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Abstract

Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such
as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked
when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for
many types of single neurons, the role of detailed single cell morphology in the population has not been studied
quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to
drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell
type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic
structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic
forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large
differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and
of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given
volume in the molecular layer. This work enables the complete population-level study of morphological properties and
provides a framework to develop complex and realistic neural network models.
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Introduction

Growing evidence for the importance of dendritic structure on

neuronal function has inspired the construction of morphologically

realistic computational models of single neurons. Dendritic

morphology has been shown to have a significant impact on

neuronal firing properties, both between neurons of different

classes [1] and within the same class [2,3], as well as on signal

integration and propagation [4–6]. The intra-class morphological

variability could have a significant impact on the integration of

individual neurons into the circuit and their resulting role in

network computation. Correspondingly, this has led to the

development of detailed three-dimensional morphological recon-

structions of single cells [7] and functional models incorporating

this level of detail [8,9]. Not only does the incorporation of realistic

morphology enable more accurate reproduction of measured

electrophysiology, it also allows for a more detailed representation

of network connectivity. These together enable a better under-

standing of the underlying computation in the network. Advances

in computational power as well as in parallel computing, such as

the development of parallel versions of neurophysiological

simulation environments [10–14], have made the simulation of

large networks with detailed neuron models accessible. Currently,

however, the majority of functional electrophysiological network

models utilize uniform single models or very small subsets of

models to describe neurons of a given class, overlooking the

inherent biological diversity. In addition, the connectivity is usually

oversimplified in almost all functional neural networks, whether by

the use of probabilistic methods rather than explicit connectivity

or by making connections using only a subset of the neurons in the

network population, while in most applications it should in fact

reflect the full morphological architecture of dendrites and axons.

The generation of full-scale, population-level morphological

models is, therefore, an important and timely goal. Since

experimental reconstructions are to date available only in small

sample sizes, techniques to generate population-level morpholog-

ical models will require the amplification of these data sets to fully

realistic and diverse populations [15].

Aside from quantifications based on reconstructions of single

cells, existing neuroanatomical data encompasses a large number

of measures at multiple levels, such as density estimates for

synaptic zones using electron microscopy or cell counts and

population analysis using molecular techniques as well as entirely

macroscopic features of neural tissue [16]. The optimal arrange-

ment of elements of neural circuits in the brain has been

extensively studied [17–21], and a recent trend has been to put
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neuroanatomical single cell reconstructions in the macroscopic

context in which they originally existed [22–24]. In particular,

recent work in Drosophila has focused on generating a standard-

ized structural model [25] and taken steps toward generating a

complete network connectivity map by placing all reconstructed

neurons into a standard brain [26], which is possible given the

smaller population of neurons in invertebrate model organisms.

Conventional light microscopy does not have the resolution to

reconstruct circuits in densely labeled neuropil [27], and as a

result, modern techniques such as large-scale serial block-face

scanning electron microscopy have started to provide reconstruc-

tion methods for which both the microscopic details of all cells and

the macroscopic circuit-level features are present in the same

biological tissue samples [28–30]. These data, however, are rather

large and complex, and it will be important to develop novel

approaches to facilitate the study of such neuroanatomical

connectomes [31]. The development of large-scale morphological

models with macroscopic constraints will enable the analysis of

these large data sets and the study of connectomes before full

anatomical reconstructions are available.

Current methodologies for the generation of morphological

models primarily employ reconstructions and their branching

characteristics independent of their originating context. Several

studies have relied solely on the reconstructions themselves,

involving pure duplication [32], making small variations in the

lengths and angles of tree branches [33], or resizing to fit within a

spatial context [24]. Other methods have focused on the

branching properties of the reconstructions and have used a wide

variety of algorithms, including the simulation of growth cones

with NETMORPH [34], modeling self-referential forces [35], or

mapping one-dimensional structures to 3D trees [36]. Several of

these tools, such as L-Neuron [37], EvOL-Neuron [38], and

NeuGen [39,40], create variable dendritic trees by stochastically

sampling branching parameters from extracted statistical distribu-

tions. While the stochastic sampling methodology is able to

generate realistic synthetic trees, it was too inefficient in our

previous work to generate a complete and distributed population

[15], even without the constraint of fitting within a three-

dimensional context. The current study reverses the direction of

previous methods by starting with the macroscopic neuroanatomy

and enables complete population-level construction and analysis.

Here we report a method that allows us to match generated

single cell morphologies to measured data as a function of

macroscopic features. We do this by devising a computational

model that generates morphologies of all single neurons in a

population while considering the broader neuroanatomical

context in which they grow. First we model the volume of the

rat dentate gyrus based on a recent detailed reconstruction of the

entire structure [24]. We then generate single cell morphologies of

all granule cells (GCs) as described previously [41] constrained

within this volume. The resulting population data matches the

known variability in GC morphology as well as some known key

dependences of GC features on location within the dentate gyrus.

We then use our model to develop measures and predictions for

dendritic features at the population level. This work provides a

valuable framework for the study of complete populations of

neuronal morphologies and represents a major step in the

development of large-scale neural network models.

Results

Model dentate gyrus boundaries
In order to grow dentate gyrus granule cell (GC) dendritic tree

structures within their structural context, we first generated a

parameterized volume representing the dentate gyrus (DG) shape.

Smoothed surfaces for the boundaries of the DG granule cell layer

(GCL) and molecular layer (ML) were obtained from a recent

high-resolution, 3D serial reconstruction of the rat hippocampus

[24]. Parametric 2D manifolds were then fitted to these boundary

surfaces (Figure 1A; see also Methods for detailed equations) in

order to provide a coordinate system in which depth in the GCL

and ML as well as the septo-temporal and infra- versus

suprapyramidal axes are mapped. This in turn enabled the

subdivision of the ML volume into inner (IML), middle (MML),

and outer molecular layers (OML) using intermediate surfaces,

since several aspects of GC morphology have previously been

associated to these reference structures. The resulting model DG

closely matched the structural features of the experimentally

reconstructed volume (Figure 1B). The model DG had the same

overall GCL volume, 3.78 mm3, and ML volume, 9.02 mm3, as

the experimental reconstruction. Also, the ML width throughout

the structure, 247633 mm, closely matched a previous experi-

mental measurement, 249633 mm [42]. Slices from the model

DG possessed the characteristic curved structure of the biological

dentate gyrus, which is known to be more ‘‘V’’-shaped in the

septal region and ‘‘U’’-shaped in the temporal region (Figure 1C).

The volume created by the parametric surfaces thus served as a

realistic structural context within which to drive GC dendrite

generation. Furthermore, the parametric character of the surfaces

subsequently enabled the mathematical tractability of the trans-

formation between a planar two-dimensional sheet and the curved

two-dimensional manifolds in 3D space.

Generation of synthetic dendritic trees
The dendritic field spanned by the GC dendritic tree can be

approximated by an elliptical cone [41–43]. GC trees can be

synthesized by connecting a somatic coordinate to target points

distributed in such cone-like volumes while minimizing total

dendrite length as well as path lengths within the dendrite [41]. To

generate the complete GC forest, somata were first distributed

within the GCL. The rat DG GCL is estimated to contain

approximately 1.2 million tightly-packed GCs [44,45], and the

GC soma is an ellipsoid with an average width of 10.8 mm and

height of 18.6 mm [42]. For the purposes of this study, spheres

with 12.54 mm diameter corresponding to the volume of an

average GC ellipsoid soma were arranged on a large hexagonal

grid. Those spheres with any portion located outside of the GCL

volume were discarded, and the remaining spheres were selected

as somata for the GC population (Figure 2A). In this way, 1.19

million somata separated by a 3.5 mm distance were well-packed

Author Summary

Computational models of neurons and neural networks
provide a valuable avenue to test our understanding of
brain regions and to make predictions to guide future
experimentation. Each neuron has a unique dendritic tree,
features of which can vary depending on the location of
the neuron within the particular brain region. In this study,
we generated a complete population of dendritic trees for
the most numerous type of neuron in the hippocampus,
the dentate gyrus granule cell, using a realistic three-
dimensional structural context to drive the generation
process. Morphological properties can now be studied at
the level of complete neuronal populations, and this work
provides a foundation to build upon in the construction of
large-scale, data-driven neuroanatomical and network
models.

An Anatomical Model of a Complete Neuronal Population
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within the GCL volume. An elliptical cone could now be placed at

each of these soma locations to select the target points necessary to

grow GC dendritic trees within the ML boundaries.

The optimal wiring algorithm connects points by performing a

dual minimization of total dendritic length and path lengths, under

a constraint (balancing factor bf) that weighs the importance of one

over the other. Low values for bf lead to strongly minimizing the

total wiring which can result in long conduction paths to the soma,

while larger bf values lead to trees with short conduction times.

Target points for all cells were first distributed in the GCL and ML

according to proportions estimated from experimentally recon-

structed dendritic trees (Figure 2B, see also Figure S1). Points

within each elliptical cone (Figure 2C, shaded area) were then

isolated, and a subset of these points (Figure 2C, larger dots) was

selected to result in realistic numbers of branch and termination

points per layer when connected. These target points were then

connected using the optimal wiring algorithm, which results in

specific portions of target points becoming branch, continuation,

or termination points in the tree depending on the balancing factor

[46] (Figure 2D). Spatial jitter of two different spatial frequencies

was added to reproduce the tortuosity of real dendritic trees

(Figure 2E; see Methods). Finally, a realistic quadratic tapering in

diameter was mapped onto the dendritic topologies (Figure 2F),

based on both the tapering present in real granule cells and

previous work showing that a quadratic taper optimizes synaptic

democracy [47], or the equalization of current transfer between all

dendritic locations and the root. This process was then repeated

for each GC in the DG, varying the parameters to reproduce the

variability in the resulting population (details in Methods).

Validation of synthetic dendritic trees
Synthetic GC dendritic trees were statistically and visually

indistinguishable from real GCs. Since the generative wiring

algorithm connects target points to form tree structures, it is an

important validation of the procedure that both the laminar

distribution of branch points and of dendritic length in the

synthetic GC population matched the experimental data [42]

(Table 1). Example dendritic topologies are shown in Figure 3A.

Experimental reconstructions and synthetic dendritic trees had

similar branching properties, exemplified by the classical Sholl

analysis [48] (Figure 3B), for which the number of intersections

between the dendrite and a sphere of increasing diameter centered

on the dendrite root are counted. Also, the distributions for

contraction values (the ratio of Euclidean distances and path

distances for all branches in the tree) were similar between

reconstructed and synthetic GCs (Figure 3C), validating the

balancing factor between costs of total dendrite length and path

Figure 1. Parametric volume representing the dentate gyrus structure. (A) The outer boundary for the granule cell layer was created by
cutting a piece out of an elliptical torus (left) into a partial structure (middle left), then adding a deflection in the z direction (middle right), and finally
creating unequal septal and temporal ends (right). See Methods for details. (B) Comparison between the experimental reconstruction and model
structure. The rostrocaudal, dorsoventral, and mediolateral axes are shown. Red lines depict slice angles for (C). (C) 100 mm transverse slices of septal
and temporal regions at the level of the red lines in (B). Subdivisions into the different layers is indicated by colors: GCL – granule cell layer (blue), IML
– inner molecular layer (green), MML – middle molecular layer (magenta), OML – outer molecular layer (red). Suprapyramidal and infrapyramidal
regions are indicated. In (A) and (B), directional arrows represent 1 mm.
doi:10.1371/journal.pcbi.1003921.g001

An Anatomical Model of a Complete Neuronal Population
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distances in the synthetic trees as well as the added spatial jitter.

Because diameter measurements are not available for our

reference GC morphologies [42], the diameter tapering was

constrained to a more recent set of experimental reconstructions

[49] independent of the context-dependent study. The match of

the diameter tapering between reconstructed and synthetic GCs is

visualized in Figure 3D. The branching structure and diameter

tapering of the synthetic trees were thus indistinguishable from

experimental reconstructions.

Matching known context-dependent features
The complete forest of 1.19 million synthetic GC dendritic trees

was constructed by varying the parameters in the generation

process (i.e., cone radii, number of stems, total number of nodes,

laminar distribution of nodes, balancing factor, amplitude of

spatial jitter, and diameter taper) for each individual GC. The

resulting properties of the complete population matched values

from reconstructed granule cells (Table 2), with small differences

arising from a different relative composition of GCs from context-

dependent subgroups. Significant differences have been described

in GC dendritic morphology depending on the location of the

soma within the GCL, i.e. for GCs with somata in the

suprapyramidal versus infrapyramidal blade as well as in the deep

versus superficial parts of the GCL [42]. Accordingly, choosing

parameters in the generation process based on the location of each

generated granule cell somata allowed for each statistically

significant context-dependent difference reported previously to

be recreated in the synthetic tree population (Table 3, p,0.001

for all comparisons, Student’s t-test). For example, the balancing

factor for the suprapyramidal deep granule cells was set to 0.9 to

match the higher maximum branch order, which was lower than

the 1.35 value used for suprapyramidal superficial granule cells

and the 1.22 value used for infrapyramidal granule cells. The

lower balancing factor in the suprapyramidal deep subgroup

signifies that minimizing dendritic length is more important for

these cells. A complete and realistic population of 1.19 million

context-dependent GC dendritic trees was created that matched

the observed biological variability and recreated context-depen-

dent differences, in addition to fitting within a realistic three-

dimensional DG structure (Figure 4A–C). The distribution of

these trees within the neuroanatomical space enables the study of

the input organization and spatial occupancy of the complete GC

forest.

Population-level analyses
In the following, we show how simple analyses that become

possible with such a model can be informative about the network

constituency in the hippocampus and about the location-specific

Figure 2. Individual steps in the generation process of granule cell dendritic morphologies. (A) Spheres with a 12.54 mm diameter were
distributed on a closed hexagonal grid in the volume of the entire GCL, and packed spheres inside the GCL (black dots) were kept and outside the
GCL (grey dots) were discarded, leaving a tightly packed arrangement for somata within the GCL volume. A 20 mm transverse slice with one layer of
somata is shown for illustration. (B) Target points are distributed in the GCL (blue), IML (green), MML (magenta), and OML (red). Model dentate gyrus
full structure (top) and a transverse 200 mm slice (bottom) are shown for illustration. The location of the slice is depicted by the vertical black lines.
The black box represents the viewpoint for subsequent panels. (C) Target points lying within an elliptical cone are selected from the pool of available
target points, and a subset of these target points is selected to generate the tree (larger points). (D) Target points are connected to minimize total
dendritic length and path lengths in the tree. (E) Spatial jitter is added to reproduce the tortuosity of branches observed in real reconstructions. (F)
Diameter values consistent with a quadratic taper toward the dendritic tips were mapped onto the resulting synthetic dendritic morphologies.
doi:10.1371/journal.pcbi.1003921.g002

An Anatomical Model of a Complete Neuronal Population
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distances of dendritic structure within the DG volume. An

important question regarding the connectivity in the circuit is to

know how many unique GCs an axonal arborization would reach

within a given volume of the molecular layer. This can now simply

be visualized as exemplified for a sample transverse slice from the

center of the dentate gyrus (Figure 4D), divided into 25 mm cubic

volumes. The overlap of dendrites from unique GCs in each

sample volume (3126114 GCs, range 45 to 650) is a small portion

of the 1.19 million GC population, signifying that the macroscopic

neuroanatomy of the DG promotes a sparse connectivity. This

large range also results in a diverse amount of complexity required

for an axon to arrive within 5 mm of all GCs in the sample cubic

volumes (64622 branch points, range 17 to 142, see Methods

for axon construction details). The distribution was location

dependent, as there was a greater overlap in unique GC dendrites

in the OML versus the IML, which coincides with the increased

dendritic length in the OML (Table 1) and an increased cable

density, i.e. dendritic length per volume (Figure 4E). The volume

occupied by the GC forest, on the other hand, decreased toward

the OML (Figure 4F), signifying that the increased cable density in

the OML does not counteract the diameter tapering implemented

into synthetic GC dendrites. The overlap of unique GCs, cable

density, and volume occupied by GC dendrites were larger in the

supra- and infrapyramidal blades as opposed to the crest, which is

in accordance with the increased ML volume at the crest reported

in the experimental reconstruction [24]. There were significant

Figure 3. Validation of synthetic dendritic morphologies. (A) Example reconstructed (top row) and synthetic dendritic topologies (bottom
row). (B) Sholl analysis plots for reconstructed (red) and synthetic dendritic trees (blue). (C) Contraction value distributions (ratio between Euclidean
distance and path distance) for all branches in reconstructed (red) and synthetic dendritic trees (blue). (D) Average diameter versus distance from the
soma for reconstructed (red) and synthetic dendritic trees (blue).
doi:10.1371/journal.pcbi.1003921.g003

Table 1. Laminar distribution of branch points and total dendritic length for the synthetic GC population and experimental
reconstructions.

Percent Branch Points Percent Total Dendritic Length

Sublayer Synthetic Population Experimental Values Synthetic Population Experimental Values

IML 61614 63614 2966 3067

MML 27613 27614 3263 3067

OML 1267 1067 3965 4067

Branch points and dendritic length in the GCL were included in the IML values, as was done in the experimental study.
doi:10.1371/journal.pcbi.1003921.t001

An Anatomical Model of a Complete Neuronal Population
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positive correlations between the overlap of unique GC dendrites,

cable density, and volume occupied (Figure S2, p,0.001). However,

the correlation between the number of unique GC dendrites and cable

density (r = 0.95) was much stronger than the correlation between the

number of unique GC dendrites and volume occupied or the cable

density and volume occupied (r = 0.27 and 0.50, respectively). This

likely resulted from the implemented variability in diameter tapering.

While the occupancy features impact strongly on network

connectivity, measures of dendritic morphology that vary along

with spatial coordinates in the DG impact strongly on the

electrotonic constituency and resulting dendritic computation and

synaptic integration in individual GCs. Using our complete

population model, we can compare simple measures such as

total dendritic length (Figure 4G) and maximum tip distances

(Figure 4H) in a location-dependent manner. Even ignoring the

difference between GCs from the suprapyramidal and infrapyr-

amidal blades since these were directly incorporated into the

model, the total dendritic length varied by a factor of 26between

the most distal septal or temporal tips of the DG as compared

to the center of the model. The transverse axis, or size of the

‘‘C’’-shape, is higher toward the center compared to the septal and

temporal tips in the experimental reconstruction [24], so the GCs

in the center have an increased length in order to reach the outer

edge of the OML. GCs with somata deep in the GCL had less

variability in total length compared to the GCs with somata in

more superficial parts of the GCL (Figure 4G). As expected,

maximum tip distances in deep GCs were longer than in

superficial GCs (Figure 4H).

We therefore have provided here simple measures linking the

macroscopic scale of the DG volume with the microscopic details

of single neuron morphologies and extracted useful information

for network connectivity and neural computation. In future

studies, novel population-level measures can be designed and

tested utilizing this framework as a foundation.

Discussion

In the present study, we used a realistic structural context based

on a reconstructed rat dentate gyrus [24] to drive the generation of

dendritic trees with a recently developed algorithm based on

Table 2. Overall properties for the synthetic GC population and experimental reconstructions.

Parameter Synthetic Population (n = 1,185,178) Experimental Values

# Dendrites 1.860.9 1.961.41

# Dendritic Branches 2865 29671

Max Branch Order 5.760.8 5.760.71

Transverse Spread (mm) 309677 3256761

Longitudinal Spread (mm) 173640 1766421

Total Dendritic Length (mm) 3,3576691 3,22165401

Mean Pathlength to Terminal Tips (mm) 378662 3466602

Mean Intermediate Branch Length (mm) 86618 726172

Mean Terminal Branch Length (mm) 149632 1486382

Topological Asymmetry 0.4560.02 0.4160.022

1Reported literature value (n = 48).
2Extracted from experimental reconstructions (n = 43).
doi:10.1371/journal.pcbi.1003921.t002

Table 3. Generation process recreates location-specific differences observed between subgroups of granule cells in experimental
reconstructions.

Parameter Subgroup Synthetic Population Experimental Values

# Dendritic Branches Suprapyramidal 3065 3165

Infrapyramidal 2664 2764

Total Dendritic Length (mm) Suprapyramidal 3,5806671 3,4786482

Infrapyramidal 3,0716606 2,7936314

# Dendrites Suprapyramidal Superficial 2.461.0 2.461.3

Suprapyramidal Deep 1.560.7 1.560.7

Max Branch Order Suprapyramidal Superficial 5.560.7 5.560.9

Suprapyramidal Deep 6.460.7 6.461.0

Transverse Spread (mm) Suprapyramidal Superficial 374669 378670

Suprapyramidal Deep 290653 293653

Infrapyramidal Superficial 302657 311659

Infrapyramidal Deep 243660 244664

doi:10.1371/journal.pcbi.1003921.t003

An Anatomical Model of a Complete Neuronal Population
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optimal wiring constraints [47,50]. By varying the relatively few

parameters in the generation process, we were able to reproduce

the observed biological variability in the morphology of dentate

gyrus granule cells and match key location-specific differences.

While some properties were obtained from parameter optimiza-

tion, several features were emergent and not the result of direct

parameter constraints, including the total dendritic length, branch

lengths, path lengths, and asymmetry in Table 2 as well as the

Sholl intersections in Figure 3. In addition, all population-level

measures, such as the cable density, are emergent properties.

The set of synthetic dendritic trees represents the largest

collection of realistic morphologies to date, a complete forest of

1.19 million granule cell dendritic trees, with each tree requiring

less than two seconds to be constructed. The method that we

Figure 4. Population analysis of all synthetic granule cells in a rat dentate gyrus. (A) Visualization of the boundary surfaces of the dentate
gyrus model structure (GCL and ML) and 1,000 synthetic dendritic trees. (B) Rendering of the complete morphologies for somata of all granule cells in
a 20 mm transverse slice from the center of the model dentate gyrus. (C) Rendering of 48 granule cells from the crest of the slice in (B). (D) Number of
unique granule cells with dendrites reaching into a given cube (25625625 mm) of molecular layer volume. The displayed 25-mm slice is located at the
center of the model dentate gyrus. (E) Density of granule cell dendritic length in the same cubes as (D). (F) Percent volumetric occupancy of granule
cell dendrites in the same cubes as (D). (G) Average dendritic length plotted against the position in the granule cell layer for deep and superficial
granule cells. (H) Same as (G) but for the average maximum distance between the soma and dendritic tips.
doi:10.1371/journal.pcbi.1003921.g004

An Anatomical Model of a Complete Neuronal Population

PLOS Computational Biology | www.ploscompbiol.org 7 October 2014 | Volume 10 | Issue 10 | e1003921



devised enables population-level analysis, and we can link the

larger neuroanatomical features with the resulting branching

characteristics. Due to the small number of existing reconstruc-

tions that are registered to a macroscopic context and the limited

information about the properties of granule cells in the crest,

granule cells were split into subgroups differentiating infrapyr-

amidal versus suprapyramidal and deep versus superficial granule

cells based on previous reconstructions [42], and a single

balancing factor parameter was specified for each group. As more

context-aware reconstructions become available, this abrupt

transition can be modified to create a more continuous variation

of the parameters. The speed conferred by utilizing parallel

computing in the generation process and the relatively few

parameters involved provide flexibility to incorporate future

experimental observations to improve the model.

While the current model provides a valuable framework for the

exploration of macroscopic and microscopic neuroanatomical

links, there are inherent simplifications that deviate from the

biological condition that should be improved upon in future

studies. The current generation process allows for multiple

dendrites to occupy the same point in space, so a form of

avoidance could be implemented into the spatial tortuosity, instead

of solely low-pass filtered noise, in order to create a more realistic

spatial occupancy. In addition, the packing of spherical somata

can be improved to implement the variable and tightly-packed

elliptical somata observed in experimental studies [42]. The

current study also does not include the newborn granule cells,

which constitute approximately 10% of the total granule cell

population [51], transiently exhibit basal dendrites [52–54], and

possess a significantly smaller total dendritic length [53]. This

subpopulation has recently come under intense focus for their

unique participation in hippocampal network functions [55–57],

and the neuroanatomical properties of this subpopulation could be

contrasted with the more numerous mature granule cells

constructed in this study.

The linking of macroscopic and microscopic neuroanatomy

presented in this study provides a framework that can be expanded

upon with additional cell types and axons, but it also provides an

avenue to link neuroanatomical features with electrophysiological

function. The breadth of anatomical data being collected,

including recent experimental reconstructions of excitatory mossy

cells [49] and inhibitory interneurons [58,59] in the dentate gyrus,

will make it possible to construct even more biologically realistic

DG models. In addition, the context-driven generation method-

ology can be applied to axons to create realistic connectivity for

comparison to the growing connectomics literature. As noted in

the introduction, dendritic morphology can have a dramatic

impact on electrophysiological function, and the framework

provided in this study allows for this relationship to be studied

on the level of the complete population. All generated morphol-

ogies can be exported to simulation environments [60] for the

insertion of ion channel conductances or other biophysical

mechanisms. For the example case of granule cells, the measured

properties of dendritic integration [61,62] and action potential

initiation [63] should serve as valuable constraints. This structure

and function relationship can eventually be linked to both the

macroscopic neuroanatomical and network context.

Methods

The model dentate gyrus structure and granule cell synthetic

trees were created and analyzed in MATLAB using the TREES

toolbox [41,60] on University of California Irvine’s High

Performance Computing cluster. The model structure and

generation process will be made available at ModelDB (http://

senselab.med.yale.edu/ModelDB/). The standard deviations for

the literature values [42] were determined by multiplying the

reported standard error by the sample size. All values are

presented as mean 6 standard deviation.

Model dentate gyrus structure
The following parametric equations defined the layer bound-

aries:

x ~ {500 : cos(u) : (5:3 { sin(u) z (1 z 0:138 : L) : cos(v) )

y ~ 750 : sin(u) : (5:5 - 2 : sin(u) z (0:9 z 0:114 : L) : cos(v) )

x ~ 2,500 : sin(u) z (663 z 114 : L) : sin(v { 0:13 : (p{u) )

where v defined the ‘‘C’’-shape and ranged from 20.23p to

1.425p, u defined the septotemporal extent and ranged from 0.01p
to 0.98p for the GCL and 20.016p to 1.01p for the ML, and L
defined the layer and was 21.95 for inner GCL, 0 for outer GCL,

1 for IML, 2 for MML, and 3 for OML. The experimental

reconstruction GCL volume was calculated based on the average

0.6 GCL to hilus volumetric ratio and their combined volume of

6.30 mm3 [24]. The experimental value for the molecular layer

width was determined by combining the means and standard

deviations for the infrapyramidal and suprapyramidal group

measurements (240617 and 25463, respectively) reported in a

previous study [42]. The model ML width was determined by

distributing 2 million points on the outer GCL and OML

boundary, and then calculating the closest distance to the OML

boundary from 10,000 randomly sampled outer GCL points.

Synthetic dendritic tree generation
In order to recreate the context-dependent differences in the

synthetic tree population, the size of the elliptical cone, number of

stems, total number of nodes, and balancing factor governing the

wiring were modified based on the location of each soma.

Superficial neurons were defined as having somata in the half of

the GCL closest to the ML, whereas deep neurons had somata in

the half farthest from the ML. The infrapyramidal/suprapyrami-

dal split was located halfway around the characteristic ‘‘C’’-shape

of the transverse slice of the dentate gyrus, which was defined by

the midpoint of the v parameter in the GCL boundary equation.

The number of stems was set by sampling from a truncated

Poisson distribution and ranged from 1 to 4, as observed in

experimental reconstructions [42,49]. The elliptical cone was

oriented by pointing the center axis toward the closest of two

million points distributed on the OML boundary and orienting the

longitudinal and transverse elliptical cone radii within the

structure. The transverse spread of generated GCs was analyzed

by orienting cells based on their mean transverse axis and

measuring the distance between the outermost dendritic tips. The

widest spread in the majority of granule cells is reported to be close

to the transverse axis [42], so the elliptical cone transverse radius

was set greater than the longitudinal radius in the generation

process. All trees were resampled to a 5 mm fixed segment interval,

and low-pass filtered homogenous spatial noise was applied to all

points similar to previous methods [41], using length constants of

10 mm and 50 mm. Diameter mapping was implemented using a

variable quadratic tapering from previous studies [41,47] and

adding an additional scaling function exp(x) – 1, where x is the

distance from the soma, to better approximate the initial diameter
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taper close to the soma. Experimental reconstructions [42] used in

the target point laminar distribution estimation (see Supporting

Information) and synthetic tree validation were obtained from the

Population-level analyses
The ray-tracing images in Figure 4B–C were created with the

Persistence of Vision Ray tracer (POV-ray) software (http://www.

povray.org/download/). The location of dendrites within each

25 mm cube was determined by testing the points in each dendritic

tree, which specify the center of each segment. Because the

granule cell dendritic trees were resampled at 5 mm before the

spatial jitter addition, the length and volume measurements within

each cubic volume are approximations. To get an estimate of the

complexity required for an axon to contact all granule cell

dendritic trees invading each cubic volume, random points were

selected for each cubic volume and connected using the optimal

wiring algorithm with a balancing factor of zero (to minimize total

dendritic length). The number of target points was increased until

the simulated axon reached within 5 mm of all granule cell

dendritic trees present in the each volume. The results from 10

different random collections of target points were averaged

together to determine the complexity required (number of branch

points) for each cubic volume. In order to map the dendritic length

and maximum tip distance onto the GCL, triangulations of the

inner and outer GCL surfaces were created with 5000 faces, and

the closest face for all trees was determined. The values for the

trees associated with each respective face were then averaged

together.

Supporting Information

Figure S1 Branch and termination point distributions estimated

from experimental dendritic tree reconstructions. (A) Overlay of

rotated three-dimensional reconstructions of 43 granule cell

dendritic morphologies. (B) Size-normalized dendritic morpholo-

gies scaled to the average limits in all three dimensions. (C)

Distribution of branch and termination points in each layer. GCL

– granule cell layer (blue), IML – inner molecular layer (green),

MML – middle molecular layer (magenta), OML – outer

molecular layer (red).

(TIF)

Figure S2 Correlations between occupancy measures. (A)

Number of unique granule cells with dendrites reaching into a

given cube (25625625 mm) versus the cable density. Cubic

volumes are the same as in Figure 4D–F. (B) Number of unique

granule cells with dendrites reaching into a given cube versus

percent volumetric occupancy in the same cubes as (A). (C) Cable

density versus percent volumetric occupancy in the same cubes as

(A).

(TIF)

Text S1 Estimation of target point laminar distribution.

(DOC)
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52. Lübbers K, Frotscher M (1988) Differentiation of granule cells in relation to

GABAergic neurons in the rat fascia dentata. Anat Embryol 178: 119–127.

53. Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity
in newly generated granule cells of the adult hippocampus. Nature 429: 184–

187.
54. Seress L, Pokorny J (1981) Structure of the granular layer of the rat dentate

gyrus. A light microscopic and Golgi study. J Anat 133: 181–195.

55. Akers KG, Martinez-Canabal A, Restivo L, Yiu AP, De Cristofaro A, et al.
(2014) Hippocampal neurogenesis regulates forgetting during adulthood and

infancy. Science 344: 598–602.
56. Zhao C, Deng W, Gage FH (2008) Mechanisms and Functional Implications of

Adult Neurogenesis. Cell 132: 645–660.
57. Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, et al. (2012)

Optical controlling reveals time-dependent roles for adult-born dentate granule

cells. Nature neuroscience 15: 1700–1706.
58. Norenberg A, Hu H, Vida I, Bartos M, Jonas P (2010) Distinct nonuniform

cable properties optimize rapid and efficient activation of fast-spiking
GABAergic interneurons. Proc Natl Acad Sci U S A 107: 894–899.

59. Savanthrapadian S, Meyer T, Elgueta C, Booker SA, Vida I, et al. (2014)

Synaptic Properties of SOM- and CCK-Expressing Cells in Dentate Gyrus
Interneuron Networks. J Neurosci 34: 8197–8209.

60. Cuntz H, Forstner F, Borst A, Hausser M (2011) The TREES toolbox–probing
the basis of axonal and dendritic branching. Neuroinformatics 9: 91–96.

61. Krueppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal
dentate granule cells. Neuron 71: 512–528.

62. Schmidt-Hieber C, Jonas P, Bischofberger J (2007) Subthreshold dendritic signal

processing and coincidence detection in dentate gyrus granule cells. J Neurosci
27: 8430–8441.

63. Schmidt-Hieber C, Bischofberger J (2010) Fast sodium channel gating supports
localized and efficient axonal action potential initiation. J Neurosci 30: 10233–

10242.

An Anatomical Model of a Complete Neuronal Population

PLOS Computational Biology | www.ploscompbiol.org 10 October 2014 | Volume 10 | Issue 10 | e1003921


