the
proposition ‘Joan and Jim married and they had a baby’ versus ‘Joan and Jim had
a baby and they married’. If one mapped the ‘and’ in these two sentences onto the
logical ‘AND’, one would miss the difference between the information commu-
nicated in the first versus the second sentence. Not mapping the natural language
‘and’ onto the logical operator allows us immediately to understand that the ‘and’ in
these sentences indicates temporal order, and thus unlike logical AND, is not com-
mutative. The cognitive mechanism that infers the meaning of terms such as ‘and’
from the content of a sentence is a most impressive feature of the human mind; no
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computer program exists yet that can make these inferences. Irefer to this mapping
process as ‘semantic inference’.

The polysemy of the English term ‘and’ makes it important to find out which
meaning of ‘and’ a person infers when reading the proposition ‘Linda is a bank
teller and active in the feminist movement’. There is a good reason to interpret
‘and’ as something other than logical AND: The logical meaning would render the
description of Linda and the content of the two alternatives irrelevant, thus violat-
ing the conversational maxim of relevance, that is, the assumption that what the
experimenter tells you is relevant to the task [Adler, 1991; Grice, 1975). Polysemy
also holds for the English term ‘probable’. The Oxford English Dictionary lists a
wide range of legitimate meanings for ‘probable’, including ‘plausible’, ‘having an
appearance of truth’, ‘that may in view of present evidence be reasonably expected
to happen’, and ‘likely’, among others. Most of these meanings cannot be mapped
onto the mathematical concept of probability. For instance, if “Which is more prob-
able?” is understood as ‘Which makes a more plausible story?” or ‘Which is sup-
ported by evidence?’ then T& F'seems to be the better alternative. There exist a
number of studies indicating that people indeed draw semantic inferences that lie
outside logic and probability theory, such as the ‘7" — T'& not F'’ implicature (that
is, to infer that ‘Linda is a bank teller’ means ‘Linda is a bank teller and not ac-
tive in the feminist movement’) and the ‘T'&F — F given T" implicature (that
is, to infer that ‘Linda is a bank teller and active in the feminist movement’ means
‘Linda is a feminist given she is a bank teller"); see e.g. [Dulany and Hilton, 1991;
Hertwig and Gigerenzer, 1997; Tversky and Kahneman, 1983]. These implicatures
render the description of Linda relevant to the problem.

There are experiments that indicate that the reason why many people chose T& F
as more probable is their outstanding ability to perform semantic inferences rather
than their alleged failure to reason according to the laws of probability. One ex-
periment simply couches the problem in terms of frequency rather than subjective
degree of belief, replacing the ambiguous term ‘probable’ by the less ambiguous
term ‘how many’ [Hertwig and Gigerenzer, 1997]. This version of the problem in-
forms the subject that there are 200 women who fit Linda’s description. Subjects
are then asked

How many of the 200 women are bank tellers? of 200

How many of the 200 women are active in the feminist movement?
200

How many of the 200 women are bank tellers and are active in the feminist move-
ment? of 200

of

In this and similar ‘frequency versions’ of the Linda problem, violations of the
conjunction rule dropped to 0%-20% (from 80%-90% in the original ‘probability
version’). Substituting ‘how many’ for the ambiguous term ‘probable’ is, to the
best of my knowledge, the strongest and most consistent way to reduce the con-
junction fallacy (see [Fiedler, 1988; Hertwig, 1995] and [Tversky and Kahneman,



458 GERD GIGERENZER

1983, p. 309] for similar results). Most subjects reason according to the conjunc-
tion rule when linguistic ambiguity is resolved.

To summarize: The use of the conjunction rule as a content-free norm for correct
thinking overlooks the capacity of the human mind to make semantic inferences.
Challenge Four is to model these impressive semantic inferences, rather than to as-
sume as normative a one-to-one mapping of natural language terms into probability
theory and logic.

5 CHALLENGE FIVE: DOUBLE STANDARDS

Normative models are sometimes used by convention rather than by reflection. Un-
reflective use of norms can lead to double standards. For example, the same re-
searcher sometimes uses two mutually inconsistent norms, one prescribing what is
rational inference for subjects and another prescribing what is rational inference for
the researcher. Each norm is used mechanically, without consideration of content.

5.1 Fisherian Norms for Me, Bayesian Norms for You

R. A. Fisher’s The Design of Experiments [1935] is possibly the single most in-
fluential book on experimental methodology in the social and biclogical sciences.
Fisher disapproved of the routine application of Bayes’s theorem. In the introduc-
tion, Fisher congratulates the Reverend Thomas Bayes for being so critical of this
theorem as to withhold its publication (Bayes’s 1763 treatise was published only
after Bayes died). Fisher thought that the preconditions for applying Bayes’s the-
orem, such as an objective prior distribution over the set of possible hypotheses,
rarely hold, and that routine applications of the theorem would lead to unaccept-
able subjectivism wherein the strength of evidence would be just a matter of taste.
In his book, Fisher successfully sold researchers his method of null hypothesis test-
ing instead. By the 1950s, null hypothesis testing, also known as significance test-
ing, became institutionalised in many social, biological, and medical fields as the
sine qua non of scientific inference.*

In the 1960s, Ward Edwards and colleagues proposed that researchers (a) aban-
don null hypothesis testing and turn Bayesian instead [Edwards, Lindman and Sav-
age, 1963], and (b) study whether the untutored mind reasons by
Bayesian principles [Edwards, 1968). The first proposal fell stillborn from the press
while the seccond became a raging success. Researchers began to test
whether the mind draws inferences according to Bayes’s theorem (as described in
Challenges One and Two) at the same time that they continued to use significance
testing. Researchers had been taught to use significance testing (which promised

4 What was institutionalised was actually a mishmash between Fisher’s null hypothesis testing and
some concepts of a theory that Fisher deeply disliked, namely Neyman and Pearson’s theory of hypothe-
ses testing. Textbooks and curricula are generally silent about the fact that they teach a hybrid creature
that would have been rejected by both camps (Gigerenzer, [1987; 1993] and [Gigerenzer et al., 1989,
Chs. 3 and 6]).
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objectivity) mechanically, and Bayes’s theorem smelled of subjectivity [Gigeren-
zer, 1987). Thus those who went only half-way with Ward Edwards unwittingly
committed themselves to a double standard. Ordinary people who do not make in-
ferences according to Bayes’s theorem are branded irrational, but the researchers
who brand them do not apply the same standard to their own inductive inferences.
They use significance testing, not Bayes’s theorem, to infer whether people are
Bayesians or not.

5.2 Beyond Double Standards

Challenge Five is to construct normative models (for the reasoning of
researchers and their experimental subjects alike) in a thoughtful rather than a me-
chanical way. One may end up having to tailor different normative models for dif-
ferent situations, but not mechanically use one norm for experimenters and another
for subjects. I and others have traced how the mindless use of null hypothesis test-
ing in psychology (and many social and medical sciences) became institutionalised
in textbooks, curricula, and editorial practices (e.g. [Gigerenzer, 1993], [Gigeren-
zer and Murray, 1987, Ch. 1] and [Gigerenzer ez al., 1989, Chs 3 and 6]). Remem-
ber that Hume's problem of inductive inference has not yet been solved; there is
no single method that works in all situations, and we need to teach students and
researchers what the methods are and how to choose between them. In my opin-
ion, inferential statistics—significance testing, Neyman-Pearson testing, Bayesian
statistics, and so on—are rarely needed in research. What is needed is good de-
scriptive statistics, knowledge of the data (e.g. look at the scatter diagram instead
of just at the correlation coefficient), adequate representations of the data, and the
formulation of precise alternative hypotheses instead of a single null hypothesis.
There is hope on the horizon that after four decades, the reign of the null hypothe-
sis testing ritual is at last in decline. For instance, Geoffrey Loftus, editor of Mem-
ory & Cognition, seems to be the first editor of a major psychology journal in the
United States to speak out and explicitly discourage researchers from mechanically
submitting p, F, and t-values for no good reason (Loftus, [1991; 1993]). He asked
researchers instead to provide good descriptive statistics and to think about the rep-
resentation of information, for example, to provide figures with error bars instead
of p values.

When one thinks of statistical models as models of some situation rather than
mechanically applicable tools, then double standards can be avoided. To come up
with reasonable normative models of inference, one must try to model the situa-
tion instead of imposing content-independent standards onto the reasoning of either
subjects or experimenters.
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6 CHALLENGE SIX: THE POWER OF SIMPLE PSYCHOLOGICAL
MECHANISMS

In the first four challenges, I argued that syntactical rules or axioms are not suffi-
cient to define rational behaviour, unless they take psychological mechanisms into
account. These were standard rules and axioms, which are taken by many to de-
fine rationality in a content-free way. In this section, I invite you to look beyond
standard rules and axioms to the power of simple, ‘satisficing’ psychological mech-
anisms that violate classical assumptions of rationality. Challenge Six is to de-
sign simple satisficing mechanisms that work well under real-world constraints of
limited time and knowledge: mechanisms that are fast and frugal but nevertheless
about as accurate as computationally ‘expensive’ statistical models that satisfy clas-
sical norms.

6.1 The Norm

Imagine that you have to infer which of two alternatives, a or b, has a higher value
on some criterion, and there are 10 predictors of the criterion with different validi-
ties. One method that is used to make such an inference is multiple regression,
which computes the beta weights for each of the predictors, computes the value
of each alternative on the criterion, and chooses the alternative that scores higher.
This amounts to formulating the following multiple regression equation:

8) Ya=2a1f1+ Tazf2 + xa3B3 + ...+ Zar0510,

where v, is the value of @ on the criterion, Z,; is the value of alternative a on pre-
dictor 1, £ is the optimal beta weight for predictor 1, and so on.

Note that we are now dealing with a much more complex situation than in Chal-
lenges One and Two: There are many picces of information (the predictors) rather
than only one (e.g., positive mammogram), and these may be partially redundant.
The two norms dealt with here are more general than the multiple regression model.
‘1he first norm is that sound inference implies complete search, that is, taking ac-
count of all pieces of information available, and the second requires complete in-
tegration, that is, integrating all pieces of information in a some reasonable way
[Gigerenzer and Goldstein, 1996]. These norms hold for multiple regression as
well as for Bayesian inference and neural networks, all of which look up and in-
tegrate all available information.

6.2 Beyond Complete Search and Integration: Take The Best

Humans often need to make inferences about aspects of their environment under
constraints of limited time, limited knowledge, and limited computational resources.
The linear multiple regression is in conflict with all three. When one is driving
fast and the road suddenly forks, one does not have the time to think about all the
reasons that would favor going right or left, nor the knowledge and computational
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aides to calculate all the beta weights, multiply these with the predictor values, and
calculate sums. Similarly, a doctor in an emergency room who has to make a de-
cision whether a heart attack patient should be treated as a high risk or a low risk
case does not know the values of the patient on all relevant predictors, nor can she
always take the time to measure these. In these and many other situations, humans
have to rely on fast and frugal psychological mechanisms rather than on multiple
regression. In Herbert Simon’s terms, humans ‘satisfice’ rather than ‘optimize’.
Consider the following demographic problem:

Which city has more inhabitants:

(a) Bremen
(b) Bielefeld

Assume you do not know the answer, but have to make an inference. There are
many predictors (cues) that signal larger population, such as whether or not a city
has a soccer team in the major German league (‘Bundesliga’), whether or notitisa
state capital, has a university, and so on. Thus, according to the norms of complete
search and information integration, one should search in memory for all predictors,
estimate the values of the two cities on those predictors, estimate the weights for
each predictor, multiply these with the estimated values, sum the products up and
choose the city with the higher value. Such a model assumes that the mind is a
supercomputer like Laplacean Demon with almost unlimited time and knowledge.
What is the alternative? i

My students and I have developed a family of satisficing algorithms [Gigerenzer
et al., 1991; Gigerenzer and Goldstein, 19961, one of which I will describe here. It
is based on psychological mechanisms that a mind can utilize given limited time
and knowledge. One of these simple mechanisms, the ‘recognition heuristic’, says
that if one has heard of city a but not of city b, then the search for further informa-
tion can be stopped, and the inference that a is the larger can be made. Thus, in the
example problem, if you have never heard of Bielefeld, you infer that Bremen has
more inhabitants. The recognition heuristic can be invoked when there is a corre-
lation between recognition and the criterion. For instance, advertisement compa-
nies (e.g. Benetton) exploit recognition by making sure that consumers recognize
the brand name while providing no information about the product itself [Goldstein
and Gigerenzer, 1996).

If recognition cannot be used as a cue, that is, if someone has heard of both cities,
a second mechanism is invoked: one-reason decision making. For instance, if the
fact is retrieved from memory that Bremen has a soccer team in the major league
but Bielefeld does not (or one does not know), then ‘one-reason decision making’
makes the inference that Bremen is the larger city. No further informationis sought.
What we call the Take The Best algorithm (because of its motto ‘take the best and
ignore the rest’) is based on just these two psychological principles and the assump-
tion of a subjective ranking of the predictors in terms of their validities. The flow
chart of Take The Best is shown in Figure 3. For simplicity, only binary cues are
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Figure 3. Flow diagram of a satisficing algorithm: Take The Best.

considered, and the values +, —, and ? signify that an object has a positive, nega-
tive, or unknown value on a cue. The key features of Take The Best are (a) limited
search, that is, it stops with the first cue (including recognition) that discriminates
between two objects, and (b) no integration, that is, choice is made on the basis
of only one cue (but this cue may be different from one pair of cities to the next).
These two features violate the norms of exhaustive search and integration.

Well, Mr. Optimal says, people may use Take The Best or similar satisficing
algorithms, given the constraints of limited time and knowledge, but this is cer-
tainly a stupid, quick-and-dirty algorithm. Look, Mr. Satisficing responds, studies
on the ‘flat maximum’ have shown that in real-world environments, the ‘optimal’
beta weights (in Equation 8) may not lead to better predictions than unit weights
(+1 or —1), suggesting that the world can be predicted as well with simpler al-

gorithms [Dawes, 1979; Lovie and Lovie, 1986). Well, Mr. Optimal replies, unit-
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weight models use simpler weights, but outside of that they do not violate the clas-
sical norms of rationality: They look up all information available and integrate it,
whereas Take The Best does neither. Thus, it will make lousy inferences. How do
you know? asks Mr. Satisficing; let us empirically determine, in a real-world en-
vironment, how much better algorithms that obey the two norms actually perform,
compared to the satisficing Take The Best algorithm.

To answer this question, Daniel Goldstein and I conducted a competition be-
tween five integration algorithms (including multiple regression and unit-weight
linear models) and Take The Best. The algorithms inferred which of a pair of cities
was the larger one, as in the Bielefeld-Bremen example, and the criteria used were
the speed and the accuracy of the inferences [Gigerenzer and Goldstein, 1996). In-
ferences were made about all (pairs of) cities in Germany (after reunification) with
more than 100,000 inhabitants (there were 83 cities). We simulated subjects with
varying degrees of limited knowledge, ranging from those who did not recognize a
single German city, and consequently did not know any information (values on pre-
dictors for population) about these cities, to subjects who recognised all 83 cities
and knew all values of these cities on all predictors (cues). There were 10 predic-
tors, including the aforementioned soccer team, state capital, and university cues.
The simulation included 84 (number of cities recognised, from 0 to 83) times 6
(proportion of cue values known for the cities recognised: 0%, 10%, 20%, 50%,
75%, 100%) types of subjects, and within each type we used 500 individual sub-
jects that differed randomly in the particular cities and cue values known. Each
of these 84 x 6 x 500 simulated subjects drew inferences about all pairs of cities
(as in the Bielefeld-Bremen example) using six algorithms (one at a time). The al-
gorithms were five integration algorithms that looked up all information (including
multiple regression) and Take The Best algorithm. In the competition we measured
the speed (proportion of cue values searched before making an inference), and ac-
curacy (proportion of correct inferences). When simulated subjects made their in-
ference with Take The Best, they searched on average for only 30% of the informa-
tion that the integration algorithms used, thus outperforming all other contestants
in speed. After all, speed and computational simplicity is what this algorithm is
designed for. But how accurate were the inferences that Take The Best drew? The
striking result was that Take The Best matched or outperformed all competitors in
accuracy, multiple regression included (for details see [Gigerenzer and Goldstein,
1996)).

This result is an existence proof that cognitive mechanisms capable of successful
performance in a real-world environment do not need to satisfy classical norms of
rational inference: Exhaustive information search and integration may be sufficient
but not necessary for a mind capable of sound reasoning. There is independent ev-
idence that ‘one-reason decision making’, as demonstrated by Take The Best, can
classify heart attack patients into high and low risk groups as well as or better than
standard statistical integration models with many valid predictors [Breiman et al.,
1993]. One important question concerning norms turns out to be ecological: What
are the structures of real-world environments that can be exploited by simple cog-
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nitive mechanisms, and how can we talk about these structures? We have recently
identified several of these structures [Gigerenzer, 1997; Martignon and Hoffrage,
in press].

The result of this competition defeats the widespread view that only ‘rational’
algorithms—ones that search and integrate all information—can be accurate. But
does this result generalize? It does. In a sample of 20 real-world environments, the
fast and frugal Take The Best made on the average more accurate predications (us-
ing cross-validation) than multiple regression [Czerlinski ef al., in press]. Models
of inference do not have to forsake accuracy for simplicity, or rationality for psy-
chological plausibility. Challenge Six is to design psychologically plausible mod-
els of sound inference that can operate under constraints of limited time and knowl-
edge. Reasoning can be rational and psychological.

7 A PSYCHOLOGICAL APPROACH TO NORMS

I started out with the opposition between the rational and the psychological: Ratio-
nal judgment is defined by the laws of probability and logic, and only by these. Psy-
chology does not come in until things go wrong, that is, when
people’s judgements deviate from the laws of probability and logic. In contrast, I
argued that psychological principles are indispensable for defining and
evaluating what sound judgment is. Axioms and rules from probability theory and
logic are, by themselves, indeterminate. In particular, I discussed the role of the
representation of numbers, the role of content for inferring what the relevant num-
bers are, the role of a person’s social values, motives, and expectations in defining
and evaluating norms for sound judgment, and the power of fast and frugal algo-
rithms.
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